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Abstract
Steady State models of Evolutionary Algorithms are widely used, yet surprisingly lit-
tle attention has been paid to the effects arising from different replacement strategies.
This paper explores the use of mathematical models to characterise the selection pres-
sures arising in a selection-only environment. The first part brings together models for
the behaviour of seven different replacement mechanisms and provides expressions
for various proposed indicators of Evolutionary Algorithm behaviour. Some of these
have been derived elsewhere, and are included for completeness, but the majority are
new to this paper. These theoretical indicators are used to compare the behaviour of
the different strategies. The second part of this paper examines the practical relevance
of these indicators as predictors for algorithms’ relative performance in terms of op-
timisation time and reliability. It is not the intention of this paper to come up with a
“one size fits all” recommendation for choice of replacement strategy. Although some
strategies may have little to recommend them, the relative ranking of others is shown
to depend on the intended use of the algorithm to be implemented, as reflected in the
choice of performance metrics.
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1 Introduction

As the commonly used “Natural Selection” metaphor suggests, the selection mecha-
nism in Evolutionary Algorithms (EAs) is the driving force behind the hoped–for im-
provement in the fitness distribution of the population. Essentially its role is to take
advantage of the fitter individuals produced by the reproductive operators (recombi-
nation and mutation) and increase their relative frequency in the population, so that
they are more likely to be chosen as parents during the next round of reproduction.
What distinguishes EAs from many biological models is the use of a fixed population
size. This enforces a split of the selection mechanism into two phases, namely parental
selection and replacement strategy. For most Generational EAs (GEAs), (i.e., except
those using some variant of an elitist strategy such as (µ + λ)), the latter is simple: all
members of the previous population are deleted, and if good solutions are to be pre-
served and propagated then this burden falls upon the reproductive operators. This
greatly simplifies the task of producing analyses of the expected behaviour of the algo-
rithm using indicators such as Takeover Time (Goldberg and Deb, 1991), Selection In-
tensity (Bäck, 1995; Blickle and Thiele, 1997), Genetic Drift (Rogers and Prügel-Bennett,
1999a) and Expected Loss of Diversity (Motoki, 2002). For Steady State EAs (SSEAs),
the choices of replacement strategy may be split into two classes: age-based (as per
GEAs) and fitness-based.
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1.1 Related Work

Rogers and Prügel-Bennett (1999b) showed that an SSEA using Boltzmann selection
for both parents and replacements demonstrated twice the rate of change of a GEA
using the same selection method for parents. This was both in terms of the increase
in the mean of the population’s fitness distribution, and of the decrease of its vari-
ance. In the case of random deletion, the GEA and SSEA were shown to be (to a good
approximation) equivalent in terms of the rate of increase in mean fitness, but the non-
fitness-dependent term in the rate of variance decrease (Genetic Drift) was double in
the SSEA. This “statistical mechanics” approach as espoused in (Prügel-Bennet and
Shapiro, 1994) and subsequently developed in many other papers by those authors are
valuable because they permit comparisons to be made within the context of an evolu-
tionary algorithm with variation operators on real fitness function. However although
these are important results in their own right, the techniques used are not easily adapt-
able to many commonly used replacement methods. This is because they either rely
on the assumption that members are not picked to be replaced from the extrema of the
fitness distribution, and/or have no way of taking into account the age of the solution.
The former precludes modelling well known algorithms such as GENITOR (Whitley
and Kauth, 1988), the latter strategies such as First-In-First-Out (FIFO).

Other approaches which model EAs with variation and selection operators acting
on a specific fitness function include the “dynamic systems” approach (as described
in (Vose, 1999) and further developed by Vose and co-workers) and the “statistical dy-
namics” approach (van Nimwegen et al., 1999; van Nimwegen and Crutchfield, 2001).
Both approaches model an EA as the action of an “Evolutionary Operator” G = M◦F
acting on a vector which in some way represents the current population (or probability
distributions thereon). M represents the combined action of mutation and recombi-
nation, and F represents the action of selection, in most cases explicitly incorporating
information about the fitness function. The approaches consider the fixed points of
the operator G. Unfortunately at present there exists no general method for finding
these when G is nonlinear, for example when M includes crossover as well as muta-
tion or when F is complex. For this reason analytical approaches have tended to use a
generational mutation-selection model with fitness-proportionate selection (for which
van Nimwegen (1999) presents a linearisation). Although Wright (1999) extended the
dynamical systems model to include truncation selection in non-generational models,
considering a wider range of replacement strategies in SSEAs presents the same prob-
lems of finding fixed points.

Thus while these approaches have much to offer, for various reasons none of them
currently provide the ability to conduct a widespread comparison between different
replacement methods. Other descriptors of behaviour are more amenable to analysis,
but tend to only consider one facet of the EA in isolation. Some of these are rooted
in a pragmatic dimensional analysis approach to understanding EAs, whereby the key
facets affecting behaviour are identified and their effects examined in isolation. Gold-
berg (2002) describes such a philosophy of using combinations of indicators when de-
signing EAs to tackle specific problems. Thus different indicators describing selection
might be considered in conjunction with indicators describing other factors–such as
the “mixing time” (Thierens and Goldberg, 1993). As will be seen, a variety of methods
have been proposed to characterise the effect of selection in isolation, and permit com-
parison between different operators. Part of the purpose of this paper is to present a
preliminary study of whether these have any predictive value for the observed behav-
iour of EAs in which all other details are left unchanged.
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One common indicator used to examine the affect of different selection operators in
this kind of analysis is the takeover time (or probability), which reflects the expectation
of the time taken (or likelihood) for a single fitter individual to take over a finite popu-
lation under selection and replacement alone (Goldberg and Deb, 1991). Chakraborty
(1995; 1997) used a Markov Chain analysis to model takeover times for a number of se-
lection mechanisms in both GEAs and SSEAs. Using a numerical approach with fixed
population sizes, results were presented for SSEAs using Replace–Worst, Replace–
Random and deletion by exponential ranking. Smith and Vavak (1999a) used this
model to examine the behaviour of SSEAs using several other replacement schemes,
again for a single fixed population size. More recently Rudolph (2000; 2001) gener-
alised this model to derive some analytical results for takeover times and probabilities
as a function of population size.

Rudolph has also argued that takeover time alone is not a sufficient indicator of the
selection pressure exerted. An indicator η representing the mean fraction of non-best
individuals available as parents prior to takeover was proposed in (Rudolph, 2000). In a
similar vein, following Blickle and Thiele (1997), Motoki (2002) proposed the “Expected
Loss of Diversity” indicator to quantify the change in the diversity between a given
population and the (same-sized) set of parents selected from it. However this was not
extended to cover SSEAs, for reasons which will be discussed later.

1.2 Goals and Contributions

This paper has two principal aims. The first is to bring together models for the behav-
iour of seven commonly used replacement mechanisms and derive expressions for the
indicators mentioned above, i.e., Takeover Time, η, and the Expected Loss of Diversity.
Since first moments (means) on their own are often insufficient to discriminate between
different distributions, analytic expressions for the variance of takeover times are also
provided. These theoretical indicators are used to compare the behaviour of the dif-
ferent strategies. The second aim of this paper is to examine their practical relevance
as predictors for EA performance in terms of optimisation time and reliability. It must
be emphasised that it is not the intention of this paper to come up with a “one size
fits all” recommendation for choice of replacement strategy. As will be seen, although
some strategies may have little to recommend them, the relative ranking of others will
largely depend on the intended use of the EA to be implemented, as reflected in the
choice of performance metrics.

Rudolph (2000; 2001) has already produced analytic expressions for the expected
takeover times for the following replacement strategies: k−ary Select-Replace Tour-
naments, Replace-Worst (GENITOR), Elitist-Random-Replacement, and Elitist Kill-
Tournaments, together with bounds on the takeover probabilities for the non-elitist ver-
sions of the latter two strategies. In addition he has produced expressions for the value
of η for k−ary Select-Replace Tournaments and Replace-Worst (GENITOR). These re-
sults are included for the sake of completeness. Note that “elitist” in this sense means
that the final member of the fitter class is never permitted to be deleted.

All other analytic results, namely the expected takeover times and η for the vari-
ous Conservative and the Elitist-FIFO strategies, η for Elitist versions of Replace Ran-
dom and Kill tournaments, the bounds on the takeover probabilities for the strict FIFO
strategy, all the expressions describing the variance in takeover time, and all the expres-
sions describing the Expected Loss of Diversity are new to this paper, as is the statistical
analysis of the predictive power of the various indicators.
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1.3 Organisation of This Paper

The rest of this paper proceeds as follows. Section 2 briefly reviews the principal math-
ematical techniques used within this paper and formally defines the quantities of inter-
est: takeover time, diversity and expected loss of diversity. Section 3 contains descrip-
tions and models of the different algorithms considered. This section is divided into
two parts. Section 3.1 discusses the replacement strategies which guarantee takeover
of the fittest individual in a selection-replacement only regime. Section 3.2 then consid-
ers those algorithms where the fittest member may be lost due to the stochastic nature
of the replacement strategy. Section 4 provides a summary and comparison of the val-
ues of various indicators for the replacement methods. Following this, Section 5 details
results from a number of experiments designed to test the relative merit of the different
indicators as predictors of EA behaviour. Finally in Section 6 these results are discussed
and some conclusions drawn about the merits of different strategies and indicators.

2 Modelling Selection with Markov Chains

2.1 Background

The use of Markov Chains to model different aspects of EA behaviour is now well es-
tablished in various contexts. The sheer size of the full models of Nix and Vose (1992)
renders them generally intractable for non-trivial systems. However various papers
have used Markov chains to model different aspects of EA behaviour in isolation, such
as genetic drift in the absence of selection, e.g. (Asoh and Mühlenbein, 1994; Goldberg
and Segrest, 1987). A frequently studied indicator is the “Takeover Time” (Goldberg
and Deb, 1991), namely the number of selection events needed for a single member of
an fitter class to take over a population. Rudolph (2000) proposed an indicator that
characterises the fraction of non-optimal solutions evaluated before takeover, as an al-
ternative tool for predicting the merit of an operator in an optimisation setting.

These approaches divide the population of an EA into two equivalence classes of
different fitness. They model the evolution of the proportion belonging to the fitter class
as a function of time and population size N . In the context of SSEAs each discrete time-
step consists of a parent being chosen by some parental selection mechanism, and a
copy of it being made to put in to the population according to the replacement strategy
used. This analysis demonstrates the ability of the selection and replacement operators
to exploit fitter individuals, and also the degree to which they are prone to stochastic
effects, namely the loss of (possibly all) members of the fitter class.

Each selection-replacement event can be considered to occupy a single discrete
time-step, so the evolution of the population can be modelled as a random sequence
X(t) : 0 ≤ X(t) ≤ N , where X(t) denotes the number of members of the popula-
tion belonging to the fitter class at time t. Since only one member of the population
is changed at a time, X(t) − X(t − 1) ∈ {−1, 0, 1} and the system is effectively a ran-
dom walk. For most selection or replacement operators (all but FIFO) the probability
that X(t + 1) takes some value j depends solely on X(t), and so the random sequence
X(t), X(t + 1), . . ., is a time-homogeneous Markov Chain with N + 1 discrete states
represented by the different values of X(T ). The corresponding transition matrix P is
either bi- or tri-diagonal with non-zero elements defined by the selection and replace-
ment strategies. Given P it is possible to calculate the n-step transition matrix Pn which
defines the transition probabilities after n steps.

As there is no introduction of variety due to reproduction PN,N−1 = P0,1 = 0. In
terms of random walks, the state X(t) = N is termed an absorbing barrier. For any
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non-zero value X(t) = i, there is a positive probability that X(t + N − i) = N by
successive increases, hence all states X(t) ∈ {1, . . . , N − 1} are transient. In the general
case X(t) = 0 is an absorbing barrier. In the special case of algorithms which can never
lose the final copy of the fittest solution, P1,0 = 0, and so X(t) = 0 is not accessible from
any other state, and is effectively a reflecting barrier.

2.2 Mean and Variance of Takeover Times

For any given instance of the random walks that are considered here, the takeover time
T is defined as T = min(t : X(t) = N | X(0) = 1), with corresponding expectation
E(T ) and variance V (T ).

Several of the methods described do not permit the replacement of a member of the
fitter class with a less fit one, so X(t) is non-decreasing, and each of the transitions from
state i to state i + 1 are independent events. If Ti,i+1 denotes the number of time steps
taken between transitions, then this variable is geometrically distributed with mean
1/Pi,i+1 and variance (1 − Pi,i+1)/P 2

i,i+1. Thus starting from one copy, the takeover
time T has mean and variance:

E(T ) =
N−1∑
i=1

1
Pi,i+1

, V (T ) =
N−1∑
i=1

1 − Pi,i+1

P 2
i,i+1

=
N−1∑
i=1

(
1

Pi,i+1

)2

− E(T ). (1)

In the general case when X(t) can decrease, the method above is not valid and
more complex methods are necessary. Considering a random walk with two absorbing
barriers, the first and last rows and columns of the corresponding transition matrix P
concern the absorbing states X(t) ∈ {0, N}. If these are removed from P , the remain-
ing matrix S gives the transition probabilities for movements between the transient
states. The fundamental matrix is defined as Q = (I − S)−1, with I an identity matrix
of appropriate dimension. This fundamental matrix has the property that Qi,j is the
expected number of occurrences of the transient state j prior to absorption if the sys-
tem starts in the transient state i. Noting that by convention X(0) = 1, the expected
number of time-steps prior to absorption in the general case is given by the sum of the
number of occurrences of each of the transient states, and hence for elitist algorithms
with P1,0 = 0:

E(T ) =
N−1∑
j=1

Q1,j. (2)

Helpfully, expressions for these terms for a random walk with absorbing barriers,
which can be used to derive E(T ) are given in (Rudolph, 1999). Derivation of the
variance V (T ) in the general cases is more complex. It is possible to derive from first
principles expressions for the variance of the number of occurrences of each state, based
on the probability that a state j is ever reached from some state i. These probabilities
can in turn be derived from the entries in the fundamental matrix. However, in the
general case with more transitions between states it is not reasonable to consider the
number of occurrences of each state as independent events. Therefore in this case cal-
culating V (T ) simply as the sum of these single-state variances, without taking into
account the covariance between them, will lead to overestimates. Given these qualms,
and the long-winded nature of the calculations, derivation of V (T ) in the general case
remains for future work.
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2.3 Takeover Probabilities

For those replacement strategies in which there is a positive probability for even the
best individuals to disappear entirely, it is necessary to talk about takeover probabilities
rather than takeover times. For a starting configuration of the EA with X(0) = i, the
probability that X(t) = N , (i.e., that the class has taken over the population at time t) is
P t

i,N . By convention X(0) = 1 and so the takeover probability at time t is defined to be
P t

1,N . Rather than calculating this explicitly, note that the state N can only be reached
directly from state N − 1, hence the probability of takeover is PN−1,N · Q1,N−1. As
noted above, expressions for the elements of Q are given in (Rudolph, 1999), and for
the takeover probabilities of three strategies in (Rudolph, 2000).

2.4 The Diversity Indicator η

Rudolph (2000) defined his diversity indicator η as “the mean fraction of non-best in-
dividuals that were available for the generation of candidate solutions prior to absorp-
tion.” The general form can be stated using the expected number of occurrences of each
state as:

η =

∑N−1
j=1 (N − j) · Q1,j

N ·∑N−1
j=1 Q1,j

= 1 −
∑N−1

j=1 j · Q1,j

N · E(T )
(3)

This was formulated in terms of a variable BT , denoting the total number of mem-
bers of the fitter class prior to absorption, which has an expected value equivalent to
the numerator of the second term in Eq. 3. It is shown that matters can be simplified
if the symmetry property holds i.e., Pi,i+1 = Pn−i,n−i+1, in which case η = 0.5. For the
general non-decreasing case the system may be thought of as a series of independent
transitions between states i, i + 1, i ∈ {1, . . . , N − 1}, so each of these has expected
duration Q1,i = 1/Pi,i+1.

2.5 An Alternative Indicator : Expected Loss of Diversity

Following Blickle and Thiele (1997), Motoki (2002) defined Dx, the Expected Loss of
Diversity, as the expectation of the difference in the frequency of occurrence of indi-
viduals between the population at a given time-step, and the pool of parents resulting
from the application of a selection operator x. In that paper various rank-based se-
lection methods for generational EAs are compared under the assumptions that each
individual parent has a different fitness, parents are selected one at a time with re-
placement, and there is no overlap between generations. Under these circumstances
Dx(N) =

∑N
k=1(1− ps,x(k))/N , where ps,x(k) is the probability of selecting an individ-

ual of rank k under any given scheme x.
In a steady-state model, the offspring will generally be inserted into the popula-

tion. This will change the rank of some of the surviving parents, and in a selection-only
model will violate the assumption of distinct fitnesses. Therefore it is not possible to
consider the effects of N selection-replacement events, which would permit compari-
son between steady-state and generational schemes. However it is relatively straight-
forward to consider the expected effect of a single event, and the single-step expected
loss of diversity will be defined as:

Dx,y(N) =
1
N

·
N∑

k=1

(1 − ps,x(k)) · pd,y(k) (4)

where pd,y(k) denotes the probability of deleting an individual of rank k under replace-
ment scheme y. For the purposes of comparison the same parent selection method x is
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used for each replacement strategy. Appendix D contains the derivations of Dx,y(N)
for various schemes y, and the results for the elitist schemes are shown in Table 3.

3 Description and Models of Algorithms

This section defines the different replacement strategies under consideration, and pro-
vides details of the Transition Matrix P for the analysis of the Markov chain. Where
applicable this is done both for the general case (using a term ps to denote the proba-
bility that a member of the fitter class is chosen for copying) and then for the case of
deterministic binary tournaments (DBT) for parent selection. In the latter this probabil-
ity will be denoted as ps(i) for a population containing i members of the fitter class, and
is given by: ps(i) = i · (2N − i)/N2. In all cases PN,N = P0,0 = 1 and PN,N−1 = P0,1 = 0.

3.1 Non-Decreasing Methods

The first class of methods are Non-Decreasing, i.e., X(t + 1) ≥ X(t) and the matrix P is
bidiagonal with Pi+1,i = 0, Pii = 1 − Pi,i+1 ∀i ∈ {0, . . . , N − 1}. As noted above,
in these cases E(T ), V (T ) and η can be fairly simply derived in terms of the elements
Pi,i+1 of the transition matrix.

3.1.1 k−ary Select-Replace Tournaments
This algorithm was suggested by Rudolph (2000) . Here k individuals are chosen (with
replacement) from the population, and a copy of the fittest one replaces the least fit. In
other words the parent-selection and replacement strategies are merged. In this case the
number of copies of the fitter class will increase unless all k members of the tournament
belong to the same class, so the relevant entries of the transition matrix are:

Pi,i+1 = 1 − (1 − i/N)k − (i/N)k i ∈ {1, . . . , N − 1}, k ∈ {1, . . . , N}
= 2i(N − i)/N2 i ∈ {1, . . . , N − 1}, k = 2. (5)

3.1.2 Replace Worst
This is the replacement strategy used in Whitley’s original Steady-State Genetic Algo-
rithm GENITOR (Whitley and Kauth, 1988) and often referred to by that name. In this
case the current least fit member of the population is replaced. Thus a member of the
less fit class will always be replaced until takeover has occurred, and so the defining
elements of P are given by:

Pi,i+1 = ps i ∈ {1, . . .N − 1}, general case

= i(2N − i)/N2 i ∈ {1, . . .N − 1}, DBT. (6)

3.1.3 Conservative–FIFO Selection
This operator was presented in Vavak et al. (1997) for use in noisy and/or non-
stationary environments. It combines a First-In-First-Out (FIFO, also known as
“Delete–Oldest”) replacement strategy with a modified deterministic binary tourna-
ment selection operator. In this “Conservative” selection, the choice of member to be
replaced is made before the parents are chosen. This member takes part in all of the
tournaments to become parents at that iteration, the other candidates being chosen at
random. The number of these tournaments is one for the select-replace model, and
is otherwise determined by the arity of the recombination operator. Since the tourna-
ments are deterministic, elitism is implicitly assured under selection alone, and also in
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the presence of “respectful” recombination (Radcliffe, 1991), although not in the pres-
ence of mutation or other variation operators.

With a FIFO strategy the probability of deleting one of the members of the fittest
class depends on when they were created, so the transition probabilities are not time-
independent. Therefore the progression of X(t) for this replacement strategy cannot
be exactly modelled as a Markov Chain with N + 1 states, rather, for any given value
X(t) = i, the system can be in any one of N !/i!(N − i)! states, depending on the age-
distribution of the fitter members. The process does form a Markov chain and the
transition probabilities between them can be derived, but this remains for future work.
However, as shown by Smith and Vavak (1999a), it is possible to get a prediction which
is a close match to the empirical behaviour using a Markov model based on the fol-
lowing approximation. Let pold denote the probability that the oldest member is in
the fitter class, and note that in this case it will win the tournament, so X(t) is non-
decreasing, and can only increase if the oldest is not a member of the fitter class and
the other (randomly chosen) candidate in the tournament is. In Appendix A.1 a gen-
eral approximation for pold is derived under the assumption that the value decreases
linearly with the age of the member, so that the Markov condition holds. Equation A-2
in Appendix A.2 gives the specific form for this modified binary tournament selection,
so the defining elements of P are given by:

Pi,i+1 = (i/N) · (1 − pold) i ∈ {1, . . . , N − 1} general case

= 2i(N − i)/(2N2 − iN) i ∈ {1, . . . , N − 1} linear approximation. (7)

3.1.4 Conservative–Random
Smith and Vavak (1999a) tested the conservative selection operator using a random
rather than age-based choice of the member to be replaced. Again, X(t) will not change
unless a less fit member is chosen to be replaced, and the other participant in the tour-
nament is a member of the fitter class, yielding:

Pi,i+1 = ps · (1 − ps) general case

= i(N − i)/N2 DBT (8)

since both participants in this binary tournament are chosen at random. Note that this
transition probability is exactly half that of binary selection-replacement tournaments
shown in Eq. 5, since in this method the first randomly drawn member is replaced,
rather than the less fit of the two. There is another difference that occurs with recombi-
native algorithms, since in one case the algorithm makes independent random draw-
ings for each member of each tournament, whereas in the conservative tournaments
the member selected to be replaced (either according to age or at random) takes part in
each tournament.

3.2 Decreasing Methods

Into this class of strategies fall those algorithms where the value of X(t) may decrease
as well as increase, i.e. X(t + 1) − X(t) ∈ {−1, 0, 1}, and the corresponding transition
matrices are tridiagonal. In general these methods have the potential to lose the sole
copy of the fittest class, so it is no longer meaningful to talk about takeover times as
the system can be absorbed into either state X(t) = 0 or X(t) = N . Instead, it is more
appropriate to consider the probability that takeover actually occurs.

As with generational EAs, the use of elitism is frequently incorporated–that is the
algorithms are modified so that the sequence X(t) = 1, ...., 1, 0 never occurs. In terms
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of the modified transition matrix, P1,0 = 0 and since P1,2 is the same, P1,1 = 1 − P1,0 −
P1,2 is larger, but all other elements of P are unchanged. Rudolph (2001) derived the
elements Q1,j of the fundamental matrix for elitist versions of Replace-Random and
Kill Tournaments, which using Eq. 2 yield E(T ) for these strategies. Details of these
calculations, plus new derivations of η are given in Appendix B.

3.2.1 Replace Random

This strategy relies on a random choice of member of the population to be replaced
at each time-step. Since the population size is finite the mean life expectancy of any
given individual is N time steps, as it is for the FIFO strategy. However there can be
severe variance, with consequent effects for the behaviour of the algorithm as noted by
DeJong and Sarma (1992) . Although it has been much studied theoretically, primarily
due to the simplicity with which it can be modelled, empirically there seems to be little
evidence in its favour–see for example the poor results reported with this algorithm
compared to other strategies (Smith and Vavak, 1999a).

Since the probability of picking a member for replacement is simply i/N for the
fitter class, and (N − i)/N for the others, the defining elements of P are given by:

Pi,i+1 = ps · (N − i)/N i ∈ {1, . . .N − 1} general case

= i(2N − i)(N − i)/N3 i ∈ {1, . . .N − 1} DBT
Pi,i−1 = (1 − ps) · i/N i ∈ {1, . . .N − 1} general case

= i(N − i)2/N3, i ∈ {1, . . .N − 1} DBT. (9)

Rudolph (2000) has shown via the fundamental matrix route that for DBT that the
takeover probability is 0.5 + 1/2N .

3.2.2 Kill Tournament

The strategy of selecting a member for replacement by a “kill tournament” has many
of the advantages of a Linear Ranking strategy, without the need for continually re-
sorting the population according to fitness, and a number of possibilities arise. As
for the parent selection tournament, it is possible to pick a number of parents at ran-
dom and replace the worst, or to pick two random parents and replace the worse with
some probability 0.5 ≤ d ≤ 1.0. Thus a range of selection pressures can be achieved.
Other authors have suggested tournaments between the parents and their offspring
(see Thierens (1997) for a good discussion).

Assuming that the participants in the kill tournament are selected randomly with
replacement, the probability pkill of deleting a member of the fitter class will again be a
function of X(t) and is defined by analogous expressions to those for parent selection.
For a k–ary tournament with the worst always replaced, all of the participants in the
tournament must be of the fitter class if one is to be replaced, i.e., pkill = (i/N)k. For
the general case with binary tournaments this probability is given by:

pkill = i2/N2 + 2i(N − i)(1 − d)/N2

= (2d − 1) · i2/N2 + (2 − 2d) · i/N. (10)
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The defining elements of P are therefore:

Pi,i+1 = ps · (1 − pkill) i ∈ {1, . . . , N − 1} general case

= i(2N − i)(N2 − i2)/N4 i ∈ {1, . . . , N − 1} DBT.
Pi,i−1 = pkill · (1 − ps) i ∈ {1, . . . , N − 1} general case

= i2(N − i)2/N4 i ∈ {1, . . . , N − 1} DBT. (11)

Using the fundamental matrix does not yield an analytical expression in this case,
but the bounds (1 − 1/N) ≤ ptakeover ≤ (1 − 1/5N) are derived in (Rudolph, 2000).

3.2.3 First–In–First–Out (FIFO)

One simple method of avoiding some of the variability induced by a replace-random
strategy is to ensure an identical life-expectancy for each member of the population.
This can be simply achieved via an age-based replacement strategy, as is used in the
canonical Simple Genetic Algorithm. Smith and Vavak (1999b) reported that this sort
of strategy has advantages on dynamical optimisation problems since it provides a
simple means of systematically reducing the retention of outdated fitness information.

As for the Conservative-FIFO strategy, the age-dependency means that the vari-
able X(t) does not satisfy the Markov condition, but it is possible to derive a reason-
able model by assuming a form for pold that is linear in X(t) in which case the defining
elements of P in the generic form are:

Pi,i+1 = ps · (1 − pold)
Pi,i−1 = pold · (1 − ps) (12)

In Appendix A.1 an approximation pold = 2i/N − ps is derived based on this as-
sumption. If a stochastic binary selection tournament is used with a FIFO strategy, the
expression derived in Eq. A-1 reduces to pold = 2i(1 − s)/N + (2s − 1)i2/N2, where s
is the probability of accepting the fitter member. Comparing this with the equivalent
probability for a stochastic binary kill tournament, (pkill in Eq.10), shows that the two
are the same provided s = d. This shows that provided the linear model is accurate, when
using a binary selection tournament with a probability 0.5 ≤ s ≤ 1.0 of selecting the fit-
ter, a FIFO policy is equivalent (at least in terms of takeover) to a binary kill tournament
where the worst is deleted with the same probability.

Smith and Vavak (1999a) explored this approximation for a single fixed population
size and found it to be accurate apart from minor deviations in the behaviour during the
initial phases (low values of X(t)). In Appendix C bounds are derived for the takeover
probability which do not make the assumption of linearity. These have been confirmed
experimentally, and although initially high (for low N ), they decrease with N , rapidly
converging to 1−2e−2+e−4 for the lower bound and 1−e−2−2e−4 for the upper. This
rapid decrease with N to fixed limits is also seen with Replace-Random, but not with
kill tournaments, where the limits only converge asymptotically to 1.

It is straightforward to modify the FIFO strategy so that the last copy of the fitter
class is not replaced by a less-fit individual, and Smith and Vavak (1999a) demonstrated
that under these conditions, the linear approximation, and hence for binary tournament
selection the equivalence to Kill Tournaments was accurate. Hence the takeover times
and η in this case are the same as for elitist Kill Tournaments.
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Table 1: Comparison of Indicators for different strategies based on takeover analysis.
Columns from left are strategy, expectation and variance of takeover time. “-” indicates
value not available, HN is the N th harmonic number, ζ(N) is Riemann’s zeta function.

Method E(T ) V (T )

Worst 1
2 · N · H2N−1 − 1

2
1
4 · N2 · ζ2

2N−1 − N
4 H2N−1

Binary SR 1 · N · HN−1
1
2 · N2 · ζ2

N−1

E-Tourn. 1 · N · HN−1 + 1
2 · HN−1 -

E-FIFO 1 · N · HN−1 + 1
2 · HN−1 -

C-FIFO 3
2 · N · HN−1 − N

2N−2
5
4 · N2 · ζ2

N−1 + N
2 HN−1 − 4N3−5N2+2N

4(N−1)2

E-Rand 2 · N · HN−1 − 2N
N+1 · HN−1 -

C-Rand 2 · N · HN−1 2 · N2 · ζ2
N−1

4 Comparison of Indicators

4.1 Mean and Variance of Takeover Time

Details of the derivation of E(T ), V (T ), and η for those methods which guarantee ab-
sorption to X(t) = N are given in Appendix B.For the sake of brevity, from this point
on the prefix C will be used to denote the Conservative selection tournaments, and E
to denote the elitist variant of the algorithms . “Kill Tournaments” will be abbreviated
to Tourn, Replace-Worst to Worst, and Replace-Random to Rand.

Table 1 shows the expectation and variance of takeover time for these strategies
ranked by increasing E(T ). The expression HN =

∑N
i=1 1/i, which is termed the N th

Harmonic number, is bounded by log(N) < HN < log(N) + 1. ζ2
N =

∑N
i=1 1/i2 denotes

Riemann’s Zeta function with exponent 2 truncated to its first N terms. Since all terms
are positive this converges asymptotically, and the limit is π2/6.

In order to verify these predictions 1000 runs were made with each algorithm for
each population size in the range {2, . . . , 1000}. These results confirmed the predictions
when exact models were available. Figure 1 shows a comparison of the predictions
with experimental observations for those strategies with a FIFO element. Specifically it
contrasts E(T ) with the observed mean takeover time for C-FIFO and E-FIFO, and the
positive square root of V (T ) with the observed standard deviation of the takeover time
for C-FIFO. The observed standard deviation of takeover time for E-FIFO is also shown
for completeness.

As can be seen the observed variance in takeover times confirms the predicted
V (T ) for C-FIFO, and the observed values for the two strategies are very similar. In
both cases the predicted E(T ) over-estimates the observed mean takeover time, but the
discrepancy in each case is less than one standard deviation throughout the spread of
values of N tested. Under these circumstances a hypothesis test at any given value
of N would be highly unlikely to measure these differences as significant. Therefore
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Figure 1: Comparisons of predictions of Mean, (E(T )), and Variance (V (T )), of
Takeover Times as a function of Population Size, N for the C-FIFO and -FIFO strategy
according to the linear model and experimental results.

Figure 1 would appear to lend weight to the use of the linear approximation for pold,
especially for predicting the variance in takeover time.

The results for E(T ) in Table 1 show that although they are all Θ(N log(N)), the
actual takeover times vary by as much as a factor of 4. The fastest to converge are those
methods that use fitness as a criterion for selecting members to be replaced, followed by
those using a FIFO strategy, then those using a random strategy. For both the FIFO and
Rand strategies, the Elitist versions have faster takeover than the Conservative variants.
The same pattern holds for the variance where available, although the difference in
magnitude between Worst and C-Rand is now eightfold.

By way of comparison with these values for E(T ), Goldberg and Deb (1991)
derive the expression t∗ = (log(N) + log(log(N)))/ log(2) for the takeover time (in
generations) of a generational EA with the same deterministic binary tournaments
for parental selection. Assuming N selection and replacement events per genera-
tion, noting that log(2) ≈ 2/3, and using the upper bound of HN−1, gives E(T ) ≈
3N/2 ·HN−1 + 3N · (log(log(n))− 1)/2. In terms of the ranking by E(T ), this is close to
halfway between C-FIFO and E-Rand (this has been verified experimentally).

In a “canonical” GEA with age-based replacement, the population is completely
replaced by its offspring in each generation. Thus each member of the population
potentially participates in exactly N selection tournaments before it is replaced. The
same is true for a SSEA with the FIFO strategy, and on average for the Rand strategy.
Therefore one might intuitively expect the takeover times to be the same in these three
cases. In practise the stochastic nature of Random replacement means that the takeover
time is 1/3 larger for this type of SSEA than for the corresponding GEA, since as X(t)
increases the probability of randomly selecting a less-fit member to be replaced dimin-
ishes, unlike the systematic replacement in age based schemes such as GEAs or SSEAs
with FIFO replacement.

It has long been hypothesised that SSEAs might yield performance advantages

40 Evolutionary Computation Volume 15, Number 1



On Replacement Strategies in Steady State EAs

over GEAs because they are able to utilise good solutions as soon as they are made,
rather than waiting for the next generation for them to become parents. Since E-FIFO
has no explicit fitness component in the choice of member to be replaced, the fact that
its expected takeover time E(T ) is only 2/3 that for the corresponding GEA is a good
illustration of the ability of the SSEA to make copies of high-fitness solutions sooner.
It could be argued that this faster takeover occurs purely as a result of genetic drift,
rather than any fitness-based effect. However, the close match between observed and
predicted behaviour, and the fact that the linear approximation for pold suggests that
E-FIFO and E-Tourn (which definitely is fitness-biased) are equivalent belies this sug-
gestion. The reason for this is that the linear approximation implicitly assumes a con-
stantly increasing mean fitness within the equivalent of a generation of a GEA.

Finally, note that the takeover time of E-Tourn is half that of E-Rand. This suggests
a direct relationship between E(T ) and the rate of increase in mean fitness which is
cited by Rogers and Prügel-Bennet (1999) as being twice as high for fitness-based re-
placement as for Random under their particular selection conditions (see Section 1.1).

When designing an EA to be utilised in real-world application, factors other than
the average speed of finding good solutions may be important, and it is worth con-
sidering the other information these analytic results contain. One type of application
for EAs is in situations where they are used repetitively on similar problems–for exam-
ple doing daily scheduling, vehicle routing, production planning or other management
tasks. In such cases it may be more important that the EA reliably finds a good solu-
tion in a fixed amount of time, rather than occasionally finding very good solutions,
but at the cost of unpredictable run-times. Under these circumstances it is clear that
V (T ), the variance in takeover time, may be an important factor in choosing between
replacement strategies, since the difference between strategies is up to eightfold.

4.2 Mean Fraction and Number of Less-Fit Points Selected Prior to Takeover

Table 2 shows the predicted fraction and number of non-best individuals for different
strategies, ranked by increasing number. Rudolph (2000) argues that η may be a better
predictor of EA behaviour than E(T ), since the latter does not take into account the
diversity of solutions produced. However, possibly more relevant to the discovery
of global optima on complex landscapes is not the fraction, but the total number of
different solutions evaluated prior to takeover. As can be seen from Table 2, many of
the strategies have η = 0.5, that is the fraction of non-best individuals selected may be
equal, but the total number of such individuals can vary by as much as a factor of two
between different algorithms.

The rank order of the different strategies is largely the same as that by E(T ) with
the following two exceptions.

• The Worst strategy, despite having the fastest takeover time, can select more non-
best points than the Binary SR, E-Tourn and E-FIFO strategies.

• C-FIFO is now very close to the maximal values observed for the Rand strategies,
rather than lying midway between them and the E-Tourn/E-FIFO ones.

4.3 Expected Loss of Diversity

Details of the calculations of Expected Loss of Diversity (D) per select-replace event are
given in Appendix D and the results are shown in Table 3, with the strategies ranked
by decreasing D; that is by increasing preservation of diversity. These are dominated
by the co-efficient of the term in 1/N . Thus the various strategies again fall into two
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Table 2: Comparison of Diversity Indicators for different strategies, ranked by η ·E(T ).
Columns from left are strategy, mean fraction (η) and number (η · E(T )) of non-best
individuals selected prior to takeover .

Method η E(T ) · η

Binary SR 1
2

1
2 · N · HN−1

E-Tourn. 1
2

1
2 · N · HN−1 + 1

4 · HN−1

E-FIFO 1
2

1
2 · N · HN−1 + 1

4 · HN−1

Worst ≈ 1 − 2 log(2)
log(2N) ≈ 1

2 · N · H2N−1

C-FIFO 2
3 − 6N2−4N−3

18N2(N−1)HN−1−6N2 ≈ 1 · N · HN−1 − N
3(N−1)

E-Rand 1
2

N
N+1 · N · HN−1

C-Rand 1
2 1 · N · HN−1

camps, the two conservative strategies (with C-FIFO this time higher than C-Rand)
having lower D values than the rest. Notably, the loss of diversity is greater for Worst
than all the other strategies, in contrast to the values for η and η · E(T ). It is worth
noting that although the table above shows the values for the E-Rand and E-Tourn, the
non-elitist versions are interesting. Rand has D = (N − 1)/N2–the same as Binary SR,
and Tourn has D = (N − 1)/N2 + 1/N4, which for all but small N is also very similar.

5 Evaluating the Indicators for Predictive Value

5.1 Background

The indicators derived above do not consider the representation of a candidate solu-
tion, the variation operators that act on it, or the particular fitness function. Therefore
it would be surprising if they were able to provide accurate predictions for the absolute
values observed for any performance metric used to compare algorithms on any given
problem. However, if all other aspects of the algorithm are kept identical, it is possible
that they may provide indicators of, or insight into, the relative performance observed
with different replacement strategies. This is the hypothesis which will be examined in
the next section.

5.2 Experimental Method

In order to evaluate the predictive value of these indicators a series of experiments were
conducted on three problems with the same binary representation but different prop-
erties. These were the simple One-Max problem, concatenated copies of Deb’s four-
bit deceptive problem (Deb and Goldberg, 1992)–hereafter named Trap, and a version
of the type R1 Royal Road problems (Mitchell et al., 1992) with 4-bit blocks–hereafter
named Royal. Formulations of these are given in Appendix E. For all three problems,
the number of decision variables L ∈ {64, 128} were used.

42 Evolutionary Computation Volume 15, Number 1



On Replacement Strategies in Steady State EAs

Table 3: Comparison of Expected Loss of Diversity (Dx,y) per selection-replacement
event with binary tournament selection (x) and different replacement strategies (y),
ranked by Dx,y decreasing down the table.

Method (y) Dx,y , x = Deterministic Binary Tournaments

Worst Dx,y = 1/N − 1/N3

E-FIFO 1/N − 1/N2 + 2/N3 ≤ Dx,y ≤ 1/N − 1/N3

E-Tourn. Dx,y = 1/N − 2/3N2 + 1/N3 − 5/3N4 + 1/N5

Binary SR Dx,y = 1/N − 1/N2

E-Rand Dx,y = 1/N − 1/N2 − 2/N3

C-FIFO 1/N2 ≤ Dx,y ≤ 1/2N + 1/2N2

C-Rand Dx,y = 1/N − 1/2N − 1/2N2

OneMax is a simple separable unimodal problem. The other two present contrast-
ing types of barriers that the EA must surmount in order to solve each sub-problem,
although both have the same size sub-problems and so the same likelihood of an opti-
mal sub-solution to any one of them being present in the initial population. For the trap
problems, the barrier is fitness-based: generating the global optimum requires identify-
ing and mixing the sub-solutions before a high fitness solution with some sub-optimal
blocks can take over the population. This will aid in evaluating the effects of fitness-
based components on the loss of diversity, and how this affects search. By contrast the
Royal problem presents an entropic barrier to the EA. The fitness problem for each sub-
problem is a “needle in the haystack” type. This requires the maintenance of diversity
(entropy) to search each plateau, followed by a dramatic reduction as the population
moves to the next higher fitness level. This tests the effect of the non-fitness based
factors such as genetic drift on the search process.

With the exception of Binary SR (which makes little sense if recombination is used)
all of the guaranteed takeover strategies listed in Table 1 were implemented within a
Steady State Genetic Algorithm. Both parents were selected by deterministic binary
tournaments (the conservative variant being used where appropriate) and a single off-
spring generated by two point crossover then subjected to mutation with bit-wise prob-
ability 1/L. Population sizes N ∈ {50, 100, 250, 500, 1000}were used.

For each combination of strategy, population size, problem and problem size, 25
runs of the EA were made, each being continued until either the optimum was found,
or 500000 evaluations were made, whichever was sooner. Each solution generated in a
run was stored, so that the total number of distinct solutions could be compared. The
various indicators derived above were compared for their predictive value according to
two commonly used quantifiers of EA behaviour, namely the Success Rate (number of
runs in which the global optimum was located) and the Average Evaluations to Success
(AES). The latter was measured using both the total and distinct number of solutions
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Table 4: Relative ordering of methods according to Success Rates on Trap problems,
and according to different indicators. The use of < for the empirical results (top line)
denotes that the results were significantly different with 95% confidence.

Ordering
Success Rates Worst < E-Tourn < E-Rand < E-FIFO < C-FIFO = C-Rand

1-D Worst < E-FIFO < E-Tourn < E-Rand < C-FIFO < C-Rand
E(T ) Worst < E-Tourn = E-FIFO < C-FIFO < C-Rand = E-Rand

E(T ) · η E-Tourn = E-FIFO < Worst < C-FIFO < E-Rand < C-Rand

evaluated. Also considered was the variance in the number of evaluations to success
and the diversity, which was measured as the ratio of the number of distinct points
evaluated to the total number of points evaluated during each run.

5.3 Predicting Relative Orderings of Success Rates

For the OneMax and Royal problems, all runs located the global optimum. This sug-
gests that entropic barriers of this size may not present a major factor, i.e., that the rate
of convergence due to genetic drift was slower than the mean time to discover a fitter
solution.

Analysis of variance (ANOVA) of the number of runs which located the global op-
timum for each combination of population size and replacement strategy for the two
different sizes of Trap problem, and post-hoc testing using Tamhane’s (1979) T2 test,
reveals that the results fall into significantly different groups with 95% confidence. Ta-
ble 4 shows the relative rankings of the different strategies according to Success Rates
on the Trap problems, and also according to various indicators. Inspection of this table
shows that none of the indicators correctly predict the relative rankings of the strate-
gies. However, it also shows that in every case the position of E-FIFO is different to
expected, and if this is ignored, then decreasing D (Expected Loss of Diversity) cor-
rectly predicts the rankings.

5.4 Average Evaluations to Solution

Table 5 shows the relative ordering of the takeover times E(T ), and also of the number
of evaluations before the global optimum is first located on successful runs, i.e., not
including runs which do not find the optimum, and not including the time taken for
the whole population to converge to the optimum. Within the table use of ≤ denotes
that observed difference between a pair of results is not statistically significant at the
5% level according to Tamhane’s T2 test, which does not assume equal variances.

The results according to the distinct number of points sampled were in almost
every case identical to those presented here, apart from occasional differences in the
probabilities that two groups of results were significantly different. The sole point of
interest occurring from the comparison of distinct with total evaluations came when the
values for the unsuccessful runs were included in the Trap row. In this case the Worst
and E-Tourn strategies move to the other end of the ordering, because of the high cut-off
(half a million evaluations). However the Trap-distinct ordering remains unchanged,
indicating premature convergence on runs not locating the global optimum.

It can be seen that the relative ordering of both total and distinct evaluations is pre-
dominantly as predicted by E(T ). There are some cases where a predicted difference
is observed, but is not statistically significant with 95% confidence, but this might be
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Table 5: Relative ordering of methods according to E(T ) (top line) and Average Eval-
uations to Success. Use of bold type indicates deviation from predicted relative order.
Use of ≤ indicates observed difference was not significant at the 95% confidence level.

Model Ordering
E(T) Worst < E-Tourn = E-FIFO < C-FIFO < C-Rand = E-Rand

1Max-64 Worst ≤ E-Tourn ≤ E-FIFO < C-FIFO ≤ C-Rand ≤ E-Rand
1Max-128 Worst ≤ E-Tourn < E-FIFO < C-FIFO ≤ C-Rand ≤ E-Rand
Royal-64 Worst ≤ E-Tourn < E-FIFO < C-FIFO ≤ C-Rand < E-Rand

Royal -128 Worst ≤ E-Tourn < C-FIFO ≤ E-FIFO≤ C-Rand < E-Rand
Trap-64 Worst ≤ E-Tourn < C-FIFO ≤ C-Rand < E-FIFO< E-Rand

Trap-128 Worst ≤ E-Tourn < E-Rand ≤ C-FIFO ≤ C-Rand ≤ E-FIFO

resolved by increasing the number of runs performed. The exceptions are the relative
positions of E-FIFO on the Trap and 128-bit Royal problems, and the position of E-Rand
in the 128 bit Trap problem. The former is worthy of separate discussion, but the lat-
ter is an artifact of the low number of successful runs, and the observed differences in
mean values are rarely statistically significant.

In order to further investigate the behaviour on the Trap problem, the number of
evaluations taken to discover the fittest point found on each run was noted. In this case
the ordering on the Trap problems becomes: Worst < E-Tourn < C-FIFO ≤ C-Rand ≤
E-FIFO ≤ E-Rand, which except for E-FIFO is as predicted by E(T ).

The predictive value of E(T ) for the absolute value of AES was also analysed. To
this end the Pearson Correlation co-efficients between this value and E(T ) were calcu-
lated for each combination of population size and problem, averaged over all replace-
ment strategies except E-FIFO (of which more later). Although this analysis revealed a
high correlation in each case, the underlying models derived were different.

Overall, E(T ) appears to be a good predictor of the relative time taken for the
algorithm to find the best solution it is going to within the (large) number of evaluations
allowed. However, for some problems, exemplified by our choice of the Trap problem,
these points may well be locally, but not globally, optimal. In other words the Worst
strategy is fastest to find the best solution it is going to reach, but this may be at the
expense of getting trapped on local optima - which ties in with the Success Rate results.
Nevertheless, the use of E(T ) to predict absolute values of AES can be discounted on
the basis of these results. Although the correlation co-efficients may be high (> 0.8), the
underlying statistical models are different. Thus when a linear regression is built using
data from all three problems, it is only able to account for about 25% of the observed
variations in the number of evaluations taken to reach the best solution in any given
run.

5.5 Behaviour of the E-FIFO strategy

The primary deviations from predicted behaviour according to both metrics above con-
cern the E-FIFO strategy, and it is worth considering the reasons for this. These predic-
tions were based heavily on the use of the linear approximation for pold which implic-
itly assumes that the mean fitness is continually stochastically increasing. However de-
tailed analysis of the run-time results show a well known phenomenon. For two of the
problems the evolving populations frequently exhibit periods during which the mean
fitness does not increase, interspersed by the occasional discovery of new higher fitness
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solutions and subsequent rises in mean fitness. In practice fitter members will rarely
completely take over the population because of the diversifying effects of crossover and
mutation. During these “transition” periods the behaviour of E-FIFO is characterised
by the linear approximation and the behaviour is like that of E-Tourn. The differences
arise from the periods when there are no new high fitness solutions to take over the
population. If the mean fitness is static when averaged over a period of more than N
time steps, then clearly the distribution of fitter members of the population according
to age has become more uniform. In the extreme case the probability that the oldest
member of the population is one of i members of the fitter class is simply i/N , in which
case the behaviour of E-FIFO will become that of E-Rand.

The OneMax problem has sub-problems of length 1, and hence no barriers to im-
provement. Examining Table 5 in closer detail, it is apparent that for this problem the
ordering of methods is as predicted by the linear approximation for E-FIFO: the AES
values are smaller than for E-Rand, and there is often no significant difference between
its behaviour and that of E-Tourn. Empirically the mean fitness was seen to increase
steadily until the optimum was found.

For the other two problems the sub-problems have a larger size, and the “epochs”
or periods when the mean fitness is not increasing, correspond to the cases where the
population has converged onto the optimal sub-string for some sub-problems, but not
others. For the Royal Road problem, all other sub-strings have equal fitness, so as-
suming random drift, an “average” population member which has not solved a given
sub-problem will require mutation to simultaneously flip two bits from 0 to 1 in order
to “solve” that sub-problem. By contrast, for the Trap problem the all-zeroes substring
is also an attractor for the system, so on average discovery of the optimal substring will
require more bits to be flipped by mutation, and take correspondingly longer. Because
of this, it might be hypothesised that the periods of waiting to discover new higher
fitness solutions, during which E-FIFO behaves more like E-Rand, will be longer for
the Trap problem than for the Royal problem, and so differences between the observed
behaviours of E-FIFO and E-Tourn will be more marked in this case. This is exactly
what can be seen in the empirical results in Table 5. The rank ordering is the same for
Royal as for the predictions, there is now a statistically significant difference between
the results for E-FIFO and E-Tourn. For the trap problem, E-FIFO displays behaviour
which is most like that of E-Rand, and is significantly slower than the other methods.

5.6 Variance in Evaluations to Success

The observed variance in the total number of evaluations to success for the three strate-
gies Worst, C-Rand and C-FIFO was subjected to ANOVA. This confirmed that the
problem type and size, population size and the strategy all had significant effects with
95% confidence. A post-hoc analysis using Tamhane’s test of the effect of the strategy
revealed that the observed variances were, as predicted, in the order Worst < C-FIFO
< C-Rand with greater than 99% confidence in the significance of the differences. Also
as predicted, the ratio of the variance values was approximately 5:8 for the two conser-
vative strategies. The value for the Worst strategy could not reasonably be compared
there were far fewer successful runs on the Trap problem.

However, as was the case for Average Evaluations to Success, the predominant
factor in determining the variance was the choice of problem. Thus although the values
of V (T ) are a good predictor for the relative rankings of different strategies, they should
not be used to predict the absolute values of the variances in the number of evaluations
before the global optimum is located.
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5.7 Diversity

Table 6 shows the relative ranking of the strategies according to the indicators η and
D, and also according to observations of the ratio of distinct to total points evaluated
during each successful run; in total, and also grouped by problem. Use of ≤ denotes
that observed difference between this pair is not statistically significant at the 5% level
according to Tamhane’s test. Only successful runs were considered to avoid introduc-
ing spurious effects as a result of upper level of 500,000 evaluations. Note that because
of this, the values for Worst and E-Tourn strategies on the Trap are based on far fewer
runs, especially with the lower population sizes where diversity is more of an issue.
When all runs (successful or otherwise) are considered, the order is the same as that for
Royal, and all differences are significant except for those between E-FIFO and E-Rand.

It is clear that neither of the indicators is predictive of the relative order. For ex-
ample, according to η, C-Rand, E-FIFO, E-Rand and E-Tourn will all select the same
fraction of parents that are not the current best. A full ANOVA taking all experimen-
tal factors into account shows a significant difference between these different strategies
with 95% confidence. Equally, C-FIFO (according to both indicators) and C-Rand (ac-
cording to D) should exhibit more diversity than their counterparts using standard
tournament selection, but in practise this is never the case.

These deviations arise because η and D are predictors of diversity in the choice of
parents, whereas the observed variable relates to new offspring. These are created by
the processes of crossover and mutation, both of which may increase diversity. Further-
more, the “best” solution is changing in practise as the problems are solved, whereas
the models assume it is initially present.

Table 6: Relative ranking of methods according to different indicators of the increasing
diversity of search.Opt denotes runs which found the global optimum. Use of ≤ de-
notes that observed difference between this pair is not statistically significant at the 5%
level according to Tamhane’s test.

Indicator Relative Ordering of Diversity
η C-Rand = E-FIFO = E-Tourn = E-Rand < C-FIFO < Worst

D Worst < E-FIFO < E-Tourn < E-Rand < C-FIFO < C-Rand
Distinct:Total

Royal Worst ≤ E-Tourn < C-Rand < C-FIFO < E-Rand ≤ E-FIFO
OneMax C-Rand < C-FIFO < Worst ≤ E-Tourn< E-FIFO ≤ E-Rand
Trap-Opt C-Rand ≤ C-FIFO < E-Rand ≤ E-FIFO ≤ E-Tourn ≤ Worst

All-Opt C-Rand ≤ Worst ≤ C-FIFO ≤ E-Tourn < E-Rand ≤ E-FIFO

6 Conclusions

For a variety of reasons, the study of the effects of selection within steady state EAs has
been relatively unexplored compared to their generational counterparts, despite their
widespread use. This is unfortunate since most practical, and in particular theoretical
work on GEAs assumes an age-based “replace all parents with offspring” policy, and
relatively few theoretical results are available for guidance on this topic. This paper
has gone some way to addressing this problem by considering a range of indicators
that relate to selection/replacement alone.
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While theoretical indicators for comparing algorithms are of interest in themselves,
the assumptions made to make such complex systems tractable to analytical results of-
ten open them to doubts about their practical relevance, and there is currently a wide
discrepancy between the analytical indicators available and the type of performance
metrics typically of interest to practitioners. This paper has not only been concerned
with developing analytical indicators, but also with examining the value of these indi-
cators for predicting the relative and absolute behaviour of SSEAs incorporating those
strategies on combinatorial optimisation problems. To this end, a series of experiments
were run using different population sizes and problem types and sizes. Depending on
the perspective of the user, a variety of performance metrics may be used. Four were
examined, namely the Success Rate (number of runs in which the global optimum was
located), the Average Evaluations to Success (AES), the variance in the number of eval-
uations to success, and the ratio of distinct to total solutions evaluated per run, an
indicator of the diversity of the search.

It should be reiterated at this stage that some of these indicators were not intended
to be used on their own–for example Takeover Time analysis, which does not consider
the problem encoding or variation operators, was originally intended to be used in tan-
dem with a mixing analysis, which does. Thus as expected, the values predicted by the
indicators are not correlated with observed absolute values of Success Rate, the mean
(AES) or Variance of the time taken to solution when averaged over a range of prob-
lems. It should also be noted that any results can only be taken as tentative, since the
test suite is so small. However, as seen, even this limited test suite presents strong evi-
dence that some of these indicators do not have any predictive value for the behaviour
of “real” EAs .

The Success Rate results showed that although none of the indicators based on the
Markov models acted as a good predictor, decreasing Expected Loss of Diversity (1−D)
correctly predicted the relative ordering of the strategies, excluding E-FIFO.

Considering the AES indicator, which only considers successful runs, E(T ) was a
good predictor for the relative rankings of the strategies, with deviations again mostly
arising from the approximations used to satisfy the Markov condition for the Elitist-
FIFO strategy. Furthermore, analysis showed that when the number of evaluations
taken to find the best (i.e., not necessarily globally optimal) solution seen per run is
considered, E(T ) correctly predicts the relative order on all three different problem
types (again apart from the E-FIFO strategy).

A similar analysis reveals that the variance in takeover time V (T ) is also a good
predictor for the relative variance in run-times. Statistical analysis yielded high cor-
relation co-efficients between AES-E(T ) and Variance-V (T ), even on Trap problems,
although the underlying models, in particular the regression co-efficients, differed be-
tween problems. The strong correlations observed between these strictly fitness-based
indicators, and the empirical performance metrics, even in the presence of multiple fit-
ness plateaus, suggests that differential rates of genetic drift (which are not considered
by E(T ) or V (T )) may be less important than fitness components when comparing
between strategies.

Concerning the diversity of the search, two indicators were available: η, which
groups all non-fittest solutions into a single equivalence class, and D, which assumes
that all members of the population have a distinct fitness, in other words that there are
no duplicates. It was found that the neither had any value as a predictor of the relative
rankings of the different strategies according to the ratio of distinct to total number of
solutions evaluated. This is perhaps more of an artifact of the empirical indicator, since
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it was noted above that the Expected Loss of Diversity per select-replace event correctly
predicted the relative success rates of different strategies. However the η indicator
appears to have little predictive value.

As was stated at the outset, it was never the intention of this paper to compare a
number of replacement strategies and declare one the “winner”. There are now good
reasons to believe such a quest to be fruitless, and this partly motivated the deliberately
limited set of test problems chosen. Moreover, as was shown, the different strategies
show different relative rankings according to the choice of performance metric. How-
ever, it is possible to draw some fairly broad conclusions.

First, there appears to be little merit in a Replace-Random scheme. Regardless
of the choice of analytical indicator or performance metric, there are other algorithms
which perform as well. In particular the equally computationally trivial FIFO mech-
anism exhibits the same success rate, faster location of optima and greater diversity
of search. When combined with the conservative method of coupling selection and
replacement, the C-Rand strategy performs reasonably well, but again not as well as
C-FIFO according to any indicator or performance metric tested here.

Second, the two fitness-based methods (Worst and E-Tourn) perform poorly in
terms of Success Rates with low population sizes in the presence of fitness barriers to
the identification of the optimum. However, Worst does converge the fastest of all the
methods. In particular it does so much more reliably, in the sense of having a smaller
variance in takeover time and time to solution than all the other methods. The indi-
cators suggest that a replace Worst strategy will find the best solution it is going to on
average three times as fast as the C-FIFO strategy, and with only a fifth of the variance
in run-times. This is borne out by the results, but these also show that this comes at the
expense of success in locating the global optimum. For repetitive problems, as long as
the solutions found are of reasonable quality, this reliability will often be of benefit.

It is hoped that this paper will go some way towards providing a more informed
basis for the choice of strategy according to intended use. Future work intends to ex-
pand the analysis of the variance in takeover time, and also to extend the analysis to
explicitly take into account the action of the variation operators.

Appendix

A Modelling FIFO replacement

A.1 A Linear Approximation for pold

In order to model pold in an evolving population it is necessary to consider the probabil-
ity pclass(x), that an individual of age x (0 ≤ x ≤ N−1) belongs to the fitter class, where
x denotes the number of individuals inserted into the population after that member. If
pclass(x) is independent of x the model is identical to that for Replace-Random seen in
Eq. 9, but simulation reveals that this is not the case. This corresponds to the intuition
that if i (the current value of X(t)) is increasing with time, which means that selec-
tion and replacement are increasing the mean fitness of the population, then younger
members of the population are more likely to belong to the fitter class than older ones.

Under the assumption that pclass(x) decreases linearly with age x across the pop-
ulation, it can be modelled as pclass(x) = a + bx, where a and b are constants. The
value of a is pclass(0), and so by definition a = ps(t − 1) ≈ ps(t), where ps is a func-
tion of i, the current value of X(t). Since there is only one individual of each age, the
expected number of members of the fitter class for each age is equal to the probability
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pclass(x). Summing over all ages between 0 and N − 1, the expected number of mem-
bers in the population is the sum of the expected number for each age, i.e., the sum of
pclass. Recognising that this sum must equal i gives:

i =
N−1∑
x=0

pclass(x) = Na + b

N−1∑
x=0

x ≈ Nps(i) + bN(N − 1)/2

therefore b =
2(i − Nps(i))
N(N − 1)

.

Substituting these values for a and b in the linear model gives the probability that the
oldest member of the population belongs to the fitter class as:

pold = pclass(N − 1) = 2i/N − ps(i). (A-1)

A.2 Selection and Replacement Probabilities with Conservative-FIFO
Tournaments

Using the same notation as above, if a C-FIFO strategy is used, the probability of select-
ing a member of the fitter class to be parent is:

ps = pold + prandom · (1 − pold) = pold +
i

N
(1 − pold).

Substituting this expression into Eq. A-1 yields:

pold = i/(2N − i) and ps(i) =
i(3N − 2i)
N(2N − i)

. (A-2)

B Calculation of Takeover Indicators for Strategies Which Guarantee
Takeover

B.1 k-ary SR Tournaments

The generalised form of this result is given in (Rudolph, 2000). Here the binary version
is shown for completeness, and for comparison with the other strategies where binary
tournaments are used for parent selection. From Eq. 5 setting k = 2 gives pi,i+1 =
2i(1 − i/N)/N , which when inserted into Eq. 1 gives:

E(T ) =
N

2

N−1∑
i=1

N

i(N − i)
= N

N−1∑
i=1

1
i

= N · HN−1

giving the bounds: N log(N − 1) < E(T ) < N(log(N − 1) + 1).
Similarly for the variance:

N−1∑
i=1

1
p2

i,i+1

=
N4

4

N−1∑
i=1

1
i2(N − i)2

= N ·
N−1∑
i=1

1
i

+
N2

2
·

N−1∑
i=1

1
i2

= N · HN−1 +
N2

2
ζ2
N−1

therefore V (T ) =
N2

2
ζ2
N−1 → N2π2

12
,

where ζ2
N−1 denotes Riemann’s Zeta function with exponent 2 truncated to its first N−1

terms, which since all terms are positive converges asymptotically, and the limit is π2/6.
Since from Eq. 5 pi,i+1 = 1 − ((N − i)/N)k − (i/N)k, which is symmetric with

respect to N and N − i, η = 0.5.
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B.2 Replace–Worst

Inserting the form of Eq. 6 for deterministic binary tournaments into Eq. 1 gives:

E(T ) = N2 ·
N−1∑
i=1

1
i(2N − i)

=
N

2
·

N−1∑
i=1

(
1
i

+
1

2N − i

)

=
N

2
(HN−1 + H2N−1 − HN ) =

N

2

(
H2N−1 − 1

N

)
,

which yields the bounds: N
2

(
log(2N − 1) − 1

N

)
< E(T ) < N

2 (log(2N − 1) + 1).
For the variance:

N−1∑
i=1

1
p2

i,i+1

=
N−1∑
i=1

N4

i2(2N − i)2
=

N

4

N−1∑
i=1

(
i + N

i2
+

3N − i

(2N − i)2

)

=
N

4

N−1∑
i=1

(
1
i

+
1

2N − i
+

N

(2N − i)2
+

N

i2

)

=
N

4
(
HN−1 − HN + H2N−1 + N · ζ2

N−1 − N · ζ2
N + N · ζ2

2N−1

)
=

N2

4
· ζ2

2N−1 +
N

4
· H2N−1 − 1

2

therefore V (T ) =
N2

4
· ζ2

2N−1 −
N

4
· H2N−1.

An expression for η is given in (Rudolph, 2000) as η ≈ 1 − 2 log(2)
log(2N) → 1.

B.3 Conservative–Random

Inserting binary tournament selection probability ps(i) into Eq. 8 yields pi,i+1 = N−i
N · i

N .
Inspection shows this probability to be half that for binary SR tournaments with k = 2,
which leads immediately to the results:

2N log(N − 1) < E(T ) < 2N(log(N − 1) + 1) (A-3)

and
V (T ) = 2N2 · ζ2

N−1. (A-4)

Since the transition probability is symmetric with respect to i and N − i, η = 0.5.

B.4 Conservative–FIFO

The linear approximation pi,i+1 = 2i(N−i)
N(2N−i) was derived in Appendix A.2. In (Smith and

Vavak, 1999b) this model was tested against simulations for a single fixed population
size and was shown to be reasonably accurate, but that the assumption introduced
errors into the prediction in the initial stages. In order to make corrections for these
errors the takeover time is split into two phases. The second of these deals with the
transitions i ∈ {2, . . . , N − 1} and uses the equation above. The first deals explicitly
with the time taken to first duplicate the fitter solution, which will be denoted E12.
Ignoring the minor adjustments required by the fact that the number of copies stays
the same every N th cycle, the transition to having two copies occurs if the randomly
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selected member of the tournament belongs to the fitter class, which happens with
probability 1/N , hence E12 = N . Putting these together:

E(T ) = N +
N−1∑
i=2

N(2N − i)
2i(N − i)

= N +
N−1∑
i=1

N(2N − i)
2i(N − i)

− N(2N − 1)
2(N − 1)

=
N−1∑
i=1

N

2
·
(

2
i

+
1

N − i

)
− N

2(N − 1)
=

N

2

(
3HN−1 − 1

N − 1

)

giving the bounds:

N

2

(
3 log(N − 1) − 1

(N − 1)

)
< E(T ) <

N

2

(
3 log(N − 1) + 3 − 1

(N − 1)

)
. (A-5)

Combining the transition probabilities for the two different phases gives:

N−1∑
i=1

1
p2

i,i+1

= N2 +
N2

4
·

N−1∑
i=2

(2N − i)2

i2(N − i)2

= N2 ·
(

1 −
(

2N − 1
2N − 2

)2
)

+
N2

4

N−1∑
i=1

(
1

N − i
+

2
i

)2

= N2 ·
(

1 −
(

2N − 1
2N − 2

)2
)

+
5N2

4
ζ2
N−1 + 2N · HN−1

=
5N2

4
ζ2
N−1 + 2N · HN−1 − N2

4(N − 1)2
· (4N − 3)

therefore V (T ) =
5N2

4
ζ2
N−1 +

1
2
· N · HN−1 − N(4N2 − 5N + 2)

4(N − 1)2
.

For the calculation of η begin by considering the number of copies of the best indi-
vidual prior to takeover, again using the two-phase approximation.

E(BT ) =
N−1∑
i=1

i

pi,i+1
= N +

N−1∑
i=2

i · N(2N − i)
2i(N − i)

(A-6)

=
N

2
·
(

2 − 2N − 1
2(N − 1)

+
N−1∑
i=1

(2N − i)
(N − i)

)

=
N

2
·
(

N + NHN−1 − 1
2(N − 1)

)
.

Using η = 1 − E(BT )/(N · E(T )) and inserting the quantities from Eq. A-5 and
Eq. A-6 gives:

η = 1 − HN−1 + 1 − 1/2N(N − 1)
3HN−1 − 1/(N − 1)

=
2
3
− 6N2 − 4N − 3

6N2(3(N − 1)HN−1 − 1)
,

which for large N gives η → 2/3 from below.
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B.5 Elitist Replace-Random

Rudolph (2001) contains the following results:

Qi,j =
N2

N + 1
·
(

1
j

+
1

N − j

)
∴ E(T ) =

2N2

N + 1
HN−1.

Inserting these results into the second expression for η in Eq. 3, and noting that

j ·
(

1
j + 1

N−j

)
= N

N−j yields:

η = 1 −
N2

N+1

∑N−1
j=1 j ·

(
1
j + 1

N−j

)
2N3

N+1 · HN−1

= 1 −
N2

N+1

∑N−1
j=1

N
N−j

2N3

N+1 · HN−1

= 1/2.

B.6 Elitist Kill-Tournaments

Rudolph (2001) contains the following results:

Qi,j ≤
(

N

2
+

1
4

)
·
(

1
j

+
1

N − j

)
∴ E(T ) ≤

(
N +

1
2

)
HN−1.

Inserting these results into the first form for η in Eq. 3 yields:

η ≥ 1 −
∑N−1

j=1 j · (N
2 + 1

4

) · (1
j + 1

N−j

)
N ·∑N−1

j=1

(
N
2 + 1

4

) · ( 1
j + 1

N−j

)

= 1 − N ·∑N−1
j=1

1
N−j

N ·∑N−1
j=1

(
1
j + 1

N−j

) = 1/2.

C Bounding the Takeover Probability for FIFO Replacement

As noted in (Smith and Vavak, 1999b), the linear approximation for pold in non-elitist
FIFO tends to be inaccurate for low i. In this section upper and lower bounds will
be derived for the probability of absorption to the state X(t) = N , without using this
approximation, and thus without recourse to standard techniques for Markov Chains.

It is possible to derive an upper bound for the probability that absorption to state
N happens by considering that this always happens unless either the original member
of fitter class is deleted before it is selected to be copied, or that a single copy is made
at some time c : 1 ≤ c ≤ N , but that no further copies are made, and that both of
these are deleted after their lifespan of N events. In other words an upper bound is
given by assuming that absorption to X(t) = N occurs unless the progression of X(t)
is 1 → 0 or 1 → 2 → 1 → 0. Denoting the probabilities of these two events as p10

and p1210 respectively, ptakeover < 1 − p10 − p1210. The takeover probability will be
strictly less than this upper bound, since other sequences of events terminating in state
0 are possible, even from state N − 1. A tighter bound could be derived by considering
progressions such as 1 → 2 → 3 → 2 → 1 → 0, or 1 → 2 → 1 → 2 → 1 → 0 etc.,
but these corrections become increasingly small since at any time step the probability
of selecting one of i member of the fitter class to be copied rises quadratically with i.

To derive the necessary probabilities is a relatively straightforward exercise in com-
binatorics, making use of the identity limN→∞(1 − a/N)N = e−a. Thus straight away
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p10 =
(

N−1
N

)2N → e−2. To calculate p1210 it is necessary to account for the sequence of
events given creation of the second copy of the fitter member at some time 1 ≤ c ≤ N

P1210 =
N∑

c=1

(
N − 1

N

)2(c−1)

· (2N − 1)
N2

·
(

N − 2
N

)2(N−c)

·
(

N − 1
N

)2c

=
(2N − 1)
(N − 1)2

·
(

N − 2
N

)2N

·
N∑

c=1

(
(N − 1)2

N(N − 2)

)2c

=
(2N − 1)
(N − 1)2

·
(

N − 2
N

)2N

·
N∑

c=1

(
1 + O(N−2)

)2c → 2e−4.

Thus for the upper bound, ignoring terms in N−4 and smaller:

ptakeover < 1 −
(

N − 1
N

)2N

− N · (2N − 1)
(N − 1)2

·
(

N − 2
N

)2N

noting that the expression (1 − a/N)N converges to e−a from above:

lim
N→∞

ptakeover < 1 − e−2 − 2e−4.

Calculation of a lower bound for the takeover probability is more complex, since
the probability that X(t + N) = 0 | X(t) = N − 1 is positive non-zero. However, as
noted in Section 3.1.3, the system as a whole can be described as a Markov chain, and
by similar arguments to those for the simpler systems, it is clear that only the states
X(t) = 0 and X(t) = N are absorbing. Thus it is possible to proceed by noting that
the lower bound for probability of reaching the (single) state characterised by X(t) =
N will be 1–the upper bound for the probability of convergence to the (single) state
characterised by X(t) = 0.

If it is considered that loss of the fitter solution happens unless there are at least two
copies of the fitter member in the population after N time-steps ( i.e. X(N) > 1), then
loss happens with probability p10 + p121, where p121 denotes that the variable X(c) = 2
for some 1 ≤ c < N and X(N) = 1.

By similar arguments to those above:

p121 =
N∑

c=1

(
N − 1

N

)2(c−1)

· (2N − 1)
N2

·
(

N − 2
N

)2(N−c)

=
2N − 1
2N − 3

·
(

N − 2
N − 1

)2

·
((

N − 1
N

)2N

−
(

N − 2
N

)2N
)

→ e−2 − e−4

which gives;

ploss ≤ 1 −
(

1 − 2
N

)2N

− 2N − 1
2N − 3

·
(

N − 2
N − 1

)2

·
((

1 − 2
N

)2N

−
(

1 − 4
2N

)2N
)

∴ lim
N→∞

ptakeover > 1 − 2 · e−2 + e−4.
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D Expected Loss of Diversity

For steady state algorithms the expected loss of diversity at each time step is defined
as Dx,y(t, N) =

∑N
k=1(1 − ps,x(k)) · pd,y(k)/N , where the population is assumed to

have different fitness values, and k ∈ {1, . . . , N} denotes the rank of each member, N
being the fittest. The exact form of ps,x(k) will depend on the parent selection method
x. Here binary deterministic tournaments are assumed for consistency, so using the
abbreviated notation ps(k) = (2k−1)/N2 and 1−ps(k) = (N2−2k+1)/N2. For clarity
the subscript denoting the parent selection strategy is omitted, and the calculation of D
for the various strategies is as follows:

• Delete-Worst: By definition pd,worst(k) = 0 ∀ k > 1 hence

Dworst(N) =
(1 − ps(1))

N
=

1
N

− 1
N3

.

• Binary Select-Replace Tournaments: For any k, it gets replaced without copying if
it is one of a randomly chosen pair and the other is fitter hence

Dk-SR(N) =
1
N

N∑
k=1

2 · 1
N

· N − k

N
=

1
N

− 1
N2

.

• Replace-Random: By definition each member has an equal chance of being re-
placed, i.e. pd,Rand(k) = 1/N ∀ k hence

DRand(N) =
1
N

N∑
k=1

1 − ps(k)
N

=
1
N

− 1
N2

.

• Elitist Replace-Random: In this case pd,E-Rand(N) = 0, i.e., the summation limit
changes from N to N − 1 thus:

DE-Rand(N) =
1
N

N−1∑
k=1

1 − ps(k)
N

=
1
N

− 1
N2

+
2

N3
.

• Conservative-Random: The item to be deleted is chosen at random, so
pd,C-Rand(k) = 1/N ∀ k. The member to be deleted is not selected to be a parent if
the other randomly selected item is fitter, hence by comparison with the form for
binary SR above:

DC-Rand(N) = 1/2N − 1/2N2.

• Kill Tournaments: For a tournament of size t, the deletion probability is
pd,Tourn(k) = ((N − k + 2)t − (N − k)t)/N t which for t = 2 reduces to pd,Tourn(k) =
(2N − 2K + 1)/N2. Hence

DTourn(N) =
1
N

N∑
k=1

(N2 + 1) − 2k

N2
· (2N + 1) − 2k

N2
=

1
N

− 1
N2

+
1

N4
.
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• Elitist Kill Tournaments: Again the elitist variant simply requires a change in the
summation limit, which for t = 2 yields:

DE-Tourn(N) =
1
N

N−1∑
k=1

(N2 + 1) − 2k

N2
· (2N + 1) − 2k

N2
=

1
N

− 2
3N2

− 1
N3

+
5

3N4
− 1

N5
.

• FIFO: In this case it is not possible to derive an exact result formula since the de-
pendence of rank upon age is ill-defined. However it is possible to derive bounds
by considering the two limiting cases. In the first case, when there is no relation
between the age of an individual and its rank (i.e., the population mean fitness is
not improving) then FIFO is equivalent to Replace-Random. If on the contrary it is
assumed that the fitness of the offspring produced is constantly increasing, so that
the dependence of rank upon age is linear, then the oldest member will always be
the least fit, so the situation is the same as for Replace-Worst. Taking these two
extremes together yields

1
N

− 1
N2

≤ DFIFO(N) ≤ 1
N

− 1
N3

.

• Elitist-FIFO: This is as above, with the lower bound corrected as per the Elitist
Replace-Random:

1
N

− 1
N2

+
2

N3
≤ DE-FIFO(N) ≤ 1

N
− 1

N3
.

• Conservative-FIFO: By similar arguments, the lower bound on the loss of diversity
is the same as for Conservative-Random. For the upper bound, when the popu-
lation is steadily increasing in fitness, the oldest member will always be the least
fit, i.e. pdC-FIFO(k) = 0 ∀k > 1. That member will only be copied if the randomly
chosen member of the tournament is the same one, which has probability 1/N
yielding:

1
2N

− 1
2N2

≤ DC-FIFO(N) ≤ 1
N

− 1
N2

.

E Test Problems Used

The following problems were used in the experiments for candidate solutions of the
form x ∈ {0, 1}L with L ∈ {64, 128}. All are normalised to give values between 0 and
100.

OneMax: This is a simple unimodal problem.

f(x) =
100
L

·
L∑

i=1

x(i).

Royal: This is a type R1 Royal Road (Forrest and Mitchell, 1992) where the fitness is
given by the number of blocks “aligned” to the target string in a problem with L blocks,
each of length K :

f(x) =
400
L

·
(L−1)/K∑

i=0

ΠK
k=1x(4i + k).

For the experiments reported here the epistatic blocks had size K = 4.
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Trap: This problem is composed of L/4 four-bit deceptive problems as given by
Deb in (Bäck et al., 1997) concatenated together:

f(x) =
400
L

·
(L−1)/4∑

i=0

max

(
Π4

k=1x(4i + k), 0.6 − 0.2 ·
4∑

k=1

x(4i + k)

)
.
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