34,748 research outputs found

    Design Optimization Module For Hierarchical Research and Learning Environment

    Get PDF
    The present paper describes a learning module on design optimization courses within a hierarchical research and learning network (HRLN). In this environment a knowledge organization can be created as a hierarchical learning network to link diverse inter- and trans- disciplinary teams from a consortium of universities, industry, government agencies and the providers of learning technologies. It is an approach that builds on computer-based training, intelligent tutoring systems, interactive learning, collaborative-distributed learning, and learning networks. The present design optimization module has been developed and described herein, as a demonstrator of a learning module in this environment. This module allows for the learners of design optimization to get the course material at their own convenience and time either via the internet or packaged files. Consequently, it is expected that the learner’s ability to understand design optimization and review its pertinent details will be enhanced significantly

    SciTech News Volume 71, No. 1 (2017)

    Get PDF
    Columns and Reports From the Editor 3 Division News Science-Technology Division 5 Chemistry Division 8 Engineering Division Aerospace Section of the Engineering Division 9 Architecture, Building Engineering, Construction and Design Section of the Engineering Division 11 Reviews Sci-Tech Book News Reviews 12 Advertisements IEEE

    Colloidal particle motion as a diagnostic of DNA conformational transitions

    Get PDF
    Tethered particle motion is an experimental technique to monitor conformational changes in single molecules of DNA in real time, by observing the position fluctuations of a micrometer-size particle attached to the DNA. This article reviews some recent work on theoretical problems inherent in the interpretation of TPM experiments, both in equilibrium and dynamical aspects.Comment: 19pp. Accepted for publication in Curr Op Colloid Interf Scienc

    Dynamical Systems, Stability, and Chaos

    Full text link
    In this expository and resources chapter we review selected aspects of the mathematics of dynamical systems, stability, and chaos, within a historical framework that draws together two threads of its early development: celestial mechanics and control theory, and focussing on qualitative theory. From this perspective we show how concepts of stability enable us to classify dynamical equations and their solutions and connect the key issues of nonlinearity, bifurcation, control, and uncertainty that are common to time-dependent problems in natural and engineered systems. We discuss stability and bifurcations in three simple model problems, and conclude with a survey of recent extensions of stability theory to complex networks.Comment: 28 pages, 10 figures. 26/04/2007: The book title was changed at the last minute. No other changes have been made. Chapter 1 in: J.P. Denier and J.S. Frederiksen (editors), Frontiers in Turbulence and Coherent Structures. World Scientific Singapore 2007 (in press

    Nonclassical Light Generation from III-V and Group-IV Solid-State Cavity Quantum Systems

    Full text link
    In this chapter, we present the state-of-the-art in the generation of nonclassical states of light using semiconductor cavity quantum electrodynamics (QED) platforms. Our focus is on the photon blockade effects that enable the generation of indistinguishable photon streams with high purity and efficiency. Starting with the leading platform of InGaAs quantum dots in optical nanocavities, we review the physics of a single quantum emitter strongly coupled to a cavity. Furthermore, we propose a complete model for photon blockade and tunneling in III-V quantum dot cavity QED systems. Turning toward quantum emitters with small inhomogeneous broadening, we propose a direction for novel experiments for nonclassical light generation based on group-IV color-center systems. We present a model of a multi-emitter cavity QED platform, which features richer dressed-states ladder structures, and show how it can offer opportunities for studying new regimes of high-quality photon blockade.Comment: 64 pages, 32 figures, to appear as Chapter 3 in Advances in Atomic Molecular and Optical Physics, Vol. 6

    Thermodynamics of quantum systems under dynamical control

    Full text link
    In this review the debated rapport between thermodynamics and quantum mechanics is addressed in the framework of the theory of periodically-driven/controlled quantum-thermodynamic machines. The basic model studied here is that of a two-level system (TLS), whose energy is periodically modulated while the system is coupled to thermal baths. When the modulation interval is short compared to the bath memory time, the system-bath correlations are affected, thereby causing cooling or heating of the TLS, depending on the interval. In steady state, a periodically-modulated TLS coupled to two distinct baths constitutes the simplest quantum heat machine (QHM) that may operate as either an engine or a refrigerator, depending on the modulation rate. We find their efficiency and power-output bounds and the conditions for attaining these bounds. An extension of this model to multilevel systems shows that the QHM power output can be boosted by the multilevel degeneracy. These results are used to scrutinize basic thermodynamic principles: (i) Externally-driven/modulated QHMs may attain the Carnot efficiency bound, but when the driving is done by a quantum device ("piston"), the efficiency strongly depends on its initial quantum state. Such dependence has been unknown thus far. (ii) The refrigeration rate effected by QHMs does not vanish as the temperature approaches absolute zero for certain quantized baths, e.g., magnons, thous challenging Nernst's unattainability principle. (iii) System-bath correlations allow more work extraction under periodic control than that expected from the Szilard-Landauer principle, provided the period is in the non-Markovian domain. Thus, dynamically-controlled QHMs may benefit from hitherto unexploited thermodynamic resources

    Effect of acupressure on cervical ripening

    Get PDF
    Background: Cervical ripening is one of the main stages of initiation labor. Acupressure in Chinese medicine is considered as an invasive technique, which through reliving oxytocin ripens the cervix. Acupoint Sanyinjiao (SP6) was selected in this study because it is the acupoint selected in gynecology and it is easy for women to locate and apply pressure without medical assistance. Objectives: The aim of this study was to determine the effect of acupressure on cervical ripening. Patients and Methods: In this randomized clinical trial, 150 primigravida with term pregnancy who had referred to Deziani hospital in Gorgan were chosen and divided to three groups: in the first group acupressure was done by the researcher while in the second groups this was performed by the mother her self, and the third group served as a control and only received routine care. For both intervention groups the pressure was applied on Sp6 for about 20 minutes during one to five days. Elements were checked from cervical ripening at 48 and 96 hours after intervention and at the time of hospitalization. The tools for gathering information included demographic characteristics and midwifery history questionnaire, daily records and follow up forms. Content validity was used for validity of tools. Reliability of the observation check-list and physical examination was confirmed by inter-rater scores (inter observer), and daily records by test-re-test. Data was analyzed by analysis of variance (ANOVA), Kruskal-Wallis and Chi-squared tests (P ≤ 0.05). Results: There was a significant difference between mothers’ educations in the three groups. Most of the mothers (59.5%) in the researcher-performed acupressure group had secondary education. Cervical ripening was significantly different between the three groups after 48 hours (P ≤ 0.05), yet there was no significant difference after 96 hours and at the time of admission. Mean Bishop score was enhanced after 48 hours in the researcher-performed acupressure group (P ≤ 0.021) and the self-performed acupressure group (P ≤ 0.007) in comparison to the control group. Conclusions: The results showed that acupressure is a safe technique and leads to cervical ripening. Thus, regarding the desired results that were achieved when mothers applied acupressure themselves, it could be suggested that it is beneficial for mothers to be trained to apply this method at home. © 2015, Iranian Red Crescent Medical Journal
    corecore