39 research outputs found

    A Survey of Applications and Human Motion Recognition with Microsoft Kinect

    Get PDF
    Microsoft Kinect, a low-cost motion sensing device, enables users to interact with computers or game consoles naturally through gestures and spoken commands without any other peripheral equipment. As such, it has commanded intense interests in research and development on the Kinect technology. In this paper, we present, a comprehensive survey on Kinect applications, and the latest research and development on motion recognition using data captured by the Kinect sensor. On the applications front, we review the applications of the Kinect technology in a variety of areas, including healthcare, education and performing arts, robotics, sign language recognition, retail services, workplace safety training, as well as 3D reconstructions. On the technology front, we provide an overview of the main features of both versions of the Kinect sensor together with the depth sensing technologies used, and review literatures on human motion recognition techniques used in Kinect applications. We provide a classification of motion recognition techniques to highlight the different approaches used in human motion recognition. Furthermore, we compile a list of publicly available Kinect datasets. These datasets are valuable resources for researchers to investigate better methods for human motion recognition and lower-level computer vision tasks such as segmentation, object detection and human pose estimation

    Machine learning approaches to video activity recognition: from computer vision to signal processing

    Get PDF
    244 p.La investigación presentada se centra en técnicas de clasificación para dos tareas diferentes, aunque relacionadas, de tal forma que la segunda puede ser considerada parte de la primera: el reconocimiento de acciones humanas en vídeos y el reconocimiento de lengua de signos.En la primera parte, la hipótesis de partida es que la transformación de las señales de un vídeo mediante el algoritmo de Patrones Espaciales Comunes (CSP por sus siglas en inglés, comúnmente utilizado en sistemas de Electroencefalografía) puede dar lugar a nuevas características que serán útiles para la posterior clasificación de los vídeos mediante clasificadores supervisados. Se han realizado diferentes experimentos en varias bases de datos, incluyendo una creada durante esta investigación desde el punto de vista de un robot humanoide, con la intención de implementar el sistema de reconocimiento desarrollado para mejorar la interacción humano-robot.En la segunda parte, las técnicas desarrolladas anteriormente se han aplicado al reconocimiento de lengua de signos, pero además de ello se propone un método basado en la descomposición de los signos para realizar el reconocimiento de los mismos, añadiendo la posibilidad de una mejor explicabilidad. El objetivo final es desarrollar un tutor de lengua de signos capaz de guiar a los usuarios en el proceso de aprendizaje, dándoles a conocer los errores que cometen y el motivo de dichos errores

    Self-adaptive structure semi-supervised methods for streamed emblematic gestures

    Get PDF
    Although many researchers try to improve the level of machine intelligence, there is still a long way to achieve intelligence similar to what humans have. Scientists and engineers are continuously trying to increase the level of smartness of the modern technology, i.e. smartphones and robotics. Humans communicate with each other by using the voice and gestures. Hence, gestures are essential to transfer the information to the partner. To reach a higher level of intelligence, the machine should learn from and react to the human gestures, which mean learning from continuously streamed gestures. This task faces serious challenges since processing streamed data suffers from different problems. Besides the stream data being unlabelled, the stream is long. Furthermore, “concept-drift” and “concept evolution” are the main problems of them. The data of the data streams have several other problems that are worth to be mentioned here, e.g. they are: dynamically changed, presented only once, arrived at high speed, and non-linearly distributed. In addition to the general problems of the data streams, gestures have additional problems. For example, different techniques are required to handle the varieties of gesture types. The available methods solve some of these problems individually, while we present a technique to solve these problems altogether. Unlabelled data may have additional information that describes the labelled data more precisely. Hence, semi-supervised learning is used to handle the labelled and unlabelled data. However, the data size increases continuously, which makes training classifiers so hard. Hence, we integrate the incremental learning technique with semi-supervised learning, which enables the model to update itself on new data without the need of the old data. Additionally, we integrate the incremental class learning within the semi-supervised learning, since there is a high possibility of incoming new concepts in the streamed gestures. Moreover, the system should be able to distinguish among different concepts and also should be able to identify random movements. Hence, we integrate the novelty detection to distinguish between the gestures that belong to the known concepts and those that belong to unknown concepts. The extreme value theory is used for this purpose, which overrides the need of additional labelled data to set the novelty threshold and has several other supportive features. Clustering algorithms are used to distinguish among different new concepts and also to identify random movements. Furthermore, the system should be able to update itself on only the trusty assignments, since updating the classifier on wrongly assigned gesture affects the performance of the system. Hence, we propose confidence measures for the assigned labels. We propose six types of semi-supervised algorithms that depend on different techniques to handle different types of gestures. The proposed classifiers are based on the Parzen window classifier, support vector machine classifier, neural network (extreme learning machine), Polynomial classifier, Mahalanobis classifier, and nearest class mean classifier. All of these classifiers are provided with the mentioned features. Additionally, we submit a wrapper method that uses one of the proposed classifiers or ensemble of them to autonomously issue new labels to the new concepts and update the classifiers on the newly incoming information depending on whether they belong to the known classes or new classes. It can recognise the different novel concepts and also identify random movements. To evaluate the system we acquired gesture data with nine different gesture classes. Each of them represents a different order to the machine e.g. come, go, etc. The data are collected using the Microsoft Kinect sensor. The acquired data contain 2878 gestures achieved by ten volunteers. Different sets of features are computed and used in the evaluation of the system. Additionally, we used real data, synthetic data and public data as support to the evaluation process. All the features, incremental learning, incremental class learning, and novelty detection are evaluated individually. The outputs of the classifiers are compared with the original classifier or with the benchmark classifiers. The results show high performances of the proposed algorithms

    Computer Game Innovation

    Get PDF
    Faculty of Technical Physics, Information Technology and Applied Mathematics. Institute of Information TechnologyWydział Fizyki Technicznej, Informatyki i Matematyki Stosowanej. Instytut InformatykiThe "Computer Game Innovations" series is an international forum designed to enable the exchange of knowledge and expertise in the field of video game development. Comprising both academic research and industrial needs, the series aims at advancing innovative industry-academia collaboration. The monograph provides a unique set of articles presenting original research conducted in the leading academic centres which specialise in video games education. The goal of the publication is, among others, to enhance networking opportunities for industry and university representatives seeking to form R&D partnerships. This publication covers the key focus areas specified in the GAMEINN sectoral programme supported by the National Centre for Research and Development

    Automatic inference of latent emotion from spontaneous facial micro-expressions

    Get PDF
    Emotional states exert a profound influence on individuals' overall well-being, impacting them both physically and psychologically. Accurate recognition and comprehension of human emotions represent a crucial area of scientific exploration. Facial expressions, vocal cues, body language, and physiological responses provide valuable insights into an individual's emotional state, with facial expressions being universally recognised as dependable indicators of emotions. This thesis centres around three vital research aspects concerning the automated inference of latent emotions from spontaneous facial micro-expressions, seeking to enhance and refine our understanding of this complex domain. Firstly, the research aims to detect and analyse activated Action Units (AUs) during the occurrence of micro-expressions. AUs correspond to facial muscle movements. Although previous studies have established links between AUs and conventional facial expressions, no such connections have been explored for micro-expressions. Therefore, this thesis develops computer vision techniques to automatically detect activated AUs in micro-expressions, bridging a gap in existing studies. Secondly, the study explores the evolution of micro-expression recognition techniques, ranging from early handcrafted feature-based approaches to modern deep-learning methods. These approaches have significantly contributed to the field of automatic emotion recognition. However, existing methods primarily focus on capturing local spatial relationships, neglecting global relationships between different facial regions. To address this limitation, a novel third-generation architecture is proposed. This architecture can concurrently capture both short and long-range spatiotemporal relationships in micro-expression data, aiming to enhance the accuracy of automatic emotion recognition and improve our understanding of micro-expressions. Lastly, the thesis investigates the integration of multimodal signals to enhance emotion recognition accuracy. Depth information complements conventional RGB data by providing enhanced spatial features for analysis, while the integration of physiological signals with facial micro-expressions improves emotion discrimination. By incorporating multimodal data, the objective is to enhance machines' understanding of latent emotions and improve latent emotion recognition accuracy in spontaneous micro-expression analysis

    Performance and Reliability Evaluation of Apache Kafka Messaging System

    Get PDF
    Streaming data is now flowing across various devices and applications around us. This type of data means any unbounded, ever growing, infinite data set which is continuously generated by all kinds of sources. Examples include sensor data transmitted among different Internet of Things (IoT) devices, user activity records collected on websites and payment requests sent from mobile devices. In many application scenarios, streaming data needs to be processed in real-time because its value can be futile over time. A variety of stream processing systems have been developed in the last decade and are evolving to address rising challenges. A typical stream processing system consists of multiple processing nodes in the topology of a DAG (directed acyclic graph). To build real-time streaming data pipelines across those nodes, message middleware technology is widely applied. As a distributed messaging system with high durability and scalability, Apache Kafka has become very popular among modern companies. It ingests streaming data from upstream applications and store the data in its distributed cluster, which provides a fault-tolerant data source for stream processors. Therefore, Kafka plays a critical role to ensure the completeness, correctness and timeliness of streaming data delivery. However, it is impossible to meet all the user requirements in real-time cases with a simple and fixed data delivery strategy. In this thesis, we address the challenge of choosing a proper configuration to guarantee both performance and reliability of Kafka for complex streaming application scenarios. We investigate the features that have an impact on the performance and reliability metrics. We propose a queueing based prediction model to predict the performance metrics, including producer throughput and packet latency of Kafka. We define two reliability metrics, the probability of message loss and the probability of message duplication. We create an ANN model to predict these metrics given unstable network metrics like network delay and packet loss rate. To collect sufficient training data we build a Docker-based Kafka testbed with a fault injection module. We use a new quality-of-service metric, timely throughput to help us choosing proper batch size in Kafka. Based on this metric, we propose a dynamic configuration method, which reactively guarantees both performance and reliability of Kafka under complex operation conditions

    Emotion and Stress Recognition Related Sensors and Machine Learning Technologies

    Get PDF
    This book includes impactful chapters which present scientific concepts, frameworks, architectures and ideas on sensing technologies and machine learning techniques. These are relevant in tackling the following challenges: (i) the field readiness and use of intrusive sensor systems and devices for capturing biosignals, including EEG sensor systems, ECG sensor systems and electrodermal activity sensor systems; (ii) the quality assessment and management of sensor data; (iii) data preprocessing, noise filtering and calibration concepts for biosignals; (iv) the field readiness and use of nonintrusive sensor technologies, including visual sensors, acoustic sensors, vibration sensors and piezoelectric sensors; (v) emotion recognition using mobile phones and smartwatches; (vi) body area sensor networks for emotion and stress studies; (vii) the use of experimental datasets in emotion recognition, including dataset generation principles and concepts, quality insurance and emotion elicitation material and concepts; (viii) machine learning techniques for robust emotion recognition, including graphical models, neural network methods, deep learning methods, statistical learning and multivariate empirical mode decomposition; (ix) subject-independent emotion and stress recognition concepts and systems, including facial expression-based systems, speech-based systems, EEG-based systems, ECG-based systems, electrodermal activity-based systems, multimodal recognition systems and sensor fusion concepts and (x) emotion and stress estimation and forecasting from a nonlinear dynamical system perspective
    corecore