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Abstract

Streaming data is now flowing across various devices and applications around us. This type of

data means any unbounded, ever growing, infinite data set which is continuously generated by all

kinds of sources. Examples include sensor data transmitted among different Internet of Things (IoT)

devices, user activity records collected on websites and payment requests sent from mobile devices.

In many application scenarios, streaming data needs to be processed in real-time because its value

can be futile over time. A variety of stream processing systems have been developed in the last

decade and are evolving to address rising challenges.

A typical stream processing system consists of multiple processing nodes in the topology of

a DAG (directed acyclic graph). To build real-time streaming data pipelines across those nodes,

message middleware technology is widely applied. As a distributed messaging system with high

durability and scalability, Apache Kafka has become very popular among modern companies. It

ingests streaming data from upstream applications and store the data in its distributed cluster, which

provides a fault-tolerant data source for stream processors. Therefore, Kafka plays a critical role to

ensure the completeness, correctness and timeliness of streaming data delivery.

However, it is impossible to meet all the user requirements in real-time cases with a simple and

fixed data delivery strategy. In this thesis, we address the challenge of choosing a proper configu-

ration to guarantee both performance and reliability of Kafka for complex streaming application

scenarios. We investigate the features that have an impact on the performance and reliability me-

trics. We propose a queueing based prediction model to predict the performance metrics, including

producer throughput and packet latency of Kafka. We define two reliability metrics, the probability

of message loss and the probability of message duplication. We create an ANN model to predict

these metrics given unstable network metrics like network delay and packet loss rate. To collect

sufficient training data we build a Docker-based Kafka testbed with a fault injection module. We use

a new quality-of-service metric, timely throughput to help us choosing proper batch size in Kafka.
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Based on this metric, we propose a dynamic configuration method, which reactively guarantees both

performance and reliability of Kafka under complex operation conditions.
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Zusammenfassung

Streaming-Anwendungen sind heute sehr verbreitet und viele Informationen erreichen uns durch

Datenfluss über verschiedenste Geräte. Die Menge der Daten die von verschiedenen Arten an Quel-

len generiert wird wächst kontinuierlich. Bekannte Beispiele sind Sensordaten, die zwischen den

verschiedenen Geräten des IoT ausgetauscht werden, auf Websites gesammelte Benutzeraktivitäts-

aufzeichnungen und von Mobilgeräten gesendete Zahlungsanforderungen. In vielen Anwendungs-

szenarien müssen die Streaming-Daten in Echtzeit verarbeitet werden, was bedeutet, dass sie wert-

los werden, wenn die Verzögerung in der Datenübertragung zu groß ist. In den letzten zehn Jahren

wurde eine Vielzahl von Stream-Verarbeitungssystemen entwickelt, die sich den wachsenden Her-

ausforderungen stellen.

Ein typisches Stream-Verarbeitungssystem besteht aus mehreren Verarbeitungsknoten in der To-

pologie eines DAG (directed acyclic graph). Um streaming pipelines für Echtzeit-Daten über diese

Knoten zu legen, wird häufig eine Middleware-Technologie für Nachrichten angewendet. Als ver-

teiltes Nachrichtensystem mit hoher Haltbarkeit und Skalierbarkeit ist Apache Kafka bei moder-

nen Unternehmen sehr beliebt geworden. Es nimmt Streaming-Daten von Upstream-Anwendungen

auf und speichert die Daten in seinem verteilten Cluster, der eine fehlertolerante Datenquelle für

Stream-Prozessoren darstellt. Daher spielt Kafka eine entscheidende Rolle, um die Vollständigkeit,

Korrektheit und Pünktlichkeit der Bereitstellung von Streaming-Daten sicherzustellen.

Es ist jedoch unmöglich, alle Benutzeranforderungen in Echtzeitfällen mit einer einfachen und fe-

sten Datenlieferungsstrategie zu erfüllen. In dieser Arbeit befassen wir uns mit der Herausforderung,

eine geeignete Konfiguration auszuwählen, um sowohl die Leistung als auch die Zuverlässigkeit von

Kafka für komplexe Streaming-Anwendungsszenarien zu gewährleisten. Wir untersuchen die Funk-

tionen, die sich auf die Leistungs- und Zuverlässigkeitsmetriken auswirken. Wir schlagen ein auf

Warteschlangen basierendes Vorhersagemodell vor, um die Leistungsmetriken vorherzusagen, ein-

schließlich des Produzentendurchsatzes und der Paketlatenz von Kafka. Wir definieren zwei Zuver-
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lässigkeitsmetriken, die Wahrscheinlichkeit eines Nachrichtenverlusts und die Wahrscheinlichkeit

einer Nachrichtenduplizierung. Wir erstellen ein ANN-Modell, um diese Metriken bei instabilen

Netzwerkmetriken wie Netzwerkverzögerung und Paketverlustrate vorherzusagen. Um ausreichen-

de Trainingsdaten zu sammeln, bauen wir ein Docker-basiertes Kafka-Testfeld mit einem Fehler-

injektionsmodul auf. Wir verwenden eine neue Metrik für die Servicequalität und einen zeitnahen

Durchsatz, um die richtige Batch-Größe in Kafka auswählen zu können. Basierend auf dieser Me-

trik schlagen wir eine dynamische Konfigurationsmethode vor, die sowohl die Leistung als auch die

Zuverlässigkeit von Kafka unter komplexen Betriebsbedingungen reaktiv garantiert.
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Chapter 1

Introduction

In this chapter, we discuss the general problems in real-time streaming systems, and describe

the research challenges with Apache Kafka. Then we introduce the main contributions and list the

outline of this thesis.

1.1 Problem Statement

For the last decade, we lived through the Big Data Era where the computational power and the

complexity of data are continuously growing [41, 95, 119]. In a technical report from Cisco [54],

it is predicted that the global Internet traffic in 2021 will be equivalent to 127 times the volume of

the entire global Internet in 2005 [34]. Nowadays, many certain types of data such as stock values,

financial transactions, and traffic conditions rapidly depreciate in value if not processed instantly. For

instance, an ideal fraud detection system should identify a fraudulent transaction before it completes,

thus avoiding financial losses [1]. This type of data is called big streaming data, which means any

unbounded, ever growing, infinite dataset that is continuously generated by various sources, and

must be processed under very short delays [36].

The characteristics of big streaming data are described as the 4V’s, i.e., volume, variety, velocity

and veracity [40, 92, 101]. A new fleet of stream processing systems are developed to tackle the

4V’s, including Apache Samza, Apache Flink, Google’s MillWheel, Twitter’s Heron [4, 26, 69, 84],

etc. Despite some functional differences, these systems commonly consist of multiple processing

nodes in the topology of a DAG (directed acyclic graph). Apache Kafka is an open-source dis-

tributed messaging system for transferring data among those processing nodes [68, 72]. Kafka can

ingest streaming data from upstream applications and store the data in its distributed cluster, which
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1.2. MAIN RESEARCH CHALLENGES

provides a fault-tolerant data source for stream processors [43]. Due to its high durability and scal-

ability, Kafka has become very popular among modern companies like Uber, Netflix, Twitter and

Spotify [11].

Kafka’s high scalability allows it to handle large quantity of data (volume), and its publish/sub-

scribe pattern is designed for processing different types of data (variety). As the driving force of a

real-time system, velocity is one of the main subjects in this thesis. Streaming data is time-sensitive

in scenarios such as real-time healthcare monitoring, fraud detection, online machine learning and

decision making [5,81,115]. Latency and throughput are two commonly used metrics to evaluate the

performance of Kafka in real-time, when it is desired to deliver huge volumes of data in milliseconds

or seconds.

Veracity refers to the accuracy or truthfulness of the data. Since Kafka is responsible for transfer-

ring data from one place to another in stream processing, its veracity is reflected in the completeness

and correctness of streaming data. Losing some data or delivering replicated data is detrimental to

this veracity. The uncertainty of hardware resources and unstable network status are the induce-

ments of unreliable streaming data delivery, which may in the end lead to faulty outcomes of stream

processing. The ideal goal is that each piece of data is delivered to its destination exactly as it is

generated, without any data loss or duplication. In general, a reliable Kafka messaging system with

high performance is critical for applications to process big streaming data in real-time.

1.2 Main Research Challenges

While plentiful experiments have been performed for the evaluation of Kafka’s performance, its

robustness and reliability against real-time requirements have not been well explored [39, 43, 58].

To achieve the goal of a real-time messaging system with high performance and reliability, the

challenges come from four facets, as illustrated in Fig. 1.1.

• Big streaming data: The variety of data types, sizes, arrival rates and sources make it difficult

to apply a general stream processing method for all cases. To evaluate Kafka’s quality-of-

service (QoS) for different data streams, users define experienced non-functional properties

like latency and throughput [114]. The optimization priorities of these different QoS metrics

depend on the data contents and the functions of downstream applications. For instance,

when applying Kafka to process the stream of invoices in retail business, low latency is highly

prioritized because customers are waiting for the check-out processes. Meanwhile, for the data

analysis applications that make decisions based on a whole day’s data, the latency requirement

is not as strict as those on the throughput. Therefore the first main challenge is the uncertainty

2



CHAPTER 1. INTRODUCTION
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Figure 1.1: The research challenges and solution in this thesis

of these user requirements, as the content of big streaming data varies from application to

application.

• Hardware Resources: The hardware resources directly affect the performance, i.e. the speed

that Kafka writes data into the disks of distributed machines. Furthermore, many cloud ven-

dors provide Kafka as a service for users who want to build and run applications that use

Apache Kafka to process data. Kafka as a service is a cloud computing service model similar

to Infrastructures as a Service (IaaS), where basic computing resources like CPUs and storage

are provisioned over the Internet. Users generally pay according to the length of use, while

the cloud vendor manages and maintains the Kafka cluster. In this thesis, for simplicity, we

assume the hardware resources are fixed, as depicted in Fig. 1.1.

• Network Status: The quality of the network condition among the components of Kafka is

a challenge for the reliability of data delivery. Unstable network connection often occurs

among numerous IoT sensors, mobile devices or autonomous vehicles [6, 60, 66]. Through

our experiments, we found that high network delay or packet loss may cause streaming data

loss or duplication, which is a critical impairment to the reliability of data delivery. The

incorrect or incomplete streaming data published by Kafka can finally lead to errors in the

3



1.3. CONTRIBUTIONS

Table 1.1: Number of configuration parameters in Apache Kafka

Configuration Type Number of Parameters
Broker Configs 208
Topic Configs 27

Producer Configs 65
Consumer Configs 70

results of downstream applications.

• Configuration Parameters: Considering the challenges above, Kafka is developed as a very

flexible system with various configuration parameters. Changing configuration parameters

can significantly impact the performance of Kafka. In the industry, developers often rely on

empirical ways to configure the parameters in Kafka. However, running experiments and tests

in enterprise-scale systems to figure out the best configuration can be time-consuming and

costly. There are hundreds of configurable parameters in Kafka and only some of them have

varying degrees of impact on system reliability, as depicted in Table. 1.1. The configuration

and fine-tuning remains a big challenge for using Kafka to meet the real-time requirements in

big streaming data processing.

1.3 Contributions

The purpose of this thesis is to achieve efficient and reliable real-time streaming data delivery

with Apache Kafka. Assuming that the hardware resources of the Kafka cluster are fixed, then given

any type of streaming data, our target is to configure Kafka properly to meet real-time processing

requirements. The key to solving this problem is to predict Kafka’s performance and reliability given

various configuration and operation conditions. Then with the proposed prediction model, users are

able to check if the current configuration meets their QoS requirements and tune the parameters

accordingly, as shown in Fig. 1.1. Following this line of reasoning, the main contributions of our

work are listed below.

• Novel metrics: We define several novel metrics for the evaluation of Kafka’s performance and

reliability. In stream processing systems, the mean end-to-end latency is generally used for the

measurement of its real-time performance [75]. In this thesis we point out the problems with

this metric. Its measurement is not dependable or comprehensive in many cases. Therefore

we propose a new performance metric, the latency violation rate, which is the proportion of

streaming data that exceeds user-defined latency constraint. Accordingly, we improve the

4



CHAPTER 1. INTRODUCTION

measurement of throughput by introducing the timely throughput. To evaluate the reliability

of streaming data delivery, we define two reliability metrics referring to the Probability of

Failure on Demand (POFOD), which represents the probability of failure when a service is

requested [62]. One metric is the message loss rate, which we use to measure the probability

of loss while sending a piece of streaming data. The other metric is the message duplication

rate and it indicates the probability that the sending duplicates a message.

• Flexible Kafka testbed based on Docker: Our solution needs to collect a vast array of the

metrics mentioned above, as well as the configuration parameters and features of operation

conditions. Furthermore, numerous tests are necessary for generating sufficient analysable

data and accurate results. Thus we create a Kafka testbed on Docker containers for exploring

the approach of building prediction models [21]. We choose the industrial-grade lightweight

virtualization technology for a couple of reasons. It guarantees the correctness of Kafka’s

configuration, within a lightweight, standalone and reproducible execution environment [48].

Each component of Kafka is a running Docker container which embeds all the dependencies

and codes. Therefore it is fast and easy to start, shut down and scale up or down a Kafka

cluster with our testbed. We add a fault injection module using NetEm, a popular Linux

based network emulator [59]. With this module we are able to study the effects of unstable

network connection on Kafka’s reliability. The flexibility of the testbed makes it easy for other

researchers to reproduce and follow our work. More details about the testbed is available from

our published paper [110].

• Performance prediction: We propose a queueing based packet flow model to predict perfor-

mance metrics of Kafka [113]. The input configuration parameters of this model contain the

number of brokers in a Kafka cluster, the number of partitions in a topic and the batch size

of messages. We use queueing theory to evaluate the end-to-end latency of packets. In the

experimental validation we see a strong correlation between packet size and packet send inter-

val, and the service time of packets fits a phase-type distribution. The correlation and fitting

results are substituted to the essential constants in the model. Experiments are performed with

various configurations for observing their effects on performance metrics. The results show

that our model achieves high accuracy in predicting throughput and latency. Users can tune

the configuration parameters in the model to observe the parameters’ impact on Kafka’s per-

formance metrics including the producer throughput, the relative payload and overhead and

the change of disk storage usage over time. This can help users to utilize the limited resources

provided by cloud vendors more economically and give explicit advice on the configuration

settings of Kafka.

5



1.4. THESIS OUTLINE

• Reliability prediction: Due to the complexity of Kafka’s architecture and the diversity of

its configuration parameters, we use machine learning techniques to build the reliability pre-

diction model [111]. From the experimental results we find that the reliability metrics are

significantly affected by both, the configuration parameters and the network condition. The

types of streaming data, including the message size and timeliness, also have an impact on

the metrics. We select several of the most sensitive factors as the main features for the predic-

tion model. Through numerous experiments on our testbed, we collect plentiful training data.

The accuracy of our predicted results is sufficient for comparing the impact from different

configuration parameters.

• Reactive batching: In order to handle various requirements from all kinds of streaming

applications, we present a weighted QoS metric to help choose proper configurations for

Kafka [112]. In this metric both of the proposed performance metrics and reliability met-

rics are evaluated. When the configurations as well as the streaming data type and network

status are known, we can generate the current QoS metric through our prediction model. The

weights can be adjusted depending on the requirements of different streaming applications.

Thus the user can select proper configuration parameters of Kafka by checking its QoS met-

ric. Among all the parameters we find the impact of batch size is the most significant. Then a

reactive batching strategy is proposed in our experiments to evaluate the effectiveness of the

prediction models.

1.4 Thesis Outline

In this chapter the problems and research challenges are addressed. The remaining part of the

thesis is structured as follows:

Chapter 2 describes the characteristics of steaming data, some popular streaming data processing

systems. The role of Kafka in the stream processing pipeline is explained in detail. We introduce

existing research efforts in performance and reliability evaluation of streaming systems.

Chapter 3 introduces the mathematical theory used in this thesis, including the concept of Phase-

type distribution, the derivation of an M/PH/1 queue, and the workflow of a typical ANN model.

In Chapter 4 we evaluate the performance of Apache Kafka by proposing a queueing based predic-

tion model. We study the correlation among various configuration parameters and the performance

metrics.

Chapter 5 emphasizes the importance of reliable delivery. In order to study Kafka’s reliability in

failure scenarios, we present a flexible Kafka testbed built upon Docker containers. Two reliability
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metrics, the probability of message loss and the probability of message duplication are introduced.

Then we use an ANN based prediction model for predicting these two metrics. Through the lessons

on the reliability issues we learned, a few main takeaways are listed for Kafka users.

Chapter 6 shows the problems of current latency measurement methods. Then we explored the

effects of batching on the latency and throughput of Apache Kafka. By studying the distribution

of end-to-end latency, we introduce a new Quality-of-Service (QoS) metric, the timely throughput.

A reactive batching strategy is proposed for optimising this new metric under unstable network

condition.

Chapter 7 concludes the main contributions in this thesis, and describes some future research

directions.
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Chapter 2

Messaging in Stream Processing

We introduce the background of stream processing in this chapter. Through the background in-

troduction we provide a comprehensive overview of current stream processing systems. Other re-

searchers may find interesting topics or challenges in stream processing from this chapter.

2.1 The Context of Stream Processing

In this section we describe the landscape of streaming data processing systems and their general

pipeline.

2.1.1 An Overview of Streaming Technologies

Modern data-driven organizations need to handle and process streaming data in real-time as they

occur and extract an actionable insight as quickly as possible. Traditional batch processing systems

such as MapReduce [37] and Hive [100] suffer from latency problems because they need to collect

input data into a dataset before processing them. Extracting useful insights from the continuous

and unbounded data streams is challenging, especially under the application scenarios like fraud

detection in financial trading and healthcare analytics based on IoT devices [36].

Some examples of streaming data sets are depicted in Fig. 2.1. The car trace data is the streaming

json-data generated by the vehicle sensors and includes the information of cars and their location.

The weather trace data is also in json format and collected from the weather sensors inside a build-

ing where the temperature and humidity information are monitored. The third example is retrieved

from point of sale (POS) terminals in Extensible Markup Language (XML) format (tags excluded),

which contains the transaction information at the checkout of supermarkets. The streaming data is

9



2.1. THE CONTEXT OF STREAM PROCESSING

generated from large amounts of nodes all the time, and grows to huge volume for the processing

systems. Early systems for big data processing could only load data from servers into a data ware-

house for offline analysis. For instance, Hadoop is a commonly used framework for the distributed

processing of large data sets across clusters using simple programming models [10]. It processes

large volumes of data that was previously stored in the Hadoop Distributed File System (HDFS).

However, in the cases that new data keeps arriving at the storage, this approach becomes inefficient.

Car trace data: 

 

Weather trace data: 

 

Transaction data from POS machines: 

 

Figure 2.1: Some examples of streaming data

Consequently, various streaming data processing systems (SDPSs) arise for ingesting, processing,

storing and managing streaming data, such as Apache Samza, Apache Flink, Google’s MillWheel,

Twitter’s Heron [4, 26, 69, 84], etc. Some of the SDPSs are marketed by large software vendors
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while others are open-source projects. These SDPSs are often compared from different aspects in

recent studies [55, 91, 101]. We list the most popular open-source technologies according to their

capabilities in the streaming data processing pipeline, as illustrated in Fig. 2.2.

Data Collection

Queueing Management Systems

Data Analysis

Streaming Data Processing Platforms

Data Storage

Streaming Data Storage Technologies

Data Querying

Streaming SQL Engines

Figure 2.2: Open-source streaming data processing technologies

• Data Collection: Distributed queueing management technologies such as Kafka, RabbitMQ,

Amazon Kinesis and Microsoft Event Hubs are applied for ingesting streaming data from dis-

parate upstream applications, and feeding it to real-time downstream applications. These tech-

nologies support publish/subscribe messaging for transferring large-scale data across many

real-time applications. Compared to the traditional queueing systems (e.g. Redis) which

remove data after processing, distributed queueing technologies persist data on disks over

replicated clusters, and provide consumer groups feature for taking multiple independent ac-

tions on the same event. The technologies in this step are of the utmost necessity for making

streaming data accessible to data consumers in real-time.

• Data Analysis: Traditional batch processing technologies like Hadoop and Spark are inspired

by Google’s MapReduce design and have been the state-of-art big data platforms. To over-

come the inefficiency problems, Apache Spark divides the stream of events into small batches

to keep the processing latency under control. However, the performance of these traditional

technologies is insufficient for building real-time applications. New technologies, including

11
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Apache Storm, Apache Samza and Apache Flink have matured in the last few years to han-

dle large amounts of data on the fly. They are designed to improve the speed of extracting

insights from millions of stream events. The capabilities and features of these popular open-

source technologies are depicted in Table. 2.1, among which Kafka Streams is part of the

Kafka ecosystem.

• Data Storing: The big data storage technologies are mainly three types according to the data

model: (i) File System, e.g., data in Hadoop Distributed File Systems for Hive Hadoop; (ii)

Document-based, e.g., MangoDB; (iii) Column-based, e.g., Cassandra and Hbase. As per the

CAP theorem, only two of the three features, Consistency, Availability and Partition Tolerance

can be guaranteed for a distributed data store [23]. Therefore the choice of a proper storage

technology highly depends on the specific application.

• Data Querying: Streaming platforms provide SQL (Structured Query Language) capabilities

by windowing operations, which means repeatedly iterating over a series of micro-batches.

Based on the concept of different windowing types, various open-source stream query engines

are developed, including Spark SQL, Samaza SQL, Storm SQL and KSQL (Kafka SQL). In

real-time stream processing, there are four types of windowing mechanisms: Trumbling Win-

dow, Sliding Window, Hopping Window and Session Window. Choosing the proper window is

crucial for processing infinite streams, and KSQL supports all except the Sliding Window.

2.1.2 Comparison of Open-Source Stream Data Processing Systems

From the overview above we see various kinds of streaming data processing systems. We select

the most popular open-source SDPSs depending on their wide range of applications and introduce

them in detail for comparison.

• Apache Storm: Storm is an open-source project developed under the Apache License [14]. It

is a distributed real-time stream processing computation framework for processing large vol-

umes of high-velocity data. The topologies of a Storm application are composed of multiple

components arranged in a directed acyclic graph (DAG). The components include spouts and

bolts, as depicted in Fig. 2.3. A spout reads data from various sources like the Twitter API,

and emits the data as streams. A bolt receives these streams as input, performs operations

(e.g. filter, aggregate or join) on the data, and possibly emits new streams. The edges in

Fig. 2.3 indicate which bolts subscribe to which streams. The data model used in Storm is

called tuple, which is a named list of values. In case of failures, Storm relies on a framework

called acking to track the completion of each tuple. This mechanism checkpoints the state of
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bolt periodically and if the system crashes or restarts, the bolt will be initialised to its previous

state.

Spout

Spout

Bolt

Bolt

Bolt

Bolt

Bolt Database

Data
Source

Figure 2.3: The topology of an Apache Storm application

• Apache Spark Streaming: Spark Streaming is an extension of Apache Spark, a unified ana-

lytics engine for large-scale data processing [13]. Spark Streaming enables scalable and real-

time stream processing with high throughput. It ingests data from many sources like Kafka

and Amazon Kinesis, and processes the data with high-level functions like map, reduce and

join. The results are pushed to file systems, databases or live dashboards. The key abstraction

in Spark Streaming is the discretised stream (DStream), which is a stream of data divided

into small batches, called Resilient Distributed Datasets (RDDs). RDDs are distributed, fault-

tolerant data sets that can be processed in parallel using any number of functions in clusters.

Since version 2.3, Spark has introduced the Structured Streaming library, built on the Spark

SQL engine [15]. The streaming data is processed in a new low-latency mode called Con-

tinuous Processing, and it is recommended for developing new streaming applications with

Spark [55].

• Apache Samza: Apache Samza was originally developed in conjunction with Apache Kafka

by LinkedIn [12]. Samza enables the implementation of stateful applications that process

data in almost real-time from multiple sources including Kafka. The Samza application is

built on the concept of streams and jobs. A stream is composed of immutable messages of a

similar type or category, corresponding to the concept of topic in Kafka, which is introduced

in Section 2.2. A job is the code that consumes input streams, performs a logical transfor-

mation and then produces the results as output streams. Samza breaks a job into multiple
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tasks to achieve parallel processing. The architecture of Samza is composed of three layers,

as shown in Fig. 2.4. The streaming layer provides partitioned streams that are replicated and

durable, which is generally implemented by a Kafka system. The execution layer coordinates

tasks across the machines, also called Samza containers. The processing layer applies logical

transformations on the input streams.

KafkaStreaming Layer

Node Manager

Samza
Container

Samza
Container

Node Manager

Samza
Container

Samza
Container

Samza API

Execution Layer

Processing Layer

Figure 2.4: The architecture of an Apache Storm application

• Apache Flink: Apache Flink is a distributed processing framework for stateful operations on

streaming and batch data [9]. Similar to the other SDPSs, Flink’s basic building blocks include

streams and transformation operators. Flink mainly provides three APIs for data processing, a

DataStream API, a DataSet API and a Table API. The DataStream API is used to perform var-

ious operations (e.g. filter, aggregate, window functions) on bounded or unbounded streams

of data. The DataSet API enables batch operations on bounded datasets. The Table API is a

relational API with SQL-like expression language. Flink does not provide its own data stor-

age system, instead it uses durable message queues (e.g. Apache Kafka or Amazon Kinesis)

to replay data streams. The task states are maintained in memory or access-efficient on-disk

data structures, as depicted in Fig. 2.5. In case of failures, Flink guarantees state consistency

by checkpointing the local state to durable storage periodically and asynchronously.

• Kafka Streams: It should be noted that Kafka Streams is a stream processing library of

Apache Kafka, thus it is part of the overall Kafka ecosystem. The abstraction of stream is

similar to the other SDPSs. Kafka Streams uses the processor topology to define the stream

processing computational logic for an application. As shown in Fig. 2.6, a topology is a graph

of stream processors connected by streams. A source processor consumes messages from

its subscribing Kafka topic, and produces an input stream to its topology. A sink processor

sends the stream to a specific Kafka topic. The processed results can either be streamed back

to Kafka or external applications. Kafka Streams provides two APIs, the Domain Specific
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Input

Tasks

Output

Logic State Logic State ......

Durable
StorageSnapshots

Local state

Figure 2.5: State management of Apache Flink

Language (DSL) API for high-level operations (e.g. map, filter, join) and the Processor API

for the definition and connection of custom processors. In case of failure, Kafka Streams

leverage the fault-tolerance capability of Kafka to restart tasks.

Source Processor

Stream

Sink Processor

State Store

Figure 2.6: The topology of Kafka Streams

A summary of the comparison of these open-source SDPSs is listed in Table. 2.1. We know

that most stream processing platforms support hybrid stream and batch processing, although they

differ in architecture components. The delivery semantics is an important feature for guaranteeing

message delivery in stream processing, and can be divided into three types:

• At-most-once: Each message is sent by the producer at most once. It is the easiest to im-

plement because the producer does not need any response, thus any system is capable of this

semantic. However, the disadvantage is that there is no measure to prevent message loss. In

the table we list the other two semantics which provide more fault tolerance.
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Table 2.1: Comparison of open-source distributed stream processing platforms

Storm Spark Samza Flink Kafka
Streams

Version 2.0 2.4.3 1.5.0 1.8 2.3.0

Components
Streams,
Spouts,
Bolts

Resilient
Distributed
Dataset

Samza,
YARN,
Kafka

Operators,
Sources,
Sinks

Kafka

Processing
Model

Hybrid
Stream and
Batch

Hybrid
Stream and
Batch

Stream
Hybrid
Stream and
Batch

Hybrid
Stream and
Batch

Delivery
Semantics

At-least-once,
Exactly-once

At-least-once,
Exactly-once

At-least-once Exactly-once
At-least-once,
Exactly-once

State
Management

Key-value
storage,
Redis

Write-ahead
log

Key-value
storage

Key-value
storage

Key-value
storage,
Hash map

Fault
Tolerance

Stream replay,
Checkpoint

Checkpoint
Stream replay,
Checkpoint

Stream replay,
Checkpoint

Stream replay

Queueing
Management

Systems

Kafka,
RabbitMQ,
Kinesis,
Event Hubs

Kafka,
RabbitMQ,
Kinesis,
Event Hubs,
Google Pub/Sub

Kafka,
RabbitMQ,
Kinesis,
Event Hubs

Kafka,
RabbitMQ,
Kinesis,
Event Hubs

Kafka
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• At-least-once: For each message that has been sent, a response from the receiver side is

required, otherwise the producer keeps resending until it gets the response. It guarantees each

message to be delivered, but may be delivered multiple times in some cases.

• Exactly-once: This is the most ideal delivery as each message is guaranteed to be delivered

once only, not more or less. Implementing this semantic requires additional resources to

support transactions or idempotent processing.

From the comparison of different streaming data processing systems, we know that Kafka plays

a critical role in ingesting data from upstream applications and providing scalable data storage for

stream processing. In this thesis, we choose to study the performance and reliability of streaming

data delivery using Kafka instead of other popular streaming systems because of three reasons: First,

some comparable message broker technologies like RabbitMQ, ActiveMQ and other enterprise mes-

saging systems are ephemeral, which means they store data in memories or other light storages. On

the other hand, Kafka provides durability by persisting data on disks, and this makes its application

scenarios more extensive and comprehensive. Second, other streaming platforms such as Spark,

Storm and Flink are all designed to provide computational framework for streaming data process-

ing. However, Kafka is not a data processing framework, but instead a data transporting tool. This

unique feature establishes its position in stream processing. The third reason is that Kafka is often

applied in combination with other streaming data processing systems, as we observe from the last

row of Table 2.1. The performance and reliability of Kafka is crucial to those streaming systems

because it is responsible for the data transporting. Therefore, the mechanisms and models we intro-

duce in this thesis (batching mechanism, delivery semantics) are highly available in these streaming

data processing systems.

2.1.3 Stream Processing Pipeline

The pipeline of streaming data processing starts from the data ingest, where the distributed queue-

ing management technologies are applied. The applications that generate source data for ingestion

are called upstream applications. Then the streaming data will be published to the corresponding

topics for further processing. The downstream applications, or streaming applications subscribe to

the topics of their interest to extract useful insights. The pipeline of those downstream applications

can be described by a directed acyclic graph (DAG), which consists of multiple stream processor

nodes. Each processor performs an operation on the input data and transfers the outputs to the next

processor. As depicted in Fig. 2.7, stream processors A and C consume messages from Kafka clus-

ter, then produce the results to stream processor B and D. In some scenarios stream processor B may
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publish the final results for other processors to subscribe.

Streaming ApplicationsKafka Cluster
Upstream 

Applications

Kafka Broker 2

Streaming Media

Mobile Devices

Kafka Broker 3

IoT devices

Bank Transfer

Kafka Producer

Kafka Broker 1

source data

Stream Processor Stream Processor

Stream Processor Stream Processor

A B

C D

Results

Streaming Data
......

Figure 2.7: Kafka in stream processing pipeline

Depending on the demand for state management, stream processors can be divided into two cate-

gories, stateless and stateful processors. Here state refers to the intermediate value of a specific com-

putation that will be used in subsequent operations during the processing of streaming data [101].

Stateless processors do not need to maintain any state, which means the operation on a message is

independent from the operations on other messages. For instance, when ingesting one raw message

from Kafka, the processor only needs to transform it and pass the result to other processors. Simple

map operation on one message at a time, and filtering out messages based on some condition are the

most common examples of stateless processing.

However, most processors require state to generate correct results. A stream processor is stateful

whenever it needs to operate on a sequence of input messages, and potentially use state information

to generate meaningful results. Examples include sorting, reducing, joining and aggregation. The

advantage of state management is that a processor can resume from wherever it was paused or

stopped, thus avoiding reprocessing of huge volumes. As depicted in Table. 2.1, Apache Storm

provides state persistence using in-memory state storage and a Redis backed implementation, while

Apache Spark maintains a write-ahead log to help the system recover from failure. Kafka provides

state stores, such as RocksDB database or in-memory hash map, to store state data for later reference.

The failures in a stream processing pipeline happen due to an unstable network connection, soft-

ware bugs, hardware issues like node crash and bottlenecks caused by the volume and speed of
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incoming data [55]. These failures may cause data loss, thus leading to incorrect results and deci-

sions. Failure recovery in stream processing demands additional resource and repeated processing,

which is another overhead [27]. For real-time streaming applications, reprocessing from the starting

point of the pipeline is impractical. An ideal system should restore itself to a previous state when

the failure has not happened yet, in order to obtain minimum overhead. Apache Storm periodically

checkpoints the state of the bolt, and replays tuples to the previous state in case of failures. Apache

Flink also restores the state of its operators and replays the vents from the checkpoint. Kafka Streams

utilizes the native fault-tolerance capability within the Kafka core, and this will be introduced in the

next section.

Fig. 2.7 also demonstrates the role that Apache Kafka plays in the stream processing pipeline.

Upstream applications, such as streaming media, mobile and IoT devices generate the original data

streams. Kafka producer is responsible for ingesting the streams from these data sources and then

publish them to the Kafka cluster, where the streaming data is stored across multiple Kafka brokers.

Then downstream applications fetch the streaming data from the Kafka cluster with the Kafka con-

sumer API. The architecture details and advantages of this publish/subscribe pattern is elaborated in

the next section.

2.2 Apache Kafka: A Real-time Distributed Messaging System

The applications in a streaming system may be running on multiple computers, or different plat-

forms and geographically dispersed. Therefore transferring data across these applications in real-

time requires some critical criteria. Strong coupling of applications requires more time to develop,

deploy and maintain the dependencies. Decoupling the sending and receiving applications can min-

imize the dependencies. Decoupling with an intermediate translator also improves the flexibility to

unify the different data formats from applications. Establishing a synchronous connection between

every two applications is unreliable as the applications or network may be temporarily unavailable.

Therefore using a reliable middleware to facilitate asynchronous communication between the appli-

cations is a critical criterion. Then the sender application can continue processing without waiting

for the receiver to acknowledge receipt of the message.

Kafka serves as a messaging system to manage streaming data exchange in the stream processing

ecosystem. The publish/subscribe pattern is an ideal solution for real-time data integration against

the criteria mentioned above. Other alternatives, such as Remote Procedure Call (RPC) and shared

databases have drawbacks which violate the criteria. E.g. RPC is used to execute some commands

on another application from a different machine and this approach creates a tight coupling among
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the applications. A shared database is where the streaming data are stored, and all the applications

write to and read from the same database. However, due to the diversity of streaming applications,

it is impractical to design a unified schema which meets all the applications. Besides, multiple

applications modifying the same data in the shared database greatly reduces the performance.

Apache Kafka provides a publish/subscribe messaging service, where a producer (publisher)

sends messages to a Kafka topic in the Kafka cluster (message brokers), and a consumer (sub-

scriber) reads messages from the subscribed topic. A topic is a logical category of messages, for

instance the producer will send the logs of a web server access records to the serverLogs topic,

while the records of the querying records on a website will be sent to the searches topic. As de-

picted in Fig. 2.8, we observe 2 producers sending messages to 2 topics in this Kafka cluster, topic

A and topic B respectively.

Broker 1

Producer A Producer B

Consumer A

Broker 2

Broker 3

Topic A Topic B

Kafka Cluster

tA-p0

tA-p3

tA-p1-r

tA-p4-r

tB-p0

tB-p1-r

tA-p1

tA-p4

tA-p2-r

tA-p5-r

tB-p1

tB-p2-r

tA-p2

tA-p5

tA-p0-r

tA-p3-r

tB-p2

tB-p0-r
Consumer B

Append-only Log

Figure 2.8: Kafka in stream processing pipeline

Any topic may be stored in one or more partitions, which are the physical storage of messages in

the Kafka cluster. The Kafka cluster consists of several brokers (Kafka servers), and all the partitions
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of the same topic are distributed among the brokers. In the example in Fig. 2.8 there are 3 brokers,

and we see topic A consisting of 6 partitions (denoted by tA-p{0~5}) while topic B with 3 partitions

(denoted by tB-p{0~2}).

Each partition is physically stored on disks as a series of segment files that are written in an

append-only manner. It is replicated across the Kafka broker nodes for fault tolerance, and we

denote the replica of a partition with the suffix -r in Fig. 2.8. The messages of the leader partition

tA-p0 on broker1 are replicated to the partition tA-p0-r on broker3, so once the broker1 server fails,

tA-p0-r is chosen as the leader partition, which is similar for other partitions on broker1. Only

the leader partition handles all reads and writes of messages with producer and consumer, which is

performed in FIFO manner. Kafka uses partitions to scale a topic across many servers for producers

to write messages in parallel, and also to facilitate parallel reading of consumers.

We see 2 consumers in our example, consumer A and consumer B subscribing to topic A and

topic B respectively. These two consumers work independently and no coordination between them

is required. Inside each consumer, there can be multiple consumer instances, which will in parallel

fetch messages from a different subset of the partitions in the topic. A consumer instance can fetch

messages from multiple partitions, while one partition has to be consumed by only one consumer

instance. As a result the number of partitions controls the maximum parallelism of the consumer

group, and it is obvious that the number of consumer instances should not exceed the number of

partitions in the subscribed topic, otherwise there will be idle consumer instances.

2.3 Related Work

In this section we introduce the related work on stream processing from three facets, the research

on the performance of stream processing platforms, the study on the reliability problems and the

work on batching strategy.

2.3.1 Performance Evaluation

Plentiful experiments have been done to compare the performance of Apache Kafka and tra-

ditional message brokers like RabbitMQ, which is primarily known and used as an efficient and

scalable implementation of the Advanced Message Queuing Protocol (AMQP). The results indicate

that both systems are capable of processing messages with low-latency, and increasing the number

of partitions in Kafka can significantly improve its throughput, while increasing the producer/chan-

nel count in RabbitMQ can only improve its performance moderately [39]. The Kafka protocol is

more suitable for an application that needs to process massive messages, but if messages are im-
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portant and security is a primary concern, AMQP is more reliable [58]. Despite those horizontal

comparisons, how to set the configuration parameters properly inside Apache Kafka, which is also

the major concern of the users who purchase Kafka cloud services, still remains challenging. In [61]

they build a novel framework for benchmarking streaming engines include Apache Storm, Apache

Spark and Apache Flink.

Researchers have developed various tools to help the users of cloud services make appropriate de-

cisions in pursuance of better performance with limited resources. CloudSim [25] is a well-known

simulation framework which supports simulation tests across three major cloud service models (e.g.

SaaS, PaaS, and IaaS) and it is capable of cloud simulations including VM allocation and provision-

ing, energy consumption, network management and federated clouds. CloudCmp [73] systemati-

cally compares the performance and cost of four different cloud vendors to guide users in selecting

the best-performing provider for their applications. PICS (public IaaS cloud simulator) [64] provides

the capabilities for accurately evaluating the cloud cost, resource usage and job deadline satisfaction

rate. All those simulators aim at evaluating the public clouds without running numerous tests on real

clouds, and focus more on power consumption and resource management.

However, from the perspective of users, none of the simulators can address their concerns because

the particular mechanisms of Kafka are not considered. The users need a tool to help them choose

proper configuration parameters in Kafka and this motivated us to conduct this research. We build

a queueing model to evaluate the performance of Kafka, referring to other related works. The

application processed at the cloud data centers has been modeled as an infinite M/G/m/m + r

queueing system in [63]. A queueing model has been proposed in [93] for elastic cloud apps where

the service stage involves a load balancer and multiple workers running in parallel. The analytic

model in [94] can evaluate simple cloud applications using message queueing as a service (MaaS),

but still neglects the essential features in Kafka.

We build the tool TRAK using Docker containers. Docker is a popular emerging virtualization

technology on operating system level, which is similar to a lightweight virtual machine [21]. A

Docker container is piece of a software that packages up all code, runtime, system library and

dependencies, and runs fast and reliably when moved from one environment to another. Containers

are less resource and time consuming, and rising as an important part of microservices and the

cloud computing infrastructure [57]. For fault injection we use a network emulation tool for Docker,

Pumba, which is used to tune the delay and packet loss of the network between the Docker containers

[71].
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2.3.2 Reliability Evaluation

While most studies focus on improving system performance, like throughput and latency, to

achieve real-time processing, only a few of them consider the reliability of streaming data delivery.

The investigation in [29] shows that streaming systems rely on processing semantics to guarantee

the correctness of data transfer, and in Facebook’s environment they mostly choose at-most-once or

at-least-once semantics. Similarly, while developing a stream processing system for Twitter, the de-

velopers first implemented at-most-once and at-least-once semantics [69]. To achieve exactly-once

semantics, additional computing resources and data stores are required to support transactions, thus

imposing a performance penalty.

Performance prediction models have been studied for different contexts in various systems [103].

The modeling work generally involves two parts: first the specification of the response variables that

need to be predicted, and second the selection of the input features that may impact the outputs. The

next step is to choose the proper model from rule-based or machine learning techniques [38,88,99].

In this thesis we apply an Artificial Neural Network (ANN) in our model for its high accuracy and

the many uncertainties of Kafka’s architecture.

For real-time streaming applications, the message timeliness is considered an important indicator

for reliability evaluation. In [49] the tradeoff between staleness and error of the data in a geo-

distributed streaming system is studied. The timeliness of messages is also considered as one of

the main features in our prediction model. Batching is another feature that has significant effect on

Kafka’s reliability. From [29] we know that a mix of streaming and batch processing can speed up

long pipelines by hours. Furthermore, a control algorithm for dynamically adapting the batch size

in stream processing systems has been presented in [35]. The research in [44] also indicates that

dynamic configuration is efficient in streaming systems.

2.3.3 Batching Strategy

A reactive strategy to enforce constraints over average latencies in scalable Stream Processing

Engines (SPEs) is proposed in [75]. The work in [76] indicates that choosing the appropriate buffer

size can significantly reduce the mean latency in Nephele, a stream processing framework. Adaptive

batch size control algorithm can guarantee the average end-to-end latency as the situation necessi-

tates [35] . In [75] they evaluate the mean latency within a finite time interval (e.g. 10 s). However,

using the mean value of latency as the performance metric cannot evaluate system performance

comprehensively. In [50] they use elastic scaling to optimize the utilization under certain latency

constraints, and the number of latency violations are studied. In the latency-aware scheduling of an
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extended Hadoop architecture, both the average and the quantile of latency are considered [74].

Batching strategy is commonly studied in stream processing systems. The configured size of

the batch significantly impacts the performance, and needs to be carefully treated in latency and

throughput trade-off [75]. The impacts of batch size on the performance of Apache Spark has been

explored in [35]. Changing batch sizes reactively can speed up long pipelines by hours in [29].
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Chapter 3

Theoretical Background

3.1 Queueing Theory

Queueing theory is usually used for the performance evaluation of computer systems or networks.

Using this theory we can study the stochastic systems in stream processing and the mean time it

takes to process a job. In this section we introduce the background of queueing theory applied in

this thesis, including exponential distribution, phase-type distribution and the M/PH/1 queue.

3.1.1 Exponential Distribution

The exponential distribution is a continuous distribution commonly used to measure the time

interval between events. The probability density function (PDF) of X is given by:

f(x) =

{
λe−λx, x ≥ 0,

0, x < 0.
(3.1)

where λ is the rate parameter. Some plots of the PDF with different values of λ are depicted in

Fig. 3.1. Correspondingly, the cumulatve distribution function (CDF) of an exponential distribution

is:

F (x) =

{
1− e−λx, x ≥ 0,

0, x < 0.
(3.2)

The CDFs of some exponential distribution are shown in Fig. 3.2:

The mean value of X is an estimator for the expectation, which can be obtained by:
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Figure 3.1: PDFs for some exponential distributions

E[X] =
1

λ
(3.3)

The variance of X is:

V ar[X] =
1

λ2
(3.4)

The moments of X is:

E[Xn] =
n!

λn
(3.5)

The exponential distribution is one of the basic distribution types in queueing theory because of its

memoryless property. This means that for any random variableX which is exponentially distributed,

the past history of X plays no role in predicting its future. For instance, let X be the time that a job

spends in a server, also called service time, which is exponentially distributed. Then the probability

that the job is finished at a future time t is independent of how long this job has already been in the

server.
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Figure 3.2: CDFs for some exponential distributions

3.1.2 Phase-type Distribution

Although the exponential distribution is widely used in performance evaluation, sometimes it is

not adequate to model certain processes. Instead, Phase-type (PH) distributions become very popular

for modelling the service time of computer systems [22]. The reason is that any distribution with a

strictly positive support in (0,∞) can be approximated arbitrarily close by a PH distribution [24].

PH distributions are able to fit various experimental data into one distribution.

A PH distribution is defined as the distribution of the time to absorption in a continuous-time

Markov Chain (CTMC) with one absorbing state [82]. A CTMC is used to describe the stochastic

process with multiple states, and Fig. 3.3 illustrates the example of a CTMC with one absorbing

state. Starting from state k with probability πk, the process stays in the state for a random period

which follows an exponential distribution. Then it moves to another state with the probability as

specified by a stochastic matrix. The time it takes for a process to reach the absorbing state (state 4

in Fig. 3.3) is a sum of samples from exponential distributions.

We use a tuple (π,D) to denote a PH distribution, where π is the initial probability vector that

represents the probability of initial state. D is the generator matrix of the absorbing CTMC that

represents the transition rates among states.
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Figure 3.3: A CTMC with one absorbing state

The (π,D) is a Markovian representation of a PH distribution when:

π = (π1,π2, · · ·πm) ∈ Rm, (3.6)

πe = 1, (3.7)

π ≥ 0, (3.8)

and the generator matrix:

D =


λ11 · · · λ1n

...
. . .

...

λn1 · · · λnn

 ∈ Rm×m (3.9)

is a non-singular matrix with:

λii < 0, (3.10)

λij > 0 where i 6= j, (3.11)

and

De ≤ 0, (3.12)

∑
De < 0, (3.13)

where e is a column vector with all elements equal to one. For a CTMC with m + 1 states, the
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size ofD is m×m. The generator matrix of embedded CTMC is

D̂ =

D −De

0 0

 ∈ Rm×m, (3.14)

The PDF of the PH distribution (π,D) is given by:

f(x) = πeDx(−De). (3.15)

The CDF of the PH is given by:

F (x) = 1− πeDxe. (3.16)

The moments of the PH distribution is:

E[Xn] = n!π(−D)−ne. (3.17)

An m-phase PH distribution has m(m + 1) free parameters, which bring higher computation

complexity. The number of free parameters can be reduced by introducing some special cases of PH

distribution. The exponential distribution is a one-phase PH distribution. We mainly introduce two

special cases of two or more phase PH distributions, Erlang distribution and hyper-Erlang distribu-

tion.

An Erlang distribution is the distribution of a sum of k i.i.d exponential random variables with

rate λ. Erlang distribution can be denoted by Er(k, λ).

The CTMC representation of an Erlang distribution is depicted in Figure 3.4.

......
λ λ λ

Figure 3.4: The CTMC representation of an Erlang distribution

A hyper-Erlang distribution is a typical representation of branch structure, where each branch is

an Erlang distribution. The representation of a PH distribution has a branch structure when:
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D =


D1

D2

· · ·

Dn

 , (3.18)

andD1,D2, · · · ,Dn are the generator matrixes of the branches.

A representation of the branch structure consists of blocks of states, and the blocks are not con-

nected. Therefore, only one block can be visited in a transition. The CTMC representation of a

hyper-Erlang distribution is illustrated in Fig. 3.5

π1 ...λ1 λ1 λ1

π2 ...λ2 λ2 λ2

πn ...λn λn λn

... ... ...

Figure 3.5: The CTMC representation of a hyper-Erlang distribution

A PH distribution (π,D) is a hyper-Erlang distribution if:

πi > 0 if i ∈ {1, 1 + s1, · · · , 1 +

n−1∑
j=0

bj}, (3.19)

else πi = 0, (3.20)

and

Dj ∈ Rbj×bj , (3.21)
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Dj =


−λj λj

· · · · · ·

−λj λj

−λj

 , (3.22)

where j ∈ [1, n] and λj > 0.

3.1.3 M/PH/1 Queue

In a phase-type distribution with representation (π,D), πππ is the initial probability vector and D

is the generator matrix of an absorbing Markov chain. An M/PH/1 queue can be analysed as a

Quasi-birth-death (QBD) process with the state space M = {0, (i, j), i ≤ 1, 1 ≤ j ≤ v} and state 0

stands for the empty queue, while state (i, j) represents i jobs in the system and the service process

is in phase j. We use λ to denote the arrival rate of the Poisson process, and by symbol I we always

denote an identity matrix of the dimension appropriate to the formula in which it appears, then we

obtain the generator matrix:

Q =



−λ λπ 0 0 0

τ D − λI λI 0 0

0 τπ D − λI λI 0

0 0 τπ D − λI λI

0 0
. . . . . . . . .


(3.23)

and the steady state equations:

− λx0 + x1τ = 0 (3.24)

λx0π + x1(D − λI) + x2τπ = 0 (3.25)

λxi−1 + xi(D − λI) + xi+1τπ = 0 (3.26)

where x = [x0, x1, x2, · · · ] is the stationary probability vector and
∑∞

i=0 xi = 1.

Multiplying Equation (3.25) and (3.26) by the column vector e on the right, and combining the
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results we obtain:

xi = x0πM
i, i ≥ 1 (3.27)

whereM = λ(λI−λeπ−D)−1, then the average number of jobs in the queue can be denoted as:

E[N ] =
∞∑
i=1

ixie = x1

∞∑
i=1

d

dM
M ie = x1(I −M)−2e (3.28)

and according to Little’s law, the mean time a job spends in the system is:

E[R] =
E[N ]

λ
=
x1(I −M)−2e

λ
(3.29)

3.2 Machine Learning

Machine learning is a type of artificial intelligence (AI) method that uses statistics to find pat-

terns in large amounts of data. A machine learning model is built on the sample data, also called

training data. The model is used to make predictions or perform other tasks instead of the explicitly

designed programs [65]. Generally, machine learning approaches are divided into three types: su-

pervised learning, unsupervised learning and reinforcement learning. Supervised learning is where

both inputs and outputs are provided in the training data, thus the model maps new input data to the

expected output. Supervised learning is often applied to solve classification or regression problems,

and it is also the type of machine learning we applied in this thesis. Conversely, unsupervised learn-

ing means there are only inputs in the training data and the outputs are not known. Unsupervised

learning is often applied to study the underlying structure or distribution of the data, e.g. the clus-

tering and association problems. Reinforcement learning does not require correct inputs or outputs,

instead it performs actions by a trial-and-error method. The reinforcement learning model uses an

agent to take actions and interact with the environment to achieve the maximum reward. It is usually

applied in robotics, chemistry or games.

3.2.1 Artificial Neural Network

Artificial Neural Networks (ANN) are computational models inspired by the biological neuron

networks of the human brains [17, 18]. In the last decade, ANNs have been applied in all kinds of

disciplines to model complex real-world problems including financial decision-making [70], energy

consumption forecasting [3], natural resource utilization [78], pattern recognition [19], and game
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playing [97]. ANNs are very adaptive in modeling nonlinear processes and become the most popular

tool for regression and classification.
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Figure 3.6: A basic artificial neuron

The components of an ANN include a group of artificial neurons and their connections with

assigned weights, which makes the network a directed, weighted graph. A basic artificial neuron

may have multiple inputs but produces a single output, as depicted in Fig. 3.6. The inputs, denoted

by x0, x1, x2, ..., xn, can be the feature values from a piece of external data, or outputs from other

neurons. Each of the inputs is multiplied by a corresponding weight, which shows the strength

of a particular feature. The weights are represented by w0, w1, w2, ..., wn. To obtain the output,

the first step is to produce the weighted sum of the inputs, denoted by Σ in the figure. Then the

value is passed through an activation function Φ to generate the result as output, as represented

mathematically as follows:

Output = Φ(b+
∑

wixi) = Φ(b+ w0x0 + w1x1 + ...+ wnxn) (3.30)

where b is a bias value, a constant used to adjust the output along with the weighted sum. The

activation function Φ is used to introduce nonlinearity into the output, and there are numerous kinds

such as the Sigmoid function, the Hyperbolic Tangent function and the ReLU (Rectified Linear Unit)

function. The Equations and the curves of the three functions which we applied in this thesis are

introduced as follows:

• Sigmoid function: It is a function with "S" shaped curve and its return value (y axis) ranges
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between (0,1), therefore it is commonly used for probability prediction. The equation of the

Sigmoid function is listed below and we can observe from Fig. 3.7 that its curve has smooth

gradient. This prevents jumps in the output values. However, for x values that are too high

or low, there is almost no change to the return value, causing a vanishing gradient problem.

In this case it takes the ANN more time to reach an accurate prediction, or it may even fail to

learn further.

Φ(x) =
1

1 + e−x
(3.31)

5.0 2.5 0.0 2.5 5.0

0.0

0.5

1.0

Figure 3.7: The curve of Sigmoid function

• Hyperbolic Tangent function: This is very similar to the Sigmoid function, but the return

value ranges between -1 and 1, as depicted in Fig. 3.8. Thus it is easier to model inputs that

are strongly negative, and only the zero-valued inputs are mapped to the near-zero outputs.

The equation of this function is:

Φ(x) =
2

1 + e−2x
− 1 (3.32)

• ReLU function: From Equation (3.33) and Fig. 3.9 we can observe that the ReLU function

generates x as the output if x is positive, otherwise the output value is 0. It allows the ANN to

converge quickly, but when inputs approach zero, or are negative, the gradient of the function

becomes zero, the ANN cannot perform backpropagation and fails to learn.
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5.0 2.5 0.0 2.5 5.0

1

0

1

Figure 3.8: The curve of Hyperbolic Tangent function

Φ(x) =

{
x for x > 0

0 for x 6 0
(3.33)
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Figure 3.9: The curve of ReLU function

3.2.2 The Learning Process of ANN

Based on the introduction of the basic artificial neuron above, we describe how a typical ANN

works. Generally, most applications organize multiple neurons into several layers to amplify the
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power of the ANN and increase its accuracy. A typical ANN normally consist of three layers: (i)

input layer, it receives data from external applications, such as files or sensors; (ii) output layer,

it produces the final results to other processes such as a mechanical control system; (iii) hidden

layer, it is the layer between the input layer and output layer, and there can be multiple hidden

layers. Fig. 3.10 illustrates a simple ANN model with three hidden layers, which contain four, six

and five neurons respectively. Each neuron in a hidden layer receives the results from the previous

layer, performs its function and produce its result to neurons in the next layer. In this example

the connection between two adjacent layers is fully-connected, while it can be not fully-connected

depending on the specific case.

Input
Layer

Output
Layer

Hidden
Layers

Feature 1

Feature 2

Feature 3

Output 1

Output 2

Figure 3.10: A simple Artificial Neural Network

Once an ANN is created and able to generate outputs as the workflow described above, a learning

process is required to improve this ANN. The initial weights in the ANN are chosen randomly, and

the purpose is adjusting these weights and threshold to obtain accurate results. Mathematically, the

objective of learning is to minimize the error between the actual value and the predicted value. The
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error is measured by a cost function, which is evaluated periodically during the learning process. The

major learning approaches include supervised learning, unsupervised learning and reinforcement

learning. In our work we applied supervised learning, as both the input and output data are provided.

The set of this data which enables the learning process is called the training set. The cost function

can be the mean absolute error (MAE), which is obtained according to the equation below:

MAE =

∑n
i=1 |ŷ − y|

n
(3.34)

where ŷ is the predicted output and y is the actual value. The error is then propagated to the system

and the weights are adjusted for the next run. This workflow repeats over and over as the weights

are continually tweaked. Each error is effectively divided among the connections for compensation.

In this way, the error becomes lower and finally reaches the desired level.

The procedure that tweaks the weights according to each error is called Backpropagation, and

there are serveral methods for it, such as Extreme Learning Machines (ELM) and the No-Prop

algorithm [52, 107]. We mainly introduce the Stochastic Gradient Descent (SGD) method, which is

also applied in our work.

Weight

Cost
Function

Global Minimum

Local Minimum

Local Minimum

Initial Weight

Gradient

Incremental Step

Figure 3.11: Stochastic Gradient Descent

The gradient is the derivate of the cost function in a specific state with respect to the weights, as

depicted in Fig. 3.11. Gradient Descent means that the weight should be adjusted by taking a step
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in the opposite direction of the cost gradient:

∆wi = −η ∂Φ

∂wi
(3.35)

where η is the learning rate which decides the magnitude of the adjustment. The cost reaches a

minimum once the gradient equals zero, and this is the desired weight. However, the computing

cost based on gradient using the entire training set is very expensive because it uses the whole data

set in each iteration. In SGD, only a few samples are picked randomly in each iteration instead of

the entire training data. Therefore it computes much faster than the regular Gradient Descent. It has

been shown that SGD almost surely converges to the global cost minimum if the cost function is

convex (or pseudo-convex) [89].

3.2.3 Different types of ANNs

There are many types of ANNs, which have different mathematical operations and parameters to

determine the output. In order to obtain a general picture of these types, we select some commonly

seen ones to be introduced, as listed in Fig. 3.12.

• Feedforward Neural Network: This is one of the simplest forms of ANN, and also the type

of ANN that we apply in our work. Feedforward means the data travels from the input layer to

the output layer in one direction without any loop. It can be further subdivided into time delay

neural network (TDNN), probabilistic neural network (PNN), convolutional neural network

(CNN) and some other types.

A TDNN adds delays to the input to achieve time-shift invariance, thus the classifier does not

require explicit segmentation prior to classification. The TDNNs are usually applied in speech

recognition, handwriting recognition and video analysis [56, 104, 108].

A PNN uses probability distribution function (PDF) for classification. The PDF of each class

is approximated by a function, thus new input data is allocated to the class with the highest

probability. The applications based on PNN include intrusion detection and remote-sensing

image classification [117, 118].

A CNN operates convolution on the inputs which are usually images. Convolution is a mathe-

matical operation that produces results to show how the shape of a function is modified by the

other function. Generally images are 2D structure data, and the convolution operation helps

to process the data in batches. This allows the neural network to be deeper with fewer param-

eters [2]. In addition to image and video recognition, the CNNs are also applied in natural

language processing (NLP) and games [31, 97].
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Figure 3.12: Some common types of Artificial Neural Networks (ANN)

• Radial basis function Neural Network: This type of neural network uses Radial basis func-

tion (RBF) as the activation function. RBF produces results from the distance between the

input point and a fixed point. The input points are classified depending on their RBF results.

If the input point is closer to a fixed point, the likelihood of this input point being classified

to this class is higher. The applications based on RBF neural network include power system

restoration and traffic flow prediction [28,90]. A variation to RBF neural networks is the gen-

eral regression neural network (GRNN), which is used for regression rather than classification.

The GRNNs are used for hand gesture recognition and wind speed forecasting [83, 86].

• Recurrent Neural Network: Unlike the feedforward neural network, a recurrent neural net-

work (RNN) also propagates data backwards. Apart from the input and output connection,

each recurrent neuron has a feedback connection from its output back to its input. The feed-
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back connections make RNN able to store information from the previous time step. The

advantage is that RNN can handle sequential data as described in the previous paragraph.

Therefore it is significant for applications like speech recognition, music composition and

sentiment analysis [16, 51, 77].

The drawback of RNNs is the limitation on the range of contextual information and that the

gradient will vanish or explode in some cases. Then during the learning process, the neural

network may not work properly. Long short-term memory (LSTM) is an architecture widely

used in RNN to solve these problems. By introducing the concept of three gates, the input gate,

the output gate and the forget gate, the LSTM units track the dependencies between the input

elements. The LSTM improves the RNN with the ability to bridge time intervals and works

better on a large variety of problems like robot control and clinical events prediction [30, 79].

The gated recurrent unit (GRU) is similar to the LSTM, but it uses a reset and an update gate

to adaptively reset or update its memory content. It has been studied that GRU outperforms

LSTM in some certain applications such as motive classification of text [45].

The bidirectional recurrent neural network (BRNN) is a combination of two RNNs which

move data in the opposite directions. Thus the BRNN has both backward and forward infor-

mation about the sequence at every time step. BRNNs are often combined with LSTM in the

applications including translation and traffic flow prediction [98].

• Modular Neural Network: It breaks down a large computational process into smaller com-

ponents constructed by a series of independent neural networks. Each neural network has a

set of separate inputs to perform some subtasks and these neural networks do not interact with

each other. The results of each neural network are processed by a intermediary to produce

the output as a whole. The advantages include higher computation speed, less training time

and the network becomes more tolerable to the failure in nodes. Modular neural network

(MNN) grows rapidly in recent years and it is widely applied in areas like fault diagnosis,

image classification and quality of transmission prediction [42, 85, 102].

3.3 Summary

In this chapter we introduce all analysis elements that have been applied in this thesis. The theoret-

ical background includes two parts, queueing theory and machine learning method. We introduced

the phase-type distribution, which is widely applied for measuring the performance metrics in com-

puter systems. We present the derivation of a M/PH/1 queue, which is applied in Chapter 4. Then

we elaborate on the classifications of different machine learning approaches, as well as the various
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artificial neural networks. We introduce the architecture of typical ANN model and the learning

process of ANN. The application of machine learning technology in this thesis is in Chapter 5.
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Chapter 4

Performance Evaluation of Apache
Kafka

Apache Kafka has been developed originally at LinkedIn to process real-time log data with delays

of no more than a few seconds, and it is designed to be a distributed, scalable, durable and fault-

tolerant messaging system with high throughput [68,105]. LinkedIn relies heavily on the scalability

and reliability of Kafka for use cases like monitoring system metrics, traditional messaging or web-

site activity tracking [43]. Kafka can handle more than 1.4 trillion messages per day across over

1400 brokers in LinkedIn [67]. Currently, due to its strong durability and high throughput with low

latency, Apache Kafka has been widely used in today’s Internet companies [11]. Twitter uses Kafka

as a part of their Storm stream processing infrastructure, and Netflix applies Kafka in the Keystone

pipeline for real-time monitoring and event processing.

Furthermore, many cloud vendors provide Kafka as a service for users who want to build and run

applications that use Apache Kafka to process data. This makes it expensive to perform benchmark

tests on Kafka to obtain the proper configuration. In this chapter, we propose a queueing based

model to predict the performance of Kafka. Users can tune the configuration parameters in the

model to observe the parameters’ impact on Kafka’s performance. This can help users to utilize

the limited resources provided by cloud vendors more economically and give explicit advice on the

configuration settings of Kafka.
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4.1 Kafka as a Service

Kafka as a service is a cloud computing service model similar to Infrastructures as a Service

(IaaS), where basic computing resources like CPUs and storage are provisioned over the Internet.

Users generally pay according to the length of use, while the cloud vendor manages and maintains

the Kafka cluster. The advantage is that users can easily scale up or down resources to meet their

requirements, without purchasing, installing and networking Kafka cluster servers by themselves.

Here we list several typical products. Currently there are services like Amazon Managed Streaming

for Kafka (MSK) provided by Amazon Web Services (AWS) [7], Event Streams provided by IBM

[53], Apache Kafka for HDInsight provided by Microsoft Azure [80], and Confluent Cloud provided

by Confluent Cloud Enterprise, which is also built by the creators of Kafka [32]. Those vendors

provide limited resources, such as CPUs, memory and disks, and in the given hardware environment,

users can set multiple Kafka configuration parameters on their own, such as batch size, partition

number, and log retention time. How to configure those parameters to gain the best performance

for a specific application is unclear without numerous experiments, which are time-consuming and

costly. Besides, it is very inefficient to tune those parameters after a Kafka cluster is running.

Connection

Customer

Producer client

Kafka cluster 
(Kafka Brokers) 

Consumer client

a) Full-service mode

b) Cluster-service mode

Producer
Server Machines 
(Kafka Brokers) 

Consumer

Send Messages Fetch Messages

Figure 4.1: Kafka as a Service

Cloud service vendors provide Apache Kafka as a service mainly in two different modes, the full-

service mode and cluster-service mode. The VPC provided by AWS offers full-service mode where

a user can create producer clients, consumer clients and a Kafka cluster on the cloud servers, and the
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user only needs a laptop connecting to the console for sending commands, as depicted in Fig. 4.1a.

This mode is applicable when the upstream and downstream applications that cooperate with Kafka

are also deployed on cloud services.

Under many circumstances data is generated or consumed locally, and users will run Kafka pro-

ducer or consumer clients on their own machines. Then the choice should be cluster-service mode

where cloud vendors like Confluent and Aiven provide a Kafka cluster as a service, as shown in

Fig. 4.1b. In this mode producer clients send messages with local machines, then cloud servers dis-

tribute and store those messages for consumer clients to fetch. Normally users have to run test cases

on a Kafka cluster and compare the performance results under different configuration parameters.

However, the Kafka cluster needs a restart every time the configuration parameter is changed, and

running test cases on cloud servers is time-consuming and expensive.

4.2 Performance Model

Predicting the performance of a Kafka messaging system accurately plays a critical role in im-

proving the user’s efficiency of deploying Kafka cloud services. This section presents the perfor-

mance model of Kafka to estimate the performance metrics under given configuration parameters.

The key configuration parameters include batch size and number of partitions, which are normally

difficult to choose.

4.2.1 Producer Throughput

The producer performance metric for which the user cares most is usually the throughput of

messages, the number of messages sent from the producer to the cluster in a certain time interval.

Since Kafka is a messaging system, the minimum unit of tasks is the message. Kafka will do some

pre-processing for raw messages to get messages that fit its own format. There are several differences

between Kafka’s message formats for different versions, but they generally follow the structure in

Fig. 4.2. Messages in Kafka consist of a variable-length header, a variable length opaque key byte

array and a variable length opaque value byte array, as depicted in Fig. 4.2a. The key is used for

partition assignment, and the value is the actual message content. In the header of a Kafka message,

parameters are used to check the integrity of the message on the broker and consumer, and to allow

backward compatible evolution of the binary message format, attributes holds metadata attributes

including the compression codec. Kafka batches small messages together as a messageSet for higher

efficiency: Producers send messageSets to brokers and consumers fetch messageSets instead of

working with a single message. A messageSet is also the unit of compression in Kafka, which could
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be compressed and stored in the value field of a single message with appropriate compression codec

set, and then the receiving system parses the actual messageSet from the decompressed value. As

shown in Fig. 4.2, Kafka allows messages to recursively contain compressed messageSets to allow

batch compression in order to achieve additional efficiency. Here the example in Fig. 4.2c consists

of three messageSets, which are unfolded in Fig. 4.2b.

Figure 4.2: a)Message Format b)MessageSet Format, c)Compressed Message Format of Kafka

Since a Kafka producer generally performs a batch-based transmission scheme, where messages

are accumulated in memory to larger batches before they are sent over the network. Through the

Kafka producer API, the user of the Kafka cloud service can configure the batching to accumulate

no more than a fixed number of messages, and the topic those messages go to must be specified.

Therefore the user should create a topic before sending messages from producer to the Kafka cluster,

and the number of partitions under this topic is another indispensable configuration parameter. We

assume that the upstream applications always generate sufficient messages to deliver to the Kafka

messaging system. Thus the batches are always filled with maximum number of messages and are

sent before the timeout (details are introduced in Chapter 6) is reached. The producer client will

group batches into a single packet based on the number of leader partitions on a broker, as depicted

in Fig. 4.3.
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Batch 1
Batch Header Message 1 Message 2 ... Message Nb

Producer-send Packet 1

Packet Header Batch 1 Batch p1...Batch 2

Broker b1
Partition 1 Partition p1...Partition 2

Figure 4.3: Packet sent from producer

We use Nb to denote the number of messages per batch, and B to denote the number of brokers

in the Kafka cluster. Then for any topic, the number of its leader partitions on broker bi(1 ≤ i ≤ B)

can be denoted as pi, and we define the assignment matrix of partitions as P =
[
p1 p2 ... pB

]
.

As illustrated in the example of Fig. 4.3, every packet sent by a producer to broker b1 contains p1

batches, because Kafka provides each leader partition with one batch in a single packet to achieve

load balancing among partitions. Therefore, each element in the matrix NbP denotes the number of

messages per packet to its corresponding broker. Both batch and packet contain headers, as shown

in Fig. 4.3. Those headers consist of many metadata attributes that are required to enable successful

delivery. In this chapter we define the intended messages in a packet as the payload, and the left

headers are the overhead of the packet. We use Sm to denote the message size in bytes, then the

batch size can be obtained as Sb = (Sm ·Nb + batchHeaderSize)/compressionRatio, where the

compression ratio is depending on the type of compression chosen by users. The size of the packet

received by each broker can be expressed in the form of a matrix:

Sr = Sb · P + packetHeaderSize · eTB (4.1)

where eB is a B × 1 column vector with all B elements equal to one.

Considering all the packets sent from a producer to any individual broker bi, we define the period

of time between two subsequent packets as the packet send interval of bi. In our experiments we

observe that a Kafka producer sends packets to different brokers in random order, and the mean
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packet send interval largely depends on the size of a packet. Therefore we assume the packet send

interval is a function of the packet size Gs = fp(Sr), where each element in the 1 × B matrix Gs

represents the mean send interval of packets to the corresponding broker. In a correlation analysis

of packet size and packet send interval we have obtained the parameters of the function fp(x). The

experimental results are explained in Section 4.3. Then we define the number of packets sent from

a producer to a broker in an unit of time as the packet rate of this broker, and use Rs to denote the

matrix of packet rates to each broker which satisfies the equation Rs ◦Gs = eTB , where ◦ stands

for the Hadamard product. Given two matrices A and B of the same dimension, the Hadamard

product A ◦B is a matrix of the same dimension with elements (A ◦ B)ij = (A)ij(B)ij . Thus we

can obtain the mean number of packets sent from producer per unit of time, namely the throughput

of producer-send packets in quantity Xsp = Rs · eB and the throughput of producer-send packets

in bytes per second X ′sp = (Rs ◦ Sr) · eB , which is also the network bandwidth required to send

packets.

Table 4.1: Notations

Symbol Definition
Nb Number of messages per batch
Sm The message size in bytes
Sb The batch size in bytes
P The matrix of partition assignment
Sr The matrix of packet size received by each broker
Rs The matrix of packet rates

The throughput in number of messages can be denoted by Xsm = (Rs ◦NbP ) ·eB as well as the

message throughput in bytes per second X ′sm = (Sm(Rs ◦NbP ))·.
The required network bandwidth is determined by X ′sp, and we define the relative message

throughput in the occupied bandwidth as the relative payload of producer-send packets ϕps =

X ′sm/X
′
sp, therefore the relative overhead ϕos = 1− ϕps.

4.2.2 Broker Storage

As mentioned in Section 2.2, a partition is an ordered, immutable sequence of messages which

can not be split across brokers. This means whenever a new message is published to a topic, it is

appended to the end of a partition and assigned with an offset, which is a per-partition monotonically

increasing sequence number. The file structure of a partition is illustrated in Fig. 4.4. There are

multiple segment files with the same size (by default it is 500MB) in a partition. At first segment
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file 1 is generated, including one log file, which is the actual file where messages are stored, and one

index file, which stores the metadata information. When the size of the log file reaches 500MB, the

next segment file (file 2) will be generated and its log file and index file will be named based on the

offset value of the last message from the segment file 1. The metadata in the index file points to the

physical offset addresses of the messages in the corresponding log file. The index file is made up

of 8 byte entries with 4 bytes to store the offset relative to the base offset and 4 bytes to store the

position. In Kafka the configuration parameter index.interval.bytes sets an index interval which

describes how frequently (after how many bytes) an index entry will be added. In cloud services

the disk space is quite limited, so in order to save disk space, the user of Kafka as a service can

specify how long data should be retained, after which time the data will be deleted. For instance, in

an application which monitors the weather information (e.g. temperature and humidity), the Kafka

cluster receives data continuously from the sensors and persist the data for weather prediction. The

volume of occupied storage grows rapidly as the sensor data is generated in a never-ending way.

Thus it will free more space without harming the prediction accuracy by deleting the data which

contains the weather information from one week ago. The configuration parameter that controls the

log retention time is log.retention.hours and the default value is 168 hours.

Figure 4.4: The file structure within a partition

If a producer has been producing messages for a period of time Tp, we can denote the used storage
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of the Kafka cluster by matrix:

H = (1 +
8

index.interval.bytes
)Tp(Rs ◦ Sr) (4.2)

where each element inH denotes the size of stored segment files on the corresponding broker.

4.2.3 Consumer Throughput

Similar to the process in the producer, the messages fetched by a consumer are also effectively

batched. More specifically, the message format on brokers is exactly the same as what the producer

sends through the network, which means messages are still batched on brokers. The consumer

sends fetch requests to the brokers in the Kafka cluster, and each broker responds with a packet

that contains several batches of messages. The number of batches in a consumer-fetch packet is

determined by the number of partitions on the broker, because each partition will provide at least k

batches in the response packet, where k is a non-zero positive integer. Therefore we can denote the

number of messages fetched per request as kNbP , and define the size of a packet that a consumer

fetches from each broker through a single fetch request as the fetch size of the consumer Sf =

Sb · P + packetHeaderSize · ITB .

In the situation that there are multiple consumer instances in a consumer group, the elements in

matrix P should be adjusted to the number of partitions that are assigned to the specific consumer

instance. By default the consumer uses the poll method to fetch messages, thus when there are

plenty of messages to be consumed, the rate of the consumer-fetch packets depends on how fast the

broker accumulates enough batches in a packet. We study the correlation between the size of the

consumer-fetch packet and the time interval of sending these packets from a broker to the consumer.

We use the matrixGf = fc(Sf ) to denote the interval on each broker, andRf to denote the matrix

of consumer-fetch packet rates which fits Rf ◦Gf = eTB . Then the throughput of consumer-fetch

packets is Xfp = Rf · eB in number of messages and X ′fp = (Rf ◦ Sf ) · eB in bytes.

4.2.4 Packet Latency

Sometimes the users of Kafka as a service want to make a real-time analysis, and their metric of

concern is the end-to-end latency of a packet, which is defined as the time between the sending of a

packet from the producer to the moment the packet is received by the consumer.

In queueing theory the end-to-end latency is the response time of packets, and we denote the mean

response time of packets through each broker by a 1 × B matrix R. According to the description

in Section 4.2.1, over a certain period of time, the number of packets that are sent to each partition
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is almost equal. Thus we use the number of partitions on a broker bi as the weight of the mean

response time on this broker, then we can take the weighted mean response time of all brokers as the

mean response time of packets through the Kafka cluster, given by (R◦P ) ·eB/P ·eB . We model

one of the brokers as server in a queueing model, which deals with 3 types of request streams. The

first request stream is exactly the packet sent from producer with arrival rate λs, and the service time

is from when the broker receives a packet to when it is stored on disk, as illustrated in Fig. 4.5. The

second request stream is the fetch request with arrival rate λr from the other brokers to replicate the

messages on leader partitions, and the service time is the time spent to send replicated messages.

The last request stream received by a broker is the fetch request with arrival rate λf from a consumer,

and the service time is the time to send packets to the consumer.

According to the research in [46], we can use a Poisson process to approximate the arrival process

of requests. Since any distribution with a strictly positive support in (0,∞) can be approximated

arbitrarily close by a phase-type distribution [24], we assume the service time is phase-type (PH)

distributed, represented by the three distributions PHs(πs,Ts), PHr(πr,Tr) and PHf (πf ,Tf )

respectively. Therefore, the process of a broker dealing with each job is an M/PH/1 queue. The

derivation of the M/PH/1 queue is introduced in Section 3.1.3.

PHs

PHr

PHf

 λs 

 λf 

 λr 

Figure 4.5: The queueing model of a broker

We use E[Rs], E[Rr] and E[Rf ], respectively, to denote the mean response time of the three

jobs mentioned above. When a user chooses the synchronous replication mode, a message will be

available to consumers only after it is replicated to all follower partitions, thus the average end-to-end

latency of a packet equals E[Rs] +E[Rr] +E[Rf ]. However, in the asynchronous replication mode

the consumer can fetch a message as long as a it is stored in the leader partition, without waiting for

the replication process. In this situation the average end-to-end latency is E[Rs] + E[Rf ].
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4.3 Experimental evaluation

In this section we evaluate the proposed model from different perspectives for multiple scenarios.

Our Kafka system is built from the latest version 2.1.1, orchestrated by Zookeeper 3.4.12 and

each broker is started on a single PC. We built the Kafka cluster with 3 brokers to simulate the

environment of using Kafka as a service, and use two other PCs as the producer client and consumer

client, respectively. Each PC is equipped with 8G memory and all have the same type of CPU:

Intel(R) core(TM)2 Quad CPU Q9550@2.83GHz, running Debian 4.9.144-3.1, so our servers are

homogeneous, which is common for many cloud platforms.

We study the use case where a user buys Kafka cloud service to use the message broker for a

server log analysis application. The data source is web server access logs from NASA Kennedy

Space Center web servers [46], and each record in these logs is a message in Kafka. Our experi-

ments revolve around the most relevant metrics, such as the throughput of producer and the relative

payload under heavy load, the utilization of network bandwidth, the disk space limits and Kafka

data retention time.

4.3.1 Correlation Analysis

The performance of the Kafka system varies significantly depending on the message type and

the compute power of machines (e.g., CPU speed, memory size), making it extremely difficult to

build a general model for all cases. Referring to the method in [106], we collected execution traces

using a small fraction of the source data, and obtained the essential parameters for our performance

model. We analysed the correlation between producer-send packet size Sr and the send interval

Gs to find function fp(x) through the metrics recorded in the producer throughput tests. All tests

run for at least 60 seconds after setup and messages are sent with different batch sizes to disjoint

topics. The number of messages in one batch Nb ranges from 1 to 50, and we create 10 topics

with 3 to 12 partitions, therefore the packet size in our tests vary according to equation (4.1). Other

configurations are all set to the default values. We illustrate part of our correlation analysis results

in Fig. 4.6, including the scatter points for the mean packet size and send interval for one broker, as

well as the lines of best fit.
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Figure 4.6: Correlation analysis of producer-send packet size and send interval

In Fig. 4.6 we can observe a strong, positive and linear correlation between packet size and send

interval, grouped by different number of partitions. For the packets of almost the same size, a

larger number of partitions causes certain increments on send interval, because the Kafka producer

needs longer to arrange metadata information of each partition. The packet send interval in a cer-

tain topic increases linearly as the size of the packets grows, and the slopes of different topics are

approximately equal. Every coefficient of determination in our correlation analysis results, denoted

by R2, is close to 0.99, as depicted in Fig. 4.6. Likewise, we study the correlation between the

consumer-fetch packet size Sf and the interval Gf and the R2 is closed to 0.95. This indicates

that the correlation between packet size and send interval is positive and we can use the results to

complete the function fp(x) and fc(x) in the performance model.

4.3.2 Network Bandwidth Evaluation

From [73] it is known that the network bandwidth provided by cloud vendors varies significantly,

and the available bandwidth for a user is always limited. Moreover, a Kafka cluster has the ability

to enforce network bandwidth quotas on packets to control the resources used by the clients. By

default, each unique client group receives a fixed quota in bytes/sec as configured by the cluster,

which is defined on a per-broker basis. When the upstream application generates many messages to

the Kafka system, the user expects to better utilize the available network bandwidth aiming at larger

throughput. Since the results of producer-send packets and consumer-fetch packets are similar, we
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take the example of the former one to analyze and compare the numerical results and experimental

results.

In Section 4.2.1 we stated the closed-form expression of packet throughput under heavy load, and

the required network bandwidth for each broker can be obtained from the equations in the section.

In Fig. 4.7 and Fig. 4.8 we show the experimental results under heavy load in comparison with the

model prediction results, separated by the number of partitions in the topic. Through the experiments

we intend to explore the impact of batch size and number of partitions on the throughput of packets

from producer client in Megabytes per second, and the relative overhead ϕos.

The scatter points in Fig. 4.7 and Fig. 4.8 are the experimental results we collected while the

curves are generated from our performance model, and the results of the model are close to the

experimental results. We can see that accumulating more messages in one batch can indeed increase

the packet throughput, but the improvement is less when Nb grows. E.g. when sending messages

to the topic with 3 partitions, increasing Nb from 1 to 20 can boost the throughput by a factor of

approximately 6.75, while configuring Nb from 20 to 40 only improves the throughput by 37%.
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Figure 4.7: Experiment and prediction results of producer-send packet throughput with number of
partitions from 3 to 755
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Figure 4.8: Experiment and prediction results of producer-send packet throughput with number of
partitions from 8 to 12
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We employ the mean absolute percentage error (MAPE) to measure the prediction accuracy of

our model, which is given by:

MAPE =
100%

n

n∑
i=1

∣∣∣∣Ei −Mi

Ei

∣∣∣∣ (4.3)

where Ei is the experimental result and Mi is the prediction result from our model, and n is

the number of fitted points. For the results of packet throughput, the MAPE is close to 2% when

the throughput is below 25 MB/s, and with higher throughput the MAPE is still less than 10%.

Compared to sending messages without batching (i.e. 1 message per batch), collecting 10 messages

per batch can sharply decrease the relative overhead from over 50% to less than 15%, as illustrated in

Fig. 4.7 and Fig. 4.8. However, the relative overhead remains stable around 10% after the throughput

of packets reaches 30MB/s. The MAPE of the relative overhead also achieves 10%. The network

bandwidth quota for a user of Kafka as a service is limited, and our performance model can help the

user to choose a suitable number of partitions and batch size to achieve good throughput. E.g. if the

partition number is set to 3 and the quota is 20 MB/s, our prediction results indicate that setting Nb

to 12 can achieve a packet throughput of 19 MB/s, and adding more messages to the batch will risk

exhaustion of the bandwidth and exceeding the available memory.
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Figure 4.9: Partition number and relative payload of producer-send packets given different network
bandwidth quotas

For the choice of a good number of partitions in a topic, we use our model to study the effect of

partition number on the relative payload of producer-send packets, given network bandwidth quotas

of 20 MB/s, 30 MB/s and 40 MB/s. The batch size in each test is configured to approach the highest

57



4.3. EXPERIMENTAL EVALUATION

throughput at the quota limit, therefore the network bandwidth is almost fully utilized. As the results

in Fig. 4.9 illustrate, we can observe that for any topic, assigning a higher network bandwidth quota

achieves higher relative payload. Since the servers in our experiments are considered homogeneous,

we define the topics with partitions evenly distributed among brokers as the load-balanced topic, and

in our tests the load-balanced topics are those with the number of partitions equal to 3N , where N

denotes a non-zero positive integer. We can see from Fig. 4.9 that given the same network bandwidth

quota, the relative payload of load-balanced topics decreases as the number of partitions increases.

This happens due to the overhead of maintaining the extra partitions’ metadata. Observing relative

payload of the topics that are not load-balanced we find that the relative payload is always below

their adjacent load-balanced topics. Thus we suggest the users try to avoid creating topics with the

number of partitions that are not load-balanced among brokers, specifically when the servers are

homogeneous.

4.3.3 Disk Space Evaluation

Limited disk space on cloud servers is an important concern of users, especially when the producer

client runs a heavy load for a long time. Our performance model can predict the used storage of disk

on each broker over time, and by observing the prediction results the user can set a proper value for

the retention configuration parameters. Fig. 4.10 depicts the used disk space by messages on each

broker, after the producer client runs for 24 hours with 20 MB/s network bandwidth quota. The line

in this figure specifies the production time on each broker when the size of stored messages on disk

reaches 500 GB.
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Figure 4.10: Used storage on brokers after producing messages for 24 hours
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Apparently, the used disk space by messages is almost equal on each broker when the topic

is load-balanced, while the other topics see imbalanced sizes of stored messages among brokers.

The difference of used disk space among brokers is shrinking as the number of partitions in those

imbalanced topics grows. E.g for the topic with 4 partitions the difference of storage between two

brokers can be around 200 GB, yet the difference in the topic with 11 partitions is 50 GB. From

observing the results of production time, the user can set appropriate configuration parameters to

control the retention time of the messages on disks. For the topics that are not load-balanced, there

will be some brokers that reach a certain size of stored messages much earlier than the other brokers,

and the user has to specify the retention parameter on those brokers.

4.3.4 End-to-end Latency

In our latency experiments, we first used a small fraction of the web server log data to collect the

service time data for the three types of requests mentioned in Section 4.2.4 to evaluate the end-to-

end latency. The producers and consumers are run on two different PCs and we use the JMX (Java

Management Extensions) tool to collect the total time to store a producer packet, the time to send

replicas to other brokers, and the time to handle a fetch request from the consumer.

We use the fitting tool HyperStar2 [96] to obtain the phase-type distribution of service times

including the seen correlation and use the fitted results in our queueing model introduced in Section

4.2.4. The probability density function of the service time and the fitted process are shown in

Fig. 4.11.

 Figure 4.11: Probability density function of the service time distribution fitting
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In our experiments, inspired by [46], packets are sent from producers with exponentially dis-

tributed inter-packet times. In Fig. 4.12 we compare the experimental results and the numerical

results from the queueing model under different arrival rates.
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Figure 4.12: Latency results under different arrival rate

We can observe that the prediction model underestimates the mean end-to-end latency of packets,

especially when the interarrival time is less than 0.3s. The model works well with lower arrival

rate, as shown in Fig.4.12, when the message interarrival time is larger than 0.4s, the MAPE of the

numerical result could be less than 10%. The difference has a decreasing trend with lower load.

4.4 Summary

In this chapter we propose a performance model to predict the performance of Kafka messaging

system. Our model provides users an easy and reliable way to study the effects of the configuration

parameters on the performance of their Kafka system. By tuning the batch size and the number of

partitions in the model, users can observe the changes of producer throughput and relative payload

under heavy load. The mean absolute percentage error is close to 2% when the network bandwidth

quota does not exceed 25 MB/s, and this can help the user choose appropriate configuration pa-

rameters. The model also predicts the disk occupancy over time for changing number of partitions,

through which users can adjust the retention parameters in Kafka to avoid using up disk space on

cloud servers. We use M/PH/1 queueing model to evaluate the mean time a packet travels through

a Kafka cluster, which is the main concern when collaborating with real-time applications.

60



Chapter 5

Reliable Data Delivery

The Kafka producer is responsible for acquiring streaming data from multiple sources and deliv-

ering it to the Kafka cluster, from which other processors can read the data they need. Therefore,

the reliability of a producer is critical to ensure the completeness and correctness of streaming data.

Unreliable contents of streaming data may finally result in faults in stream processing.

In this chapter we address the challenge of choosing a proper configuration to guarantee reliable

data delivery for complex streaming application scenarios. Developers often rely on empirical ways

to configure the parameters in Kafka. However, running experiments and tests in enterprise-scale

systems to figure out the best configuration can be time-consuming and costly. There are hundreds

of configurable parameters in Kafka and only some of them have varying degrees of impact on

system reliability. Besides, the requirements for reliability vary in different scenarios. Losing some

messages in cases like website clickstream tracking or video streams transcoding can be tolerable.

While when applying Kafka in banking systems, all messages in the stream should be processed

exactly once without any exception [87]. We solve the above problems by building a prediction

framework which can accurately predict the reliability metrics we define, given certain configuration

parameters.

5.1 Reliability Metrics

In this section we analyze the process of data delivery by introducing the concept of message

states. To build a predictive model we determine the reliability metrics we want to measure and se-

lect the features that are considered strongly correlated. Then we introduce our experiment method-

ology and the approach used to collect training data for our model.
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5.1.1 Message states

We use a state diagram to describe the states of a message from a Kafka producer to its topic, as

depicted in Fig. 5.1. We take the state of a message before it is sent over the network as its initial

state, marked as Ready to be sent. All the possible cases of a message delivery are listed in Table 5.1.

Under normal circumstances a message will be successfully delivered in its initial sending, denoted

by Case1. Once a message is persisted on a broker for the first time, it is in the state Delivered. If

the initial sending fails, as Case2 shows, the message will not exist in the Kafka cluster, it is in the

Lost state.

Ready to 
be sent

Lost

Delivered Duplicated

Initial sending

Retry sending

I

II
III

IV

V

VI

Figure 5.1: The states of a message in Kafka

Under at-most-once delivery semantics, only Case1 and Case2 can happen. Because Kafka

producer sends each message once and does not need response from the brokers. If at-least-once

semantics is applied, the Kafka cluster will respond with an acknowledgement upon a successful

message delivery. The producer will retry sending a message if it does not receive an acknowl-

edgement until a timeout expires. If the retry still fails, the message stays in the Lost state. Since

a producer can be configured to retry multiple times, it can keep retrying before receiving the ac-

knowledgement. We use τr to denote the total number of retries, and τr·III to denote τr times

transition III. Thus Case3 indicates that the message is still not delivered when τr reaches the max-

imum number of retries. Then the producer stops retrying and this message remains in state Lost.

In Case4 we observe a successful delivery in the end. However, sometimes a message does not end

in the Delivered state. In Case5 the message is already persisted in the cluster, but the broker fails
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to respond with an acknowledgement. Thus the producer still sees the message in the Lost state and

retries to send it, resulting in duplicated messages. We use τd to denote those duplicated retries,

and the message transfers to a new state called Duplicated. For the streaming applications without

idempotent operation, duplicated messages may result in failures (i.e. a bank transfer is processed

twice).

It is worth noting that there exist other cases apart from all the cases listed in Table 5.1, e.g. a

message might firstly be Lost, then it is Delivered through retrying mechanism, however, due to

the failure of receiving response from brokers, the message is resend a few times and finally turns

to Duplicated. However, the probability of such cases is rather low according to our experimental

results, and in this research we focus only on the final state of each message.

Table 5.1: All Possible Cases of a Message Delivery in Kafka

Case Number Transitions Order
1 I
2 II
3 II→ τr·III
4 II→ τr·III→IV
5 II→ τr·III→IV→V→ τd·VI

5.1.2 Reliability Metrics

Reliability metrics are derived from failure occurrence expressions. As a deliverer in the stream-

ing system, a Kafka producer is responsible for moving its cargo (messages) from upstream applica-

tions to the cluster efficiently and safely. Each cargo should be carried to its destination exactly-once.

In Table 5.1 onlyCase1 andCase4 indicate a successful delivery, and the others are considered fail-

ures. We define two reliability metrics referring to the Probability of Failure on Demand (POFOD),

which represents the probability of failure when a service is requested [62]. Here the service means

sending a message in Kafka.

When a Kafka producer attempts to send a message to the cluster, we usePl = P (Case2
⋃
Case3)

to denote the probability of a message loss failure. The other metric is the probability of a message

duplicate failure, denoted by Pd = P (Case5).

5.1.3 Features for Prediction

Predicting the above reliability metrics is far from trivial, since several complex factors have an

impact on them. Both physical resources (i.e., CPU and memory) and logical resources (i.e, data
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size) can significantly influence the reliability. The network connection between the Kafka producer

and the cluster is another key factor that may cause failures. Network packet loss is very common for

mobile and IoT devices, since they transfer data across wireless links. We assume that the hardware

resources for a producer are fixed. We define the poor network connection between a Kafka producer

and the cluster as faults to be injected. This is because we study how to obtain the best configuration

in a scenario with a given machine of fixed resources. As introduced in Section 1.2, there are over

50 configurable parameters in a Kafka producer. Excluding the basically fixed parameters that are

mandatory to connect producer and cluster, there are still many left. To select proper features for

the prediction model, we run numerous experiments in our testbed. Normally, the default settings

of Kafka will keep the system running, but far from a well performing one, therefore we select

parameters based on a sensitivity analysis. A change in the quantitative parameter’s default value of

50% should have observable impact on reliability metrics, otherwise the parameter is neglected.

We mainly introduce the following features for the prediction model based on the results sensitiv-

ity analysis: (a) Message size (b) Message timeliness (c) Network delay (d) Network packet loss rate

(e) Delivery semantics (f) Batch size (g) Polling interval (h) Message timeout. The features consist

of three parts. The first two features indicate the type of the streaming data. The next two are the

network environment metrics. The latter are the configurable parameters in Kafka. In Section 5.4

we introduce those main features through analysing their impact on the reliability metrics in various

application scenarios.

5.2 Testbed Design

In Chapter 4 we develop a Kafka cluster on several PCs, however, it is insufficient for the reliabil-

ity analysis. This is because the network condition is difficult to maintain and the fault injection is

inconvenient. Therefore, in this section, we introduce the Kafka testbed built on Docker containers,

which is used in this Chapter as well as the next Chapter.

We need to collect a vast array of performance metrics in Kafka for statistical analysis. Although

Kafka provides a lot of metrics for monitoring via Java Management Extensions (JMX), we choose

to build our own performance analysis tool for several reasons. Kafka exposes internal conclusive

metrics for enterprise-level monitoring. For instance, the latency metric is measured as an average

over the past 1 or 5 minutes. The 75th and 99th percentiles of the latency are also available, but

the latency violations remains unclear. In this section we introduce our testbed of Kafka built using

Docker, an industrial-grade lightweight virtualization technology [21]. As depicted in Fig. 5.2, the

testbed consists of four parts: the Kafka system based on Docker containers, the message generator,
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the network emulator and the statistical analysis tool.

5.2.1 Testbed Components

All components of a Kafka system testbed use Docker containers. Each Kafka broker, producer or

consumer is a running Docker container which embeds all the required dependencies and codes. Us-

ing container technology guarantees the correctness of Kafka’s configuration, within a lightweight,

standalone and reproducible execution environment [48]. The containers join the Docker bridge

network to communicate with each other and transfer messages. With the Docker Compose tool a

Kafka cluster with user-defined number of brokers can be started or shut down in a fast and con-

venient manner. We run the testbed on a computer with Intel Core i7-8700 CPU (12 cores), 32GB

RAM and 2TB HDD. We build the Kafka cluster from version 2.3.0, using the Docker version

19.03.6, running on Ubuntu 18.04.4 LTS. Since all the Docker containers run on the same machine,

their clocks are synchronized. In our tests we observe that the time difference between two contain-

ers is less than 0.04ms, which guarantees the accuracy of the collected end-to-end latency results.

Infrastructure

Hosting Operation System

Docker Engine

Docker Containers

Consumer

Kafka Cluster

Broker 2

Broker 1

Broker 3

Message generator 

Statistical Analysis Tool

Network Emulator

εp

εc

εk

Producer

Figure 5.2: The architecture of the Kafka testbed based on Docker containers
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5.2.2 Message Generator

Through the message generator we define the attributes of the streaming data from upstream

applications, such as the size of messages and the arrival rate. We need to investigate the trace of

every single message, including the end-to-end latency and delivery state. Therefore, each message

is integrated with an incremental unique key for tracing. The timestamps of the operations on an

individual message are recorded to determine the latency. To obtain the produce time, we record both

timestamps when the producer calls the send() method to publish a message, and when the message

is written to its partition. Once the consumer receives the message, the timestamp is recorded into

counter the commit and consume time.

5.2.3 Network Emulator

As illustrated in Fig. 5.2, we use εp(dp, lp) to denote the network condition between a Kafka

producer and the cluster, where dp and lp represents the round-trip network delay and packet loss,

respectively. Similarly, the network environment among brokers is εk(dk, lk), while the connection

between a Kafka consumer and the cluster is εc(dc, lc). All these network metrics are controlled

by the network emulator, which uses the Linux Traffic Control tool to emulate a real world network

environment [59]. We also explore the effect of the batch size on the consistency of message delivery

under poor network condition, e.g. high network delay and packet loss rate. Therefore another

important function of the network emulator in our study is network fault injection, which causes

message loss or duplication. In some specific application scenarios, e.g. a banking system, losing

messages or receiving duplicated messages may result in failures [87].

5.2.4 Statistical Analysis Tool

Through the experiments we explore the impact of the batch size on Kafka’s performance and

reliability. Before each individual test, all the existing containers are killed and a new Kafka system

is built, thus avoiding the legacy impacts from the previous test. In each test the Kafka configuration

parameters are fixed, as well as the network environment. Then the producer ingests the configured

streaming data (e.g. with predefined number and size) from the message generator and publishes

them to a new topic. Finally, those messages are received by the consumer and the statistical analysis

tool collects all the metrics for evaluation. From the timestamp data we obtain the end-to-end latency

of every message and its distribution under the given configuration and operation condition, which is

used in Chapter 6. By comparing the unique keys of the received messages with those ingested from

the message generator, the number of lost and duplicated messages are determined. More insights
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and laws of these metrics are introduced in the next section.

5.3 Prediction Model

5.3.1 Training Data Collection

We use P̂l and P̂d to denote the predicted results of the reliability metrics (probability of message

loss and probability of message duplicate). Thus the inputs and outputs of our prediction model can

be expressed as follows.

{P̂l, P̂d} = f(M,S,D,L,Confs), (5.1)

where M stands for the size of the message which the producer tries to send, and S represents

the timeliness of the message. The value of timeliness S varies depending on the nature of the

application, and it is usually defined by users. The network delay and packet loss rate at that time

are denoted byD and L, respectively, while Confs contains all the configuration features mentioned

before, including delivery semantics acks, Batch sizeB, Polling interval δ and Message timeout To.

In each experiment we set the above features with fixed value and record them. Then we provide the

source data of 1 million messages for the producer to process. From the messages received in the

consumer container we count the number of messages in Case2 or Case3, denoted by Nl. Thus we

derive the probability of message loss in this experiment as Pl = Nl/106. Similarly, we use Nd to

denote the number of messages in Case5 and Pd = Nd/106.

Many experiments have been performed in our testbed to collect sufficient data points for a predic-

tive model. Since the space of all possible features grows exponentially as we extend their ranges, we

have to minimize the time spent on collecting training data while achieving sufficient accuracy. By

observing the results of our benchmark tests, we proposed a collection method to simplify the space

of training data, as illustrated in Fig. 5.3. We divide the cases we need to study into two major parts,

according to the current network environment. If the network environment is normal (D < 200ms

and L = 0%), we consider this a normal case since no network fault is injected. In the normal cases

we filtered out the features that have no effect on the reliability metrics, and the remaining effective

features are listed in the figure. By studying the impact of these effective features, we learnt how to

deliver messages reliably in a normal network environment. Thus in the abnormal cases, we inject

network faults using the network emulator, where in each test the network delay D and packet loss

rate L are fixed. Then for those effective features in the left oval of Fig. 5.3, we choose the proper

values studied in the normal network environment thus their impact can be neglected. The effective
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Figure 5.3: Training data collection design

features we studied in the abnormal cases are listed in the right oval of Fig. 5.3. For each feature we

specify the range of possible variables according to real world systems.

5.3.2 Prediction model

The collection method mentioned above reduces both the number of experiments needed and

the size of the training data. Another advantage is that we can adjust the structure of the ANN

accordingly to improve prediction efficiency and accuracy. For instance, for at-most-once delivery

semantics we only have to predict Pl since we know there will be no duplicated messages. Thus the

output layer contains just one neuron and the input layer can be reduced as well. Due to our explicit

training data collection, the outputs and inputs are strongly correlated, therefore a fairly standard

ANN model performs well enough. Generally, we use 4 hidden layers in the ANN model and the

number of neurons are 200, 200, 200 and 64 respectively. The learning rate is 0.5 and the number

of epochs is 1000. Some adjustments for different cases and the details of the ANN model can be

found in https://github.com/woohan/kafkaPrediction.git.

To build the ANN model that best fits the training data, we apply the Stochastic Gradient Descent

(SGD) optimizer. SGD fits our case well and avoids over-fitting or corner cases such that P̂l or

P̂d become negative. Our experimental results show that the mean absolute error (MAE) is below

0.02, which is sufficient for comparison and for choosing the appropriate configuration parameters.

This can be observed from Fig. 5.5 to Fig. 5.7, where we compare samples of the test data with the
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predicted results.

The way we construct the ANN based prediction model is depicted in Fig. 5.4. The left part of

the figure shows how we collect the training data using related modules. The right part of the figure

illustrates the inputs and outputs of the prediction model.
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Figure 5.4: The process of data collection and ANN model training

5.4 Lessons Learned

By observing the results from our prediction model, we see how to properly configure Kafka under

complex scenarios. From the perspective of a Kafka user, there are several KPIs that demonstrate

how efficiently the producer is serving user demands. For simplicity we propose a weighted KPI of

Kafka:

γ = ω1ϕ+ ω2µ+ ω3 (1− Pl) + ω4 (1− Pd) , (
4∑
i=1

ωi = 1). (5.2)
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Here ωi(1 ≤ i ≤ 4) represents the weight assigned for each metric. The higher the weight

is, the more important the metric is from the user’s perspective. The criterion to choose the best

configuration for Kafka is to maximize the value of γ. The performance metrics ϕ and µ are

the utilization of network bandwidth and the mean service rate of a Kafka producer under nor-

mal circumstances (i.e. good network connection). These two performance metrics ϕ and µ can

be predicted according to Section 4.2.1. In this chapter we provide empirical default weights as

ω1, ω2, ω3, ω4 = 0.3, 0.3, 0.3, 0.1, since duplicated messages can be tolerated by most applications

due to idempotent mechanism. The user should adjust the weights ωi depending on the specific ap-

plication. For instance, if high throughput and low latency are prioritized, while losing or duplicating

some messages is acceptable, ω1 and ω2 can be increased to 0.4, while setting ω3 = 0.1.

5.4.1 How message size matters

A Kafka producer transports streaming data as byte arrays before sending them over the network.

The efficiency of this serialization work shows strong correlation with the size of a message, M ,

where with larger M the service rate µ is lower. In real systems M fluctuates around hundreds of

bytes, i.e. the average size of web server access records is around 200 bytes. In our experiments

where we injected a poor network connection with high packet loss rate, the reliability metrics are

also affected by M . In the example shown in Fig. 5.5 we set the network delay to D = 100ms and

the packet loss rate is L = 19%. We observe the changes in Pl with M ranging from 50 to 1000

bytes.

We show the results for the two different delivery semantics and find that small messages are

more likely to be lost under both semantics. It is interesting that at-most-once outperforms at-

least-once for messages smaller than 200 bytes approximately. We observe that for given message

size M = 100 bytes, the probability of message loss under at-most-once semantics (Pl ≈ 85%)

is more than 20% higher than under at-least-once semantics (Pl ≈ 63%). In other words, small

messages (M ≤ 200bytes) are more likely to be lost under at-least-once delivery. We explain this

as follows. Since Kafka uses a binary protocol over TCP, there is a basic retransmission mechanism

on the transport layer. The retransmissions on the network interface of the docker container can be

observed by Wireshark, an open-source packet analyser. Under at-least-once delivery semantics the

producer requires an acknowledgement from the brokers, which will preempt network bandwidth

with TCP retransmissions. The conflict is more pronounced with smaller messages as the service

rate µ grows, and the number of acknowledgements required per time unit increases. For larger

messages Pl of both semantics is below 1%, where at-least-once performs better. Although this is

not shown in Fig. 5.5 in each experiment at-least-once can save approximately 3000 more messages
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Figure 5.5: The message size M and its probability of loss Pl for network packet loss rate L = 19%

than at-most-once.

5.4.2 Message timeliness

In real-time application scenarios only the newest data is valuable (i.e. automatic vehicle location)

and delivering a stale message can be futile. We use Tp to denote the interval between the time when

a message arrives to the producer and the time when it is Delivered. A message delivery that costs

Tp > S is stale. In our work the message timeliness S denotes valid time of data which depends

on specific applications. The configuration parameter message timeout, denoted To is the maximum

time a producer can use to deliver a message, including retries. Therefore, the total time to deliver

a message is Tp = min{(1/µ+D), To}. Choosing a proper value of To avoids spending too much

time on one message and guarantees the timeliness of messages. For instance, when the network

delay D is high, a strict To is required. However, from our experiments we observe that setting the

message timeout To lower than 1500ms can cause message loss in at-most-once delivery, even when

no network faults are injected, as illustrated in Fig. 5.6. In this case using the at-least-once delivery

can significantly reduce Pl.
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Figure 5.6: The configuration parameter message timeout To and the probability of message loss Pl,
no network fault injected

5.4.3 Scalability of a producer

In the example of Fig. 5.6, the producer is fully loaded, which means it acquires source data in the

highest speed that I/O devices can handle. However, receiving messages faster than the producer can

handle increases the waiting time of messages, and those exceeding To are lost. In order to guarantee

both timeliness and reliability, a common solution is to reduce the rate at which the producer receives

data and to scale the number of producers. The polling interval δ is the configurable time interval

between a producer’s calls to acquire source data from upstream applications, thus the message

arrival rate is λ = 1/δ. The results in Fig. 5.7 indicate that increasing the polling interval δ can

effectively avoid message loss, while To is fixed at 500ms. If the polling interval δ is configured as

0, then the producer is fully loaded because it keeps polling messages without waiting. We observe

that under full load (δ = 0) the probability of message loss is above 45%, while setting δ = 90ms

reduces Pl to less than 10%.

Supposing that We know increasing the polling interval of a single producer from δ to δ + ∆δ

meets our desired Pl, the next step is to scale the number of producers from Np to N ′p. The princi-

ple of scaling is to meet the overall message arrival rate from upstream applications, which means

Np/δ = N ′p/(δ + ∆δ). Scaling an overloaded Kafka producer is an effective solution to improve

its reliability and avoid message staleness. However, this method requires additional hardware re-

sources to run scaled producers.
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Figure 5.7: The configuration parameter polling interval δ and the probability of message loss Pl,
no network fault injected, To = 500ms

5.4.4 Batching can be effective

In the above experiments we apply typical stream processing which means that messages are

not batched and each message is sent once it is ready. However, in some failure scenarios we find

that batch processing can significantly improve the producer’s reliability. We run experiments with

network packet loss rate ranging from 0% to 50%, and observe the effects of batch processing on

the probability of message loss. The predicted effects under at-most-once and at-least-once delivery

semantics are depicted in Fig. 5.8 and Fig. 5.9.
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Figure 5.8: The configured batch size and the probability of message loss with at-most-once delivery,
injected with various packet loss rate
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Figure 5.9: The configured batch size and the probability of message loss with at-least-once delivery,
injected with various packet loss rate
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Figure 5.10: Comparison of different batch size and delivery semantics, injected with various net-
work packet loss rate
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From Fig. 5.10 we have a clearer view of the predicted effects under at-most-once and at-least-

once delivery semantics, denoted by solid and dashed lines, respectively. The batch size B is the

number of messages per batch. This parameter indicates how many messages will be accumulated

in the producer and then sent at once. Both solid and dashed curves illustrate the results with B

ranging from 1 to 10 in the order from left to right. The curves with B = 1 (far left) represent

stream processing when there is no batching.
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Figure 5.11: The configured batch size and the probability of message duplicate with at-least-once
delivery, injected with various network packet loss rate

The TCP retransmission mechanism performs well under the packet loss rate L ≈ 8% above

which Pl rises rapidly as L grows. Our insight is that TCP retransmission has its limits while facing

high packet loss rate, but we can still do more by properly configuring Kafka producer. We observe

that in at-least-once delivery, accumulating two messages in one batch remarkably reduces Pl from

over 80% to less than 5%, when L = 13%. With higher packet loss rate setting larger batch size B

saves more messages, but the effect falls as B increases. This is similar with at-most-once delivery

semantics.

The result above forms a part of the basis for dynamic configuration. In the case with 30% packet

loss rate, changing configuration parameters has little effect. However, for the failure scenarios

with L around 10% to 20%, choosing the proper delivery semantics or batch size will significantly
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improve producer’s reliability. Our prediction model helps users make decisions in varied network

environments. In fact, the KPIs in Equation (5.2) all show strong correlation with batch size B.

Larger B results in lower µ and also increases the end-to-end latency [35]. The impact of B on the

probability of message duplicate Pd is shown in Fig. 5.11. It is obvious that Pd can be reduced by

batching, while no strong correlation between Pd and L is observed.

5.5 Dynamic Configuration

To measure the effectiveness of the prediction model, we run the Kafka producer with dynamic

configuration in a complex network environment. In our evaluation we assume the network status

to be known, thus we generate the corresponding configuration parameters offline and save them

to a configuration file. While using the unstable network environment, the producer reads these

parameters from the configuration file.

The predicted reliability metrics can be obtained according to Equation (5.1). Combining with

the model in Chapter 4, we obtain the weighted KPI γ from Equation (5.2). If γ is less than the user-

defined requirement, the parameters should be adjusted to increase its value. From our observation

on the predicted results, the outputs generally increase or decrease monotonically with the inputs.

Therefore the purpose of this method is not to find the maximum value of γ, but the one that meets

the user’s requirement. For each parameter, we move its current value stepwise forward or backward

and substitute the value into our prediction model to obtain the predicted results. We repeat this until

the predicted γ meets the requirement. Changing configuration parameters too frequently will cause

additional coordination overhead due to shuffling communication among producer and brokers [44].

Thus in our experiments we check γ every other time interval (i.e. every 60 seconds). The dynamic
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configuration process is illustrated by Algorithm 1 bellow.

Algorithm 1: Dynamic Configuration
Input: KPI weights, ωi, 1 ≤ i ≤ 4; streaming data type, M,S; network environment metrics,

D,L; configuration parameters, acks,B, To, δ

Output: New configuration parameters, acks′, B′, T ′o, δ
′

1 calculate initial KPI γ;

2 specify user defined KPI γ′;

3 while true do
4 monitor current network condition;

5 predict ϕ, µ, P̂l, P̂d;

6 calculate initial KPI γ using Equation 5.2;

7 for parameter ∈ {acks,B, To, δ} do
8 while γ < γuser do
9 parameter′ = parameter ±∆;

10 predict γ using parameter′;

11 end
12 end
13 Update current configuration to parameter′;

14 Wait 60 seconds;

15 end

The network status in our experiment is depicted in Fig. 5.12. To simulate a realistic network

environment, the network delay follows a Pareto distribution [116], while the network packet loss

rate is generated from the Gilbert-Elliot model using Linux netem tool [20]. It is a two-state Markov

model that has been widely applied to analyze measurements on wireless networks. We design

three kinds of data streams in this network environment and evaluate the performance of dynamic

configuration with them, respectively, as depicted in Table 5.2. The text messages from social

media must be delivered quickly with the lowest loss rate. In log analysis applications, timeliness

of data streams (i.e. web server access records) is not strict but the messages are required to be

complete, while duplicates can be acceptable due to idempotent processes. Any individual message

in online games is small (i.e. less than 100 bytes), since they only contain mouse or keyboard

signals. However, the game traffic message needs to be delivered accurately in real-time, otherwise

the player’s gaming experience is greatly reduced. Considering those related facts, our suggested

values of weights ωi are listed in Table 5.2.

According to Equation (5.1), since the features M , S, D and L are all some functions of the
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Figure 5.12: Network connection between Kafka producer and cluster in the dynamic configuration
experiment

elapsed time t, we use Pl(t) and Pd(t) to denote the reliability metrics in this experiment. Given the

work load of source data λ(t), which also changes with t, we obtain the total number of messages

that arrives the producer as
∫
λ(t)dt. Therefore the overall message loss rate Rl and duplicate rate

Rd in this experiment are defined as follows:

Rl =

∫
λ(t)Pl(t)dt∫
λ(t)dt

, Rd =

∫
λ(t)Pd(t)dt∫
λ(t)dt

(5.3)

Table 5.2: The overall message loss rates and duplicate rates

Messages from
social media

Web sever
access records

Game traffic
messages

Default Dynamic Default Dynamic Default Dynamic
Rl 55.76% 17.58% 42.94% 6.54% 87.50% 13.9%
Rd 0.32% 0.63% 0.04% 0.00% 0.01% 0.00%
ωi 0.4, 0.3, 0.2, 0.1 0.1, 0.1, 0.7, 0.1 0.2, 0.4, 0.2, 0.2

From our experimental results in Table 5.2 we observe that comparing to the static default con-

figuration of Kafka, our dynamic configuration method reduces Rl significantly. In the experiments

with default configurations about half of messages are lost. For message streams from social me-

dia, the dynamic configuration method reduces the loss rate at the expense of an increased dupli-
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cate rate. We observe that while handling the web server access records, which do not have high

requirements for timeliness, dynamic configuration performs well. However, the priority of time-

liness and accuracy are both very high in gaming traffic data, hence we have to scale the Kafka

producer to reduce the loss rate. The details of those dynamic configuration files can be found in

https://github.com/woohan/dynamicConf.git.

5.6 Summary

In this chapter we utilize the Kafka testbed we created for exploring the approach of building a

prediction model. To evaluate the reliability of message delivery, we define two reliability metrics

for Kafka, the probability of message loss and the probability of message duplicate. Both are defined

as the outputs of our prediction model. Then the Docker-based testbed of Apache Kafka is intro-

duced, which helps us collect the training data. With the testbed it is easy and fast to build or restart

a Kafka cluster, and it capable of various experiments with fault injection. The related resources of

the testbed, including the link to the Docker image of Kafka brokers and the scripts to start a cluster

are available from GitHub ( https://github.com/woohan/kafka_start_up.git).

Due to the complexity of Kafka’s architecture and the diversity of its configuration parameters,

we use machine learning techniques to build the model. From the experimental results we find

that the reliability metrics are significantly affected by both, the configuration parameters and the

network condition. The types of streaming data, including the message size and timeliness, also have

an impact on the metrics. We select several of the most sensitive factors as the main features for

the prediction model. Through numerous experiments on our testbed, we collect plentiful training

data. The accuracy of our predicted results is sufficient for comparing the impact from different

configuration parameters.

In order to handle various requirements from all kinds of streaming applications, we present a

weighted KPI (key performance indicator) to help choose proper configurations for Kafka. In this

indicator both performance metrics (i.e. throughput) and the proposed reliability metrics are evalu-

ated. Referring to the model in Chapter 4, the performance metrics are also predictable. When the

configurations as well as the streaming data type and network status are known, we can generate

the current weighted KPI through our prediction model. The weights can be adjusted depending

on the requirements of different streaming applications. Thus the user can select proper configu-

ration parameters of Kafka by checking its weighted KPI. Then a dynamic configuration method

for adjusting these parameters is proposed in our experiments to evaluate the effectiveness of the

prediction model.
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The main takeaways for Kafka users are:

• If the user can choose the message size for upstream applications, messages should be larger

than 300 bytes as our analysis shows that larger messages see a lower risk of getting lost.

• Even under good network condition, the overloaded producer may lose messages. We provide

a scaling strategy for users to balance the load and hence reduce the loss rate.

• When the user cannot change the size of incoming messages, batching messages before send-

ing them over the network can significantly reduce the loss rate.
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Chapter 6

Reactive Batching Strategy

From Chapter 4 and Chapter 5 we know that Kafka processes streaming workloads as a continuous

series of batch jobs on small batches of streaming data. The size of the batches can significantly

impact the throughput and end-to-end latency in the stream processing system. Larger batch size

improves the utilization of network bandwidth, while causing higher end-to-end latency. Batch size

also have impact on the reliability of data delivery under unstable network condition. Choosing a

proper batch size is a key step towards efficient stream processing. However, the robustness of the

batching strategy in Kafka against various operating conditions has not been well explored.

In this chapter, we address problems in the performance measurement of existing stream pro-

cessing systems. Since in Chapter 4 we only evaluate the mean end-to-end latency, it is difficult to

guarantee the timeliness of message delivery comprehensively. Moreover, Kafka provides flexible

batching configuration parameters, but the effects on message timeliness remain unknown. In prac-

tice, enterprise businesses cannot afford the manual work to find the optimal configuration of batch

size. To address these challenges, we study how the batch size impacts Kafka’s performance and

reliability.

6.1 Problems and challenges

In Chapter 4 we introduced the concept of packet latency, which measures the latency of an entire

packet. However, this metric is insufficient for studying the real-time strategies in Apache Kafka. A

proper measurement of each message’s end-to-end latency is required for guaranteeing the message

timeliness. In this chapter, we introduce the problems of current performance metrics and challenges

in the batching strategy of Kafka.
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6.1.1 End-to-end latency

The end-to-end latency is evaluated as one of the most important performance metrics in Kafka,

generally described as the time it takes for a message to move from leaving the producer until arrival

to the consumer. However, observing on a lower level, the definition of this latency is ambiguous in

related work [39,43]. In this chapter we give an explicit definition of the end-to-end latency, denoted

by LK , and introduce its major components in detail. Fig. 6.1 shows the path of a message from a

Kafka producer to a consumer through the cluster. LK is the time starting when the producer calls

the send() method to produce a message and until this message is received by the consumer via the

poll() method.

Kafka ConsumerKafka clusterKafka Producer

send()

Broker 1

Batching
Fetch
requestBroker 2

Broker 3

Replicate

Replicate
Fetch
loop

poll()

Produce Commit Consume

Produce
 request

Figure 6.1: The components of Kafka’s end-to-end latency

The first part of LK is the produce time, during which the message is batched with other messages

in the producer, then the messages are sent together to one of the brokers. The produce period lasts

until the message is appended to the leader partition’s log. Then Kafka replicates the message for

fault-tolerance, e.g. the batch on broker-2 is replicated to the follower partitions on broker-1 and

broker-3. Generally, a message is committed, which means it is ready to be consumed, only after

the replication process finishes, and this phase is called the commit time. The last part, the consume

time ends when the consumer receives the message from the cluster by executing a fetch loop.
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6.1.2 Batching methods

From Fig. 6.1 we know that a Kafka producer batches messages before sending them to the cluster,

since treating streaming data in small batches improves efficiency at scale [35]. An individual re-

quest for sending each message across the network would result in excessive overhead, which can be

reduced by accumulating messages into a batch and sending them together. It is observed that under

heavy load, using batching significantly improves Kafka’s throughput, as we discussed in Chapter

4. The reason is that batching reduces the overhead (e.g. number of system calls and hardware in-

terrupts), thus freeing more task threads. However, larger batch size also leads to higher end-to-end

latency, because more messages will wait in a batch before being propagated. Hence, choosing an

appropriate batch size is the key for optimising the tradeoff between latency and throughput.

In most cases the batch size refers to the maximum data size of accumulated messages in one

batch, while it also can be defined in terms of time interval [35]. Kafka provides both configuration

parameters to control batching. In this chapter, for simplicity, we use the maximum number of

messages per batch to represent the parameter which limits the space of a batch, namely spatial

batch size and use BS to denote it. The parameter which limits the maximum time to construct

a batch is called temporal batch size, denoted by BT . When both parameters are configured, the

Kafka producer will send a batch when either BS or BT is fulfilled. For instance, in our tests,

we set BT = 1000ms, and change the value of BS to observe the end-to-end latency LK and its

components. In each test 20, 000 messages are delivered to Kafka, LK of every message is analysed

statistically. We use l1 to denote the produce time in Fig. 6.1, and l2 to denote the commit and

consume time, thus LK = l1 + l2. Fig. 6.2 illustrates the impact of BS on the mean and standard

deviation of LK , l1 and l2.

Obviously, the produce time l1 dominates the end-to-end latency, and it is strongly correlated with

BS due to the batching overhead. Meanwhile, the commit and consume time remain unchanged. This

is because Kafka decouples the production and consumption processes, as mentioned in Section 2.2,

thus changing BS has no effect on l2. We observe that the mean LK , denoted by L̄K , rises rapidly

from less than 100ms to over 500ms as we increase BS from 1 to 10. This happens when BS takes

effect during batching, while the limit of BT has not been reached. As we continue to increase BS ,

L̄K stabilizes at around 600ms, since the batching method is controlled by BT , which is a fixed

value.

To our knowledge, the configuration parameters spatial batch size and temporal batch size of

Kafka have not been studied together. In practice, reasonable configuration of these two parameters

determines the performance of the batching strategy in Kafka. We address this challenge with a

reactive batching strategy in this thesis.
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Figure 6.2: The impact of spatial batch size on latencies when temporal batch size BT = 1000ms

6.1.3 Latency evaluation

The timeliness of a message is important for real-time guarantees in stream processing systems,

and its definition depends very much on the specific application. Many downstream applications

stipulate user-defined latency constraints for processing the newest messages from upstream appli-

cations. For instance, in a user-interactive system, the round-trip latency should be less than 100

ms for stability [75]. We define this upper bound as the end-to-end latency constraint, denoted ζL.

Given a specific ζL, the purpose of our reactive batching strategy is to properly configureBS andBT
to guarantee LK < ζL. In existing performance studies on Apache Kafka they only evaluate L̄, the

mean LK , which is not comprehensive [39,43,109]. We use σK to denote the standard deviation of

LK , as depicted on the right of Fig. 6.2. It can be observed when BS takes effect, as more messages

are accumulated in a batch, σK increases, which indicates that the dispersion of the messages’ LK
becomes higher. Fig. 6.3 shows the distributions of LK in three selected individual tests, with BS
configured as 1, 4 and 10, respectively.

For better comparison LK is shown on a log scale. With increasing BS , the distribution of LK is

stretched. In the test with BS = 1, which means the producer publishes messages without batching,

the distribution of LK ranges approximately between 60ms and 120ms. When BS = 4, the distri-
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Figure 6.3: The distribution of end-to-end latency with different spatial batch size

bution shows a heavy tail, where LK of some messages exceeds 900ms. Considering an application

which requires ζL to be 200ms, if we only use the mean value (marked as L̄K in Fig. 6.3), then the

constraints are met in both cases. However, in the case with BS = 4, over 22% of the messages

violate the latency constraint due to the heavy tail. Moreover, when BS increases further and BT
starts to limit the batch size, the distribution of LK is even more widely dispersed.

From these experimental results we see the limitations of only using the mean end-to-end latency

as performance metric. This unreliability becomes more pronounced when the batches become

larger.

6.2 Reactive batching strategy

The purpose of the reactive batching strategy is to well configure the batch size parameters BS
and BT given any operation condition, in order to achieve optimal performance while guaranteeing

reliability. We use two reliability metrics, (i) the latency violation rate ηv: it represents the timeliness

of messages. As explained in Section 6.1.3, a system with most of its resources processing staled

messages is unreliable and (ii) the message loss rate ηl: it indicates the consistency of messages. As

mentioned in Chapter 2: message loss or duplication is detrimental to system reliability.

87



6.2. REACTIVE BATCHING STRATEGY

Since the reliability and performance requirements vary in different application scenarios it is nec-

essary to introduce the operation conditions of our batching strategy. The conditions come in three

aspects: streaming data rate, hardware resources and network quality. Considering those conditions,

we discuss the scenarios when batching is necessary and introduce our methods for choosing the

appropriate batch size reactively.

6.2.1 When is a batching strategy needed?

Streaming data is continuously generated by upstream applications, then ingested by a Kafka pro-

ducer. Since the producer actively pulls messages from upstream applications, the ingest rate has its

upper limit due to hardware limitations (e.g. network I/O or memory). When the producer reaches

the maximum ingestion rate we call it fully loaded, which means it ingests the next message as soon

as the last one is sent. It is worth noting that in the tests mentioned in Section 6.1, the producer is

under full load. We argue for the need to study the performance of fully loaded producers because

this is when batch processing becomes beneficial and worth exploring in depth. Therefore, an essen-

tial premise of this study is that there is sufficient streaming data for the producer to continuously

ingest messages.

Considering the stream processing when there is no batching, i.e. BS = 1 and BT = 0ms, send-

ing a message can be either synchronous or asynchronous. In synchronous sending, the producer

blocks and waits for a reply from the Kafka cluster after sending each message, therefore batch-

ing is not feasible. This is often applied when the processing order of streaming data is critical.

However, it is inefficient to block the producer after each send operation, thus in most cases we use

asynchronous sending. We observe that for the same streaming data (message size approximately

500 bytes), the throughput of a synchronously sending producer is 0.017 MB/s, while it is 17.73

MB/s under asynchronous sending. The distributions of the end-to-end latency LK with these two

sending modes are compared in Fig. 6.4. We can observe that the LK under synchronous sending

fluctuates in a much smaller interval, about 45ms to 75ms. Sending messages asynchronously leads

to a higher L̄K due to LK’s dispersed distribution. Batch processing is feasible only under asyn-

chronous sending, and it improves the throughput because sending more messages at once reduces

the overhead per message. Thus another premise is that a producer sends messages asynchronously

and exhausts hardware resources.

88



CHAPTER 6. REACTIVE BATCHING STRATEGY

20 40 60 80 100 120 140 160
End-to-end latency (ms)

0

100

200

300

400

500

600
Nu

m
be

r o
f m

es
sa

ge
s

LK = 84.61LK = 55.35

Asynchronous sending
Synchronous sending

Figure 6.4: The distributions of LK under synchronous and asynchronous sending

6.2.2 Violation rate prediction

Our hypothetical ideal solution to the problems introduced in Section 6.1 is using a predictive

model to estimate the latency violation rate. To better elaborate on this idea, we use the following

equation to represent the predictive model.

ηv = f(ε?, BS , BT , ζL) (6.1)

The latency violation rate ηv is the proportion of messages that violate the user-defined latency

constraint ζL. In addition to ζL, the other inputs are the factors that have effects on ηv. We use

ε? to denote all the network status’ mentioned in Section 5.2. Imagine the application scenario

where ε? and ζL are known, then the impact of the batching strategy on ηv can be estimated via

the model. However, generating such an ideal model is far from a trivial task. In Section 6.1.3

we have briefly discussed how the distribution of LK changes over different batch sizes. A strong

correlation is observed between {BS , BT } and the shape of the distribution, including its uniformity,

tendency to skew and its tail. We use LK ∼ Ω(µ, σ) to denote the distribution of LK , where

Ω indicates that the distribution type is not fixed, and µ, σ denote the expectation and standard

deviation, respectively. Thus given any latency constraint ζL, the violation rate can be obtained via

the cumulative distribution function (CDF) FΩ(x):
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ηv = P (LK > ζL) = 1− P (LK ≤ ζL) = 1− FΩ(ζL) (6.2)

Although the shape of the distribution varies greatly we can estimate the extreme values of LK .

The minimum value, denoted LKmin, can be roughly estimated as the minimum LK observed with

synchronous sending, denoted min{Lsync}. The reason is that there is no batching delay under

synchronous sending, as introduced in the subsection above. To estimate the maximum value of

LK , we consider the worst case that a message may encounter: it is the first message in a batch

and waits until BT is reached. Thus we can use LKmax = max{Lsync} + BT to estimate the

maximum value, where max{Lsync} represents the maximum LK in synchronous sending. This

implies how to coordinate BS and BT in our batching strategy: We use BT to restrict the range of

LK’s distribution, and configure BS to obtain the desired ηv.

6.2.3 Latency violation rate prediction

The workflow of building the above prediction model is depicted in Fig. 6.5. A small set of

the streaming data is required as the sample data in the tests. The timestamps of these messages

are recorded and the end-to-end latencies are calculated by the statistical analysis tool. Then we

record the configured batch size in each test as well as the network status. To simulate a good

operation environment, the network conditions illustrated in Fig. 5.2 are emulated as εp(30, 0),

εk(0, 0), εc(30, 0). It should be pointed out that we ignore the network delay among Kafka brokers

because it is negligible in a cluster (less than 1ms). The temporal batch size BT is configured as

1000ms, the same as in the example in Section 6.1.2.

An important and challenging aspect in the workflow is the distribution fitting. Ultimately, we

need a method that provides a reasonably good fit based on little empirical information, such as

moment estimates. Identifying an efficient method is left for future work, here we closely study the

distributions of the collected data.

Due to the variety of the shapes, it is impossible to fit the same distribution to all data sets. We try

the parametric method with the MATLAB distribution fitting tool and use the maximum likelihood

estimation (MLE) to estimate the parameters. MLE is often applied in statistics to find the most

likely values of distribution parameters for a sample of data, via maximizing the value of likelihood

function. We use the log-likelihood value, denoted by θ, to assess the fit of the distribution to the

experimental data. Although θ is not constrained to a certain range and may have any value, it can

be used to compare the fit of multiple distributions to the same data. The distribution with higher θ

is a better fit statistically. We select four distributions with the highest log-likelihoods and illustrate
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Figure 6.5: The prediction model of latency violation rate ηv

them in Fig. 6.6.

It can be observed that for any of the distributions, asBS increases, θ decreases and stays flat after

BS reaches a certain value. This indicates that it becomes more difficult to fit the distribution of LK
as more messages are batched. By observing the histograms of the experimental data, we divide the

shapes of distribution Ω into three stages depending on the effects of BS and BT , as mentioned in

Section 6.1.1:

1) The first stage is when there is no batching, i.e. BS = 1.

2) The second stage is when BS takes effect, which means BS limits the maximum number of

messages per batch.

3) The third stage is when BS reaches its limit and BT starts to take effect.

For the first stage, we use a Gamma distribution to fit the experimental data. The probability

density function (PDF) of the fitted process is depicted in Fig. 6.7.
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Figure 6.6: The log-likelihood θ of different types of distributions
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Figure 6.7: The PDF of distribution fitting result when BS = 1

92



CHAPTER 6. REACTIVE BATCHING STRATEGY

50 60 70 80 90 100 110 120 130

End-to-end Latency (ms)

0

0.2

0.4

0.6

0.8

1
C

um
ul

at
iv

e 
pr

ob
ab

ili
ty

Experimental data
Gamma

Figure 6.8: The CDF of distribution fitting result when BS = 1

From Fig. 6.8 we see that the curve of CDF fits the experimental data very well, thus ηv can be

calculated with fairly high accuracy. We use mean absolute error (MAE) to measure the accuracy of

prediction, calculated via the equation below:

MAE =
n∑
i=1

|η̂v − ηv|
n

(6.3)

We choose MAE because it intuitively reflects the proportion of messages that are incorrectly

predicted to be violated or timely. In our experiment we apply the Gamma distribution to calculate

the predicted violation rate η̂v in the first stage, via Equation (6.4).

ηv = 1− FΩ(ζL) = 1− 1

baΓ(a)

∫ ζL

0
ta−1e

−t
b dt (6.4)

Γ(a) is the Gamma function and the parameters are a = 36.0582 and b = 2.35251 respectively.

Then, given the latency constraint ζL = 100ms, we obtain η̂v = 0.14 with 95% confidence level,

while ηv = 0.1401 in terms of the experimental data. The MAE is 0.0001, which indicates that only

0.01% of all messages’ LK are incorrectly predicted to be less than ζL.

In the second stage, where 2 ≤ BS ≤ 10, it is observed in Fig. 6.6 that the log-likelihood θ

drops faster with Gamma and Lognormal distribution fitting. The tail of LK’s distribution becomes

heavier as BS increases. This is because more messages are waiting in the batch and they become

the majority in the histogram. Although the fitting with Cauchy distribution performs best among all
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Table 6.1: The parameters of Erlang branches

Probability Phase Rate
0.173600 44 0.10376298
0.145600 148 0.20615273
0.192600 13 0.10828728
0.177733 18 0.06701713
0.150733 170 0.19943805
0.159733 72 0.12419047

these heavy tail distributions, it is unable to capture the peak and tail with higherBS . The prediction

accuracy based on Cauchy distribution fitting decreases dramatically. For instance, if ζL = 700, the

MAE can be 0.06 while using Cauchy distribution, i.e. the LK of 6% messages are overestimated

to be timely.

To improve the prediction accuracy in the third stage, we use the fitting tool HyperStar2 to obtain

the phase-type (PH) distribution of the experimental data, since any distribution with a strictly posi-

tive support in (0,∞) can be approximated arbitrarily close by a PH distribution [24, 96]. The PDF

and CDF of the fitted process is a hyper-Erlang distribution, which is a subclass of PH distribution,

and the parameters of the Erlang branches are shown in Table. 6.1. We can observe from Fig. 6.9

and Fig. 6.10 that the curves fit well.

 

Figure 6.9: The PDF of distribution fitting with HyperStar2 when BS = 7
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Figure 6.10: The CDF of distribution fitting with HyperStar2 when BS = 7

The MAE of predicting ηv using PH distribution is less than 0.005, which is less than one tenth of

the prediction using Cauchy distribution. The predicted metric ηv can be estimated via the equation:

η̂v = 1− FΩ(ζL) = πeζLT I (6.5)

100 200 300 400 500 600 700 800 900 1000

End-to-end latency

0

0.5

1

1.5

2

D
en

si
ty

#10-3

Experimental data

Uniform

Figure 6.11: The PDF of distribution fitting result when BS = 11
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Here π is the initial probability vector, T is generator matrix of an absorbing Markov chain and

I is the identity matrix.

In the third stage, the distribution hardly changes with the increase of BS , as we discussed in

Section 6.1.2. We can simply use uniform distribution to fit the the experimental data in this stage

and obtain high accuracy, and the PDF and CDF fitting results of one example (BS = 11) are

illustrated in Fig. 6.11 and Fig. 6.12 respectively.
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Figure 6.12: The CDF of distribution fitting result when BS = 11

We see that LK is approximately continuously and uniformly distributed within a certain range,

and the MAE is less than 0.01. The predicted violation rate ηv can be obtained via the equation:

η̂v = 1− FΩ(ζL) =
αLKmax − ζL

αLKmax − LKmin
(6.6)

where α is a correction factor, and in this case we suggest α = 0.9. Fitting phase-type distribu-

tions leads to very good results, but it is relatively expensive in terms of computation complexity.

We will explore moment-matching methods for faster PH fitting in the future.

6.2.4 Timely throughput

Considering the case that a latency constraint ζL is given by the user, based on the prediction

model studied above, the latency violation rate ηv can be obtained with specific {BS , BT }. However,

this is still a few steps away from making proper decision in the batching strategy, because it is

96



CHAPTER 6. REACTIVE BATCHING STRATEGY

generally not clear to the users that how high the ηv is acceptable. Choosing the BS with the lowest

ηv can be meaningless because the throughput is sacrificed with smallerBS . The correlation analysis

between producer’s throughput χP and BS has been well explored in Chapter 4, thus in this chapter

we predict χP according to the proposed model.

Starting from the actual feature of messaging system, we propose timely throughput as the QoS

metric of Kafka, which is generated from the equation below:

χ′P = (1− ηv)χP (6.7)

This metric is used to measure the throughput of timely messages, whose end-to-end latencies are

within the user-defined latency constraint. Thus the purpose of our batching strategy is maximizing

χ′P when resources are available. In Section 6.3 we evaluate this metric in the tradeoff between LK
and χP and compare it with other empirical methods.

Considering the case when network connections are unstable, we define the message loss rate ηl
as the proportion of lost messages. From Section 5.4.4 we observe that injecting high packet loss

rate lp leads to high ηl, and the value of ηl is impacted by BS under different semantics. The model

proposed in Section 5.3.2 can be expressed as the equation:

η̂l = f(lp, acks, BS) (6.8)

We choose to ignore message duplication because the impact is minor and most applications have

an idempotence mechanism. Using the prediction model of ηl, we are able to formulate the concept

of timely throughput when encountering poor network conditions, which is an extension of Equation

(6.7):

χ′P = (1− ηv)(1− ηl)χP (6.9)

6.3 Experimental evaluation

In order to evaluate the batching strategy in Section 6.2 we assume the following experimental

scenario. Connected cars are the vehicles connected to wireless networks, and have become sig-

nificantly important in the foreseeable IoT area [33]. The services of connected cars include traffic

safety and cost efficiency and the demand for real-time processing is increasing [119]. In this exper-

iment we use the Kafka producer to publish the vehicle sensor data in Berlin, which is derived from

the public website of car sharing business [47]. Each message is generated in real-time and contains
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the current location of the car. We run a stream processor which receives the streaming data, and

calculates the distance between the car and a specific charging or gas station. We conduct the exper-

iment in both good and poor network conditions. The network delay follows a Pareto distribution

to emulate real-world network status [116]. In the experiments with fault injection, we generate the

network packet loss rate from the Gilbert-Elliot model, which is a two-state Markov model that has

been widely applied to analyse measurements on wireless networks [20].

6.3.1 Latency and throughput tradeoff

We show the advantage of the proposed batching strategy by comparing it with the methods in

other work. For instance, in [75] they just batch as much as possible in their streaming system as

long as the 20ms latency constraint is guaranteed. This is a simple way to trade off latency and

throughput. As the experimental results depicted in Fig. 6.13, both the mean end-to-end latency

L̄K and producer throughput χP rise as the BS increases. Their theory is that given the latency

constraint ζL, choosing the largest BS within the constraint can maximize the throughput.
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Figure 6.13: The impact of BS on L̄K and χP

However, this method is not reliable because they measure only the mean value of LK . To elab-

orate this problem, we plot the Pareto front of throughput and latency, as shown in Fig. 6.14. The

y-axis is 1/χP , therefore lower values are preferred to the higher ones. Given the requirements

that ζL = 350ms, and the throughput to be higher than 50MB/s, this Pareto front based empirical
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method suggests the user to configure BS = 5.
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Figure 6.14: The Pareto font of throughput vs latency

With our batching strategy, the value of spatial batch size BS that maximizes the timely through-

put χ′P is configured, and it is BS = 4, according to the results illustrated in Fig. 6.15. This

configuration improves the throughput of timely messages by 7.37MB/s, compared to the choice

above.

6.3.2 Message success rate evaluation

In the experiment with network fault injection we assume that network status is known as Fig. 5.12

in Chapter 5. We check the network metrics including network delay and packet loss rate, εp(dp, lp),

every 60 seconds and reconfigure the batch size when necessary. This is because changing con-

figuration parameters too frequently will cause additional coordination overhead due to shuffling

communication among producer and brokers [44]. We substitute the operation and configuration

parameters to Equation (6.9) and observe how the predicted result changes over different BS . Then

we reconfigure BS to obtain the maximum χ′P .

The overall message loss rate and timely throughput in this experiment are illustrated in the Ta-

ble 6.2. We compare the results obtained via our reactive batching strategy with those using Pareto

front based empirical methods, and fix the spatial batch size BS = 1, BS = 10. It is observed that

the reactive batching outperforms others in terms of timely throughput χ′P .

It is important to note that these characteristics are specific to the Kafka testbed and the workload
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Figure 6.15: The impact of BS on ηv and χ′P

Table 6.2: Comparison of message loss rate and timely throughput

Reactive batching Empirical method BS = 1 BS = 10
ηl 18.69% 12.63% 71.0% 3.9%
χ′P 42.7MB/s 33.0MB/s 5.14MB/s 27.3MB/s

we use. Docker containers offer lower latency costs and lower variability than hardware virtualiza-

tion [8]. Therefore the absolute number of those metrics are best ignored when other researchers

try to apply our method to other distributed systems. The main takeaways for Kafka users are the

workflows for predicting the reliability metrics in Section 6.2, which can be carried out on their

operation environments. The new tradeoff between throughput and latency using the QoS metric

timely throughput is another outcome that other Kafka users can apply in their systems. The users

may follow the idea of using timely throughput as Kafka’s performance optimisation goal in real-

time systems. For other similar applications, with comparable batching mechanisms, the insights we

obtained (E.g. larger batches lead to higher latency violation rate but lower losses) can be applied

too.
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6.4 Summary

In this Chapter we discuss the drawbacks of current measurement methods of Kafka’s perfor-

mance. We introduce the importance and difficulties in the fine tuning of Kafka’s batch size for

real-time requirements. During the analysis of the experimental results, we fit the distribution of

end-to-end latency and propose a prediction model to estimate the latency violation rate. A new

quality-of-service (QoS) metric, timely throughput is defined to help choose the appropriate batch

size. We then study the effects of the batch size on the reliability of data delivery when network

faults are injected, and use machine learning techniques to predict the message loss rate. In the

experimental evaluation we compare the performance of our batching strategy with other empirical

methods under both, good and poor network conditions. The experimental results show that our

batching strategy is able to deliver most messages within the user-defined latency constraint. The

Kafka users may refer to the workflows in this chapter to obtain the corresponding features in their

real-time systems, thus they optimise their batching strategy in their operation environment.
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Chapter 7

Conclusions and Outlook

7.1 Conclusions

In this thesis, we study the real-time streaming methodologies and strategies based on the dis-

tributed publish/subscribe messaging pattern. The main goal is to guarantee the real-time require-

ments of stream processing by properly tuning of Apache Kafka, a popular distributed messaging

system. Kafka is capable of flexible configuration parameters, thus we are able to implement dif-

ferent messaging patterns for various application scenarios. We propose a queueing based model

to predict the performance of Kafka, which provides the users a simple way to study the effects of

important configuration parameters. From the experimental results we observe that batching has a

significant effect on producer throughput and relative payload. This helps the Kafka users with the

decision on the batch size and partition number configuration. The disk occupancy over time can be

predicted through the model and this reminds the users of proper adjustment of partition numbers.

We learn how to reliably deliver messages using Kafka using a Docker-based Kafka testbed,

which is built for exploring the effects of failure scenarios including unstable network conditions. In

the testbed we can easily and quickly deploy a Kafka cluster, and restore different failure scenarios

on it. This flexible testbed is available on GitHub: https://github.com/woohan/kafk

a_start_up.git.

Based on the analysis of possible message states in Kafka, we introduce two metrics, the prob-

ability of message loss and the probability of message duplicate for the reliability evaluation. A

machine learning model is proposed to predict those metrics, while the application scenarios are

known. We run experiments on the testbed of Kafka built on Docker containers to observe possi-

ble influencing factors. From all the factors we select the most sensitive ones as the main features,

which contain the type of source data, the network status and the configuration parameters of Kafka.
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Based on the prediction model we introduce some approaches for using Kafka reliably in various

cases. We present a weighted KPI for the users of Kafka to select proper configuration parameters

in complex network environments. A dynamic configuration method is applied in our experiments

to evaluate the effectiveness of our prediction model. The results show that changing configuration

parameters (e.g. batch size) dynamically is the ideal solution for guaranteeing reliability in complex

and changing scenarios.

We explore how to batch messages properly in Apache Kafka in order to meet real-time require-

ments. We discuss the limitations of existing batching methods and performance measurement, then

use experimental data to illustrate their unreliability. We find that given a certain latency constraint,

measuring the mean value of end-to-end latency is insufficient when batching method is applied.

We analyse the correlation between batch size and the distribution of end-to-end latency. Using dis-

tribution fitting techniques, we propose a model to predict the latency violation rate under various

operation conditions, given batch size and latency constraint. We use a newly defined metric, the

timely throughput, as the optimization objective in our batching strategy. In the end we compare the

batching strategy with those normal methods, and the experimental results confirm the superiority

of our new method.

7.2 Outlook

Our research can be extended in several directions, which call for further research. The main

ideas are summarized as follows:

• More failure scenarios including the failure of brokers should be studied to complete the

prediction model.

• The Docker-based Kafka testbed can be improved by integrating more functionalities. E.g.

fault injection module of a broker failure.

• We only consider packet loss rate and network delay to represent the network status. More

metrics, including jitter can be introduced to the model.

• We do not make a deep dive into the retry strategy in the exactly-once delivery semantics,

since the impact is not pronounced in our experiments.

• Currently Kafka does not provide dynamic configuration for all parameters and the producer

needs to be restarted every time the configuration changes. The dynamic configuration method

that we proposed is very rough and could be refined in the future.

• The cost of end-to-end latency distribution analysis can be expensive in real-time decision
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making. Thus the overhead of the prediction model formulation process can be reduced by

using moment matching to fit a distribution.

• More variable real-world workloads with multiple client scenarios will be evaluated with our

batching strategy.

105



7.2. OUTLOOK

106



Bibliography

[1] A. Abdallah, M. A. Maarof, and A. Zainal. Fraud detection system: A survey. Journal of

Network and Computer Applications, 68:90–113, 2016.

[2] H. H. Aghdam and E. J. Heravi. Guide to convolutional neural networks. New York, NY:

Springer, 10:978–973, 2017.

[3] A. Ahmad, M. Hassan, M. Abdullah, H. Rahman, F. Hussin, H. Abdullah, and R. Saidur. A

review on applications of ann and svm for building electrical energy consumption forecasting.

Renewable and Sustainable Energy Reviews, 33:102–109, 2014.
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