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Abstract

Emotional states exert a profound influence on individuals’ overall well-being,
impacting them both physically and psychologically. Accurate recognition and
comprehension of human emotions represent a crucial area of scientific exploration.
Facial expressions, vocal cues, body language, and physiological responses provide
valuable insights into an individual’s emotional state, with facial expressions being
universally recognised as dependable indicators of emotions. This thesis centres
around three vital research aspects concerning the automated inference of latent
emotions from spontaneous facial micro-expressions, seeking to enhance and refine
our understanding of this complex domain.

Firstly, the research aims to detect and analyse activated Action Units (AUs) during
the occurrence of micro-expressions. AUs correspond to facial muscle movements.
Although previous studies have established links between AUs and conventional
facial expressions, no such connections have been explored for micro-expressions.
Therefore, this thesis develops computer vision techniques to automatically detect
activated AUs in micro-expressions, bridging a gap in existing studies.

Secondly, the study explores the evolution of micro-expression recognition tech-
niques, ranging from early handcrafted feature-based approaches to modern deep-
learning methods. These approaches have significantly contributed to the field
of automatic emotion recognition. However, existing methods primarily focus
on capturing local spatial relationships, neglecting global relationships between
different facial regions. To address this limitation, a novel third-generation ar-
chitecture is proposed. This architecture can concurrently capture both short and
long-range spatiotemporal relationships in micro-expression data, aiming to enhance
the accuracy of automatic emotion recognition and improve our understanding of
micro-expressions.

Lastly, the thesis investigates the integration of multimodal signals to enhance emo-
tion recognition accuracy. Depth information complements conventional RGB data
by providing enhanced spatial features for analysis, while the integration of physio-
logical signals with facial micro-expressions improves emotion discrimination. By
incorporating multimodal data, the objective is to enhance machines’ understanding
of latent emotions and improve latent emotion recognition accuracy in spontaneous
micro-expression analysis.
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1CHAPTER ONE

INTRODUCTION

This chapter outlines the main premises of the thesis, focusing on the current standing of
emotion recognition in the realm of affective computing, while also elucidating the associated
merits and obstacles of automatic facial expression recognition. Additionally, the chapter
presents clear definitions of micro-expression, which serve as the foundational concept for the
subsequent research. The objective of the thesis is to contribute significantly to the field by
proposing innovative approaches to enhance the analysis of spontaneous micro-expressions.
This improvement aims to enhance the capabilities of automated systems in recognising latent
emotions. Finally, the chapter concludes with an overview of the thesis chapters, providing
readers with a structured roadmap of the content and organisation of the research.

1.1 Background

Emotional states have the potential to exert a significant influence on the physiological and
psychological well-being of individuals. In contrast to mood, which refers to sustained emotional
dispositions, emotions are more immediate and tied to specific stimuli or situations. Emotions
involve a complex interplay between our thoughts, feelings, and physiological responses through-
out the body, including changes in the brain, heart, skin, blood flow, muscles, facial expressions,
and voice. These physiological changes vary depending on the specific emotion experienced.
Positive emotions can enhance human health and work productivity, while negative emotions
can have detrimental effects on physical and mental health. In particular, prolonged exposure to
negative emotions may serve as a contributing factor to the development of depression, which
can result in tragic outcomes [136]. Because of the intricate interplay between physiology and
psychology in emotional responses, accurate and timely recognition of human emotions is an
ongoing area of scientific inquiry across various interdisciplinary fields. Facial expressions are
deemed the most reliable and universally accepted way of recognising emotions, while vocal
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2 CHAPTER 1. INTRODUCTION

cues such as pitch, loudness, and speech rate, as well as body language such as gesture and
posture, can also provide valuable information about a person’s emotional state, intentions, and
attitudes. In addition, physiological responses are objective measures of emotional arousal and
can be useful in identifying emotions in situations where self-reported measures may not be
reliable. These approaches provide a comprehensive and well-rounded method of recognising
and understanding emotions in diverse contexts.

Within interpersonal communication, facial expressions represent a crucial element for conveying
emotions. Though some disagreement on this remains, a notable number of psychologists believe
that despite different cultural environments and the individuals’ use of different languages, the
expression of their emotions is rather universal [40]. Ekman defined six primary emotions
as anger, happiness, sadness, surprise, disgust, and fear [37]. These emotions have been
referred to as “basic emotions” and are accompanied by a distinct set of facial expressions that
reflect the unique psychological activity associated with each emotion. Proficient recognition
of facial expressions is an essential component of effective communication and can facilitate
understanding of an individual’s emotional state and mental well-being.

Figure 1.1: Micro-expressions (top) and macro-expressions (bottom) are qualitatively identical, but the
former are involuntary and much shorter in expression than the latter.

Different from “conventional” facial expressions, which are more precisely technically termed
facial macro-expressions that can be consciously controlled, micro-expressions are activated
unconsciously through brief contractions of facial muscles that are inhibited by psychological
factors, as depicted in Figure 1.1. Micro-expressions were initially discovered by Haggard and
Isaacs in 1966 while analysing motion picture films of psychotherapy sessions for nonverbal
cues between patients and therapists [58]. Ekman and Friesen subsequently incorporated micro-
expression recognition into their deception studies, and popularised through the TV show “Lie
To Me”. Although micro-expressions were reported in the 1960s, the first report published in
a peer-reviewed, scientific article validating their existence was by Porter and Ten Brinke in
2008 [144]. Similarly, Matsumoto et al. published the first peer-reviewed scientific article on
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individual micro-expression recognition skills in 2000 [120]. Micro-expressions offer valuable
insight into an individual’s emotional state, even when an attempt is made to conceal it. Therefore,
by studying micro-expressions, one can gain a deeper understanding of the intricacies of human
emotions. The utilisation of micro-expression holds significant potential in comprehending
genuine emotional states of individuals and offering crucial cues for detecting deception. Micro-
expression analysis enables experts to identify even the most subtle changes in an individual’s
facial expressions, potentially indicating their dishonesty. The reliability of micro-expressions
also makes them a valuable tool in various emotion-related tasks, including communication
negotiation [122], teaching evaluation [198], safe driving [30], health care especially mental
health monitoring [54] and social security [68].

Facial expression recognition (FER) is a multi-disciplinary research field encompassing phys-
iology, psychology, image processing, machine vision and pattern recognition. It has gained
significant attention in the areas of pattern recognition and artificial intelligence in recent years, as
has micro-expression recognition (MER). As Ekman and Friesen highlighted, micro-expressions
are rapid facial muscle movements that last for a fraction of a second, often undetected by
untrained observers, making professional training necessary for their manual analysis [39].
The human-based processes of training as well as recognition itself are time-demanding, yet
the recognition accuracy is still not satisfactory for most practical purposes. Therefore, many
researchers have endeavoured to develop computer vision techniques for the automatic analysis
of micro-expressions.

1.2 Motivation and research gaps

Facial actions encompass a broad range of facial movements and extend beyond the scope of
facial expressions alone. These actions can be elicited by a multitude of factors, including external
stimuli that affect the face. The activation of facial muscles underlies these actions, which serve
diverse functions beyond the mere display of emotions. For instance, facial muscles can be
engaged in communication, exemplified by actions like winking, which convey specific messages
or signals. Additionally, facial actions can also serve practical purposes, such as relieving an
itch or addressing a physical discomfort. Thus, the range of facial actions extends beyond
emotional expression and encompasses a variety of communicative and adaptive functions.
Facial action coding system (FACS) was developed by Ekman and Friesen through observing and
utilising biofeedback to map out how different facial muscle movements correspond to different
expressions [41]. Based on the anatomical characteristics of the human face, FACS divided
the face into several independent and interconnected motion units known as facial action unit
(AU). Each AU refers to a specific muscular complex activated during a kind of facial movement.
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After that, Ekman et al. further proposed the correspondence table between basic emotions and
AU [42], which has become the standard for most psychological researchers to manually identify
emotions from facial expressions. However, no such corresponding relations between AUs and
emotions reflected from micro-expressions have been proposed by experts. Also, there is a gap
in automated AU detection for micro-expressions. Therefore, I propose using computer vision
methods to detect activated AUs in micro-expression, and hope that it could provide feedback to
psychologists and facilitate further research in this area.

The seminal work of Pfister et al. and the release of the database of micro-expression movie
clips [140], effected a marked empowerment of computer scientists in the realm of MER.
The first generation of solutions built upon the well-established computer vision tradition and
introduced a series of handcrafted features, 3D histograms of oriented gradients (3DHOG) [143]
as the simplest extension of the ‘traditional’ HOG features, subsequently succeeded by more
nuanced extensions such as local binary pattern-three orthogonal planes (LBP-TOP) [140],
histograms of image gradient orientation (HIGO) [104] histograms of oriented optical flow
(HOOF) [113], and their variations. The next generation shifted focus towards convolutional
neural network (CNN) based deep learning methods [135, 85, 100, 199, 200]. Early work by
and large uses convolutional kernels to extract spatial information from micro-expression video
frames. This kind of pixel level operators can be considered as capturing “short-range”, local
spatial relationships. “Long-range”, global relationships between different spatial regions have
also been proposed and studied, notably by means of graph convolutional network (GCN) based
architectures [115, 13, 203, 90, 97]. These methods typically use the activation of AUs as nodes
to construct graphs and combine the relationships between different AU engagements with image
features to enhance the discriminatory power in the context of MER. However, though these
approaches consider global spatial relations so as to assist learning, they can only learn after the
extraction of local features, i.e. they are unable to learn both kinds of relations jointly. Therefore,
this thesis also aims to develop a third-generation architecture that can simultaneously learn
both short and long-range relationships from micro-expression data and improve the accuracy of
automatic emotion recognition.

Enhancing emotion recognition accuracy entails exploring avenues beyond just improving the
machine learning model, considering richer data types can also help achieve better performance
in automatic expression recognition. Human experience of the world is often multimodal,
referring to how something happens or is experienced through multiple modalities, and a research
question is characterised as multimodal when it contains multiple modalities. Incorporating
multimodal signals can enable artificial intelligence (AI) to learn about the real world better.
Depth information is one of the most popular complements to conventional RGB image/video
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data, which could enhance the machine knowledge of spatial features. However, relying solely
on readily visible physical signals, such as facial expression, speech, gesture, or posture, is
not guaranteed as people can control them to hide their real emotions, especially during social
communication. In contrast, physiological signals, which are in response to the central nervous
system (CNS) and peripheral nervous system (PNS) of the human body, can provide reliable
information about emotions according to Cannon’s theory [14]. One significant advantage of
using physiological signals is that they are largely involuntarily activated and, therefore, difficult
to control. Researchers have attempted to establish relationships between emotional changes and
various types of physiological signals. This thesis also explores the benefits of incorporating
multimodal data for improving emotion recognition accuracy, specifically for FER and MER.

1.3 Hypotheses

Based on the underlying motivation and identified research gaps within the field, this section
delves into the formulation of hypotheses critical to advancing our understanding of recognising
latent emotions through spontaneous micro-expressions. These hypotheses serve as the founda-
tion for guiding our investigation and shaping the trajectory of this research endeavour. Through
a thorough exploration and testing of these hypotheses, we aim to pave the way for significant
strides in the domain of latent emotion recognition.

Hypothesis 1: Computer vision methods can effectively detect and analyse facial muscle move-
ments, such as AU, facilitating a better understanding of the relationship between micro-
expressions and emotional states.

Hypothesis 2: Advanced architectures that can learn both short and long-range spatio-temporal
relationships from micro-expression data can significantly improve the accuracy of auto-
matic latent emotion recognition.

Hypothesis 3: Incorporating multimodal data, such as physiological signals and depth informa-
tion, alongside spontaneous micro-expressions can enhance the accuracy and robustness of
emotion recognition systems, providing a more comprehensive understanding of emotions.

These general hypotheses suggest that leveraging computer vision techniques, advanced deep
learning architectures, and multimodal data integration can contribute to advancing the field
of automatic latent emotion recognition from spontaneous micro-expression by improving the
detection and analysis of facial actions, enhancing the modelling of spatio-temporal relationships,
and incorporating complementary information from different modalities. I also define several
detailed research hypotheses from these general ones.
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Firstly, the proposal to use computer vision methods for detecting activated AU in micro-
expressions addresses the gap in automated AU detection for micro-expressions. This contribu-
tion aims to provide feedback to psychologists and facilitate further research in understanding
the relationship between micro-expression and latent emotional states through facial muscle
activation.

Hypothesis 1.1: Segmenting facial key subregions based on activated facial muscles enhances
the accuracy and effectiveness of detecting micro AU and analysing facial micro-expressions.

Hypothesis 1.2: Transferring a complex multi-label classification problem into smaller ones
based on segmented regions simplifies the task of micro-expression AU detection.

Hypothesis 1.3: The use of an AU-independent cross-validation method provides a reliable and
robust evaluation metric for assessing the performance of AU detection approaches in
micro-expression analysis.

Secondly, the development of a third-generation architecture that can simultaneously learn both
short and long-range relationships from micro-expression data represents an advancement in the
field of automatic emotion recognition. By incorporating global spatial relationships through
graph-based architectures, the accuracy of emotion recognition in micro-expressions can be
improved.

Hypothesis 2.1: Novel approaches that utilise transformer architectures for video-based MER
achieve comparable or superior performance compared to existing deep learning methods
that employ other architectures.

Hypothesis 2.2: The use of alternative input representations, such as long-term optical flow
matrices instead of original colour images, enhances the accuracy and robustness of MER.

Hypothesis 2.3: Integrating temporal information and spatial relations in feature extraction
improves the discriminative power of the extracted features for latent emotion recognition.

Hypothesis 2.4: The inclusion of temporal aggregation mechanisms that connect spatio-temporal
features extracted from multiple frames contributes to the overall effectiveness of video-
based MER systems.

Lastly, the exploration and integration of multimodal data, such as incorporating physiological
signals, in the context of latent emotion recognition in micro-expressions, have the potential
to significantly enhance the accuracy and robustness of emotion recognition systems. This
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comprehensive approach, leveraging multiple modalities, including visual cues and physiological
signals, can provide a deeper and more nuanced understanding of emotions, leading to improved
latent emotion recognition capabilities.

Hypothesis 3.1: Combining micro-expression and physiological signals in a multimodal learn-
ing framework improves the performance of latent emotion recognition.

Hypothesis 3.2: Separable and mixable network flow effectively extracts features from various
physiological signals.

Hypothesis 3.3: The standardised normal distribution weighted feature fusion method better
reconstructs informative maps from different frames of micro-expression video.

Hypothesis 3.4: The external feature guided attention module achieves multimodal learning
for both micro-expression (colour and depth information) and latent emotion recognition
(micro-expression and physiological signals).

1.4 Organisation of this thesis

A concise overview of each chapter in this thesis is provided below, offering a brief description
and highlighting the key focus of each section.

Chapter 1: Introduction

This chapter provides an introduction to this thesis, elucidates the central claims and
motivations of the entire work, and outlines the key contributions.

Chapter 2: Context Survey

This chapter presents a comprehensive and up-to-date review of micro-expression analysis
and multimodal emotion recognition (MMER), including a detailed critical analysis of pre-
vious approaches with both hand-crafted and deep learning designs. Moreover, this chapter
introduces the micro-expression and 3D facial expression databases, and summarises the
differences and highlights of those databases.

Chapter 3: Facial Action Unit Detection from Micro-Expression

This chapter describes a handcrafted approach for detecting the activated AU from micro-
expressions. This chapter introduces this novel task and designs an evaluation metric
to experiment with the proposed approach’s performance. Intensive experiments are
conducted on two publicly available micro-expression databases with AU labels. The
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results indicate the effectiveness of the approach and demonstrate the ability to consider
AUs as the intermediate variable between micro-expressions and emotions.

Chapter 4: Short and Long Range Relation Based Spatio-Temporal Transformer for Micro-
Expression Recognition

This chapter presents a novel deep learning transformer framework, named short and
long range relation based spatio-temporal transformer (SLSTT), for video-based micro-
expression recognition. The details of each block in the framework are described in
the subsections and a comparison with others’ work shows that the proposed entirely
transformer-centred architecture outperforms the previous CNN-based ones.

Chapter 5: Multimodal Authentic Emotion Recognition from Micro-expression and Physiologi-
cal Signals

This chapter details my work on multimodal micro-expression recognition, which involved
integrating RGB frames, depth information, and physiological signals to enhance emotion
recognition. I developed guided attention modules that incorporated depth information
with RGB inputs, and physiological signals to achieve multimodal fusion in the frame-
work. Results from a series of experiments showed that including physiological signals
significantly improved the recognition of genuine emotions within micro-expressions.

Chapter 6: Conclusions and Future Work

This chapter presents a comprehensive synthesis of the principal contributions emanating
from this thesis and proffers insights into potential avenues for future research in the
domains of latent emotion recognition and micro-expression analysis. The contributions
presented herein not only substantiate the underlying hypotheses but also pave the way for
further investigations in these areas.



2CHAPTER TWO

CONTEXT SURVEY

Facial expression recognition (FER) has emerged as a prominent research area in the field of
computer vision, encompassing several subtasks aimed at enhancing the accuracy and authen-
ticity of affective computing. Among these, micro-expression recognition (MER) has received
considerable attention and seen rapid development over the past decade. A multitude of recogni-
tion algorithms and databases have been published, significantly contributing to the field. This
chapter presents an extensive review, starting from the basic emotion models and progressing
to the literature pertaining to FER and its various subtasks, with a specific focus on MER. The
chapter also highlights the advantages and limitations of each algorithm and database, discusses
the relative strengths and weaknesses of the various approaches, and provides an overview of the
related databases.

2.1 Basic emotions and facial action units

In 1872, Darwin’s book “The Expressions of the Emotions in Man and Animals” was published,
which led to the recognition and study of emotions. Following Darwin’s work, researchers have
made significant advancements in the study of facial expressions. To recognise emotions, they
must be defined. While a definition of basic emotions was proposed decades ago, there is no
universally upheld consensus. Psychologists typically model emotions in two ways: by dividing
them into discrete categories or by using multiple dimensions. In this section, I will present and
discuss various models of emotions and the associated research.

2.1.1 Discrete emotion models

According to basic emotion theory, humans have a limited number of basic emotions (e.g., fear,
anger, joy, sadness) that are biologically and psychologically ingrained [72]. These emotions
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have a set of associated behaviours and evolved to handle fundamental life tasks, such as survival.
Basic emotions can be combined to form complex emotions. These emotions have innate
neural substrates and universal behavioural phenotypes. The differences between some of these
emotions may have developed later for social functions rather than survival. Ultimately, emotions
provide a way for humans to explain and understand their experiences and behaviours.

The exact number of basic emotions is a subject of debate among researchers, and various
proposals have been put forward. In a special issue of Emotion Review [168], several research
psychologists outlined the latest thinking about each theoretical model of basic emotions. For
instance, Ekman and Cordaro initially suggested seven basic emotions: fear, anger, joy, sadness,
contempt, disgust, and surprise[38]. The different lists of basic emotions are largely similar,
with some exceptions and disagreements over terminology (refer to Table 2.1). To prevent any
confusion, items have been grouped across the lists that appear to represent the same emotional
state, despite potentially having different names. All four lists consist of one positive emotion
(labelled happiness, enjoyment, or play) and three negative emotions: sadness (labelled grief by
Panksepp and Watt [132]), fear, and anger; interest/seeking is included in Izard’s, Levenson’s and
Panksepp and Watt’s lists [74, 98, 132], but is not recognised as a basic emotion by Ekman and
Cordaro, who consider it a “cognitive state of focused attention.” Similarly, Panksepp and Watt’s
model is the only one that excludes disgust, as they believe it evolved to regulate physiological
needs like hunger or physical pain [132].

Table 2.1: Similarities and discrepancies among the clear-cut basic emotions included in each of the four
models.

IZARD [74] PANKSEPP & WATT [132] LEVENSON [98] EKMAN & CORDARO [38]
Happiness Play Enjoyment Happiness
Sadness Panic/Grief Sadness Sadness

Fear Fear Fear Fear
Anger Rage Anger Anger

Disgust Disgust Disgust
Interest Seeking Interest

Contempt Contempt
Lust Love
Care Relief Surprise

Some researchers argue that four basic emotions – fear, anger, joy, and sadness – are adequate to
account for human emotional experiences [76, 51, 177, 230]. As Izard argued, people require
the category label of fear to explain flight for safety, anger to explain frustration when blocked
from achieving a goal, joy (or an equivalent) to express pride in accomplishments, and sadness
to express experience of a significant loss [73]. Some other models include more complex
emotions than basic ones. Plutchik suggested eight primary emotions: anger, fear, sadness,
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disgust, surprise, anticipation, trust, and joy, which he arranged in a colour wheel as shown
in Figure 2.1. The stronger emotions are in the centre, and the weaker ones are at the outer
edge. These basic emotions can be mixed to form complex emotions, just like colours [142].
Parrott’s approach is another notable theory, where he identified over 100 emotions and organised
them in a three-layer tree-structured list, see Table 2.2. The first layer consists of six primary
emotions that branch out into different forms of feeling, and other layers refine the granularity of
the previous layer, making abstract emotions more concrete [134]. Though more emotions are
included in these models, discrete emotion models only use word descriptions for emotions, it is
still challenging to analyse complex emotions, such as mixed emotions, which may be difficult
to express precisely in words and require quantitative analysis.

Figure 2.1: Comprehensive visual representation: Plutchik’s emotion wheel mapping the spectrum of
human emotional states.

2.1.2 Multi-dimensional emotion space models

Although using discrete labels such as ‘fear’ and ‘joy’ is the most straightforward way to represent
an emotion, there are some disadvantages to label-based representations. One of the main issues is
that labels are not cross-lingual, as emotions do not have exact translations in different languages;
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Table 2.2: Parrot’s emotion framework.

Primary
emotion

Secondary
emotion Tertiary emotion

Love
Affection Adoration,Fondness,Liking,Attractiveness,

Caring,Tenderness,Compassion,Sentimentality
Lust/Sexual desire Desire,Passion, Infatuation
Longing Longing

Joy

Cheerfulness
Amusement,Bliss,Gaiety,Glee,Jolliness,Joviality,
Joy,Delight,Enjoyment,Gladness,Happiness,
Jubilation,Elation,Satisfaction,Ecstasy,Euphoria

Zest Enthusiasm,Zeal,Excitement,Thrill,Exhilaration
Contentment Pleasure
Pride Triumph
Optimism Eagerness,Hope
Enthrallment Enthrallment,Rapture
Relief Relief

Surprise Surprise Amazement,Astonishment

Anger

Irritability Aggravation,Agitation,Annoyance,Grouchy,
Grumpy,Crosspatch

Exasperation Frustration

Rage
Anger,Outrage,Fury,Wrath,Hostility,Ferocity,
Bitter,Hatred,Scorn,Spite,Vengefulness,Dislike
Resentment

Disgust Revulsion,Contempt,Loathing
Envy Jealousy
Torment Torment

Sadness

Suffering Agony,Anguish,Hurt

Sadness Depression,Despair,Gloom,Glumness,Unhappy,
Grief,Sorrow,Woe,Misery,Melancholy’

Disappointment Dismay,Displeasure
Shame Guilt,Regret,Remorse

Neglect
Alienation,Defeatism,Dejection,Embarrassment,
Homesickness,Humiliation, Insecurity, Insult,
Isolation,Loneliness,Rejection

Sympathy Pity Sympathy

Fear Horror Alarm,Shock,Fear,Fright,Horror,Terror,Panic,
Hysteria,Mortification

Nervousness Anxiety,Suspense,Uneasiness,Apprehension (Fear),
Worry,Distress,Dread

for example, “disgust” does not have an exact translation in Polish [148]. Additionally, emotions
with the same label may have different intensities, such as describing happiness as being a little
bit happy or very happy. To address these limitations, psychologists often represent emotions or
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feelings in an n-dimensional space, typically two or three-dimensional. The most well-known
space, originating from cognitive theory, is the 2D valence-arousal or pleasure-arousal space [92].
The valence dimension indicates the positivity or negativity of emotion, ranging from unpleasant
feelings to pleasant feelings, such as a sense of happiness. The arousal dimension indicates the
level of excitement that the emotion represents, ranging from sleepiness or boredom to wild
excitement. While the 2D emotion space is useful in distinguishing between positive and negative
emotions, it may not be sufficient in distinguishing between similar emotions. For instance, both
fear and anger fall under the category of negative valence and high arousal. To address this issue,
Mehrabian expanded the emotion model from 2D to 3D, as shown in Figure 2.2. The additional
axis in the 3D model is called dominance and ranges from submissive to dominant, representing
the degree of control that a person has over a particular emotion [121]. With the inclusion of this
dimension, it becomes easier to differentiate between anger and fear, as anger is located in the
dominant axis while fear is in the submissive axis.

Figure 2.2: VAD (Valence-Arousal-Dominance) emotional state model.

2.1.3 Facial action coding system

Researchers have yet to reach a consensus on the definition of emotions, but they generally agree
that emotions can significantly affect facial expressions [75]. Recent research has identified
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Table 2.3: Main codes in facial action coding system (FACS).

AU Description Muscular basis
1 Inner brow raiser Frontalis, pars medialis
2 Outer brow raiser Frontalis, pars medialis
4 Brow lowerer Corrugator supercilii, depressor supercilii
5 Upper lid raiser Levator palpebrae superioris
6 Cheek raiser Orbicularis oculi, pars orbitalis
7 Lid tightener Orbicularis oculi, pars palpebralis
9 Nose wrinkler Levator labii superioris alaquae nasi

10 Upper lip raiser Levator labii superioris
11 Nasolabial deepener Zygomaticus minor
12 Lip corner puller Zygomaticus major
13 Cheek Puffer Levator anguli oris (a.k.a. Caninus)
14 Dimpler Buccinator
15 Lip corner depressor Depressor anguli oris (a.k.a. Triangularis)
16 Lower lip depressor depressor labii inferioris
17 Chin raiser Mentalis
18 Lip pucker Incisivii labii superioris and Incisivii labii inferioris
20 Lip stretcher Risorius with platysma
22 Lip funneler Orbicularis oris
23 Lip tightener Orbicularis oris
24 Lip pressor Orbicularis oris

25 Lips part Depressor labii inferioris,
or relaxation of Mentalis, or Orbicularis oris

26 Jaw drop Masseter, relaxed Temporalis and internal Pterygoid
27 Mouth stretch Pterygoids, Digastric
28 Lip suck Orbicularis oris
41 Lid droop Relaxation of Levator palpebrae superioris
42 Slit Orbicularis oculi

43 Eyes closed Relaxation of Levator Palpebrae superioris;
Orbicularis oculi, pars palpebralis

44 Squint Orbicularis oculi, pars palpebralis

45 Blink Relaxation of Levator palpebrae superioris;
Orbicularis oculi, pars palpebralis

46 Wink Relaxation of Levator palpebrae superioris;
Orbicularis oculi, pars palpebralis

two types of facially expressed emotions, approach or withdrawal, based on their relationship
to cognitive processes. Tomkins proposed that the subjective experience of emotions results
from feedback from facial muscle changes. Studies have explored how an individual’s subjective
experience of emotions influences the performance of their muscular movements [166]. To
enable facial movement research in various fields, Ekman and Friesen developed the FACS,
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which offers a standardised language for measuring and describing facial behaviour [41], main
codes are shown in Table 2.3. FACS uses facial action units (AUs) to represent fundamental
actions of individual or group muscles. Although FACS itself does not include emotion-specific
descriptors, it is commonly used to interpret nonverbal communicative signals, such as facial
expressions related to emotion or other human states.

To clarify, FACS is an index of facial movements that does not provide any biomechanical
information about the degree of muscle activation. The AUs are identified by a number, shorthand
name, and anatomical basis and are rated on a 5-point intensity scale. The FACS modifiers
include letters A-E appended to the AU number to indicate intensity levels from minimal to
maximum. Other modifiers used in FACS codes for emotional expressions include “R” for
actions that occur on the right side of the face and “L” for actions on the left side. An action
that is unilateral but has no specific side is indicated with a “U”, while an action that is bilateral
but has a stronger side is indicated with an “A” for asymmetric [41]. To make emotion-based
inferences from single or combinations of AUs, researchers often use related resources, such as
emotion facial action coding system (EMFACS), the FACS Investigators’ Guide, and the FACS
interpretive database [42]. Table 2.4 provides an example of such emotion-based inferences
using AUs.

Table 2.4: The examples of emotion-related facial actions.

Emotion Action units
Happiness 6+12
Sadness 1+4+15
Surprise 1+2+5B+26

Fear 1+2+4+5+7+20+26
Anger 4+5+7+23

Disgust 9+15+17
Contempt R12A+R14A

2.2 Micro-expression recognition approaches

The automatic recognition of human facial expressions, known as FER, has been a topic of
interest among researchers seeking to gain a deeper understanding of human emotions. FER
systems can be classified into two main categories: static image-based and dynamic sequence-
based methods. Static image-based methods encode spatial information from a single image,
while dynamic sequence-based methods consider the temporal relationships between frames
in an input facial expression sequence. Traditionally, handcrafted features or shallow learning
techniques such as local binary pattern (LBP), non-negative matrix factorisation, and sparse
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learning have been used for FER []. However, with the advent of facial expression recognition
competitions such as FER2013 [49] and EmotiW [33], as well as advancements in processing
power and network architectures, research has shifted towards deep learning methods, which
have achieved superior recognition accuracy. In recent years, various research institutions have
also provided a large number of datasets, and more and more deep-learning methods have
been proposed to address challenging scenarios in this area. One significant challenge is the
recognition of micro-expressions, which refers to the recognition of emotions expressed in a
sequence of faces known to be brief and subtle. In recent years, computer vision technology has
been increasingly utilised for automatic MER, which has improved the feasibility of applications
involving micro-expressions. In this section, I provide a broad overview of the various methods
employed in the realm of MER, ranging from classical manually engineered features to newly
emerging deep learning-based approaches.

2.2.1 The first generation: hand-crafted features

2.2.1.1 3D histograms of oriented gradients

Polikovsky et al. proposed the use of a 3D gradient feature to describe local spatio-temporal
dynamics of the face [143]. Following the segmentation of a face into 12 regions according to
the FACS [40], each region corresponding to an independent facial muscle complex, and the
appearance normalisation of individual regions, Polikovsky et al. obtained 12 separate spatio-
temporal blocks. The magnitudes of gradient projections along each of the three canonical
directions are then used to construct histograms across different regions, which are used as
features. The authors assumed that each frame of the micro-expression image sequence involves
only one AU, which represents one specific activated facial muscle complex in FACS, and this
unit can be used as an annotation of the image. The k-means algorithm is used for clustering in
the gradient histogram feature space in all frames of micro-expression image sequences, and
the number of clusters is set to the number of AUs that have appeared in all micro-expression
samples. The AU corresponding to the greatest number of features is regarded as the real label
of each cluster.

The feature extraction method of this work is relatively simple and is an extension of the plane
gradient histogram. The model construction adopts a more complicated process, which can be
regarded as k-mean cluster of the vectors for different facial cubes. It is robust to the correctness
of the labels and insensitive to a small number of false annotations.

The main limitation of this work lies in the aforementioned assumption that only a single AU is
active in each frame, which is overly restrictive in practice.
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Figure 2.3: Conceptual summary of the descriptor extraction process for a facial cube using 3D histograms
of oriented gradients (3DHOG).

2.2.1.2 Local binary pattern-three orthogonal planes

A LBP is a descriptor originally proposed to describe the local appearance of an image. The
key idea behind it is that the relative brightness of neighbouring pixels can be used to describe
local appearance in a geometrically and photometrically robust manner [127, 43, 82]. The basic
LBP feature extractor relies on two free parameters, call them R and P. Uniformly sampling
P points on the circumference of a circle with the radius R centred at a pixel, and taking their
brightness relative to the centre pixel (brighter than, or not – one bit of information) allows the
neighbourhood to be characterised by a P-bit number.

In recognition of micro-expressions, in order to encode the spatio-temporal co-occurrence pattern,
local binary pattern-three orthogonal planes (LBP-TOP) [217] is used to extract the LBP features
separately for the XY , XT , and Y T planes in image sequences. Neighbourhood sampling is
now performed over a circle in the purely spatial plane, and over ellipses in the spatio-temporal
planes.

Pfister et al. made one of the earliest attempts to recognise micro-expressions automatically.
Their method, in which LBP-TOP is used for the feature extraction, has been highly influential in
the field and much follow-up work drew inspiration from it [140]. Pfister et al. first use a 68-point
active shape model (ASM) [27] to locate the key points of the face. Based on the key points
obtained, the deformation relationship between the first facial frame of each sequence and the
model facial frame is calculated using the local weighted mean [50]. A geometric transformation
is then applied to each frame of the sequence so as to normalise small pose variations and coarse
expression changes. In order to account for differences in the number of frames between different
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Figure 2.4: Detailed sampling for LBP-TOP with RX = RY = R = 3, RT = R = 1, PXY = M = 16, and
PXT = PY T = M = 8.

input sequences, temporal interpolation model is used to temporally interpolate between frames,
thus normalising sequence length to a specific count. LBP-TOP features are extracted from these
normalised sequences. Finally, support-vector machines (SVM), random forest, and multiple
kernel learning methods are used for classification. Wang et al. expressed the micro-expression
sequence and its LBP features by a tensor and performed sparse tensor canonical correlation
analysis on the tensor to learn the relationship between the micro-expression sequence and
its LBP features [187]. The simple nearest neighbour algorithm is used for classification. In
experiments, the authors demonstrate the superiority of their approach over the original LBP-TOP
method.

Figure 2.5: Conceptual illustration of the Histogram of Concatenated LBP-TOP feature.

Local binary pattern with six intersection points (LBP-SIP) [192] extends LBP features for MER
in a different manner. The main improvement of the work of Wang et al. is to reduce the feature
dimension to improve feature extraction. Compared with LBP-TOP, it reduces information
redundancy, thus providing a more compact representation. Experimental evidence suggests
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that its extraction is nearly three times faster than that of LBP-TOP. Specifically, in the same
experimental environment, the average LBP-TOP extraction time of the Chinese academy of
sciences micro-expressions II (CASME II) database is 18.289s, and the LBP-SIP extraction
time is 15.888s. Furthermore, in the context of the use of the descriptors for recognition, the
LBP-TOP based MER takes 0.584s per sequence, in contrast to only 0.208s for LBP-SIP based.

Centralized binary pattern (CBP) [202] descriptor is another variation on the conceptual theme
set out by LBP. In broad terms, it is computed in a similar way to LBP. However, unlike in
the case of LBP, CBP compares the central pixel of an area with a pair of neighbours, see
Figure 2.6. Therefore, the corresponding binary code length is about half of that of LBP, with
a lower dimensionality of the corresponding histogram. Indeed, the key advantage of CBP
compared to LBP is that it produces lower dimensionality features. Hence, Guo et al. employ the
CBP-TOP operator in place of LBP-TOP, with an extreme learning machine for classification,
and experimentally demonstrate that performance improvement is indeed effected by their
approach [56].

CBP(M,R) = Â(M/2)�1
m=0 s
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Figure 2.6: Detailed sampling for CBP operator with RX = RY = R = 1, PXY = M = 8.

In addition to standard texture features, some researchers have also considered the use of colour
on micro-movement extraction (colour has indeed been shown to be important in face analysis
more generally [1]). If the usual RGB space that the original face image data is represented
in, is adopted for the extraction of the aforementioned local appearance features (such as the
commonly used LBP-TOP), the three channels result in redundant information, failing to effect
improvement over greyscale. Hence, Wang et al. considered this problem and instead proposed
the use of tensor independent colour space [184]. In another work [186], the researchers tried to
use CIELab and CIELuv colour spaces, which have already demonstrated success in applications
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needing human skin detection [213]. Their experiments showed that the transformation of colour
space can effect an improvement in recognition.

2.2.1.3 Histograms of oriented optical flow

One of the influential works which does not follow the common theme of using LBP-like local
features is that of Liu et al. which uses a different local measure, namely optical flow. The
authors extract the main motion direction in the video sequence and calculate the average optical
flow characteristics in the partial facial blocks [113]. Hence, they introduce Main Directional
Mean Optical flow feature (MDMO). Firstly, the face key point of each frame is located by using
the discriminative response map fitting model [3]. Then the optical flow field of each frame
relative to the succeeding frame is used to find an affine transformation matrix which corrects
for pose change. The transformation matrix makes the difference of facial landmarks in each
frame from the first frame minimal. The authors then calculate the average of the most similar
motion vectors of the optical flow field in each region as the motion characteristic of the region.
Specifically, they calculate the histograms of oriented optical flow (HOOF) feature [18] in each
region and quantise all optical flow direction vectors to eight intervals to obtain a histogram of
the aforementioned directions. The resulting histogram features are finally fed into a support
vector machine, trained to classify micro-expressions.

Following in spirit but unlike the work of Liu et al., Xu et al. used the optical flow field as the key
low-level feature to describe the pattern of micro-expression movement using the facial dynamics
map (FDM) [204]; see Figure 2.7. The FDM better reflects intricate local motion patterns
characteristic of micro-expressions, and has the appeal of being beneficial in interpretability by
virtue of its useful visualisation. Nevertheless, the uniform and indeed major disadvantage of
HOOF methods lies in their high computational cost, which makes them unsuitable for real-time,
large-scale MER.

Figure 2.7: One-dimensional histogram of FDM from optical flow estimation.
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2.2.2 The second generation: convolutional neural networks

Deep learning in the realm of micro-expression analysis started around 2016, and the annual
number of publications shows an exponential increase in the following years. A vast number of
deep learning frameworks have been proposed, with their own strategy of choosing and detecting
facial region of interest (ROI), input data, network structure or temporal recurrent strategy. I
overview these next.

Kim et al. use deep learning and introduce a feature representation based on expression states
– convolutional neural network (CNN) are employed for encoding different expression states
(start, start to apex, apex, apex to end, and end). Several objective functions are optimised during
spatial learning to improve expression class separability [87]. The encoded features are then
processed by a long short term memory (LSTM) network to learn features related to time scales.
Interestingly, their approach failed to demonstrate an improvement over more old-fashioned,
hand-crafted feature based methods, merely performing on par with them. While these results
need to be taken with a degree of caution due to the limited scale of empirical testing and low
data diversity (a single dataset, CASME II, discussed shortly, was used), they suggest that the
opportunity for innovation in the sphere of deep learning in the context of micro-expressions is
wide open.

Peng et al. also adopt a deep learning paradigm, while making use of ideas previously shown to
be successful in the realm of conventional methods, by using a sequence of optical flow data as
input [137]. To overcome the limitation imposed by the availability of training data, their dual
time scale convolutional neural network comprises a shallow neural network for MER and only
four layers for the convolutional and pooling stages. On a dataset formed by merging Chinese
academy of sciences micro-expressions (CASME) and CASME II, using four different micro-
expression classes – namely negative, positive, surprise, and other – their approach achieved
higher accuracy than the competing methods: STCLQP [65], MDMO [113] and FDM [204].

Khor et al. proposed an enhanced long-term recursive convolutional network for MER, which
uses the architecture [34] to characterise small facial changes [85]. The model includes a deep
spatial feature extractor and a time extractor. These two variants of the network are enriching
the spatial dimension by input channel superposition and the time dimension by depth feature
superposition. Experimental evidence suggests that spatial and time modules play different roles
within this framework, and that they are highly interdependent in effecting accurate performance.
The experiments were performed with the usual evaluation metric, also with the appealing
modification that training and test were performed on datasets with different provenances,
namely, while training was done on CASME II, testing was performed on spontaneous actions
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and micro-movements (SAMM), vice versa.

Xia et al. proposed a spatio-temporal recurrent convolutional network that captures spatio-
temporal changes in micro-expression sequences. The approach employs a CNN with recurrent
connections to automatically learn the visual features of micro-expressions and uses an end-to-
end optimisation strategy. Additionally, a temporal data augmentation strategy and a balanced
loss function were used to overcome the issues of limited and unbalanced training samples [200].
Gupta introduced a new method based on temporal and spatial characteristics. The approach aims
to address the problems of incomplete feature encoding and insufficient training data by using
AUs, landmarks, gaze, and appearance features of all video frames to encode subtle expression
changes while preserving mostly relevant micro-expression information [57]. These proposed
methods have shown potential in improving the accuracy of micro-expression recognition.

2.2.3 Closing remarks

To summarise this section, in the realm of conventional computer vision approaches to micro-
expression recognition and analysis, there is a broad similarity between different approaches
described in the literature, all of them being based on appearance based local (in time or space)
features. In general, simple spatial LBP-TOP features (and similar variations) perform better than
spatio-temporal 3DHOG and HOOF, when high-resolution images are used. However, when
image resolution is low, the reverse is observed. This observation is consistent with what one
might expect from theory. Namely, the performance of LBP-TOP features is adversely affected
by the reduction in resolution due to their reliance on local spatial information. The loss of
spatial details hampers their effectiveness. On the other hand, HOOF and 3DHOG heavily rely
on temporal variations, making them less susceptible to changes in image resolution. While they
are not entirely unaffected by such changes, the inter-frame information they capture remains
relatively more robust.

Contrasting conventional computer vision approaches are emergent deep learning methods.
Though a number of different micro-expression recognition algorithms based on deep learning
have now been described in the literature, the performance of this umbrella of methods is yet
to demonstrate its value in this field. Finally, for completeness, I include a detailed summary
of a comprehensive list of different conventional and deep learning approaches in Table A.1,
including many minor variations on the themes directly surveyed in this section and which do
not offer sufficient novelty to warrant being discussed in detail.
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2.3 Multimodal emotion recognition

Another challenging issue that can better uncover people’s true emotions is multimodal emotion
recognition (MMER). MMER is a field of research that combines information from multiple
sources to recognise and classify human emotions. The need for MMER arises from the fact
that human emotions are often conveyed through multiple modalities, and a single modality may
not be sufficient to accurately recognise them. Recent advancements in technology and data
collection have enabled researchers to explore new approaches to recognising emotions, leading
to the integration of FER with other modalities such as voice, text, depth data, and physiological
signals. Depth data provides additional information about facial expressions, while physiological
signals, such as heart rate and skin conductance, can provide insight into a person’s emotional
state. This integration has led to improved performance in emotion recognition tasks, making
MMER an increasingly important area of research. In this section, I provide an overview of the
different modalities used in emotion recognition related to FER, their respective advantages and
limitations, and the challenges and opportunities associated with their integration.

2.3.1 Facial expression recognition with depth information

In the field of FER, 2D texture data have been the most widely used data representation. However,
with the emergence of new technologies, alternative methods such as 3D models of the face
or combining texture and depth information as multimodal data have become more prevalent.
Consequently, a new subtask of FER called 3D facial expression recognition (3DFER) has
emerged. This part introduces the conventional feature and facial model-based methods for
3DFER, as well as the leading deep learning approaches.

2.3.1.1 Conventional feature and facial modal based methods

Conventional approaches for static 3DFER can be divided into two categories: feature-based and
facial model-based methods. Feature-based methods extract facial surface geometric information,
such as curvature, distances between landmarks, and local shape, from the input data. These
features are then fed into various classifiers for emotion recognition, such as SVM [157, 4, 79],
hidden Markov model (HMM) [94, 149, 150], random forest [36] or neural networks [70, 80].
However, feature-based methods require correctly located landmarks for feature extraction, which
was a difficult task until recently when it became automated. Additionally, the performance
of feature-based methods relies on the discriminative power of the facial features adopted. An
example of the framework is shown in Figure 2.8.

Facial model-based methods for 3DFER typically use a generic face model created using
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Figure 2.8: An example framework of conventional approach. For the input face scan (3D/4D frame)
with some kind of expression, the entire face is segmented into 11 pre-defined areas, and different features
(i.e. coordinate, normal, and shape index) extracted from each muscle region are fed into SVM (for 3D
data) or HMM (for 4D data) for prediction, where the weights of different facial regions for score level
fusion are learned offline on the training data [228].

the neutral expression to determine emotions by measuring the feature vector formed by the
coefficient of shape deformation. This approach needs to bring into correspondence the tracking
model to 3D face scans by means of a registration step. Some recent examples of model-
based approaches include Zhao et al.’s, which combined a Bayesian belief net and statistical
facial feature models and achieved an average recognition rate of over 82% on the BU-3DFE
database [225]. Zhen et al. presented a novel approach to 3DFER problem based on the muscular
movement model, which combines the advantages of both feature-based and model-based
methods. The model forms 11 muscle regions, each of which is described by a certain number
of geometric features to capture shape characteristics and uses a genetic algorithm to learn the
weights of the sections. SVM and HMM classifiers are used for expression prediction in static
and dynamic 3DFER datasets, BU-3DFE and BU-4DFE respectively [228].

Aside from Zhen et al.’s work, early research in 3D motion-based facial expression analysis
includes Yin et al.’s, which recognised the six basic expressions using motion vectors for
classification without explicitly modelling temporal dynamics [211]. A deformable model was
utilised for tracking the changes between frames and from which the motion vectors could be
found and the BU-4DFE database was used for experiments. Another approach used ASM
to represent pairs of 2D and 3D images in order to track the movements of landmarks and
identify deformations corresponding to specific AUs [169, 170]. Also, a small 3D database was
created to analyse expression dynamics, where feature points were tracked to capture 3D mesh
deformation during expression [17]. Dimensionality reduction embedded video sequences into a
low-dimensional manifold, used to build a probabilistic model containing temporal information.
In Sun and Yin’s work, the deformable model [211] was adapted to track changes in each frame
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to extract geometric features [161]. Linear discriminant analysis was applied for dimensionality
reduction, and 2-dimensional HMMs was used to model spatial and temporal relationships
between features in analysing facial expression dynamics using the BU-4DFE database.

2.3.1.2 Deep learning approaches

Deep learning techniques, first theorised in the 1980s, have been successfully applied in various
fields. Deep neural networks have also been used to classify facial images into emotion categories,
achieving higher accuracy than traditional methods. Automatic deep FER involves three steps:
pre-processing, deep feature learning, and classification. Pre-processing includes image cropping,
rotation correction, data augmentation, and spatial normalisation. Then, a deep learning technique
like CNN or recurrent neural network (RNN) is applied to perform feature extraction and
classification in an end-to-end manner. Alternatively, the neural network can be used only for
feature extraction, and then independent classifiers, such as SVM, can be applied to the extracted
representations.

Researchers have also used deep learning-based methods for 3DFER, such as the approach of Li
et al., who proposed a new deep CNN model for subject-independent multimodal 2D+3D FER.
This is the first work of introducing deep CNN to 3DFER and deep learning-based feature level
fusion for multimodal 2D+3D FER [99], see Figure 2.9 for the framework. Other researchers,
such as Oyedotun et al., proposed a CNN model that learns discriminative features from both
RGB and depth map latent representation [128], while Yang and Yin use CNNs and landmark
clues, with the sole use of 3D geometrical facial models [209].

Apart from the texture based CNN, Chen et al. directly used 3D facial point clouds based on a
fast and light manifold CNN model. The model adopts a human vision inspired pooling structure
and a multi-scale encoding strategy to enhance geometry representation, which highlights shape
characteristics of expressions and runs efficiently, achieving state-of-art performance on BU-
3DFE [23]. Jan et al. designed a novel system for 3DFER based on accurate facial parts extraction
and deep feature fusion, achieving better performance than using the entire face [80]. Zhu et al.
introduced a discriminative attention-based CNN, to capture more comprehensive expression-
related representations [235]. Recently, some researchers have started using 4D data [102, 6, 7].
For example, Li et al. proposed a dynamic geometrical image network. Geometrical images
were generated by estimating the differential quantities from the given 3D facial meshes. A
score-level fusion was then performed on the probability scores of different geometrical images
for emotion recognition.
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Figure 2.9: An example framework of 2D+3D FER. Each textured 3D face scan is represented as six
types of 2D facial geometric and photometric attribute maps (i.e. 3D coordinates based geometry map,
normal vectors based normal maps, principle curvatures based curvature map, and texture map). These
attribute maps are jointly fed into the feature extraction subnet of DF-CNN with sharing parameters,
generating hundreds of multi-channel feature maps. All these feature maps are then fed into the feature
fusion subnet. Finally, the softmax-loss layer is followed for network training [99].

2.3.2 Multimodal emotion recognition with physiological signals

Emotions are complex experiences that involve not only outward physical expressions but also
internal feelings, thoughts, and other processes that may not be consciously perceived by the
individual. For example, people might smile in a formal social occasion even if he is in a negative
emotional state. The other category is using the internal signals—the physiological signals,
which include the electroencephalogram (EEG), temperature, heart rate/fingertip pulse – electro-
cardiogram (ECG), electromyogram (EMG), galvanic skin response (GSR), respiration (RSP),
etc, see Figure 2.10. Some of these physiological processes can be naturally recognised by others,
such as sensing someone’s clammy hands or a racing heart. The relationship between bodily
sensations and external expressions is a topic of ongoing research and historical controversy.
While some early theorists, such as James, emphasised the role of bodily changes in emotional
experiences [78], others, like Cannon and Schachter, argued that physiological responses alone
were not sufficient to discriminate emotions [14, 151]. Recent studies have explored the possibil-
ity of using pattern recognition techniques to classify emotions based on physiological signals,
such as facial electromyogram signals or autonomic nervous system responses, with varying
degrees of accuracy.

ECG, is a non-invasive method of measuring the electrical activity of the heart. This activity is
displayed as a waveform on a computer screen or chart recorder, which can help identify the
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Figure 2.10: A simplified diagram illustrating the bio-signals to be measured from the human body using
wearable systems and their corresponding sensing points.

normality or abnormality of a heartbeat. Only a limited number of recent studies are related
to ECG-based emotional expression recognition [12, 81], while many studies have focused on
recognition of emotional expressions using EEG signals due to robust sensing of emotions in the
brain [123, 124, 131]. However, the high-dimensionality of EEG signals makes it hard to identify
the most effective features for emotional expression recognition. Therefore, some techniques
have been proposed to detect emotions by fusing several physiological signals. The techniques of
feature fusion can be divided into early and late fusion. Early fusion, also known as feature-level
fusion, involves combining extracted features from the signals into a single set before sending
them to the classifier. Late fusion, also called decision-level fusion, involves taking the final
result by voting on the results produced by several classifiers. The functioning and distinction
between early and late fusion for multimodal signals are visually depicted in Figure 2.11.

The most straightforward approach in early fusion is to concatenate the feature vectors from all
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modalities, also known as plain early fusion. In a study by Verma and Tiwary, plain early fusion
was employed to fuse energy-based features extracted from 32-channel EEG signals. That work
achieves a recognition rate of 81.45% for thirteen emotion classifications using SVM [174]. An
alternative to feature selection is to encode the dependencies between features. This can be done
by using probabilistic inference models like HMM and Bayesian network (BN). For example, a
BN was built to fuse features from both EEG and ECG signals in recognising emotions [153].

Figure 2.11: An illustrative representation of the process of early and late fusion in handling multimodal
signals.

Late fusion involves the use of multiple classifiers that can be trained independently, and the
final decision is made by combining the outputs of each classifier. The correspondence between
the channels is only identified during the integration step. Since the input signals can be
recognised independently, there is no need to put them together simultaneously. A framework
for emotion recognition based on the weighted fusion of basic classifiers was proposed [182].
The researchers developed three SVMs using power spectrum, high fractal dimension, and
Lempel-Ziv complexity features, respectively. The results of these classifiers were combined
using weighted fusion based on each classifier’s confidence estimation for each class.

2.4 Databases

Consideration of data used to assess different solutions put forward in the literature is of major
importance in every sub-field of modern computer vision. Arguably, considering the relative
youth of the field, this consideration is particularly important in the realm of micro-expression
recognition. Standardisation of data is crucial in facilitating fair comparison of methods, and its
breadth and quality are vital to understanding how well different methods work, their limitations,
and what direction new research should follow.
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Some of micro-expression related databases include USF-HD [154], Polikovsky’s Database [143],
York Deception Detection Test (YorkDDT) [195], CASME [205], spontaneous micro-expression
corpus (SMIC) [103], CASME II [206], SAMM [29], Chinese academy of sciences macro-
expressions and micro-expressions (CAS(ME)2) [146], facial micro-expressions “in the wild”
(MEVIEW) [69], micro-and-macro expression warehouse (MMEW) [10], a third generation fa-
cial spontaneous micro-expression database from Chinese academy of sciences (CAS(ME)3) [101],
and a spontaneous 4D micro-expression dataset with multimodalities (4DME) [105]. The nature
and purpose of these datasets vary substantially, in some cases subtly, in others less so. In
particular, the first three databases are older and proprietary, and contain video sequences with
non-spontaneous micro-expression exhibitions. The USF-HD is used to evaluate methods which
aim to distinguish between macro-expressions and micro-expressions. Different yet, Polikovsky’s
database was collected for assessing keyframe detection in the context of micro-expressions,
whereas the YorkDDT is specifically aimed at lie detection.

For the acquisition of data for non-spontaneous databases, participants are required to watch
the video or image data of the micro-expressions and try to imitate them. Therefore this data
should be used with due caution and not assumed to represent the strict ground truth. Therefore,
only open-source spontaneous micro-expression databases will be discussed here. These exhibit
significant differences between them, and their particularities are important to appreciate so that
the findings in the current literature can be interpreted properly and future experiments designed
appropriately.

2.4.1 Open-source spontaneous micro-expression databases

Recall that the duration of a micro-expression is usually only 1/25 to 1/5 of a second. In contrast,
the frame rate of a regular camera is 25 frames per second. Therefore, if conventional imaging
equipment is used, only a small number of frames capturing a micro-expression is obtained,
which makes any subsequent analysis difficult. Nevertheless, considering the ubiquity of such
standardised imaging equipment, some datasets such as SMIC-VIS and SMIC-NIR, do contain
sequences with precisely this frame rate. On the other hand, in order to facilitate more accurate
and nuanced micro-expression analysis, most micro-expression datasets in widespread use in
the existing academic literature use high-speed cameras for image acquisition. For example,
SMIC uses a 100 fps camera and CASME uses a 60 fps one, in order to gather more temporally
fine-grained information. The highest frame rate in the existing micro-expression database is at
the rate of 200 frames per second. This section provides an overview of each open spontaneous
micro-expression database and their specific characteristics.
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2.4.1.1 CASME

CASME [205] dataset contains 195 sequences of spontaneously exhibited micro-expressions.
The database is divided into two parts, referred to as Part A and Part B. The resolution of images
in Part A is 640⇥480 pixels, and they were acquired indoors, with two obliquely positioned
LED lights used to illuminate faces. Part B images have the resolution of 1280⇥720 pixels and
were acquired under natural light. Micro-expressions in CASME are categorised as expressing
one of the following: amusement, sadness, disgust, surprise, contempt, fear, repression, or
tension; see Figure 2.12. Considering that some emotions are more difficult to excite than others
in a laboratory setting, the number of examples across the aforementioned classes is unevenly
distributed.

Figure 2.12: Example apex frames from sequences in the CASME database [205].

2.4.1.2 SMIC

SMIC [103], contains videos of 20 participants, exhibiting 164 spontaneously produced micro-
expressions. What most prominently distinguishes SMIC from other micro-expression datasets
is the inclusion of multiple imaging modalities. The first part of the dataset contains videos
acquired in the visible spectrum using a 100-fps high-speed (HS) camera. The second part also
contains videos acquired in the visible spectrum (VIS) but at a lower frame rate of 25 fps. Lastly,
videos in the near-infrared (NIR) spectrum are included (n.b., only 10 out of 16 individuals in the
database). Hence, sometimes reference is made not to SMIC as a whole but to its constituents;
see Figure 2.13.

2.4.1.3 CASME II

CASME II [206] dataset is a large collection of spontaneously produced micro-expressions,
containing 247 video sequences of 26 Asian participants with an average age of approximately
22 years. The data was captured under uniform illumination, without a strobe. In contrast to
CASME, the emotional category labels in CASME II are much broader – namely, happiness,
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Figure 2.13: Example frames from sequences in the three subsets of SMIC, namely SMIC-HS, SMIC-VIS
and SMIC-NIR respectively [103].

sadness, disgust, surprise, and ‘others’ – thus making the trade-off between class representation
and balance, and emotional nuance, in the opposite direction.

Figure 2.14: Example apex frames from sequences in the (CASME II) database [206].

2.4.1.4 SAMM

The Spontaneous Actions and Micro-Movement (SAMM) [29] dataset is the newest addition to
the choice of micro-expression related databases freely available to researchers. It contains 159
micro-expressions, spontaneously produced in response to visual stimulus, of 32 gender balanced
participants with an average age of approximately 33 years. Being the most recently acquired
dataset, in addition to the standard categorised imagery, SAMM contains a series of annotations
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which have emerged as being of potential use from previous research. In particular, associated
with each video sequence are the indexes of the frame when the relevant micro-expression starts
and ends, and the index of the so-called vertex frame (frame when the greatest temporal change
in appearance is observed). In addition to being categorised as expressing contempt, disgust,
fear, anger, sadness, happiness, or surprise, each video sequence in the dataset also contains a
list of FACS AUs engaged during the expression.

Figure 2.15: Example images from the SAMM dataset [29].

2.4.1.5 CAS(ME)2

Like several other corpora described previously, the CAS(ME)2 [146] database is also hetero-
geneous in nature. The first part of this corpus, referred to as Part A, contains 87 long videos,
which contain both macro-expressions and micro-expressions. The second part of CAS(ME)2,
Part B, contains 303 separate short videos, each lasting only for the duration that an expression
(be it a macro-expression, or a micro-expression) is exhibited. The numbers of macro-expression
and micro-expression samples are 250 and 53 respectively. In all cases, in comparison with most
other datasets, the expressions are rather coarsely classified as positive, negative, surprised, or
‘other’.

2.4.1.6 MEVIEW

The MEVIEW dataset [69] is a unique micro-expression database in that it is the only one
that was collected from the Internet, making it a more realistic and uncontrolled dataset than
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those collected under laboratory conditions. The dataset includes a range of video content, such
as poker game videos and TV interviews that were downloaded from YouTube. The poker
game videos are particularly interesting as they involve players who may try to hide or fake
their true emotions, leading to the occurrence of micro-expressions. MEVIEW consists of 31
videos featuring 13 different individuals, with an average length of 3 seconds per video. The
videos were labelled using the FACS encoding, which provides a standardised way to describe
and quantify facial expressions. The dataset also contains additional information such as the
gender and age of the individuals featured in the videos. While MEVIEW is relatively small
compared to some of the other micro-expression databases, it provides a unique and valuable
resource for researchers interested in studying micro-expressions in real-world scenarios. Its
uncontrolled nature presents new challenges and opportunities for researchers to develop and
test novel approaches to micro-expression analysis.

Figure 2.16: Example faces with micro-expression from the MEVIEW database [69]

2.4.1.7 MMEW

MMEW [10] contains both macro- and micro-expressions sampled from the same subjects. This
new characteristic can inspire promising future research to explore the relationship between
macro- and micro-expressions of the same subject. The samples in MMEW have a larger image
resolution (1920⇥ 1080 pixels), providing greater visual detail. Furthermore, MMEW has a
larger face size in image sequences of 400⇥ 400 pixels, which could affect the accuracy of
expression recognition algorithms. Moreover, MMEW has more elaborate emotion classes. The
emotion classes in MMEW include Happiness (36), Anger (8), Surprise (89), Disgust (72),
Fear (16), Sadness (13), and Others (66). In addition to micro-expressions, MMEW also provides
900 macro-expression samples with the same class category (Happiness, Anger, Surprise, Disgust,
Fear, Sadness), acted out by the same group of participants. These may be helpful for further
cross-modal research (e.g. from macro- to micro-expressions), as well as for exploring differences
and similarities between macro- and micro-expressions of the same emotion. An example of
macro- and micro-expression samples from MMEW is shown in Figure 2.17.
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Figure 2.17: Six macro-expressions and six micro-expressions, sampled from the same person, in MMEW
database [10]

2.4.1.8 CAS(ME)3

CAS(ME)3 [101] is a third-generation multimodal spontaneous micro-expression database that
goes beyond just RGB images and includes depth information, physiological, and voice signals.
The database was developed to address the challenges of micro-expression elicitation, collection,
and annotation. CAS(ME)3 is composed of three parts. Part A and Part B contain 1,300 labelled
long videos with 943 micro-expressions and 3,143 macro-expressions labelled by professional
coders, and 1,508 unlabelled long videos of 216 subjects recorded in the same environment and
labelled by the same labellers. This helps validate micro-expression analysis methods on a larger
scale without database bias.

Additionally, CAS(ME)3 uniquely introduces multimodality to micro-expression analysis in
Part C, which contains 166 micro-expressions and 347 macro-expressions from 31 subjects.
Part C employs a third-generation of micro-expression eliciting paradigm, mock crime (refer to
Section 2.4.2.4 for details), which offers higher ecological validity. Ecological validity refers to
the extent to which research findings can be generalised and applied to real-world situations. In
the context of micro-expression analysis, the higher ecological validity of Part C in CAS(ME)3

signifies that the micro-expressions and macro-expressions captured during the mock crime
paradigm more closely resemble the spontaneous expressions that occur in real-life scenarios.
This paradigmatic shift allows researchers to study and develop analysis methods that align with
real-world contexts, leading to more reliable and practical outcomes. In comparison to the high
ecological validity database MEVIEW, Part C doubled the number of micro-expression samples
and also labelled macro-expressions, making it possible to enrich multimodal expression analysis
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with physiological signals such as heart rate and voice signals. Overall, CAS(ME)3 has about
eight million frames, including 1,109 micro-expressions and 3,490 macro-expressions.

2.4.1.9 4DME

The 4DME dataset [105] is a valuable resource for researchers who want to investigate the
benefits of 4D data and multimodal data fusion in micro-expression recognition. It comprises
267 micro-expression samples and 123 macro-expression samples from 41 subjects. The videos
have a resolution of 1200⇥1600 for 4D data and 640⇥480 for RGB, greyscale, and depth data.
They were recorded at a frame rate of 60 fps for 4D and greyscale data and 30 fps for RGB
and depth data. The participants in the dataset were 56 in number, aged between 22 and 57,
with diverse cultural backgrounds. The micro-expression and macro-expression samples are
labelled with 22 categories of AU labels and five categories of emotion labels. What sets 4DME
apart from others is that multi-emotion labelling with a maximum of two emotions was allowed.
Clips with complex AU combinations were labelled as ’Others,’ as were clips containing only
‘dependence’ AUs. Clips containing key AUs for both ‘Positive’ and ‘Negative’ were assigned to
‘Others’ as these two emotions are conflicting. Researchers can use this database to investigate
whether 4D data can improve micro-expression recognition performance and how the fusion of
various data sources could facilitate the task of micro-expression recognition.

2.4.1.10 Conclusion and comparative analysis

Table 2.5: A recap of spontaneous micro-expression databases

Database Micro-
expressions Participants FPS Ethnicities Average

Age Resolution Facial
Resolution

CASME [205] 195 35 60 1 22.03 640⇥480
1280⇥720 150⇥190

SMIC [103]
164
71
71

20
10
10

100
25
25

3 26.7 640⇥480 190⇥230

CASME II [206] 247 35 200 1 22.03 640⇥480 280
SAMM [29] 159 32 200 13 33.24 2040⇥1088 400⇥400
CAS(ME)2 [146] 57 22 30 1 22.59 640⇥480 N/A
MEVIEW [69] 40 16 25 N/A N/A 1280⇥720 N/A
MMEW [10] 300 36 90 1 22.35 1920⇥1080 400⇥400

CAS(ME)3 [101]
943
N/A
166

100
116
31

30 1 22.74 1280⇥720 N/A

4DME [105] 267 65 60
30 7 27.8 1600⇥1200

640⇥480 150⇥150

At present, the amount of micro-expression databases and the number of micro-expression
samples contained in each database is minimal. Therefore, combining different databases in
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Table 2.6: Labelled emotion classes included in spontaneous micro-expression databases

Database Number Emotions
CASME [205] 8 Happiness, Sadness, Disgust, Surprise, Contempt, Fear, Repression, Tense
SMIC [103] 3 Positive, Negative, Surprise
CASME II [206] 5 Happiness, Disgust, Surprise, Repression, Others
SAMM [29] 7 Disgust, Fear, Anger, Sadness, Happiness, Surprise, Others
CAS(ME)2 [146] 4 Positive, Negative, Surprise, Others
MEVIEW [69] 7 Contempt, Disgust, Fear, Anger, Happiness, Surprise, Unclear
MMEW [10] 7 Disgust, Fear, Anger, Sadness, Happiness, Surprise, Others

CAS(ME)3 [101] 7
4

Happiness, Disgust, Fear, Anger, Sadness, Surprise, Othes
Positive, Negative, Surprise, and Others

4DME [105] 5 Positive, Negative, Surprise, Repression, Others

an experiment may be an approach method for the training of MER models at present. When
the currently available spontaneous micro-expression databases are considered, each of them
can be seen to offer some kind of advantage over the others; nevertheless, the amount of data in
any of them not meet the requirements of the traditional deep learning algorithms. SAMM and
CASME II have the highest frame rate of 200fps, and SAMM has the highest resolution. The
SMIC database contains both high-speed camera samples as well as samples suitable as training
data for a model used in a typical non-high-speed camera environment. CAS(ME)2 contains not
only the FACS information and emotion labels associated with individual micro-expressions, but
also can be used to distinguish between macro- and micro-expressions. MMEW contains both
macro- and micro-expressions with the same participants, and includes Anger, Fear, and Sadness
classes not found in CASME II. On the other hand, MEVIEW is the only database that includes
"in the wild" samples, while CAS(ME)3 and 4DME provide depth information. Additionally,
CAS(ME)3 is the only database that offers multimodal data with voice and physiological signals.
A detailed comparison of each database is provided in Table 2.5 and 2.6.

2.4.2 Data collection and methods for systematic micro-expression
evocation

One difficulty in the process of collecting micro-expression video sequence corpora lies in the
difficulty of inciting micro-expressions in a reliable and uniform manner. A common approach
adopted in the published literature consists of presenting participants with emotional content
(usually short clips or movies) which is expected to rouse their emotions, while a the same time
asking them to disguise their emotions and maintain a neutral facial expression. A typical data
acquisition setup is diagrammatically shown in Figure 2.18.

When the aforementioned data collection protocol is considered with some care, it is straightfor-
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Figure 2.18: For the purposes of data collection, participants watch an emotional video while their faces
are imaged by a high-speed camera.

ward to see that a number of practical problems present themselves. Firstly, in some instances,
the assumption that the content presented to the participants will elicit sufficient emotion may
be invalidated. Thus, no meaningful micro-expression may be present in a video sequence of a
person’s face (e.g., in SMIC out of 20 individuals who participated in the recording sessions,
only 16 exhibited sufficiently well expressed micro-expressions). This problem can be partially
ameliorated by ensuring the stimuli are strong enough, though this must be done with due
consideration of possible ethical issues. On the complementary side, so to speak, considering that
micro-expressions are involuntarily expressed, it is important to suppress as much as possible
any conscious confound. In other words, there must exist sufficient incentives to encourage
participants to conceal their true feelings.

2.4.2.1 CAS series data acquisition protocol

During data collection of CASME [205], CASME II [206] and CAS(ME)2 [146], participants
were asked to watch different emotional videos while maintaining a neutral facial expression. As
explained before, the intention is to incite involuntary, micro-expressions, rather than have them
acted, which results in data which is not realistic. During the collection process, the participants
were required to remain expressionless and not move their bodies, thus removing any need for
body or head pose normalisation. Lastly, as a means of encouraging participants to conceal their
emotions, they were offered the potential of a monetary award. Specifically, the award was paid
out if a participant successfully managed to hide their emotion from the researcher supervising
the process (the researcher was unaware of the video content).
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2.4.2.2 SMIC data acquisition protocol

Much like in the case of three Chinese academy of sciences (CAS) databases, in the process
of data collecting for SMIC [103], the participants were shown emotional videos and asked to
attempt to conceal their reactions, and a researcher, unaware of the video content watched, was
asked to guess the participants’ emotions. Unlike for CAS series databases when participants
were incentivised by a reward for success (in hiding their emotions), now participants were
disincentivised by a ‘punishment’ – namely, unsuccessful participants had to fill in a lengthy
questionnaire.

2.4.2.3 SAMM data acquisition protocol

Highlighting the point I made previously – the need to understand well the nuanced differences
between different micro-expression datasets – the data acquisition protocol employed in collect-
ing the SAMM dataset is different still from all of the described thus far. Firstly, all participants
were asked to fill out a questionnaire before the actual imaging session. The aim of this was
to allow the researchers to personalise emotional stimuli (e.g. exploiting specific individual’s
fears, likes and dislikes, etc.). Additionally, and again in contrast with e.g. CAS databases (2nd
generation), in order to make the participants more relaxed and less affected by their knowledge
that they are partaking in an experiment, the participants were filmed without any supervision of
or oversight by the researchers.

2.4.2.4 CAS(ME)3 data acquisition protocol

The latest addition to the CAS series is CAS(ME)3, which differs significantly from the pre-
vious three databases. CAS(ME)3 was constructed with depth information. Parts A and B
were collected using a second-generation elicitation paradigm, the same as the previous CAS
databases. Part A and Part B consist of 100 and 116 subjects, respectively, each asked to watch
13 emotionally stimulating videos and attempt to maintain a neutral expression. Part C, on the
other hand, employed a mock crime scenario to elicit spontaneous micro-expressions. Partic-
ipants were asked to steal a small amount of money from an envelope and were subsequently
questioned about the theft. The scenario was designed to create a stressful situation that would
elicit spontaneous micro-expressions associated with guilt or deception. The videos collected
from Part C were used to evaluate the performance of algorithms in recognising spontaneous
micro-expressions in a real-world scenario. The use of the mock crime scenario adds an element
of realism to the dataset and makes it more applicable to real-world situations.
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2.4.2.5 The three generations of micro-expression elicitation methods

The study of micro-expressions has gained significance in various fields such as psychology,
criminology, and human-computer interaction. However, the ecological validity of micro-
expression databases is critical in determining their suitability for analysing micro-expressions
in complex real-world situations, which depends on the elicitation paradigm used. To address
this issue, researchers have classified published databases into three generations based on the
micro-expression elicitation methods, each with increased ecological validity.

The first generation involved posing fleeting facial expressions by actors who observed standard
expressions, resulting in databases such as USF-HD and Polikovsky’s database. These posed
micro-expressions lacked ecological validity, limiting their usefulness. The second generation in-
volved collecting micro-expressions using emotional stimuli through the neutralisation paradigm,
as seen in databases such as CASME, SMIC, CASME II, SAMM, and MMEW. While these
were more spontaneous, they were still collected in lab settings, and their ecological validity was
limited.

The third generation, which includes paradigms such as mock crime, dictator games, and pris-
oner’s dilemma, is designed to elicit micro-expressions with high ecological validity. MEVIEW,
an in-the-wild database by Husak et al., contains video clips from real scenarios, but they have too
many uncontrollable factors. Therefore, micro-expression samples still need to be collected in
well-controlled laboratory scenarios, such as the subset collected by the mock crime paradigm in
CAS(ME)3. This subset has improved ecological validity and eliminates uncontrollable factors,
making it more suitable for micro-expression elicitation and research related to its application in
lie detection.

Overall, the three generations of micro-expression elicitation methods reflect the evolution of
micro-expression research toward improving ecological validity. The first and second generations
laid the foundation for this research, while the third generation is advancing it further by
collecting micro-expression samples from more ecological situations. This evolution is crucial
for improving the accuracy and robustness of micro-expression analysis, allowing researchers to
better understand and analyse real-life scenarios where micro-expressions are prevalent.





3CHAPTER THREE

FACIAL ACTION UNIT
DETECTION FROM

MICRO-EXPRESSION

Micro-expressions describe unconscious facial movements which reflect a person’s psychological
state even when there is an attempt to conceal it. Often used in psychological and forensic
applications, their manual recognition requires professional training and is time-consuming.
Therefore, achieving automatic recognition by means of computer vision would confer enormous
benefits. AU is a coding of facial muscular complexes which can be independently activated.
Each AU represents a specific facial action. In this chapter, I propose a method for the challenging
task that is the detection of activated AUs when a micro-expression occurs, which is crucial in
the inference of emotion from a video capturing a micro-expression. This specific problem is
made all the more difficult in the light of limited amounts of data available and the subtlety of
micro-movements. I propose a segmentation method for key facial sub-regions based on the
location of AUs and facial landmarks, which extracts 11 facial key regions from each sequence of
micro-expression images. AUs are assigned to different local areas for multi-label classification.
Considering that there is little prior work on the specific task of detection of AU activation in
the existing literature on micro-expression analysis, for the evaluation of the proposed method I
design an AU independent cross-validation method and adopt unweighted average recall (UAR),
unweighted F1-score (UF1), and their average as the scoring criteria. Evaluated using the
established standards in the field and compared with previous work, my approach is shown to
exhibit state-of-the-art performance.

41
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3.1 Motivation

Facial expressions can reflect human emotions. Due to different cultural environments, individu-
als use different languages to communicate, but their emotions are expressed by the same facial
expressions [40]. In addition to the regular macro-expressions which take place on larger time
scales, small and speedy movements that are inadvertently exhibited for short periods of time,
better reveal emotions which individuals attempt to conceal. Ekman and Friesen first reported on
a case of these particular expressions. In a recording of a conversation between a psychiatrist
and a patient with depression, there are occasional frames with very painful expressions of a
patient otherwise displaying a happy appearance in the video. Researchers call that kind of fast,
unconscious, spontaneous facial movements such people produce when they experience intense
emotions, micro-expression. Micro-expressions usually happen within less than 0.5 seconds. If
the occurrence of micro-expressions is detected and the emotional meaning represented by them
is recognised, the real mental activities of individuals could be accurately identified.

Facial actions are distinguishable from facial expressions. AUs correspond to muscular com-
plexes that are activated during facial movements. Moreover, external stimuli, such as a gust of
wind blowing across the face, can elicit the activation of AUs. Facial expressions are observable
as facial movements that arise from diverse cognitive processes, including emotional responses.
Micro-expressions, for instance, frequently arise when an individual endeavours to suppress or
conceal emotions [58]. The precise identification of micro-expressions allows us to comprehend
authentic emotions, establishing a crucial foundation for discerning individuals’ subjective ex-
periences in domains such as public safety and psychotherapy. Analysing the AUs embedded
within micro-expressions represents the most intuitive approach to decipher the emotions con-
veyed by micro-expressions, utilised in manual micro-expression recognition. Consequently,
facial AUs can also be considered an intermediary variable in automatic recognition, bridging
micro-expressions and emotions.

Figure 3.1: Example of AUs detected from a micro-expression and recognised to an emotion.

Due to the small range of movement and the short duration of facial movements when micro-
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expressions happen, individuals need professional training to recognise micro-expressions
manually. The human based processes of training, as well as recognition itself, are demanding,
yet the recognition accuracy is still not satisfactory for most practical purposes. Many researchers
have tried using and developing new computer vision techniques to recognise micro-expressions
automatically. This automatic approach to the identification of micro-expressions has unique
advantages, which significantly improves the feasibility of micro-expression applications. No
matter how fast the facial movement is, as long as the camera records it, the computer can
obtain the corresponding information and process it. In addition, once an efficient and stable
model is trained, it can process large volumes of micro-expression data at low cost, which far
exceeds the efficiency of manual recognition of micro-expressions by professionals. Thus, some
research uses high-speed cameras for the collection of micro-expressions. Recently, following
the publication of open-source micro-expression databases, the amount of work related to
micro-expressions increased every year. Research thus far all but invariably uses 3DHOG [143],
LBP-TOP [140], HOOF [113] and their variations or deep learning methods as features. However,
most previous work focuses on emotion recognition directly. Even though some considered AUs
as supplementary features [203, 97, 115], there is tiny work on micro-expression AU detection
task specifically.

The importance of proposing separate methods for micro-expression AU detection is paramount
in the field. In previous works, researchers have extensively utilised local information for facial
AU detection, primarily focusing on macro-expressions [219, 162, 232, 218]. These approaches
often leveraged well-defined regions and composition rules to recover facial expressions through
sparse coding or patch selection methods. With the advent of deep learning techniques, there has
been a surge in AU detection studies for macro-expressions [221, 220], showcasing the power in
capturing nonlinear representations. However, the transition to micro-expression AU detection
demands specialised methodologies that consider the distinct challenges posed by the subtle and
limited quantity of micro-expressions. Specifically, unlike macro-expressions, which can often
be adequately captured and analysed using single images, micro-expressions are characterised
by subtle movements that may only become evident when observed dynamically over time.
Therefore, employing video samples for micro-expression AU detection is essential to capture
the temporally sensitive changes in facial expressions.

Therefore, in this chapter, I focus on the AU detection task for micro-expression analysis and
demonstrate my proposed framework can achieve the effect of state-the-art in the task, even
without deep learning methods. In addition, since my method does not use deep learning, it does
not require a lot of time for training and running. It can almost meet the requirement of real-time
detection. Taking CASME II as an example, it only takes about 1s to complete the AU detection
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test of all samples using my framework.

The main contributions of this chapter are as follows:

1. I proposed a novel facial key subregion segmentation method based on the facial muscle of
AU activated and a novel framework to detect multi-labelled facial micro-expression AUs
by transferring a big multi-label classification to several small ones based on the segmented
regions.

2. I design an AU independent 5-fold cross-validation method for Facial AU detection in micro-
expression and conduct intensive experiments on two publicly micro-expression databases
with AU labels. The results represent the effectiveness of my approach.

3.2 Methodology

Recall that my main aim in the present work is the identification of AUs activated during a facial
micro-expression. Thus, the proposed method can be broadly seen as comprising the following
stages: facial sub-region segmentation, facial sub-region feature extraction, and multi-label
classification. These are summarised in Figure 3.2 and explained in detail hereafter.

Figure 3.2: Proposed framework of facial action unit detection for micro-expression.

3.2.1 Local facial region segmentation

FACS [40] is currently recognised as the universal standard for encoding facial actions, associ-
ating each facial action with an AU. It serves as the foundation for labelling facial movements
in micro-expression datasets. Thus, the primary objective of this research is to detect all AUs
activated when a micro-expression is displayed using a sequence of images (note that the ma-
jority of micro-expressions involved in emotion inference activate multiple AUs). As AUs
are canonical and elementary primitives used to describe facial movements, it follows from
the anatomical structure of the face that a specific AU is spatially localised, corresponding
to a specific sub-region of the face. For instance, AU1, AU2, and AU4 specifically describe
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movement in the eyebrow area. Consequently, segmenting the face into multiple sub-regions and
identifying the AUs present in each sub-region is less complex than simultaneously identifying
all AUs across the entire face. To mirror the spatial layout of AUs, a segmentation method is
proposed, dividing the facial region into 11 sub-regions: Left and Right Brow, Left and Right
Eye, Left and Right Cheek, Left and Right Nasolabial Area, Nose, Mouth, and Chin. The local
facial region segmentation method is based on facial landmark detection – a crucial step in many
face recognition and analysis algorithms. The task involves the localisation of salient areas of a
face, such as the eyebrows, eyes, nose, mouth, or face contour, from a given image of a face.

I pursued the standard 68 key-point positioning strategy [] to ascertain the precise landmarks on
the face. The results of landmark recognition are summarised in Figure 3.3. In order to accom-
plish the localisation of these key points, the ensemble of regression tree (ERT) algorithm [83]
was employed. ERT represents a regression tree method that exploits gradient boosting to
enhance the learning process. It employs cascading regression factors alongside multiple GBDTs
(Gradient Boosted Decision Trees), wherein the leaf nodes act as repositories for the residuals.
Throughout the regression process, when the input data is situated within a specific node, the
corresponding residual is incorporated into the input to refine the regression. Ultimately, the
amalgamation of all the residuals allows for the determination of the final position of the facial
landmarks.

Figure 3.3: An example of detected landmarks and segmentation areas in a micro-expression image from
CASME II database.

Due to the brief duration and limited range of muscular movement exhibited during each micro-
expression, the subject’s pose undergoes minimal changes. As a result, it is unnecessary to
detect all facial key points in every frame of a micro-expression image sequence. Instead, I
employ the central frame of the image sequence as the reference image for identifying facial
landmarks, and subsequently extend these results to each frame within the micro-expression
sequence. Additionally, I propose a segmentation method for facial sub-regions based on the 68
facial landmarks present in each micro-expression sequence.



46 CHAPTER 3. FACIAL ACTION UNIT DETECTION FROM MICRO-EXPRESSION

As depicted in Figure 3.3, points 27–30 facilitate the establishment of the nose’s central line,
which spans the facial region captured in the image. This line serves as the vertical reference
during the segmentation process for the entire face area. In order to ensure that all facial
sub-regions are in a vertical alignment, each sub-region image undergoes rotation based on
this vertical line. The precise delineation of the 11 chosen face sub-regions is illustrated in
Figure 3.3. The regions encompassing the eyebrows, eyes, nose, and mouth are determined based
on their corresponding landmarks. Likewise, the cheek and nasolabial areas are ascertained by
considering the upper and lower contour points of the face, in addition to the landmarks situated
in the upper lip region (e.g. points 0, 4, and 50). The chin region, on the other hand, is defined by
the lower lip point 57 and the lowest point 8 along the facial contour.

3.2.2 Sub-regional feature extraction and multi-label classification

The LBP-TOP feature extraction method serves as a prominent approach in the realm of micro-
expression recognition research and often serves as a baseline model for novel investigations
in this field. LBP-TOP features capture the interplay between the appearance of a pixel and
its surrounding neighbourhood. To encode the spatio-temporal co-occurrence model, feature
extraction is performed on three different planes: the XY plane, the XT plane, and the Y T plane
within the image sequence. The method outlined by Hong et al. was employed to determine
the radii, denoted as RX , RY , and RT , along the three space-time axes (X ,Y,T ). Subsequently,
uniform sampling of points is conducted on each plane using ellipses determined by the corre-
sponding axes in the respective space-time plane. The purpose of this sampling is to calculate the
local binary mode on each plane. Following this step, the histogram of data within each facial
sub-region is utilised to extract unified features pertaining to each facial AU.

In the proposed method, LBP-TOP feature extraction is performed on the image sequence of
each key facial sub-region, rather than the entire face. This approach enables a focused analysis
of the meaningful key facial components involved in micro-expressions. Additionally, irrelevant
facial information unrelated to emotion and AUs can be disregarded, thereby promoting the
specificity of the features utilised in the learning process.

Upon extracting the features from each facial sub-region, the subsequent step involves conducting
multi-label classification utilising micro-expressions labelled with multiple AUs. Traditional
supervised learning predominantly concentrates on single-label learning scenarios. Nevertheless,
real-life target samples often possess greater complexity, exhibiting multiple semantics and
encompassing multiple labels. This is particularly evident in micro-expression AU detection
tasks, where the majority of expressions involve the activation of more than one facial AU,
thereby making multi-label learning the natural and suitable choice.
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The strategy of multi-label classification is to transform the problem structurally, to make the
extracted features more readily usable by existing single-label learning algorithms. Firstly,
I apply the Label Powerset (LP) algorithm to transform a multi-label learning problem into
a multi-class (single-label) classification task. This is achieved by learning one single-label
classifier h : X ! P(L), where L is a set of disjoint labels, P(L) is the powerset of L, containing
all possible label subsets. The label set predicted by LP is already in the training set, and it
cannot be generalised to the unseen label set. In order to overcome this limitation of LP, the
LP classifier used by random k-labelsets (RAkELd) [171] only trains a subset of length k in Y
output dataset and then integrates a large number of LP classifiers to predict. In general, this type
of method considers the relationship between the class labels, but for datasets with many class
labels and a large amount of data, the computational complexity of problem transformation is an
obvious limitation. However, micro-expression datasets are not big enough and facial sub-region
segmentation process reduced the number of labels of each sample. So, this limitation of these
methods has little effect in the present context.

The main purpose of employing the LP algorithm is to convert the multi-label classification
problem into a single-label one. Every combination of different labels is henceforth considered a
class in itself. This algorithm will generate more classes when there are more labels. Therefore,
if it is applied to the entire face image since the number of all micro-expression AUs appearing
on the entire face is large, the result of learning when they are all used as labels in one multi-label
classification is very poor. However, after I segment the face according to the range of AUs, the
number of AUs that may appear in each salient area is much lower across than the whole facial
region. Hence, segmentation is crucial in preventing an excessive increase in the computational
cost of the LP algorithm, resulting in far better performance. RAkELd algorithm is a variant
of the LP algorithm. It converts an LP from multiple labels into multiple LPs of length k to
predict the results jointly. This method can effectively reduce complexity when there are too
many types of labels in the LP algorithm. Finally, I adopt the Gaussian Naïve Bayes algorithm
on the extracted sub-regional features to learn a model of multi-labelled AUs activated during
micro-expressions.

3.3 Experimental assessment

It is important to emphasise that all of the aforementioned corpora were acquired in relatively
controlled conditions for the specific purpose of micro-expression analysis. In particular, the
data acquisition process involved the participants watching emotional videos while attempting to
hide the facial expression of the aroused emotions. Thus, these datasets are more standardised
and easier to process compared to datasets collected from unconstrained real-world scenarios.
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Considering that the duration of a micro-expression is usually under 0.5s, in order to capture a
greater number of image frames of images during the occurrence of micro-expressions, data is
usually acquired using high-speed cameras. SAMM and CASME II contain data with the highest
frame rate of 200 frames per second. To evaluate the effectiveness of my proposed method, I
initially apply it to the CASME II dataset, followed by its application to the combined dataset of
CASME II and SAMM.

3.3.1 Data preparation

For my experiments, I chose to adopt the use of the CASME II database [206], which is widely
used in the field owing to its size and high video frame rate. Its collection method is spontaneously
induced, which is representative of real-world conditions. Professional psychologists have
marked all AUs in each micro-expression image sequence. A total of 19 AUs were included in
CASME II, namely AU 1, 2, 4–7, 9, 10, 12, 14–18, 20, 24–26 and 38. In my experiment, the 11
facial sub-regions are the smallest modules. Therefore, these 19 AUs are separated into each
sub-region according to the area where they appear. However, because some AUs may appear
in both left and right half of the face, such as AU1 (Inner Brow Raiser), they are included in
both left and right facial areas. In addition, the original labels in CASME II also include some
single-side AUs, such as L1, L2 and R4. Therefore, I divide AUs which are activated on both
sides into two parts. For example, the initial both-side label AU1 is relabelled as L1&R1, and the
initial single-side label L1 remains. Finally, in my experiment, a total of 26 AUs were included.
The specific AUs included in each facial sub-region are shown in Table 3.1.

Table 3.1: AUs in each local key facial sub-regions

Facial Sub-region AUs
Left Brow L1, L2, L4
Right Brow R1, R2, R4
Left Eye L5, L7
Right Eye R5, R7
Left Cheek L6
Right Cheek R6
Nose 9, 38
Mouth 10, 12, 15, 16, 18, 20, 24, 25
Chin 17, 26
Left Nasolabial Area L14
Right Nasolabial Area R14

The types of AUs labelled in the SAMM micro-expression dataset are more abundant than those
in CASME II. However, there are several rare AUs only activated in one or two samples of



3.3. EXPERIMENTAL ASSESSMENT 49

micro-expression. After analysis of the AU labels in SAMM and CASME II, I find the relabelled
AUs I previously described for CASME II are the most common ones in both datasets. In order
to unify the evaluation criteria of the experiment, I only used the 26 AUs as I described and
relabelled AUs of samples in SAMM. The other rare AU labels were deleted, and only the AUs
in Table 3.1 were used for the experiment. Due to there are no AU16 and AU38 labelled in
SAMM, the final AU number applied in SAMM is 24.

3.3.2 Metrics
Algorithm 1 AU independent 5-fold data splitting

procedure PREPAREDATA
Load the samples and their AUs.

end procedure
procedure CREATEAUBINS

for each unique AU do
Create an empty bin for the AU

end for
end procedure
procedure INITIALISEFOLDS

Create 5 empty folds to store the samples
end procedure
for each sample, AUs in dataset do

for each AU in AUs do
Add the sample to the respective AU bin

end for
end for
for each AU bin do

Randomly shuffle the samples in the bin
Calculate the number of samples per fold
for each fold do

Distribute the required number of samples from the bin to the fold
end for

end for

The frequency of activation of AUs is different across facial expressions. Some AUs are more
commonly activated than others, such as AU4 (Brow Lowerer), which is the most frequently
engaged AU. AU26 (Jaw Drop), is activated less in micro-expressions than others, especially
when participants are asked to suppress their expressions. Therefore, in the model training
process, in order to make sure that all the AUs’ features could be learned, I randomly separate
data that each AU appears in each facial sub-region into 5 folds and each time 4 of them as a
training set. Thus, I ensure that samples of all AUs are in my training corpus. The remaining
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subset of the micro-expression data is used as a test dataset to evaluate the final algorithm
results. The splitting algorithm is shown in Algorithm 1. In this way, an AU independent 5-fold
cross-validation strategy is applied to evaluate the proposed method.

As emphasised already, there is virtually no AU detection work in the context of micro-
expressions and no standard metrics which could be used for evaluation in this realm. Therefore,
I adopt the evaluation approaches from other AU detection work, as well as the metrics used in
as related as possible micro-expression analysis problems. Accuracy and F1-score are widely
used criteria in both AU detection and micro-expression recognition. The distribution of the
number of each AU in the micro-expression database is unbalanced, so I choose UF1, and UAR
to show the performance of my approach and equalise the influence of each AU.

Precisionc =
ÂF

i=1 T Pi,c

ÂF
i=1 T Pi,c +ÂF

i=1 FPi,c
, (3.1)

Recallc =
ÂF

i=1 T Pi,c

ÂF
i=1 T Pi,c +ÂF

i=1 FNi,c
, (3.2)

F1-scorec = 2⇥ Precisionc ⇥Recallc
Precisionc +Recallc

, (3.3)

UF1 =
ÂC

c=1 F1-scorec

C
, (3.4)

UAR =
ÂC

c=1
ÂF

i=1 T Pi,c
Nc

C
, (3.5)

where T Pi,c, FPi,c and FNi,c are true positive, false positive and false negative for each class c (of
C AUs, 26 in my experiments), when samples of fold i as the test set. Precisionc and Recallc
represent the fraction of AUc is correctly identified and the number of correct detection of AUc

over the actual number of samples with AUc active. F is the number of fold (5), and N is the
total number of samples. After obtaining the average of UAR and UF1, this quantity is used
as the final evaluation score, which is also the comparison criterion used in the EmotionNet
Challenge [11] (a popular AU detection challenge “in the wild”).

Furthermore, to facilitate a more comprehensive comparison with the work conducted by Li
et al., and LBP-TOP [140], LBP-SIP [191], and 3DHOG [143] they employed as the benchmark
methods, I also adopted their subject-independent 4-fold cross-validation approach on both the
CASME II and SAMM datasets. In this evaluation setup, two folds are allocated for training,
while the remaining folds are used for validation and testing, respectively. However, I retained
the employment of multi-label learning for the 26 selected AUs, as all of these AUs were also
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Table 3.2: Experimental scores on CASME II, SAMM and CASME II & SAMM with AU independent
5-fold cross-validation

CASME II SAMM CASME II&SAMM
AU Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score
L1 0.7729 0.6563 0.7146 0.9466 0.7525 0.8495 0.6361 0.5314 0.5838
R1 0.7649 0.5970 0.6810 0.9084 0.6006 0.7545 0.6516 0.4380 0.5448
L2 0.7656 0.6020 0.6838 0.7863 0.5492 0.6677 0.6411 0.5166 0.5789
R2 0.8433 0.6170 0.7301 0.7634 0.4889 0.6261 0.7018 0.4356 0.5687
L4 0.6813 0.6720 0.6767 0.8626 0.6796 0.7711 0.7030 0.6555 0.6792
R4 0.5037 0.4866 0.4951 0.8168 0.4876 0.6522 0.5664 0.5374 0.5519
L5 0.9728 0.7597 0.8662 0.7109 0.4155 0.5632 0.7818 0.4815 0.6317
R5 0.9572 0.4891 0.7231 0.7344 0.4505 0.5924 0.7714 0.4764 0.6239
L6 0.5804 0.3758 0.4781 0.9844 0.4961 0.7402 0.4569 0.3177 0.3873
R6 0.6902 0.4084 0.5493 0.9531 0.4880 0.7206 0.6527 0.3949 0.5238
L7 0.6070 0.4974 0.5522 0.5156 0.4507 0.4832 0.8234 0.6891 0.7563
R7 0.5720 0.4448 0.5084 0.5156 0.4572 0.4864 0.8234 0.6688 0.7461
9 0.7490 0.4431 0.5960 0.7734 0.4678 0.6206 0.7363 0.4241 0.5802
10 0.7985 0.5580 0.6782 0.9044 0.4749 0.6897 0.8947 0.5967 0.7457
12 0.6844 0.5645 0.6245 0.6471 0.5810 0.6140 0.6291 0.5158 0.5724
L14 0.7255 0.4205 0.5730 0.7344 0.4234 0.5789 0.4465 0.3312 0.3888
R14 0.7569 0.4987 0.6278 0.7422 0.4539 0.5980 0.3760 0.2919 0.3339
15 0.8821 0.6634 0.7728 0.9926 0.9425 0.9676 0.5564 0.4227 0.4896
16 0.9848 0.8294 0.9071 - - - 0.9900 0.8308 0.9104
17 0.7137 0.5118 0.6128 0.7891 0.4410 0.6151 0.4909 0.4015 0.4462
18 0.9962 0.4990 0.7476 0.9779 0.7801 0.8790 0.9424 0.4852 0.7138
20 0.9924 0.4981 0.7452 0.9265 0.4809 0.7037 0.8997 0.4736 0.6867
24 0.9620 0.6331 0.7975 0.9706 0.8256 0.8981 0.9599 0.7039 0.8319
25 0.9924 0.4981 0.7452 0.9338 0.7176 0.8257 0.9599 0.5897 0.7748
26 0.9961 0.4990 0.7475 0.9141 0.5543 0.7342 0.9086 0.4761 0.6923
38 0.9922 0.4980 0.7451 - - - 0.9948 0.4987 0.7467

UAR UF1 Score UAR UF1 Score UAR UF1 Score
Final 0.8053 0.5469 0.6761 0.8252 0.5608 0.6930 0.7306 0.5071 0.6188

chosen by Li et al..

3.3.3 Results and discussion

The test results of the models trained on CASME II, SAMM and CASME II & SAMM by the
proposed method are shown in Table 3.2. Firstly, observe that the proposed approach achieves
excellent results across the different micro-expression databases, testifying to the value of my
multi-label AU detection based approach. It is also important to note the model performed equally
well across the entire set of AUs. This finding demonstrates that my method can effectively
address the challenge posed by highly unbalanced multi-labelled data, which is crucial for
real-world applicability.



52 CHAPTER 3. FACIAL ACTION UNIT DETECTION FROM MICRO-EXPRESSION

Table 3.3: F1-scores on CASME II dataset, with subject independent 4-fold cross-validation

AU LBP-TOP LBP-SIP 3DHOG SCA[106] Mine
1 0.1057 0.2308 0.2771 0.2857 0.4678
2 0.4985 0.3892 0.2769 0.4532 0.4786
4 0.7324 0.7354 0.7012 0.8877 0.5706
7 0.0635 0.0888 0.0000 0.2473 0.5160
12 0.2386 0.2143 0.0526 0.4792 0.5528
14 0.2185 0.2979 0.0000 0.3327 0.5070
15 0.0000 0.4318 0.0000 0.3954 0.4754
17 0.1667 0.4287 0.1212 0.5159 0.4776
UF1 0.2530 0.3521 0.1786 0.4496 0.5057

Table 3.4: F1-scores on SAMM dataset, with subject independent 4-fold cross-validation

AU LBP-TOP LBP-SIP 3DHOG SCA[106] Mine
2 0.2652 0.2144 0.0000 0.3289 0.4873
4 0.1538 0.0556 0.1667 0.1297 0.4692
7 0.4603 0.0400 0.2330 0.4876 0.4072
12 0.2376 0.0000 0.0833 0.4218 0.4541
UF1 0.2792 0.0775 0.1208 0.3420 0.4545

The performance of my method evaluated by AU independent 5-fold cross-validation of three
experiments is summarised in Table 3.2. The results of the experiments conducted on CASME
II & SAMM show little deterioration compared with those obtained by using only CASME II
or SAMM data. A possible cause of the slight performance drop may lie in the fact that the
SAMM database is more ethnically diverse – CASME II contains data from only one ethnic
group, whereas SAMM includes 13 different ethnicities. It is also worth noting that the data
acquisition protocols utilised for the collection of the two datasets are different, making the AU
detection task on their composite harder than when no such confounding is present.

As for the subject independent 4-fold cross-validation in Table 3.3 and Table 3.4, only F1-score
is applied for a fair comparison. The advantages of my approach in addressing the problem of
unbalanced data are clearly demonstrated by this comparison. The results show that the proposed
method’s F1-score corresponding to each individual AUs lies between 0.4 and 0.6. This is in
contrast with other methods, which exhibit dependency on the frequency of AU activation. For
example, AU4 is the most commonly activated AU in CASME II, so my competitors’ detection
of other AUs is much worse than that of AU4. Through the implementation of sub-region
segmentation methodologies, the adopted approach distinctly highlights a notable advantage: a
superior capacity to effectively address imbalanced data. Specifically, the heightened activation
of a specific AU predominantly exerts a discernible influence on AUs only situated within
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Table 3.5: Cross-dataset robustness experiments: training on one dataset and testing on another, and vice
versa.

CASME II as test SAMM as test
AU Accuracy F1 Score Accuracy F1 Score
L1 0.9766 0.4941 0.7353 0.8980 0.4731 0.6856
R1 0.9766 0.4941 0.7353 0.9137 0.4775 0.6956
L2 0.8984 0.4733 0.6858 0.9216 0.4796 0.7006
R2 0.9375 0.4839 0.7107 0.9451 0.4859 0.7155
L4 0.1172 0.1049 0.1110 0.5176 0.3411 0.4294
R4 0.8281 0.6269 0.7275 0.5137 0.3394 0.4266
L5 0.9219 0.4797 0.7008 0.9804 0.4950 0.7377
R5 0.9219 0.4797 0.7008 0.9804 0.4950 0.7377
L6 0.9844 0.4961 0.7402 0.9608 0.4900 0.7254
R6 0.9609 0.4900 0.7255 0.9647 0.4910 0.7279
L7 0.7266 0.4208 0.5737 0.7804 0.4711 0.6258
R7 0.7344 0.4234 0.5789 0.2118 0.2110 0.2114
9 0.9610 0.4900 0.7255 0.9647 0.4911 0.7279
10 0.1875 0.1746 0.1811 0.9294 0.4817 0.7056
12 0.7344 0.4234 0.5789 0.8471 0.4586 0.6528
L14 0.6328 0.4558 0.5443 0.9255 0.4807 0.7031
R14 0.9609 0.4900 0.7255 0.9216 0.4796 0.7006
15 0.9766 0.4940 0.7353 0.9333 0.4828 0.7080
17 0.9609 0.4900 0.7255 0.8980 0.4731 0.6856
18 0.9688 0.4920 0.7304 0.9961 0.4990 0.7475
20 0.9609 0.4900 0.7255 0.9922 0.4980 0.7451
24 0.9609 0.4900 0.7255 0.9765 0.4940 0.7353
25 0.9531 0.4880 0.7206 0.9922 0.4980 0.7451
26 0.9609 0.4900 0.7255 0.9961 0.4990 0.7475

UAR UF1 Score UAR UF1 Score
Final 0.8418 0.4556 0.6487 0.8734 0.4619 0.6676

the corresponding region. Meanwhile, AUs positioned outside this delineated region remains
resilient to such effects, undergoing parallel classification processes. In summary, my method
comprehensively exhibits state-of-the-art performance, outperforming the otherwise leading
methods in the literature.

In order to demonstrate the robustness of our method, we conducted experiments involving
training the model on SAMM and testing it on CASME II, and vice versa. Surprisingly, the
results from these cross-dataset experiments closely resembled those of the original experiments
where the model was trained and tested on a single database. The experiment results can be seen
in Table 3.5. This consistency in results across different datasets underlines the resilience and
adaptability of our method. It suggests that our model’s performance is not overly dependent on
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idiosyncrasies or biases specific to any particular dataset. This robustness enhances our confi-
dence in the generalisability and effectiveness of our approach in various real-world applications,
regardless of the dataset employed.

3.4 Conclusion

In this chapter, I presented a novel method for detecting AU in micro-expressions through facial
sub-region segmentation and multi-label classification. The proposed approach was empirically
evaluated on two widely used micro-expression databases, namely CASME II and SAMM,
where it demonstrated state-of-the-art performance.

The facial sub-region segmentation method relies on facial landmarks and the distribution
positions of AU. The features of key facial areas are extracted, and the micro-expression AUs is
separated into 11 key facial sub-regions to perform the multi-label classification. The novelty
lies in dividing the numerous multi-labels into multiple smaller multi-label classifications, which
jointly determine the final outcome for each label. The primary focus is on achieving AU
multi-label classification by refining the facial sub-regions based on the location of the AUs.

Through AU independent 5-fold cross-validation and a comprehensive comparison with the
leading methods in the literature using subject-independent 4-fold cross-validation, my approach
successfully addresses the challenge of unbalanced data in micro-expression AU detection. It
surpasses its competitors and achieves state-of-the-art results. The proposed method also opens a
range of avenues for future research and further improvement. Amongst these, one of the most
obvious ones is the optimisation of feature extraction and multi-label classification algorithms.
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Micro-expressions, known for their spontaneity, provide valuable insights into a person’s la-
tent emotions, even when attempts are made to conceal them. However, recognising micro-
expressions poses a significant challenge in affective computing due to their brief duration and
subtle intensity. Early studies relied on handcrafted spatio-temporal features, showing some
potential. Nevertheless, recent advancements in deep learning techniques, surpassing these
earlier approaches, now vie for state-of-the-art performance. However, effectively capturing
both local and global spatio-temporal patterns remains an ongoing challenge. In this chap-
ter, I propose a novel spatio-temporal transformer architecture, representing the first purely
transformer-based approach for micro-expression recognition, devoid of any convolutional
network usage. The architecture consists of a spatial encoder that learns spatial patterns, a
temporal aggregator for temporal dimension analysis, and a classification head. Through a
comprehensive evaluation of three widely-used spontaneous micro-expression datasets, namely,
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SMIC-HS, CASME II, and SAMM, I demonstrate that the proposed approach consistently
outperforms the state-of-the-art. Furthermore, the framework achieves an unweighted F1-
score greater than 0.9 on each of the aforementioned datasets, marking a significant milestone
in the published literature on micro-expression recognition. The source code is available at
https://github.com/Vision-Intelligence-and-Robots-Group/SLSTT.

4.1 Introduction

Facial expressions are vital for interpersonal communication and recognising them is a significant
task in affective computing. There is some debate about the universality of facial expressions,
but many psychologists believe that emotions are expressed universally, regardless of cultural
backgrounds [40]. While facial macro-expressions are consciously controlled and can be used
to deceive, facial micro-expressions are involuntary and occur briefly due to psychological
inhibition. These minute, sudden, and transient expressions provide a non-verbal means of
articulating latent emotions, unaffected by conscious efforts. Accurately recognising facial
micro-expressions is important for understanding people’s mental states and emotions in general
communication.

The initial methodologies for MER heavily relied on established computer vision techniques,
employing handcrafted features and their variations [217, 143, 104, 113]. As the field pro-
gressed, a paradigm shift occurred towards leveraging deep learning methodologies, particularly
CNNs [135, 85, 100, 199, 200]. In the early stages, convolutional kernels were employed
to extract spatial information at a pixel level. However, this kind of pixel level operator can
be considered as capturing “short-range”, local spatial relationships. “Long-range”, global
relationships between different spatial regions have also been proposed and studied by graph
convolutional networks (GCNs) based architectures [115, 13, 203, 90, 97]. In these innovative
architectures, AUs are represented as nodes within graphs, facilitating the integration of AU
engagements and image features to augment discriminatory capabilities for MER. However,
though these approaches consider global spatial relations so as to assist learning, they can only
learn these after local features are extracted, i.e. they are unable to learn both kinds of relations
jointly.

In order to capture automatically both short- and long-range relations at the same time, I apply
multi-head self-attention mechanism (MSM) instead of a convolutional kernel as the cornerstone
of my deep learning MER architecture. As shown in Figure 4.1, the relations between block
1 and N will hardly ever be learnt by CNN but have been considered at the beginning of
MSM. MSM based networks are called Transformer. Short-range and long-range relationships

https://github.com/Vision-Intelligence-and-Robots-Group/SLSTT
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Figure 4.1: Comparison of the different spatial feature extraction methods of CNN and transformer.

between elements of a sequence can be learned in a parallelised manner because transformers
utilise sequences in their entirety, as opposed to processing sequence elements sequentially like
recurrent networks. Most recently, transformer networks came to the attention of the computer
vision community. By dividing them into smaller constituent patches, two-dimensional images
can be converted into one-dimensional sequences, translating the spatial relationships into the
relationships between sequence elements (image patches). In this way, transformer networks can
be simply applied to vision problems and on various tasks they have outperformed CNNs [84].
Examples include segmentation [210], image super-resolution [208], image recognition [35, 167],
video understanding [160, 48] and object detection [15, 236].

Most MER research in the published literature is video-based, though there is a small but notable
body of work on single-frame analysis [110, 46, 106]. This statistic reflects the consensus
that for best performance both spatial and temporal information need to be considered. In
particular, absolute and relative facial motions are extracted and analysed through spatial and
temporal features respectively. Most handcrafted methods in existence use the same kind of
operator to detect spatial and temporal information from different dimensions by considering
the frames as 3D data. The resulting spatio-temporal features with uniform format are used
together to implement video based MER. In deep learning based methods, spatial features
are mainly extracted by means of a convolutional neural network. Some concatenate spatial
features extracted from each frame and others use recurrent neural networks to derive temporal
information. To integrate various spatio-temporal relations, my design makes use of long-
term temporal information in spatial data (i.e. each frame of the video sample) prior to the
spatial encoder, and a temporal aggregation block to fuse both short- and long-term temporal
relationships afterwards.

In this work, I show how a transformer based deep learning architecture can be applied to MER
in a manner which outperforms the current state of the art. The main contributions of the present
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chapter are as follows:

1. I propose a novel spatio-temporal deep learning transformer framework for video based
micro-expression recognition, which I name short and long range relation based spatio-
temporal transformer (SLSTT), the structure whereof is summarised in Figure 4.2. To the
best of my knowledge, mine is the first deep learning MER work of this kind, in that it does
not employ a CNN at any stage, but is rather entirely centred on a transformer architecture.

2. I use matrices of long-term optical flow, computed in a novel way particularly suited for
MER, instead of the original colour images as the input to my network. The feature ulti-
mately arrived at combines long-term temporal information and short- and long-range spatial
relations, and is derived by a transformer encoder block.

3. I design a temporal aggregation block to connect spatio-temporal features of spatial relations
extracted from each frame by multiple transformer encoder layers and achieve video based
MER. The empirical performance and analysis of mean and LSTM aggregators is presented
too.

I evaluate my approach on the three well-known and popular micro-expression databases,
SMIC [103], CASME II [206] and SAMM [29], in both sole database evaluation (SDE) and
composite database evaluation (CDE) settings and achieve state of the art results.

Figure 4.2: The framework of the proposed SLSTT.
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4.2 Related work

4.2.1 Spatio-temporal feature extraction in micro-expression recognition

LBP quickly became the most popular operator for micro-expression analysis after Pfister et al.
first applied it to MER [140]. This operator describes local appearance in an image. The key
idea behind it is that the relative brightness of neighbouring pixels can be used to describe
local appearance in a geometrically and photometrically robust manner. Its widespread use
and favourable performance often make it the default baseline method when new data sets are
published, or a new micro-expression related task proposed. As for deep learning approaches,
CNN model can be thought of as a combination of two components: a feature extraction part
and a classification part. The convolution and pooling layers perform spatial feature extraction.

Since one of the most characteristic aspects of micro-expressions is their sudden occurrence,
temporal features cannot be ignored. While some methods in the literature do use only the
single, apex frame instead of all frames in each micro-expression sample [138, 46, 110, 106],
most employ all in the range between the onset frame and the offset, thus treating all temporal
changes within this time period on the same footing. Some go further and employ temporal frame
interpolation (as indeed I do herein) so as to increase the frame count [104, 113, 85, 185, 140].

A vast number of handcrafted feature based approaches treat raw video data as a 3D spatio-
temporal volume, treating the temporal dimension as no different than the spatial ones. In other
words, they apply the same kind of operator used to extract spatial features on pseudo-images
formed by a cut through the 3D volume comprising one spatial dimension and the temporal
dimension. For example, in LBP-TOP, LBP operators are applied on XT and Y T planes to extract
temporal features, and their histogram across the three dimensions forms the final representation.
3DHOG similarly treats videos as spatio-temporal cuboids with no distinction made between the
three dimensions, but arguably with even greater uniformity than LBP-TOP in that the descriptor
itself is inherently 3D based. Similar in this regard are optical flow based features, which too
inherently combine local spatial and temporal elements – the use of optical strain [111], flow
orientation [113] or its magnitude [110] are all variations on this theme.

As an alternative to the use of raw appearance imagery as input to a deep learning network,
the use of pre-processed data in the form of optic flow matrices has been proposed by some
authors [200, 114, 90]. In this manner, proximal temporal information is exploited directly. On
the other hand, the learning of longer range temporal patterns has been approached in a variety of
ways by different authors. Some extract temporal patterns simply by treating video sequences as
3-dimensional matrices [115, 111, 147], rather than 2-dimensional ones which naturally capture
single images. Others employ structures such as theRNN or the LSTM [88, 85]. In addition to
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the use of off-the-shelf recurrent deep learning strategies, recently there has been an emergence
of methods which apply domain specific knowledge so as to make the learning particularly
effective for micro-expression analysis [200].

4.2.2 Transformers in computer vision

For approximately a decade now, convolutional neural networks have established themselves
as the backbone of most deep learning algorithms in computer vision. However, convolution
always operates on fixed-size windows and is thus unable to extract distal relations. The idea
of a transformer was first introduced in the context of natural language processing (NLP). It
relies on a self-attention mechanism, learning the relationships between elements of a sequence.
Transformers are able to capture ‘long-term’ dependence between sequence elements which is
challenging for conventional recurrent models to encode. By dividing an image into sub-images
and imposing a consistent ordering on them, a planar image can be converted into a sequence,
so spatial dependencies can be learned in the same way as temporal features. For this reason,
transformer based deep learning architectures have recently gained significant attention from the
computer vision community and are starting to play an increasing role in a number of computer
vision tasks.

A representative example in the context of object detection is DEtection TRansformer (DETR) [15]
framework which uses transformer blocks first, for regression and classification, but the visual
features are still extracted by a CNN based backbone. The image generative pre-training (iGPT)
approach of Chen et al. attempts to exploit the strengths of transformers somewhat differently,
pre-training bidirectional encoder representations from transformers (BERT) [32], originally
proposed for language understanding, and thereafter fine-tuning the network with a small classifi-
cation head. IGPT uses pixels instead language tokens within BERT, but suffers from significant
information loss effected by a necessary image resolution reduction. In the context of classifi-
cation, vision transformer (ViT) approach of Dosovitskiy et al. applies transformer encoding
of image patches as a means of extracting visual features directly. It is the first pure vision
transformer, and in its spirit and design, follows the original transformer [173] architecture
faithfully. As such, it facilitates the application of scalable transformer architectures used in NLP
effortlessly.

Following these successes, transformers have been applied to a variety of computer vision tasks,
including those in the realm of affective computing [20, 194]. Notable examples include facial
action unit detection [77] and facial image-based macro-expression recognition [119]. However,
none of the existing approaches to micro-expression recognition adequately make use of both
the spatial and temporal information due to the design difficulties posed by the challenges I
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discussed in the previous sections.

4.3 Method details

In the present work, I propose a method that takes advantage both of the physiological under-
standing of micro-expressions and their characteristics, as well as of the transformer framework.
The approach overcomes many of the weaknesses of the existing MER methods in the literature
as discussed in the previous section. Importantly, my method is able to extract and thus benefit
both from proximal (i.e. short-range) and distal (i.e. long-range) spatio-temporal features. Each
element of the proposed framework is laid out in detail next, corresponds to each sub-section.

4.3.1 Long-term optical flow

Optical flow describes the apparent motion of brightness patterns between frames, caused by the
relative movement of the content of a scene and the camera used to image it [141]. If the camera
is static, optical flow can be used to infer both the direction and the magnitude of an imaged
object’s movement from the change in the appearance of pixels between frames [2].

Figure 4.3: Different computing mechanism between short- and long-term optical flow.

Optical flow is inherently temporally local, i.e. save for practical considerations (numerical,
efficiency, etc.) it is computed between consecutive frames of the sequence. This introduces
a problem when micro-expression videos are considered, created by the already noted limited
motion exhibited during the expressions. Therefore, herein I propose to calculate optical flow
between each sample frame and the onset frame instead of consecutive frames, see Figure 4.3.
To see the reasons behind this choice, consider Figure 4.4 which shows optical flow fields of
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consecutive frames starting with the micro-expression onset frame. It can be readily observed that
the fields are rather similar up to the apex frame, which can be attributed to the aforementioned
brevity of the expression, with a similar trend thereafter but in the opposite direction. In contrast,
my temporally non-local modified optical flow – long-term optical flow in a manner of speaking
– exhibits a much more structured pattern, always being in the same direction, increasing in
magnitude up to the apex frame and declining in magnitude thereafter. This results in much more
stable and discriminative features associated with each micro-expression.

Let image intensity I be expressed as a function of space (x,y) and time t, i.e. as I(x,y, t). I wish
to relate the image intensity at the spatio-temporal locus (x+dx,y+dy, t +d t) to that at (x,y, t),
i.e. I(x+dx,y+dy, t +d t) to I(x,y, t).

Assuming that brightness of a point object is constant between frames and merely experiences
image plane motion then using the Taylor series approximation leads to:

I(x+dx,y+dy, t +d t) = I(x,y, t)

+
∂ I
∂x

dx+
∂ I
∂y

dy+
∂ I
∂ t

d t + (higher order terms), (4.1)

and thus to:

∂ I
∂x

u+
∂ I
∂y

v+
∂ I
∂ t

= 0, (4.2)

where:

u =
dx
d t

,v =
dy
d t

, (4.3)

and ∂ I
∂x , ∂ I

∂y and ∂ I
∂ t are the derivatives of the spatio-temporal image cuboid in the corresponding

spatio-temporal directions. Written more succinctly as Ix, Iy and It , the optical flow equation can
be re-written in the more common form as:

Ixu+ Iyv =�It . (4.4)

The equation cannot be solved directly since it is insufficiently constrained. Therefore, further
assumptions and constraints are needed. The approach proposed by Lucas et al. remains one
of the most widely used ones. It assumes that the displacement of the images is small and
approximately constant within a neighbourhood of the point p under consideration. In this way,
the optical flow equation can be assumed to hold for all pixels within a window centred at p. The
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local image flow vector (u,v) must satisfy the following:

Ix(p1)u+ Iy(p1)v =�It(p1)

Ix(p2)u+ Iy(p2)v =�It(p2)

...

Ix(pn)u+ Iy(pn)v =�It(pn), (4.5)

where p1, p2 and pn are the pixels within the window. These equations can be written compactly
in matrix form:

2

66664

Ix(p1) Iy(p1)

Ix(p2) Iy(p2)
...

...
Ix(pn) Iy(pn)

3

77775

"
u
v

#
=

2

66664

�It(p1)

�It(p2)
...

�It(pn)

3

77775
, (4.6)

which is, in general, an over-determined and inconsistent system. Thus, usually a least-squares
fit is performed.

(a) Onset frame, magni-
fied region of interest

(b) Apex frame with super-
imposed long-term optical
flow samples

(c) Magnitude of long-
term optical flow between
onset & apex frames

(d) Magnitude of short-
term optical flow between
apex frame and its previ-
ous one

Figure 4.4: Illustration of optic flow computed between the onset and the apex frame, corresponding to
the motion effected by the activation unit Brow Lowerer (AU4). Compare with the one computed between
consecutive frames.

4.3.2 Spatial feature extraction

The key idea underlying the proposed method lies in the extraction of long-range spatial relations
from each frame using a transformer encoder, with images as before being treated as sequences
of constituent patches. More specifically, input frames are first represented as vector sequences
with local spatial features of each image patch. The resulting sequences are then fed into the
transformer encoder for long-term spatial feature extraction.
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Figure 4.5: Long-term optical flow fields are as inputs of the Input Embedding blocks. After short-range
spatial feature extraction, patch and position embedding, the resulting sequence of vectors is fed to
standard transformer encoder layers.

4.3.2.1 Input embedding and short-range spatial relation learning

The standard transformer receives a 1D sequence as input. To handle 2D images, I represent each
image as a sequence of rasterised 2D patches. Herein I do not use appearance images, that is
the original video sequence frames, as input but rather the corresponding optical flow fields. An
input embedding block is proposed as a means of representing input images as vector sequences
for input to the transformer encoder.

The general input embedding mechanism considers the image X 2 RH⇥W⇥C as a sequence of
non-overlapping P⇥P pixel patches, where H, W , and C are respectively the height, the width,
and the channel count of the input. Different from the “separate and flat” linear patch embedding
proposed by Dosovitskiy et al., I first extract local spatial features in patch regions with a patch-
wise fully connected layer. Patches of image X are represented as Xp 2 RN⇥(P2,C). As shown in
Figure 4.5, I extract the short-range spatial features from image X to feature map X 2 RH

P ⇥W
P ⇥D,

flatten and transpose them to N D-dimensional vectors, where N = HW
P2 the resulting number of

patches in each image. D-dimensional vectors are passed through all transformer encoder layers.
The specific values of parameters used in my experiments are stated in Section 4.4.

After that, a learnable D-dimensional vector is concatenated with the sequence, as the class token
(Z0[0] = xclass), whose state as the output of the transformer encoder (ZLT [0]). The effective
input sequence length for the transformer encoder is thus N +1. Then a position embedding is
added to each vector in the sequence. The whole input embedding procedure can be described as
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follows:

Z0 = [Xclass;X1
pE;X2

pE; . . . ;XN
p E]+Epos,

E 2 R(P2,C)⇥D,Epos 2 R(N+1)⇥D, (4.7)

where Z0 2 R(N⇥D) is the input of the transformer encoder.

4.3.2.2 Long-range spatial relation learning by transformer encoder

After short-range spatial relations are extracted from the input long-term optical flow fields
of each frame and embedded as vectors, they are passed to a transformer encoder for further
long-range spatial feature extraction. My encoder contains LT transformer layers; herein I use
LT = 12, adopting this value from the ViT-Base model of Dosovitskiy et al.’s (the pre-trained
encoder I use in experiments). Each layer involves two blocks, a MSM and a Position-Wise fully
connected Feed-Forward network (PWFF), as shown in Figure 4.6. Layer Normalisation (LN) is
applied before each block and residual connections after each block [181, 5]. The output of the
transformer layer can be written as follows:

Z0
l = MSM(LN(Zl�1))+Zl�1, l = 1 . . .LT , (4.8)

Zl = PWFF(LN(Z0
l))+Z0

l , l = 1 . . .LT , (4.9)

where Zl is the output of layer l. The PWFF block contains two layers with the Gaussian Error
Linear Unit (GELU) non-linear activation function. The feature embedding dimension thereby
first increases from D to 4D and then reduces back to D, which equals 768 in my experiments.

Multi-head attention allows the model to focus simultaneously on information content from
different parts of the sequences, so both long-range and short-range spatial relations can be learnt.
An attention function is mapping a query and a set of key-value pairs to the output, a weighted
sum of the values. The weights are computed using a compatibility function of the queries with
the corresponding keys, and they are all vectors. The self-attention function is computed on a set
of queries simultaneously. The queries, keys and values can be grouped together and represented
as matrices Q, K and V , so the computation of the matrix of outputs can be written as:

Q = Zl�1WQ, (4.10)

K = Zl�1WK, (4.11)

V = Zl�1WV , (4.12)



66
CHAPTER 4. SHORT AND LONG RANGE RELATION BASED SPATIO-TEMPORAL TRANSFORMER FOR

MICRO-EXPRESSION RECOGNITION

Figure 4.6: Detailed structure of a Transformer Encoder layer. The output of frame t processed by spatial
encoder is Zt

LT
.

SA(Zl) = softmax
✓

QKT
p

D

◆
V, (4.13)

where WQ,WK,WV 2 RD⇥Dm are learnable matrices and SA is the self-attention module. MSM
can be seen as a type of self-attention with M heads in parallel operation and a projection of their
concatenated outputs:

MSM(Zl) = Concat({SAh(Zl),8h 2 [1..M]})WO, (4.14)

where WO 2 RM·Dm⇥D is a re-projection matrix. Dm is typically set to D
M , so as to keep the

number of parameters constant with changing M.

4.3.3 Temporal aggregation

After extracting both local and global spatial features associated with each frame using a trans-
former encoder, I introduce an aggregation block to extract temporal features before performing
the ultimate classification. The aggregation function ensures that my transformer model can be
trained and applied to the spatial feature sets of each frame, subsequently processing the temporal
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relations between frames in each sample. Since facial movement during micro-expressions is
almost imperceptible, all frames from a single video sample are rather similar one to another.
Nevertheless, it is still possible to identify reliably a number of salient frames, such as the apex
frame, that play a particularly important role in the analysis of a micro-expression. Therefore, I
propose an LSTM architecture for temporal aggregation.

Figure 4.7: The repeating module in an LSTM aggregator layer.

LSTM [60] is a type of recurrent neural network with feedback connections, which overcomes
two well-known problems associated with RNNs: the vanishing gradient problem, and the
sensitivity to the variation of the temporal gap length between salient events in a processed
sequence. The elements of the input are the sets of outputs from the transformer encoder for
each frame. The inputs are not concatenated, and the input sequence length is thus dependent on
the number of frames in each micro-expression video sample.

I used three LSTM layers in the aggregation block. The computation details of each layer are:

t = 1 . . .F, l = LT +1 . . .LA,

ft = s(Wf · [Zt�1
l ,Zt

l�1]+b f ), (4.15)

it = s(Wi · [Zt�1
l ,Zt

l�1]+bi), (4.16)

ot = s(Wo · [Zt�1
l ,Zt

l�1]+bo), (4.17)

C0
t = tanh(WC · [Zt�1

l ,Zt
l�1]+bC), (4.18)

Ct = ft ⇥Ct�1 + it ⇥C0
t , (4.19)

Zt
l = ot ⇥ tanh(Ct), (4.20)

where F is the number of chosen frames in each video sample, LA is the total number of layers
in both the transformer encoder and the LSTM aggregator. Zt

l denotes the outputs of the layer l
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after t frames have been processed. After all frames are processed in this manner, the result is a
single feature set describing the entire micro-expression video sample. Finally, these features are
fed into an multilayer perceptron (MLP) which is used for the ultimate MER classification. The
details of how the previous output join the latter training are presented in Figure 4.7.

4.3.4 Network optimisation

Following the aggregation block, my network contains two fully connected layers which facilitate
the final classification achieved using the SoftMax activation function. Cross Entropy loss is
used as the objective function for training:

L =
1
N Â

i
Li =� 1

N Â
i

C

Â
c=1

yic log(pic), (4.21)

where N is the number of the micro-expression video samples and C is the number of emotion
classes. The value of yic is 1 when the true class of sample i is equal to c and 0 otherwise.
Similarly, pic is the predicted probability that sample i belongs to class c.

When using gradient descent to optimise the objective function during network training, as the
parameter set gets closer to its optimum, the learning rate should be reduced. Herein I achieve
this using cosine annealing [116], i.e. using the cosine function to modulate the learning rate
which initially decreases slowly, and then rather rapidly before stabilising again. This learning
rate adjustment is particularly important in the context of the problem at hand, considering that
the number of available micro-expression video samples is not large even in the largest corpora,
readily learning to overfit if due care is not taken.

4.4 Empirical evaluation

In this section, I describe the empirical experiments used to evaluate the proposed method. I
begin with a description of the data sets used, follow up with details on the data pre-processing
performed, relevant implementation details, and evaluation metrics, and conclude with a report
of the results and a discussion of the findings.

4.4.1 Data pre-processing

Following the best practices in the field, for my evaluation I adopt the use of three large data
sets, namely SMIC-HS [103], CASME II [206], and SAMM [29], thus ensuring sufficient
diversity of data, evaluation scale, and ready and fair comparison with other methods in the
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literature. All video samples in these databases capture spontaneously exhibited, rather than
acted micro-expressions, which is important for establishing the real-world applicability of
findings.

4.4.1.1 Face cropping

As noted in the previous section, cropped face images are explicitly provided in both SMIC-HS
and CASME II data sets, with the same registration method used in both; no cropped faces are
provided as part of SAMM. In order to maintain data consistency across different databases, in
my experiments I employ a different face extraction approach. In particular, I utilise ERT [83]
algorithm implemented in DLib [89] to localise salient facial loci (68 of them) in a uniform
manner regardless of which data set a specific video sample came from.

In the case of SMIC-HS and CASME II videos, the original authors’ face extraction process
consists of facial landmarks detection in the first frame of a micro-expression clip and then the
detected face being registered to the model face using a local weighted mean transformation.
Motivated by the short duration of micro-expressions, the faces in all remaining frames of the
video sample are registered using the same matrix. However, in this work, I employ an alternative
strategy. The primary reason lies in the need for sufficient and representative data diversity, which
is particularly important in deep learning. In particular, the original face extraction method just
described, often results in the close resemblance of samples which increases the risk of model
overfitting. Therefore, herein I instead simply use a non-reflective 2D Euclidean transformation,
i.e. one comprising only rotation and translation. By doing so, at the same time, I ensure the
correct alignment of salient facial points and maintain information containing facial contour
variability.

Furthermore, unlike the authors of SMIC-HS and CASME II, I do not perform facial landmark
detection in the first frame of a micro-expression sample, but rather in the apex, thereby increasing
the registration accuracy of the most informative parts of the video. As shown in Figure 4.8,
points 27–30 can be used to determine the centre line of the nose that can be considered as
the vertical symmetry line of the entire face area. Point 30 is set as the centre point, and the
square size s (in pixels) is computed by adding the vertical distance from the centre point of
the eyebrows (19) to the lowest point of the chin (8), yapex[8]� yapex[19], to the height of chin,
yapex[8]� yapex[57], so that nearly the entire face is included in the cropped image:

s = (yapex[8]� yapex[19])+ (yapex[8]� yapex[57]). (4.22)
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Figure 4.8: The 68 facial landmarks used by my method, are shown for the location (green) and labelled
number (red).

4.4.1.2 Temporal interpolation

Considering the short duration of micro-expressions, even when samples are acquired using
high-speed cameras, in some instances only a small number (cc. 10) of frames is available. In
an attempt to extract accurate temporal information, I also apply frame interpolation from raw
videos, effectively synthetically augmenting data. In previous work, the Temporal Interpolation
Model (TIM) relies on a path graph to characterise the structure of a sequence of frames,
popularly used in several handcrafted feature based methods [100, 188, 104], whereas Liu et al.
use simple linear interpolation. Herein I propose a novel approach to interpolation so that its
result is smoother in terms of optical flow, it being the nexus of my entire MER methodology.
Most existing optical flow based methods produce artifacts on motion boundaries by estimating
bidirectional optical flows, scaling and reversing them to approximate intermediate flows. I
adopt the real-time intermediate flow estimation (RIFE) method [231], which uses an end-to-end
trainable neural network, IFNet, which speedily and directly estimates the intermediate flows.

Original RIFE interpolates one frame between two given consecutive frames, so I apply it
recursively to interpolate multiple intermediate frames. Specifically, given any two consecutive
input frames I0, I1, I apply RIFE once to get intermediate frame Î0.5 at t = 0.5. I then apply
RIFE to interpolate between I0 and Î0.5 to get Î0.25, and so on. In my experiment, I prioritise
interpolation in the temporal vicinity of the apex frame. The interpolated queue can be expressed
as
�

Îa�0.5, Îa+0.5, Îa�1.5, Îa+1.5, . . . , Îo+0.5 or Î f�0.5
 

, where a, o and f are frame indices of the
apex, onset, and offset frames respectively. Recall that the apex frames are specified explicitly in
CASME II and SAMM, and for SMIC-HS I choose the middle frame of each sample video as
the apex. If the number of interpolation frames is lower than the reference count (the average
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number of frames in this period across the database), I use the same method on the updated
frame sequence iteratively to generate further intermediate frames.

4.4.2 Experimental settings

4.4.2.1 Implementation details

In the spatial feature extraction procedure, I employed base ViT blocks, with 12 Encoder layers,
hidden size of 768, MLP size of 3072, and 12 heads. For initialisation, I use the official ViT-B/16
model [35] pre-trained on ImageNet [31]. I resize my input images to 384⇥ 384 pixels and
split each image into patches with 16⇥16 pixels, so that the number of patches is 24⇥24. 768-
dimensional vectors are passed through all transformer encoder layers. For temporal aggregation,
I select 11 frames (apex, and five preceding and succeeding it) per sample as inputs for the mean
aggregator and LSTM aggregator. I have tried other options with different numbers of frames,
but it didn’t work any better. I only use long-term optical flow in experiments, as motivated by
the arguments discussed in Section 4.3.1. For learning parameters, the initial learning rate and
weight decay are set to be 1e-3 and 1e-4, respectively. The momentum for Stochastic Gradient
Decent (SGD) is set to 0.9, with the batch size 4 for all experiments. All the experiments were
conducted with PyTorch.

4.4.2.2 Mean versus LSTM aggregator

I compare LSTM aggregator with an alternative which uses the simple mean operator for temporal
aggregation. After each frame is processed by the spatial encoder, the corresponding output is
used in the computation by the mean aggregation layer (layer LT +1):

Zt
LT+1 =

t �1
t

Zt�1
LT+1 +

1
t

Zt
LT
, t = 1 . . .F, (4.23)

In a manner similar to that described previously in the context of the LSTM aggregator, outputs
of each frame from my transformer encoder are taken as inputs to the temporal feature extraction
module. Compared to the mean operator, LSTM has the advantage of larger expressive capability,
resulting in different extracted relationships between different frames. Within the specific context
of my work, this means that its ability to distinguish between emotions is also different, with
LSTM expected to perform better.

4.4.2.3 Evaluation metrics

Following previous work and micro-expressions grand challenges (MEGCs), I conducted experi-
ments on SMIC-HS, CASME II, and SAMM, evaluating the classification performance using the
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corresponding original emotion classes, as well as the composite corpus formed using all three
data sets and relabelled using three classes as proposed in MEGC 2019 [152]. All results are
reported using leave one subject out (LOSO) cross-validation. Evaluation is repeated multiple
times by holding out test samples of each subject group while the remaining samples are used for
training. In this way, I best mimic real-world situations and in particular assess the robustness to
variability in ethnicity, gender, emotional sensitivity, etc.

Sole database evaluation (SDE) In the first part of my empirical evaluation, experiments
are conducted on three databases individually, using the corresponding original emotion labels,
excepting the very rare (and thus underrepresented) classes in CASME II and SAMM. SMIC-HS
uses 3 class labels whereas the other two sets both use 5. I use accuracy and macro F1-score to
assess the recognition performance.:

Accuracy = ÂC
c=1 ÂS

i=1 T Pi,c

N
, (4.24)

Precisionc =
ÂS

i=1 T Pi,c

ÂS
i=1 T Pi,c +ÂS

i=1 FPi,c
, (4.25)

Recallc =
ÂS

i=1 T Pi,c

ÂS
i=1 T Pi,c +ÂS

i=1 FNi,c
, (4.26)

F1-scorec = 2⇥ Precisionc ⇥Recallc
Precisionc +Recallc

, (4.27)

macro F1-score = ÂC
c=1 F1-scorec

C
, (4.28)

where T Pi,c, FPi,c and FNi,c are true positive, false positive, and false negative rates for each
class c (of C classes), with samples of subject i as test. S is the number of subjects in each
database, and N is the total number of samples from all subjects.

Composite database evaluation (CDE) In the second part of my empirical evaluation, experi-
ments are conducted on the composite database with 3 emotion classes (negative, positive, and
surprise). The composite database, that is the database obtained by merging SMIC, CASME
II, and SAMM contains a total of 68 subjects, 16 from SMIC, 24 from CASME II and 28
from SAMM. LOSO cross-validation is applied on each database separately and together on
the composite database. UF1, also known as the macro F1-score, and UAR are used to as-
sess performance. I have previously demonstrated the methodology for computing them in
Section 3.3.2.
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Table 4.1: SDE results comparison with LOSO on SMIC-HS (3 classes), CASME II (5 classes) and
SAMM (5 classes). Best performances are shown in bold, second best by square brackets enclosure. (*
Reported by Huang et al. [65], ** Reported by Khor et al. [86])

SMIC-HS CASME II SAMM
Acc(%) F1 Acc(%) F1 Acc(%) F1

Handcrafted
LBP-TOP* 53.66 0.538 46.46 0.424 – –
LBP-SIP* 44.51 0.449 46.56 0.448 – –
STLBP-IP [64] (2015) 57.93 – 59.51 – – –
STCLQP [65] (2015) 64.02 0.638 58.39 0.584 – –
Hierarchical STLBP-IP [238] (2018) 60.37 0.613 – – – –
HIGO+Mag [104] (2018) 68.29 – 67.21 – – –
Deep Learning
AlexNet** 59.76 0.601 62.96 0.668 52.94 0.426
DSSN [86] (2019) 63.41 0.646 70.78 0.730 57.35 0.464
AU-GACN [203] (2020) – – 49.20 0.273 48.90 0.310
MER-GCN [115] (2020) – – 42.71 – – –
Micro-attention [176] (2020) 49.40 0.496 65.90 0.539 48.50 0.402
Dynamic [159] (2020) 76.06 0.710 72.61 0.670 – –
GEME [125] (2021) 64.63 0.616 [75.20] [0.735] 55.88 0.454
SLSTT-Mean (Ours) 73.17 [0.719] 73.79 0.723 [66.42] [0.547]
SLSTT-LSTM (Ours) [75.00] 0.740 75.81 0.753 72.39 0.640

Table 4.2: CDE results comparison with LOSO on SMIC-HS, CASME II, SAMM and composite database
(3 classes). Best performances are shown in bold, second best by square brackets enclosure. (*Reported
by See et al. [152], **Reported by Xia et al. [201])

Composite SMIC-HS CASME II SAMM
UF1 UAR UF1 UAR UF1 UAR UF1 UAR

Handcrafted
LBP-TOP* 0.588 0.579 0.200 0.528 0.703 0.743 0.395 0.410
Bi-WOOF* 0.630 0.623 0.573 0.583 0.781 0.803 0.521 0.514
Deep learning
ResNet18** 0.589 0.563 0.461 0.433 0.625 0.614 0.476 0.436
DenseNet121** 0.425 0.341 0.460 0.333 0.291 0.352 0.565 0.337
Inception V3** 0.516 0.504 0.411 0.401 0.589 0.562 0.414 0.404
WideResNet28-2** 0.505 0.513 0.410 0.401 0.559 0.569 0.410 0.404
OFF-ApexNet* [46] (2019) 0.720 0.710 0.682 0.670 0.876 0.868 0.541 0.539
CapsuleNet [172] (2019) 0.652 0.651 0.582 0.588 0.707 0.701 0.621 0.599
Dual-Inception [233] (2019) 0.732 0.728 0.665 0.673 0.862 0.856 0.587 0.566
STSTNet [111] (2019) 0.735 0.761 0.680 0.701 0.838 0.869 0.659 0.681
EMR [114] (2019) 0.789 0.782 0.746 0.753 0.829 0.821 0.775 [0.715]
ATNet [138] (2019) 0.631 0.613 0.553 0.543 0.798 0.775 0.496 0.482
RCN [201] (2020) 0.705 0.716 0.598 0.599 0.809 0.856 0.677 0.698
AUGCN+AUFsuion [97] (2021) [0.791] 0.793 0.719 [0.722] [0.880] [0.871] [0.775] 0.789
SLSTT-Mean (Ours) 0.788 0.767 0.719 0.699 0.844 0.830 0.625 0.566
SLSTT-LSTM (Ours) 0.816 [0.790] [0.740] 0.720 0.901 0.885 0.715 0.643
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4.4.3 Results and discussion

I compare the performance of the proposed approach with baseline handcrafted feature extraction
methods and the most prominent recent deep learning based methods on the widely used micro-
expression databases, SMIC-HS, CASME II, and SAMM, described in the previous section,
both in the SDE and the CDE settings. To ensure uniformity and fairness of the comparison, the
SDE results for all methods were obtained in identical conditions, i.e. for the identical number
of samples, the number of labels (classes), and using the same cross-validation approach. The
details of the performance of our SLSTT on different emotion categories are shown in Figure 4.9.

As can be readily seen in Table 4.1 which presents a comprehensive overview of my experimental
results in the SDE setting, the method proposed in the present chapter performs best (n.b. shown
in bold) in all but one testing scenario, in which it is second best (n.b. second best performance
is denoted by square brackets), trailing marginally behind the method introduced by Sun et
al. [159]. What is more, in most cases my method outperforms rivals by a significant margin.

Moving next to the results of my experiments in the CDE setting, these are summarised in
Table 4.2. It can be readily seen that my method’s performance is again shown to be excellent. In
particular, in most cases, my method again comes out either at the top or second best (as before
the former being shown in bold and the latter denoted by square brackets enclosure). The only
existing method in the literature which remains competitive against ours is that of Lei et al.’s [97].
To elaborate in further detail, my approach achieved the best results both in terms of UF1 and
UAR on CASME II, and on UF1 on the full composite database, and second best on UAR on the
composite database and on UF1 on SMIC-HS. The performance of all methods on CASME II
is consistently higher than when applied to other data sets, which suggests that the challenge
of MER is increased with the ethnic diversity of participants – this should be born in mind in
future research and any comparative analysis. It is insightful to observe that in contrast with the
results in the SDE setting already discussed (see Table 4.1), my method does not come out as
dominant in the context of CDE. This suggests an important conclusion, namely that my method
is particularly capable of nuanced learning over finer-grained classes and that its superiority is
less able to come through in a simpler setting when only 3 emotional classes are used.

Taking into account the results from both the sole and the composite database experiments, it is
useful to observe that when only short-range patterns are utilised, convolutional neural network
approaches do not outperform methods based on handcrafted features. It is the inclusion of
long-range spatial learning that is key, as shown by the marked improvement in the performance
of the corresponding methods. Yet, the proposed method exceeds even their performance, owing
to its use of MSM, thus demonstrating its importance in MER. The superiority of our short-
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Figure 4.9: Confusion matrices corresponding to each of our experiments. Only one is shown for
SMIC-HS because the SDE and the CDE are identical when this database is used alone.
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and long-range relation based spatio-temporal transformer is further corroborated by the results
shown in the latest two rows in both Table 4.1 and Table 4.2 which summarise our comparison
of the proposed LSTM aggregator with the simpler mean operator aggregator.

From Figure 4.9, we could see in CASME II, that distinguishing whether a micro-expression is
Disgust or Others is inherently difficult because the database contains multiple inconsistently
labelled samples with only AU4 activated – some of them are labelled as Others, some as Disgust.
It is also worth noting that in SAMM, some AU labels (‘AU12 or 14’) for the Contempt class were
not manually verified, which also causes confusion with the Happiness class (mostly with AU12
labelled). In part, these labelling issues emerge from the fact that the mapping between facial
AU activation and emotions (as understood by psychologists) is not a bijection. It is also the case
that imperfect information is made use of because only visual data is used. Hence, it should
be understood that the theoretical highest accuracy of automated micro-expression recognition
on the MER corpora currently used for research purposes is not 100%. The micro-expression
databases containing multi-modal signals [105, 101], which have begun emerging recently, seem
promising in overcoming some of the limitations of the existing corpora.

In addition, I recently discovered that another study [61] proposed using transformer backbones
for MER at around the same time as chapter 4. While my focus was on using the backbone
for spatial feature extraction and designing a separate temporal aggregation block, they used
video transformer backbones to process entire video clips. They also incorporated optical flow
in the structure, but as an additional modality to learn micro-expression motion. In contrast, I
implemented long-term optical flow and used it as the input for training. Despite the differences
in our architectures, both studies demonstrate the potential of transformer backbones in this field.

4.5 Summary and conclusions

In this chapter, I proposed a novel transformer based spatio-temporal deep learning framework
for micro-expression recognition, which is the first deep learning work in the field entirely void of
convolutional neural network use. In my framework, both short- and long-term relations between
pixels in spatial and temporal directions of the sample videos can be learned. I use transformer
encoder layers with multi-head self-attention mechanism to learn spatial relations from visualised
long-term optical flow frames and design a temporal aggregation block for temporal relations.
Extensive experimental results using three large MER databases, both in the context of sole
database evaluation and composite database evaluation settings and LOSO cross-validation
protocol, consistently demonstrate that my approach is effective and outperforms the current
state of the art. These findings strongly motivate further research on the use of transformer based
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architectures rather than convolutional neural networks in micro-expression analysis, and I hope
that my theoretical contributions will help direct such future efforts.





5CHAPTER FIVE

MULTIMODAL LATENT
EMOTION RECOGNITION

FROM MICRO-EXPRESSION
AND PHYSIOLOGICAL

SIGNALS

In this chapter, in-depth exploration is undertaken to highlight the myriad advantages associated
with leveraging multimodal data to enhance the accuracy of latent emotion recognition, specifi-
cally focusing on the integration of micro-expressions and physiological signals. To achieve this,
a novel multimodal learning framework is proposed, which combines both input sources. This
innovative approach encompasses a 1D separable and mixable depthwise inception network, a
standardised normal distribution weighted feature fusion method, and depth/physiology guided
attention modules for multimodal learning. Through rigorous experimentation, the results demon-
strate the superior performance of the proposed approach compared to the benchmark method.
Notably, the weighted fusion method and guided attention modules play indispensable roles in
significantly elevating the overall performance of the system. By showcasing the effectiveness
of this multimodal learning framework, this chapter contributes to the advancement of latent
emotion recognition, paving the way for future research and applications in this domain.
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5.1 Background

Emotional states have a significant impact on physical and psychological well-being, with
recognition of emotions being crucial for effective communication and understanding of indi-
viduals’ emotional states and mental well-being. The complex interplay between physiology
and psychology in emotional responses has led to interdisciplinary research into accurate and
rapid emotion recognition, which is increasingly important in multimedia and human-computer
interaction. Real-time emotion recognition has potential applications in virtual and augmented
reality, healthcare, education, and marketing. In interpersonal communication, facial expressions
are a critical means of conveying emotions, with micro-expressions offering valuable insights into
an individual’s emotional state, including potential deception. Recognising micro-expressions
enables experts to identify even the most subtle changes in an individual’s facial expressions,
potentially indicating their latent emotion. While facial expressions are the most reliable and
universally accepted way of recognising emotions, vocal cues, body language, and physiological
responses can also provide valuable information about a person’s emotional state.

Enhancing emotion recognition accuracy entails exploring avenues beyond just improving the
machine learning model, considering richer data types can also help achieve better performance.
Human experience of the world is often multimodal, referring to how something happens or is
experienced through multiple modalities. Incorporating multimodal signals can enable artificial
intelligence to learn about the real world better. Relying solely on human physical signals,
such as facial expression, speech, gesture, or posture, is not guaranteed as people can control
these signals to hide their real emotions, especially during social communication. In contrast,
physiological signals, which are in response to the central nervous system (CNS) and peripheral
nervous system (PNS) of the human body, can provide reliable information about emotions.
One significant advantage of using physiological signals is that they are largely involuntarily
activated and, therefore, difficult to control, which is a similar characteristic to micro-expression.
Researchers have attempted to establish standard relationships between emotional changes and
various types of physiological signals.

Several studies have attempted to combine facial expressions with physiological data to create
accurate emotion recognition systems [25, 67]. Both studies used late fusion techniques, such as
voting and decision tree, to combine the decisions made from facial expressions and physiological
signals, though Cimtay et al. use early fusion for different signals. However, people may conceal
their true emotions behind fake facial expressions, whereas micro-expressions can reveal their
genuine emotions, as can physiological signals. Therefore, combining micro-expressions and
physiological signals through multimodal learning could be a better strategy for authentic
emotion recognition. In previous research, colour images or videos have been the primary data
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samples used due to the availability of micro-expression databases. However, the recent release
of 4DME [105] and CAS(ME)3 [101] has expanded the range of data available for emotion
recognition related to micro-expressions. 4DME primarily focuses on 3D micro-expression
data, while CAS(ME)3 not only includes RGB-D micro-expression video clips but also includes
physiological signals in one part of the database. This enables multimodal learning with micro-
expressions for emotion recognition. Li et al. attempted to use voice, electrodermal activity
(EDA) and depth information to assist MER. They converted the voice and EDA signals into
2D greyscale input channels and trained them with colour and depth information from the apex
frame [101]. However, their results of combining EDA or speech signals were not satisfactory
due to not addressing the noise in the signals or designing a specific network for physiological
signals. Despite this, the database they provided is a valuable resource for researchers to optimise
multimodal emotion recognition processing with micro-expressions. This chapter explores the
benefits of incorporating multimodal data for improving latent emotion recognition accuracy,
specifically with micro-expression and physiological signals. The main contributions of the
present work are as follows:

1. I introduce a novel multimodal learning framework that combines micro-expression and
physiological signals to enhance latent emotion recognition performance.

2. I design a 1D separable and mixable depthwise inception network that effectively extracts
features from various physiological signals.

3. I propose a standardised normal distribution weighted feature fusion method that reconstructs
informative maps from different frames of micro-expression video.

4. I develop a guided attention module that achieves multimodal learning for both micro-
expression (colour and depth information) and latent emotion recognition (micro-expression
and physiological signals).

5.2 Proposed method

Colour images are a crucial and widely used source for computer vision tasks [145, 155, 26],
providing valuable information for deep learning models to analyse and interpret visual data. In
addition, micro-expression has been extensively studied and recognised as a valuable source for
authentic emotion recognition, as discussed in Section 5.1. Therefore, in my proposed framework,
I consider colour images from micro-expression video clips as the primary source, with depth
information used to guide the spatial features from each frame. Features are extracted from
colour images and depth maps separately using backbone networks. To fuse the spatial features
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Figure 5.1: Architecture of the proposed framework comprising three main components: micro-expression
feature extraction branch, physiological signals feature extraction branch, and guided attention fusion
module. The final loss is (LPS +Lmm)/2, where LPS and Lmm are both cross-entropy losses calculated
from the physiological signals branch and whole multimodal learning, respectively.

extracted from each frame, I designed a standard normal distribution guided fusion method that
pays more attention to the middle, where facial movements usually reach their apex, and less
attention to the ends. Apart from micro-expression, physiological signals are used in another
branch of the proposed framework to recognise latent emotions by my designed 1D separable
and mixable depthwise inception network and enhance spatio-temporal features extracted from
the micro-expression sample. By analysing both micro-expression and physiological signals,
the network can gain a deeper understanding of the subject’s emotional state and achieve more
accurate latent emotion recognition results. Figure 5.1 shows the proposed framework.

5.2.1 1D separable & mixable depthwise inception CNN

In this framework, I designed a separable & mixable depthwise inception network that can
effectively extract features from physiological signals. The network’s structure is illustrated in
Figure 5.2. The depthwise structure comprises separate convolutions for each group of channels,
allowing for more precise feature extraction and capturing of spatial correlations. This enables
the network to learn more complex and diverse representations of the input data. The inception
block uses convolutional filters of varying sizes within a single layer to capture features at
multiple scales without the need for multiple layers, which can be computationally expensive.
The inception block can be thought of as an ensemble of smaller networks with different filter
sizes, providing a form of regularisation that helps prevent overfitting and improves generalisation
performance.
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Figure 5.2: The separable and mixable network proposed for physiological signals, see Figure 5.3 for
details of depthwise inception block, where L is the 1D input length of signals.

To effectively extract features from multiple input channels, I propose a method that involves the
extraction of features from each channel individually, followed by their combination for further
learning. To achieve this, I first use a depthwise convolutional layer to enhance the features from
each input channel. The depthwise convolutional layer applies a single convolutional filter to
each input channel separately, enabling it to capture more specific and precise features.

I then utilise a depthwise inception block with three groups to extract features from each
physiological source, as illustrated in Figure 5.3. The depthwise inception block includes
four branches of depthwise convolutional layers with varying kernel sizes to extract features
from different scales. This design allows the network to capture features at different levels of
abstraction and complexity, enabling it to learn more robust and generalisable representations of
the input data. The resulting features from each branch are then concatenated together and fed
into the next depthwise inception block.

As features from each branch in the previous block are concatenated together and the number of
output channels in each branch of the inception block is different, the features from different
sources are mixed together to form a new group of channels for further learning. This mixing
process enables the network to capture a wide range of features from different sources, which
can be combined and refined for improved performance. Finally, the mixed features are fed into
the last two blocks as a whole group to extract the final features from the physiological sources.
These blocks enable the network to effectively extract and combine features from different input
sources.
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Figure 5.3: Illustration of the depthwise inception block’s network design and layer hierarchy.

5.2.2 Standardised normal distribution weighted feature fusion

The sequence of extracted features is mapped to the micro-expression feature by utilising a
standard normal distribution function. It is important to highlight that the standard normal
distribution serves as a special case of the normal distribution, with mean µ = 0 and variance
s2 = 1. However, given the discrete nature of the frames, a slight adjustment is made to the
function to effectively map a set of extracted features from all frames to a set of values within
the range of (0,1). These resulting values signify the weight of the features within the set.

A widely accepted belief within the field is that during a micro-expression instance, the most
pronounced facial movement typically occurs approximately in the middle of the timeframe. In
other words, the apex frame of a micro-expression sample tends to fall roughly in the middle
of the clip. Additionally, it is commonly observed that frames in close proximity to the apex
frame tend to encompass more valuable features compared to those further away. With this in
mind, my approach deviates from extracting spatial features solely from the apex frame and
instead incorporates all features across several adjacent frames, spanning the entire duration.
This approach aims to capture a more comprehensive representation of the micro-expression.

To assign weights to the features, I have moved away from employing a uniformly weighted
function, where each feature carries the same weight. Instead, I adopt a weighting scheme that
places greater emphasis on features extracted from frames closer to the middle of the clip, as
these frames are considered more representative and valuable. This weighting scheme aligns
with the aforementioned proposition. The function of weight for each frame f can be expressed
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as follows:
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where F denotes the total number of frames within a single micro-expression sample. It is
noteworthy that approximately 99.7% of the probability density for a standard normal distribution
lies within 3 standard deviations of the mean. Hence, for the purpose of assigning weights, only
the features within 3 standard deviations are considered, while the remaining 0.3% is deemed
negligible.

5.2.3 The depth/physiology guided attention module

I opted for the guided attention model as my chosen multi-modal learning feature fusion strategy
due to its inherent ability to intelligently weigh and integrate information from different modal-
ities. Unlike simplistic concatenation methods, guided attention fusion enables the model to
selectively focus on salient aspects of the input data, optimising the learning process.

The module is designed for feature fusion of both colour and depth information for each frame
of micro-expression, as well as the final fusion of micro-expression and physiological signals
features. For attention modules, formally I have a query Q, a key K, and a value V to calculate
attention. The depth and physiological signals features could be considered as the input Q to guide
attention learning. At the beginning of the module, the main features are copied as sources for
both inputs K and V . After fully-connected layers, the scaled dot-product attention mechanism,
denoted as SDP below, is run through several times in parallel. The scaled dot-product attention
is an attention mechanism where the dot products are scaled down by

p
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d is the dimension of the queries and keys, and softmax denotes the softmax function. The dot
product results of the attention mechanism are divided by

p
d to maintain a variance of 1. The

independent attention outputs are then concatenated and linearly transformed to the expected
dimension. The multi-head attention mechanism is defined as follows:

MultiHead(Q,K,V) = [head1, . . . ,headh]W0, (5.3)
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where W represents the learnable parameter matrices. The multi-head attention mechanism
allows for different parts of the sequence to be attended to differently, such as longer-term
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dependencies versus shorter-term dependencies.

Figure 5.4: Structure of the guided attention module.

5.3 Empirical investigation

5.3.1 Data preparation and experiment setting

In these experiments, I use Part C of CAS(ME)3 corpus [101] developed to address the challenges
of micro-expression elicitation, collection, and annotation. CAS(ME)3 is composed of three parts.
Part A and B contain labelled and unlabelled long videos recorded in the same environment and
labelled by the same labellers. CAS(ME)3 uniquely introduces multimodality to micro-expression
analysis in Part C, which is a third-generation multimodal spontaneous micro-expression database
that goes beyond just RGB images and includes depth information, voice, and physiological
signals. Part C used a third-generation of micro-expression eliciting paradigm, mock crime, with
higher ecological validity. Participants were asked to steal a small amount of money from an
envelope and were subsequently questioned about the theft. The scenario was designed to create
a stressful situation that would elicit spontaneous micro-expressions associated with guilt or
deception. Part C contains 166 micro-expressions from 31 subjects and makes it possible to
enrich multimodal micro-expression analysis with physiological signals, including EDA, ECG,
RSP, and pulse photoplethysmography (PPG).

The colour and depth frames in Part C are captured at a frame rate of 30 fps. Due to the definition
of the happening time of a micro-expression, I selected only the samples with less than 15 frames
(500ms) from the database. I cropped the facial region based on the landmarks detected from the
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Figure 5.5: Examples of Daubechies wavelet denoising results for physiological signals.

onset colour image, and this cropping was applied to all subsequent colour and depth images. To
process the data, I utilised pretrained VGG-Face [133] and VGG-16 [156] networks as backbone
networks for colour and depth, respectively.

As for the physiological signals branch, I utilised EDA, ECG, and PPG signals as the three-
channel input. To process the source signal data, I employed wavelet denoising on the segmented
signal clips. This method is highly effective in denoising 1D signals due to its ability to capture
both local and global features of the signal accurately, whilst maintaining a good balance between
time and frequency localisation. Daubechies wavelets are orthogonal and form a complete basis
set, allowing the signal to be decomposed into its wavelet coefficients, which can then be
thresholded to remove noise, as shown in Figure 5.5.

5.3.2 Experimental results

The traditional evaluation approach for MER involves LOSO cross-validation, where a single
subject’s data is withheld and used as a validation data set, while all remaining subjects’ data
is used for training. The overall performance of a method is then assessed by aggregating the
results of all different possible iterations of the process, i.e. of all subjects being withheld in turn.
Li et al. also utilised LOSO in their experiments [101]. To ensure fair comparison and more
accurate evaluation, I applied the LOSO approach in my experiments as well. Accuracy, UF1
and UAR, averaging the per-class recall and F1-score respectively, are used as metrics during
evaluation.

My study aimed to investigate multimodal latent emotion recognition, and the main results can
be seen in Table 5.1. To confirm the effectiveness of my proposed network structure and each
designed module, I conducted ablation experiments. Table 5.2 presents the results related to
the standardised normal distribution guided spatial feature fusion, while Table 5.3 displays the
results of the depth/physiology guided attention module.
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Table 5.1: Comparison of multimodal analysis for latent emotion recognition. “Colour” and “Depth” are
from micro-expression samples, and “physiological signals” indicates the combination of EDA, PPG, and
ECG in my results, while representing the use of only EDA in Li et al.’s results.

Colour Colour + Depth Colour + Depth + physiological signals Colour + physiological signals
Acc UF1 UAR Acc UF1 UAR Acc UF1 UAR Acc UF1 UAR

Li et al. [101] - 0.248 0.263 - 0.296 0.296 - 0.230 0.244 - 0.230 0.260
Mine 0.640 0.353 0.345 0.640 0.315 0.318 0.738 0.586 0.563 0.750 0.642 0.578

5.3.3 Analysis and discussion

All results of my experiments will be discussed in this section. I start by investigating the
impact of multimodal learning on latent emotion recognition performance. Then, I discuss the
effectiveness of each design inside the proposed framework.

The results presented in Table 5.1 demonstrate a significant improvement in performance com-
pared to the benchmark results of Li et al. who used RGB and depth information from the
apex frame only as 4-channel input for AlexNet. While producing worse performance than the
proposed approach their work demonstrated the value of depth information. In contrast to Li
et al., herein I used all frames from a video clip and a standard normal distribution feature fusion
module to merge the features extracted from all frames. I note that although the use of depth
information facilitates the learning of more expressive features, it may introduce noise, which is
particularly problematic in micro-expression analysis wherein the signal corrupted by noise is
weak; therefore, one of the potential avenues for further research in colour and depth MER could
be finding a better approach to denoise the depth information. Regarding physiological signals,
Li et al. used them as greyscale 2D input channels to the same backbone, without addressing
their noise content or designing a specialised network to process them. In contrast, the proposed
approach employed the Daubechies wavelet for denoising and introduced a 1D separable and
mixable depthwise inception CNN for feature extraction. my results suggest that this network
structure contributes to improved performance in recognising latent emotions.

5.3.4 Ablation study

The performance of the proposed standardised normal distribution weighted fusion method is
compared with that of the uniform distributed fusion method in Table 5.2. The results demonstrate
that the proposed method can fuse the features extracted from each frame of micro-expressions
more effectively than simply adding them together. The weighted fusion method assigns different
weights to different features based on their importance, allowing more important features to
have a greater influence on the overall learning process. This emphasises the significance of
each feature’s contribution to the final result and enhances the performance of the model in
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recognising micro-expressions.

Table 5.2: Results of the comparison study on standard normal distribution fusion for MER.

Colour
Acc UF1 UAR

Uniform Distribution 0.610 0.258 0.283
Standard Normal Distribution 0.640 0.353 0.345

Furthermore, a comparison study was conducted to evaluate the impact of depth/physiology
guided attention modules on the performance of the proposed model. Incorporating attention
mechanisms allows the model to assign varying levels of importance to features, facilitating
a more subtle and effective fusion of diverse information. By dynamically adjusting attention
weights, the model can emphasise relevant cues while suppressing noise or less informative
signals from the input modalities. This adaptability is crucial for enhancing the model’s overall
performance in complex tasks like latent emotion recognition.

Table 5.3: Results of the comparison study on the impact of depth and spatial guided attention modules
for multimodal latent emotion learning.

Colour + Depth micro-expression + physiological signals
Acc UF1 UAR Acc UF1 UAR

Concatenation 0.604 0.262 0.288 0.701 0.492 0.468
Guided Attention module 0.640 0.315 0.318 0.738 0.586 0.563

I used concatenation as the baseline fusion method for multimodal learning and trained and
tested four different configurations of the model. The results of the study, presented in Table 5.3,
revealed that the depth-guided attention module outperformed concatenation in incorporating
colour and depth information. Additionally, the physiology-guided attention module used
for emotion recognition demonstrated significantly better results, indicating that these guided
attention modules are capable of effectively fusing extracted features from multiple modalities to
learn more beneficial mixed features and contribute to the improved performance of the proposed
model in latent emotion recognition.

5.4 Conclusive remarks and reflections

Emotional states have a significant impact on physical and psychological well-being, and
the recognition of emotions is essential for effective communication and understanding of an
individual’s emotional and mental state. However, relying solely on facial expressions is not
sufficient as people can control these signals to hide their real emotions, especially during social
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communication. Therefore, in this chapter, I propose a multimodal learning framework that
combines micro-expressions and physiological signals to enhance latent emotion recognition
performance. The proposed approach denoises the signals and uses a 1D separable and mixable
depthwise inception CNN for physiological feature extraction. Furthermore, in this work,
I propose a standardised normal distribution weighted feature fusion method and a guided
attention module that achieves multimodal learning for both micro-expression and latent emotion
recognition. The results show a significant improvement in performance compared to the
benchmark results, demonstrating the potential benefits of incorporating multimodal data for
improving latent emotion recognition.



6CHAPTER SIX

CONCLUSIONS AND
FUTURE WORK

In this chapter, an extensive and comprehensive overview of the contributions made in this thesis
concerning latent emotion recognition is presented, accompanied by a meticulous and in-depth
discussion. The study of micro-expressions and latent emotions is a burgeoning research area that
is still in its early stages of development, rather than a fully matured and established field of study.
Therefore, it is unsurprising that numerous challenges persist within this domain, underscoring
the importance of continued investigation and exploration. To provide clarity on these existing
hurdles, this chapter concisely outlines the current challenges while also offering valuable insights
into potential directions for future research. These research avenues hold promise in overcoming
the obstacles faced in the realm of latent emotion recognition. By addressing these challenges
head-on and proposing possible solutions, this thesis contributes to the broader understanding
and advancement of latent emotion recognition. Moreover, this work lays a solid foundation
for further exploration and innovation in this captivating field. It serves as a springboard for
future researchers to delve deeper into the intricacies of latent emotion recognition, building
upon the insights and findings presented in this thesis. Through its comprehensive analysis and
forward-looking perspective, this chapter consolidates the significance of the research conducted,
highlighting its potential impact on the development and evolution of latent emotion recognition
as a vital area of study.

6.1 Summary of the contributions

This section presents a comprehensive summary of the contributions made in this thesis, which
aims to address three main hypotheses through the proposal of novel approaches. In the pre-
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ceding chapters, each hypothesis is explored in detail, and the implementation results obtained
provide substantial support for their validity. By delving into these hypotheses and employing
innovative methodologies, this research sheds light on significant aspects of the subject matter
and contributes to the existing body of knowledge in the field. The following subsections provide
an overview of the key contributions made in each hypothesis, emphasising the novel approaches
introduced and the corresponding experimental results that bolster their credibility.

6.1.1 Facial action unit detection in micro-expression

Chapter 3 illustrates a method for the detection of activated AU during micro-expression. The
results support the Hypothesis 1: computer vision methods can effectively detect and analyse
facial muscle movements, such as AU, facilitating a better understanding of the relationship
between micro-expressions and emotional states and its sub-hypotheses. Let us scrutinise the
contribution of each methodological aspect in substantiating these hypotheses:

1. Segmentation of facial key subregions: The proposed method incorporates a meticulous
segmentation approach based on the precise localisation of activated facial muscles (AUs)
and facial landmarks. By partitioning the face into distinct subregions, the method aims to
enhance the veracity and efficacy of detecting micro AUs. This segmentation methodology
aligns with Hypothesis 1.1, as it acknowledges the significance of concentrating on specific
facial regions associated with AU activation. By isolating these regions, the method provides
a targeted analysis of the pertinent facial muscle movements, thereby corroborating the
hypothesis that the segmentation of key subregions augments AU detection and micro-
expression analysis.

2. Multi-label classification and region assignment: Following the segmentation process,
the proposed method executes a multi-label classification paradigm by allocating AUs to
different localised areas within the segmented regions. This approach simplifies the task
of micro-expression AU detection by decomposing the intricate multi-label classification
predicament into more manageable constituents. By assigning AUs to distinct local areas,
the method mitigates the complexity of the classification task, thus affirming Hypothesis
1.2. This hypothesis posits that the division of the multi-label classification problem into
smaller segments based on segmented regions facilitates AU detection. The successful
implementation of this classification and assignment scheme provides empirical support for
the hypothesis.

3. AU-independent cross-validation: The evaluation framework of the proposed method
employs an AU-independent cross-validation methodology. This approach ensures a robust
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and reliable evaluation metric for assessing the performance of AU detection approaches
in micro-expression analysis. By designing an evaluation framework that is not reliant on
specific AUs, the method provides a comprehensive assessment of its performance across
various micro-expression scenarios. This corroborates Hypothesis 1.3, which contends
that the utilisation of an AU-independent cross-validation method furnishes a dependable
metric for evaluating AU detection. The successful incorporation of this evaluation approach
bolsters the main hypothesis, substantiating the claim that computer vision methods can
effectively detect and analyse facial muscle movements in micro-expressions.

6.1.2 A novel advanced architecture for micro-expression recognition

In Chapter 4, I propose spatio-temporal transformer architecture substantiates the main Hy-
pothesis 2: advanced architectures that can learn both short and long-range spatio-temporal
relationships from micro-expression data, can significantly improve the accuracy of automatic
latent emotion recognition by improving the accuracy of automatic latent emotion recognition
from micro-expressions. I will now investigate how each methodological aspect lends support to
its sub-hypotheses:

1. Novel deep learning architecture: The proposed spatio-temporal deep learning architecture
represents the first purely transformer-based approach for MER, devoid of any convolutional
network usage. This architectural innovation directly addresses Hypothesis 2.1, which sug-
gests that novel approaches utilising transformer architectures for video-based MER achieve
comparable or superior performance compared to existing deep learning methods with other
architectures. Through comprehensive evaluations on widely-used micro-expression datasets,
the proposed approach consistently outperforms the state-of-the-art, providing empirical
evidence to support the hypothesis.

2. Alternative input representations: The proposed approach incorporates a modification
called “long-term optical flow” to overcome the limitations of traditional optical flow in
micro-expression videos. By calculating the optical flow between each sample frame and
the onset frame of the micro-expression, the method captures the unique dynamics of micro-
expressions more effectively. This supports Hypothesis 2.2, demonstrating that alternative
input representations, such as modified optical flow, enhance the accuracy and robustness of
MER systems. The findings validate the effectiveness of long-term optical flow in capturing
the subtle spatio-temporal patterns of micro-expressions.

3. Integration of temporal information and spatial relations: The proposed method aligns
with Hypothesis 2.3 by employing a spatial feature extraction technique based on transformer
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encoders to extract long-range spatial relations from each frame of micro-expression video
clips. The approach represents input frames as sequences of constituent patches and converts
them into vector sequences, preserving the local spatial features of each image patch. These
sequences are then processed by the transformer encoder to extract long-term spatial features.
By incorporating the transformer encoder, the proposed method captures the intricate spatial
relationships within micro-expressions, enhancing the discriminative power of the extracted
features. This provides empirical evidence in support of Hypothesis 2.3, demonstrating
that integrating temporal information from optical flow with spatial feature extraction using
transformer encoders improves the effectiveness of micro-expression analysis for latent
emotion recognition.

4. Temporal aggregation mechanisms: The proposed method substantiates Hypothesis 2.4
by incorporating temporal aggregation mechanisms that connect spatio-temporal features
extracted from multiple frames in micro-expression videos. By leveraging these mechanisms,
the approach addresses the challenge of effectively capturing both local and global spatio-
temporal patterns. The temporal aggregation facilitates the integration of information across
frames, allowing for a more comprehensive analysis of the temporal dynamics within micro-
expressions. This integration enhances the overall effectiveness of the video-based MER
system. The inclusion of temporal aggregation mechanisms contributes to the improved
performance and effectiveness of the system in recognising latent emotions from micro-
expressions, providing empirical evidence to validate the hypothesis.

6.1.3 Multi-modal latent emotion recognition

Chapter 5 presents a multimodal learning framework that supports the main idea stated in Hy-
pothesis 3: incorporating multimodal data, such as physiological signals and depth information,
alongside spontaneous micro-expressions can enhance the accuracy and robustness of emotion
recognition systems, providing a more comprehensive understanding of emotions. This chapter
also highlights the potential for further research and applications in this field. In the subsequent
analysis, I will examine how each aspect of the methodology contributes to validating the related
sub-hypotheses:

1. Enhancing emotion recognition through multimodal integration: The innovative multi-
modal learning architecture utilised in the proposed framework directly tackles Hypothesis
3.1. By integrating micro-expressions and physiological signals within this architecture,
the framework enhances the accuracy of recognising latent emotions. Through extensive
evaluations, it is consistently demonstrated that the proposed approach outperforms existing
benchmark methods, offering empirical validation for the hypothesis.
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2. Robust feature extraction from physiological signals: The integration of a separable and
mixable network structure into the multi-modal learning framework further strengthens the
support for Hypothesis 3.2. This advanced network architecture adeptly extracts a broad
spectrum of features from various physiological signals, capitalising on their unique and
interconnected characteristics to improve emotion recognition. The results obtained from
rigorous evaluations provide compelling evidence that validates the effectiveness of the
separable and mixable network flow in capturing discriminative patterns within physiological
data.

3. Enhancing map reconstruction in micro-expression video clips: The standardised normal
distribution weighted feature fusion method aligns with Hypothesis 3.3. This method
specifically enhances the reconstruction of informative maps from distinct frames of micro-
expression videos by leveraging their temporal dynamics. By integrating this fusion method
into the framework, the representation of emotional cues is improved, resulting in a more
accurate and robust recognition of emotions.

4. Guided attention for both multimodal micro-expression and latent emotion recognition:
The external feature guided attention modules, integrated into the multimodal learning frame-
work, substantiate Hypothesis 3.4. These attention modules facilitate multimodal learning
for both micro-expressions (colour and depth information) and latent emotion recognition
(micro-expressions and physiological signals). By guiding attention to relevant features and
their relationships across modalities, the framework enhances the overall performance of the
system in recognising and understanding emotions.

6.1.4 Further remarks

The contributions made in this thesis are not only valuable for academic research but also hold
great promise for practical applications, such as in human-computer interaction, mental health
assessment, and security. The incorporation of the micro-AU detection task could advance our
understanding of the intricate relationships between action units (AU) and micro-expressions
by providing a richer pool of AU evidence. Additionally, it has the potential to facilitate the
development of training tools essential for individuals in professions that necessitate acute
emotional perception, such as law enforcement and healthcare. The introduction of this novel
architecture, boasting improved accuracy in discerning latent emotions from micro-expressions,
holds promise for enhancing emotion recognition systems in practical, real-world applications.
Moreover, integrating physiological signals into emotion recognition may pave the way for
advancements in mental health assessment tools. The proposed methodologies and findings
can guide future research, encouraging the exploration of combining novel approaches and the
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integration of multimodal data for a more comprehensive classification of human emotions. This
can lead to the development of empathetic interfaces and applications.

6.2 Outstanding challenges and future work

The field of micro-expression study is currently considered to be in its early stages, with ongoing
research and development. Consequently, it is not yet considered a fully mature research field.
As a result, numerous challenges persist within this domain. This section aims to provide a
concise overview of the current challenges and potential avenues for future research that hold
promise. Although significant progress has been made in understanding micro-expressions,
several obstacles still impede further advancements.

6.2.1 Data and its limitations

As I discussed in Chapter 2, a major practical obstacle limiting research on micro-expressions
concerns the availability, quality, and standardisation of data used by researchers. One of the
fundamental issues stems from the fact that repeatable and uniform stimulation of spontaneous
micro-expressions is challenging. In research to date, participants are usually exposed to emo-
tional videos which are then expected to rouse participants’ emotions, but which the participants
are asked to attempt to conceal. Since in some instances, emotional arousal fails, many recordings
end up being useless as they contain no micro-expression exhibition – this is one of the reasons
why both the number of micro-expression corpora is small and why each of the data sets contains
relatively few class examples.

Another practical difficulty, pervasive in data intensive applications, concerns the encoding or
labelling of data, which is very time-consuming and laborious. The process requires a trained and
skilled labeller, repeated examination of participants’ recordings (often in slow motion), and the
marking of the micro-expression onset, peak, and termination. Thus, in addition to the process
being laborious and slow, it is also inexact, with inter-labelled variability being an issue. Closely
connected to this problem is the fact that there is no uniform and widely accepted standard for
the classification of micro-expressions. Therefore, the labelling approaches adopted for different
databases are different (with similar micro-expressions treated as different depending on the data
set used), posing challenges to understanding the performance of the state-of-the-art, relative
performances of different methods. There is no doubt that further work in this area is badly
needed and that contributions to standardisation would benefit the field enormously.
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6.2.2 Real-time micro-expression recognition

In the realm of micro-expression analysis, the tasks of micro-expression classification and the
mapping of the corresponding class clusters onto the space of emotions are certainly the most
widely addressed ones in the literature, and arguably the most important ones. In some practical
applications, it is desirable to be able to do this in real-time. Considering that the duration of
a micro-expression is very short, from 1/25 to 1/5 of a second, it is clear that this is a major
computational challenge, especially when the application is required to run on embedded or
mobile devices. Although workarounds are possible in principle, e.g. by offloading computation
to more powerful servers, this may not always be possible and new potential bottlenecks emerge
due to the need to transmit large amounts of data. Given the lack of attention to the problems
associated with computational efficiency in the existing literature and the aforementioned need
for micro-expression analysis in real-time, this direction of research also offers a range of
opportunities for valuable future contributions.

6.2.3 Standardisation of performance metrics

The standardisation of performance metrics in MER is a critical challenge that requires further
improvement in the evaluation process. Future work should focus on addressing the time-
consuming nature of cross-database evaluations and developing new evaluation metrics that
encompass both single-dataset and cross-database assessments. Through collaborative efforts
and the adoption of standardised evaluation protocols, researchers can enhance the reliability
and comprehensiveness of MER methods, leading to significant advancements in the field.
The commonly employed method, LOSO cross-validation, while effective, can become time-
consuming, particularly when dealing with a large number of subjects. The computational burden
of withholding data from each subject individually in multiple iterations hinders the evaluation
process. Therefore, it is necessary to explore alternative strategies or optimisations to expedite
evaluations without compromising reliability and comprehensiveness.

To address this challenge, future work in the field of MER should focus on developing new
standard evaluation metrics. These metrics should not only account for the accuracy of single-
dataset evaluations but also encompass cross-database evaluations. By establishing common
evaluation protocols and benchmarks that can be consistently applied across datasets, researchers
and practitioners can ensure comparability and standardisation of results. Collaborative efforts
among the MER community are crucial in defining these frameworks, promoting transparency
and the adoption of best practices. Cross-database evaluations offer several advantages over
single-dataset evaluations, such as increasing sample diversity and size, and providing insights
into method performance across different populations and contexts. By overcoming the limita-
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tions of small dataset sizes, these evaluations help uncover potential biases and limitations in
MER methods. With standardised performance metrics and evaluation protocols, researchers can
make meaningful comparisons, identify areas for improvement, and develop more robust and
reliable MER techniques.

6.2.4 Multi-modal latent emotion recognition with contactless bio-signal
measurement

The integration of micro-expression analysis and contactless bio-signals in multi-modal latent
emotion recognition holds immense potential for advancing our understanding of human emo-
tions. By combining the subtle facial expressions captured through micro-expression analysis
with non-intrusive bio-signals, such as heart rate variability or electrodermal activity, a more
comprehensive and accurate assessment of emotional states can be achieved. This novel ap-
proach not only allows for a more refined recognition of latent emotions but also opens doors
to various applications in fields such as psychology, human-computer interaction, and affective
computing. Although there currently exists a micro-expression database with physiological
signals, its limitations lie in the restricted sample size and the lack of contactless data collection.
Thus, the development of a comprehensive database that encompasses both micro-expressions
and contactless bio-signals would serve as a crucial foundation for future research in this domain.
Such a database would enable researchers to explore new avenues in emotion recognition, devise
more robust algorithms, and ultimately contribute to the advancement of our understanding of
human emotions.
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Table A.1: Partial Summary of Micro-Expression Recognition Work on Spontaneous Databases.

Paper Feature Method Database Best Result

2011 Pfister et al. [140] Hand-crafted LBP-TOP Early SMIC Acc: 71.4%

2013 Li et al. [103] Hand-crafted LBP-TOP SMIC-VIS Acc: 52.11%

2014 Guo et al. [55] Hand-crafted LBP-TOP SMIC Acc: 65.83%

2014 Wang et al. [184] Hand-crafted TICS CASME Acc: 61.85%
CASME II Acc: 58.53%

2014 Wang et al. [183] Hand-crafted DTSA CASME Acc: 46.90%

2014 Yan et al. [206] Hand-crafted LBP-TOP CASME II Acc: 63.41%

2015 Huang et al. [64] Hand-crafted STLBP-IP SMIC Acc: 57.93%
CASME II Acc: 59.51%

2015 Huang et al. [65] Hand-crafted STCLQP SMIC Acc: 64.02%
CASME Acc: 57.31%
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Paper Feature Method Database Best Result

CASME II Acc: 58.39%

2015 Le et al. [95] Hand-crafted DMDSP+LBP-TOP CASME II F1-score: 0.52

2015 Le et al. [96] Hand-crafted LBP-TOP+STM SMIC Acc: 44.34%
CASME II Acc: 43.78%

2015 Liong et al. [107] Hand-crafted OSW-LBP-TOP SMIC Acc: 57.54%
CASME II Acc: 66.40%

2015 Lu et al. [117] Hand-crafted DTCM SMIC Acc: 82.86%
CASME Acc: 64.95%
CASME II Acc: 64.19%

2015 Wang et al. [186] Hand-crafted TICS, CIELuv and CIELab CASME Acc: 61.86%
CASME II Acc: 62.30%

2015 Wang et al. [191] Hand-crafted LBP-SIP and LBP-MOP CASME Acc: 66.8%

2016 Ben et al. [8] Hand-crafted MMPTR CASME Acc: 80.2%

2016 Chen et al. [22] Hand-crafted 3DHOG CASME II Acc: 86.67%

2016 Kim et al. [87] Deep Learning CNN+LSTM CASME II Acc: 60.98%

2016 Liong et al. [108] Hand-crafted Optical Strain SMIC Acc: 52.44%
CASME II Acc: 63.41%

2016 Liu et al. [113] Hand-crafted MDMO SMIC Acc: 80%
CASME Acc: 68.86%
CASME II Acc: 67.37%

2016 Oh et al. [126] Hand-crafted I2D SMIC F1-score: 0.44
CASME II F1-score: 0.41

2016 Talukder et al. [165] Hand-crafted LBP-TOP SMIC-NIR Acc: 62%

2016 Wang et al. [187] Hand-crafted STCCA CASME Acc: 41.20%
CASME II Acc: 38.39%

2016 Zheng et al. [229] Hand-crafted LBP-TOP, HOOF CASME Acc: 69.04%
CASME II Acc: 63.25%

2017 Happy and Routray [59] Hand-crafted FHOFO SMIC F1-score: 0.524
CASME F1-score: 0.549
CASME II F1-score: 0.525

2017 Liong et al. [109] Hand-crafted Bi-WOOF SMIC-VIS Acc: 53.52%
CASME II F1-score: 0.59

2017 Peng et al. [137] Deep Learning DTSCNN CASMEI/II Acc: 66.67%

2017 Wang et al. [193] Hand-crafted LBP-TOP CASME II Acc: 75.30%

2017 Zhang et al. [216] Hand-crafted LBP-TOP CASME II Acc: 62.50%

2018 Ben et al. [9] Hand-crafted HWP-TOP CASME II Acc: 86.8%

2018 Hu et al. [63] Hand-crafted LGBP-TOP and CNN SMIC Acc: 65.1%
CASME II Acc: 66.2%

2018 Khor et al. [85] Deep Learning ELRCN CASME II F1-score: 0.5
SAMM F1-score: 0.409

2018 Li et al. [104] Hand-crafted HIGO SMIC-HS Acc: 68.29%
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CASME II Acc: 67.21

2018 Liong et al. [110] Hand-crafted Bi-WOOF SMIC-HS F1-score: 0.62%
CASME II F1-score: 0.61

2018 Su et al. [158] Hand-crafted DS-OMMA CASME II F1-score: 0.724
CAS(ME)2 F1-score: 0.737

2018 Zhu et al. [237] Hand-crafted LBP-TOP and OF CASME II Acc: 53.3%

2018 Zong et al. [238] Hand-crafted STLBP-IP CASME II Acc: 63.97%

2019 Gan et al. [46] Deep Learning OFF-ApexNet SMIC Acc: 67.6%
CASME II Acc: 88.28%
SAMM Acc: 69.18%

2019 Huang et al. [66] Hand-crafted DiSTLBP-RIP SMIC Acc: 63.41%
CASME Acc: 64.33%
CASME II Acc: 64.78%

2019 Li et al. [100] Deep Learning 3D-FCNN SMIC Acc: 55.49%
CASME Acc: 54.44%
CASME II Acc: 59.11%

2019 Liong et al. [111] Deep Learning STSTNet Composite UF1: 0.735 and UAR: 0.760
SMIC UF1: 0.680 and UAR: 0.701
CASME II UF1: 0.838 and UAR: 0.869
SAMM UF1: 0.659 and UAR: 0.681

2019 Liu et al. [114] Deep Learning EMR Composite UF1: 0.789 and UAR: 0.782
SMIC UF1: 0.746 and UAR: 0.753
CASME II UF1: 0.829 and UAR: 0.821
SAMM UF1: 0.775 and UAR: 0.715

2019 Peng et al. [139] Hand-crafted HIGO-TOP, ME-Booster SMIC-HS Acc: 68.90%
CASME II Acc: 70.85%

2019 Peng et al. [138] Deep Learning Apex-Time Network SMIC UF1: 0.497 and UAR: 0.489
CASME II UF1: 0.523 and UAR: 0.501
SAMM UF1: 0.429 and UAR: 0.427

2019 Van Quang et al. [172] Deep Learning CapsuleNet Composite UF1: 0.652 and UAR: 0.651
SMIC UF1: 0.582 and UAR: 0.588
CASME II UF1: 0.707 and UAR: 0.701
SAMM UF1: 0.621 and UAR: 0.599

2019 Xia et al. [199] Deep Learning MER-RCNN SMIC Acc: 57.1%
CASME Acc: 63.2%
CASME II Acc: 65.8%

2019 Zhao and Xu [227] Hand-crafted NMPs SMIC Acc: 69.37%
CASME II Acc: 72.08%

2019 Zhou et al. [233] Deep Learning Dual-Inception Composite UF1: 0.732 and UAR: 0.728
SMIC UF1: 0.665 and UAR: 0.673
CASME II UF1: 0.862 and UAR: 0.856
SAMM UF1: 0.587 and UAR: 0.566

2020 Wang et al. [176] Deep Learning ResNet, Micro-Attention SMIC Acc:49.4%
CASME II Acc:65.9%
SAMM Acc: 48.5%
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2020 Xie et al. [203] Deep Learning AU-GACN CASME II Acc:49.2%
SAMM Acc: 48.9%

2020 Buhari et al. [13] Deep Learning FACS-based graph CASME II Acc: 75.05%
SMIC Acc: 70.25%
SAMM Acc: 87.33%

2020 Cen et al. [16] Hand-crafted Enhanced LCBP CASME II Acc: 78.45%
SMIC Acc: 79.26%
SAMM Acc: 79.41%

2020 Chen et al. [20] Deep Learning CBAMNet CASME II Acc: 69.92%
SMIC Acc: 54.84%

2020 Choi and Song [24] Deep Learning LFM CASME II Acc: 73.98%
SMIC Acc: 71.34%

2020 Gao et al. [47] Hand-crafted LNMF CASME II Acc: 72.60%
SAMM Acc: 73.30%

2020 Lai et al. [91] Deep Learning MACNN CASME II Acc: 72.26%

2020 Le et al. [93] Deep Learning VGG19 + ROI CASME II Acc: 78.50%

2020 Liu et al. [112] Deep Learning Optical flow + CNN CASME II Acc: 64.63%

2020 Lo et al. [115] Deep Learning MER-GCN CASME II Acc: 58.82%

2020 Pan et al. [129] Hand-crafted H-SVM CASME II Acc: 73.10%
SMIC Acc: 73.10%
SAMM Acc: 58.46%

2020 Sun et al. [159] Hand-crafted MAP-LBP-TOP CASME II Acc: 77.30%
SAMM Acc: 58.82%

2020 Takalkar et al. [163] Deep Learning LBP-TOP + CNN CASME II Acc: 86.20%
SMIC Acc: 93.30%
SAMM Acc: 91.70%

2020 Verma et al. [175] Deep Learning Affective Net CASME II Acc: 68.74%
SAMM Acc: 58.12%

2020 Wang et al. [179] Deep Learning 2D-3D CNN SAMM Acc: 85.19%

2020 Xia et al. [200] Deep Learning STRCN CASME II Acc: 80.30%
SMIC Acc: 72.30%
SAMM Acc: 78.60%

2020 Zhu et al. [236] Deep Learning DSTICNN CASME II Acc: 82.21%
SMIC Acc: 78.78%

2021 Gajjala et al. [45] Deep Learning MERANet CASME II Acc: 91.70%

2021 Guermazi et al. [53] Hand-crafted LBPAccPu2 CASME II Acc: 80.81%
SMIC Acc: 76.59%

2021 Gupta et al. [57] Deep Learning MERASTC CASME II Acc: 85.40%
SMIC Acc: 79.30%
SAMM Acc: 83.80%

2021 Lei et al. [97] Deep Learning AUGCN + AUFsuion CASME II Acc: 80.80%
SAMM Acc: 74.26%
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2021 Li et al. [106] Deep Learning LGCcon CASME II Acc: 65.02%
SAMM Acc: 40.90%

2021 Nie et al. [125] Deep Learning GEME CASME II Acc: 75.20%
SMIC Acc: 64.63%
SAMM Acc: 55.88%

2021 Pan et al. [130] Deep Learning TSDN CASME II Acc: 71.49%
SMIC Acc: 68.90%

2021 Takalkar et al. [164] Deep Learning LGAttNet CASME II Acc: 94.20%
SAMM Acc: 86.70%

2021 Wang et al. [190] Deep Learning DSTAN CASME II Acc: 75.20%
SMIC Acc: 77.40%

2021 Wang et al. [178] Deep Learning STM-Net CASME II Acc: 84.84%
SMIC Acc: 78.66%
SAMM Acc: 81.13%

2021 Wang et al. [189] Deep Learning MESNet SAMM Acc: 97.73%

2021 Yang et al. [207] Deep Learning MERTA CASME II Acc: 60.54%

2021 Zhao et al. [222] Deep Learning MERSiamC3D CASME II Acc: 80.05%
SAMM Acc: 64.03%

2021 Zhao et al. [226] Deep Learning ARS + CropNet CASME II Acc: 86.20%

2022 Chen et al. [19] Deep Learning BDCNN CASME II UF1: 0.950 and UAR: 0.952
SMIC UF1: 0.786 and UAR: 0.787
SAMM UF1: 0.819 and UAR: 0.799

2022 Fan et al. [44] Deep Learning ViT MMEW Acc: 87.00%

2022 Indolia et al. [71] Deep Learning DSResNetAtt CASME Acc: 90.34%
CASME II Acc: 80.08%
SAMM Acc: 95.50%

2022 Wang et al. [180] Deep Learning FPR CASME II Acc: 70.00% and F1-score: 0.71
SMIC Acc: 69.00% and F1-score: 0.69
CASME Acc: 74.00% and F1-score: 0.74

2022 Wei et al. [196] Hand-crafted LBP-FIP CASME II Acc: 79.00%
SMIC Acc: 67.86%

2022 Wei et al. [197] Deep Learning AMAN CASME II Acc: 75.40% and F1-score: 0.713
SMIC Acc: 79.87% and F1-score: 0.771
SAMM Acc: 68.85% and F1-score: 0.668

2022 Zhao et al. [224] Deep Learning Cascade-MEMN + SCL CASME II UF1: 0.915 and UAR: 0.915
SMIC UF1: 0.717 and UAR: 0.733
SAMM UF1: 0.759 and UAR: 0.724

2022 Zhao et al. [223] Deep Learning ME-PLAN CASME II UF1: 0.894 and UAR: 0.896
SMIC UF1: 0.713 and UAR: 0.726
SAMM UF1: 0.736 and UAR: 0.769

2022 Zhou et al. [234] Deep Learning FeatRef CASME II Acc: 68.38%
SMIC Acc: 57.90%
SAMM Acc: 60.13%
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