596 research outputs found

    A Novel Iterative Structure for Online Calibration of M-Channel Time-Interleaved ADCs

    Get PDF
    published_or_final_versio

    Design of Energy-Efficient A/D Converters with Partial Embedded Equalization for High-Speed Wireline Receiver Applications

    Get PDF
    As the data rates of wireline communication links increases, channel impairments such as skin effect, dielectric loss, fiber dispersion, reflections and cross-talk become more pronounced. This warrants more interest in analog-to-digital converter (ADC)-based serial link receivers, as they allow for more complex and flexible back-end digital signal processing (DSP) relative to binary or mixed-signal receivers. Utilizing this back-end DSP allows for complex digital equalization and more bandwidth-efficient modulation schemes, while also displaying reduced process/voltage/temperature (PVT) sensitivity. Furthermore, these architectures offer straightforward design translation and can directly leverage the area and power scaling offered by new CMOS technology nodes. However, the power consumption of the ADC front-end and subsequent digital signal processing is a major issue. Embedding partial equalization inside the front-end ADC can potentially result in lowering the complexity of back-end DSP and/or decreasing the ADC resolution requirement, which results in a more energy-effcient receiver. This dissertation presents efficient implementations for multi-GS/s time-interleaved ADCs with partial embedded equalization. First prototype details a 6b 1.6GS/s ADC with a novel embedded redundant-cycle 1-tap DFE structure in 90nm CMOS. The other two prototypes explain more complex 6b 10GS/s ADCs with efficiently embedded feed-forward equalization (FFE) and decision feedback equalization (DFE) in 65nm CMOS. Leveraging a time-interleaved successive approximation ADC architecture, new structures for embedded DFE and FFE are proposed with low power/area overhead. Measurement results over FR4 channels verify the effectiveness of proposed embedded equalization schemes. The comparison of fabricated prototypes against state-of-the-art general-purpose ADCs at similar speed/resolution range shows comparable performances, while the proposed architectures include embedded equalization as well

    Methodology for Mismatch Reduction in Time-Interleaved ADCs

    Get PDF
    This paper presents a methodology to minimize mismatch errors in time-interleaved analog-to-digital converters (ADC) by means of averaging multiple channels. A simple algorithm improving both spurious free dynamic range (SFDR) and signal-to-noise and distortion ratio (SINAD) is demonstrated. The presented technique provides robustness against inaccurately identified mismatch errors and does not require computationally expensive post-processing of the signal

    An identification of the tolerable time-interleaved analog-to-digital converter timing mismatch level in high-speed orthogonal frequency division multiplexing systems

    Get PDF
    High-speed Terahertz communication systems has recently employed orthogonal frequency division multiplexing approach as it provides high spectral efficiency and avoids inter-symbol interference caused by dispersive channels. Such high-speed systems require extremely high-sampling time-interleaved analog-to-digital converters at the receiver. However, timing mismatch of time-interleaved analog-to-digital converters significantly causes system performance degradation. In this paper, to avoid such performance degradation induced by timing mismatch, we theoretically determine maximum tolerable mismatch levels for orthogonal frequency division multiplexing communication systems. To obtain these levels, we first propose an analytical method to derive the bit error rate formula for quadrature and pulse amplitude modulations in Rayleigh fading channels, assuming binary reflected gray code (BRGC) mapping. Further, from the derived bit error rate (BER) expressions, we reveal a threshold of timing mismatch level for which error floors produced by the mismatch will be smaller than a given BER. Simulation results demonstrate that if we preserve mismatch level smaller than 25% of this obtained threshold, the BER performance degradation is smaller than 0.5 dB as compared to the case without timing mismatch

    Analog‐to‐Digital Conversion for Cognitive Radio: Subsampling, Interleaving, and Compressive Sensing

    Get PDF
    This chapter explores different analog-to-digital conversion techniques that are suitable to be implemented in cognitive radio receivers. This chapter details the fundamentals, advantages, and drawbacks of three promising techniques: subsampling, interleaving, and compressive sensing. Due to their major maturity, subsampling- and interleaving-based systems are described in further detail, whereas compressive sensing-based systems are described as a complement of the previous techniques for underutilized spectrum applications. The feasibility of these techniques as part of software-defined radio, multistandard, and spectrum sensing receivers is demonstrated by proposing different architectures with reduced complexity at circuit level, depending on the application requirements. Additionally, the chapter proposes different solutions to integrate the advantages of these techniques in a unique analog-to-digital conversion process

    Digital background calibration algorithm and its FPGA implementation for timing mismatch correction of time-interleaved ADC

    Get PDF
    Sample time error can degrade the performance of time-interleaved analog to digital converters (TIADCs). A fully digital background algorithm is presented in this paper to estimate and correct the timing mismatch errors between four interleaved channels, together with its hardware implementation. The proposed algorithm provides low computation burden and high performance. It is based on the simplified representation of the coefficients of the Lagrange interpolator. Simulation results show that it can suppress error tones in all of the Nyquist band. Results show that, for a four-channel TIADC with 10-bit resolution, the proposed algorithm improves the signal to noise and distortion ratio (SNDR) and spurious-free dynamic range (SFDR) by 19.27 dB and 35.2 dB, respectively. This analysis was done for an input signal frequency of 0.09fs. In the case of an input signal frequency of 0.45fs, an improvement by 33.06 dB and 43.14 dB is respectively achieved in SNDR and SFDR. In addition to the simulation, the algorithm was implemented in hardware for real-time evaluation. The low computational burden of the algorithm allowed an FPGA implementation with a low logic resource usage and a high system clock speed (926.95 MHz for four channel algorithm implementation). Thus, the proposed architecture can be used as a post-processing algorithm in host processors for data acquisition systems to improve the performance of TIADC
    • 

    corecore