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A Novel Iterative Structure for Online Calibration
of M-Channel Time-Interleaved ADCs

K. M. Tsui and S. C. Chan, Member, IEEE

Abstract— This paper proposes a computationally efficient
calibration structure for online estimation and compensation of
offset, gain and frequency response mismatches in M-channel
time-interleaved (TI) analog-to-digital converters (ADCs). The
basic idea of the proposed approach is to reserve some sampling
instants for estimating and tracking the mismatch parameters
of sub-ADCs with reference to a known input. Since the esti-
mation problem is analogous to a standard system identification
problem, we propose two simple variable digital filter (VDF)
based adaptive filter structures which are derived from the least
mean squares (LMS) and normalized LMS algorithms. On the
other hand, the reservation of some sampling instants in the
normal operation of TI ADC implies that part of samples have
to be sacrificed. Based on a general time-varying linear system
model for the mismatch and the spectral property of a slightly
oversampled input signal, we also propose a novel iterative
framework to solve the resulting underdetermined problem. It
not only embraces a number of iterative algorithms for the
tradeoff between convergence rate and arithmetic complexity
but also admits efficient update structure based again on VDFs.
Therefore, thanks to the well-known efficient implementation of
VDFs, the adaptability of both estimation and compensation
algorithms allows us to combine them seamlessly to form an
online calibration structure, which is able to track and compen-
sate for the channel mismatches with low complexity and high
reconstruction accuracy. Finally, we demonstrate the usefulness
of the proposed approach by means of computer simulations.

Index Terms— Calibration, estimation, Farrow structure,
frequency response mismatch, gain mismatch, iterative
compensation, offset mismatch, time-interleaved analog-to-
digital converter (TI ADC).

I. INTRODUCTION

THE operating speed of modern electronic systems, such
as software radio [1], [2], is getting higher and higher,

and hence there is a growing need for digital instruments
to record and measure the relevant system parameters with
sufficiently high speed. This calls for high-speed analog-to-
digital converters (ADCs), which can deliver increasingly
high sampling rate. Given the limitation of current device
technology and other cost constraints, time-interleaved (TI)
ADC has emerged as a promising approach to achieve this
desired high sampling rate by parallel operation of multiple
sub-ADCs with lower rate [3]. However, any small channel
mismatches such as offset, gain, time, bandwidth, or more
general frequency response mismatches, between sub-ADCs
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degrade the performance significantly [4], [5], and therefore
they need to be estimated and corrected.

Recently, a number of efficient compensation structures
have been proposed to deal with the mismatches. While
most earlier works such as [6]–[15] are mainly concerned
with timing mismatch, several recent works in [16]–[21]
place emphasis on the compensation of frequency response
mismatch, which can be viewed as a general representation of
timing and bandwidth mismatches. Among these works, the
cascade structure in [20] and a similar approach in [19] are
especially attractive for real-time applications because of their
relatively low reconfigurable complexity. Later, in [21], it was
shown that these methods actually share the idea of a classical
iterative algorithm called Richardson iteration (RI) for solving
system of linear equations. In this regard, a more versatile
iterative framework, including other more efficient iterative
algorithms such as Gauss–Seidel iteration (GSI), has been
proposed in [21]. Although most conventional compensation
structures provide an efficient way to compensate for the
mismatches, they only presume that the related mismatch para-
meters are known or precisely estimated from other external
estimation modules. In general, the estimation can be carried
out in either foreground [22], [23] or background [24], [25]
of the system operation. For the former, a known test or
training signal is injected into the system, and hence the
operation of the TI ADC has to be stopped during estimation.
For background estimation, the mismatch parameters can be
determined by some prior knowledge of input signals. Since
the estimation process depends solely on the TI ADC output, it
does not interrupt the normal operation of TI ADC. However,
a large number of samples are usually required to fully meet
the condition derived from the prior knowledge, and therefore
the convergence rate of background estimation is in general
slower than that of the foreground estimation with a known
reference signal.

Blind calibration techniques, on the other hand, have also
received great attention and they aim at simultaneously esti-
mating and compensating for mismatches. During the past
decade, numerous approaches have been proposed. Most of
them have been devoted to one or at most two types of mis-
matches at the same time such as gain mismatch in [26], timing
mismatch in [27]–[30], bandwidth mismatch in [31], offset and
gain mismatches in [32], gain and timing mismatches in [33]
and [34], as well as gain and frequency response mismatches
in [35].

Similar to blind estimation, prior knowledge of input signal
or other extra information is required in the calibration process.
For example, a blind calibration approach was developed
in [30] under the wide sense stationary input assumption.

0018-9456 © 2013 IEEE
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Another semi-blind calibration approach in [31] assumed that
there is no signal content in both low-pass and high-pass
regions, and calibrated the system with a known test signal
which does not interfere with the input spectrum. A more
commonly used additional knowledge is obtained by assuming
that the input signal is slightly oversampled, meaning that
no signal exists in the high-pass region. The central idea of
several conventional approaches has been based on this mild
assumption [27]–[29], [33]–[35].

Another important issue of blind calibration is the
computational complexity of updating the adaptive parameters.
A computationally efficient structure is highly desired to
make it truly suitable for real-time operation of TI ADCs.
Therefore, most conventional calibration approaches have been
accompanied by efficient implementation structures which
can usually be realized using fixed digital filters together
with few adaption parameters. These include the filter bank
structure in [29] and [33], cascade compensation structure in
[28], [34], and [35], polyphase structure in [27], and another
filtering structure in [30]. In real-time applications, these
approaches are preferable over other block-based algorithms
whose complexity usually increases exponentially with large
and unknown number of samples.

All of the blind calibration approaches mentioned above
have their own strengths and limitations. One common draw-
back is, however, their slow convergence rate, which is similar
to the problem encountered in blind estimation. Very often, a
considerable number of samples is required in order to get the
first corrected sample with sufficient accuracy. Nevertheless,
from the above discussion and other common considerations,
one can identify several desirable properties that a versatile
calibration structure should possess in order to fully exploit
the advantages of TI ADCs. In short, it should 1) be capable of
simultaneously handling various types of mismatches, 2) work
with mild input spectrum assumption, 3) have computationally
efficient structure for easy adaptation to any system changes,
4) exhibit fast convergence rate, 5) allow high input bandwidth
efficiency, 6) be applicable to arbitrary number of channels,
and 7) offer sufficient reconstruction accuracy. Obviously, it
is not easy to achieve all these goals.

In this paper, we attempt to develop such a calibration
approach and propose a computationally efficient structure to
simultaneously correct offset, gain, and frequency response
mismatches in M-channel TI ADCs. The basic idea is to
reserve some sampling instants for estimating the mismatch
parameters of sub-ADCs during the normal operation of TI
ADC. For this propose, a known test signal is first injected
into the system at these reserved instants to obtain the corre-
sponding sampled sequence from the sub-ADCs at one end.
Then, with the known samples of the test input at the other
end, the estimation can be performed similar to a typical
system identification problem. For efficient implementation,
we follow the polynomial model in [19]–[21] to mimic the
slightly different frequency responses of sub-ADCs, which
should normally share identical frequency characteristics. The
major advantage of the polynomial model is that the change of
frequency response mismatches can be well characterized by
a variable digital filter (VDF) whose response can be adjusted

by a single tuning parameter in an efficient Farrow structure
[1], [36], [37]. Consequently, together with simple adaptive
filters such as the least mean squares (LMS) and normalized
LMS (NLMS) algorithms, various mismatch parameters can
be adaptively estimated and tracked with low complexity in
real time.

Once the estimated mismatch parameters are available, the
major remaining problem is to compensate for the frequency
response mismatch because the offset and gain mismatches can
be directly corrected at the sub-ADCs’ outputs. In this paper,
we follow the setting of linear system in our efficient iterative
framework previously reported in [21], and propose a novel
iterative framework to deal with the compensation problem.
However, we note that the present problem is considerably
complicated by the fact that part of the samples have been
purposely discarded for online estimation of the mismatch
parameters. This results in an underdetermined system of
linear equations, for which the iterative framework in [21]
is not directly applicable. Central to our new development
to overcome this difficulty is the skillful incorporation of
the spectral property of slightly oversampled input signal
into the underdetermined system. This not only allows the
iterative framework in [21] to be adopted to solve the new
problem but also inherits its important advantages of efficient
compensation structures. Several major advantages of the
new compensation scheme can be summarized as follows:
1) it embraces a number of iterative algorithms, such as RI
and GSI, offering different tradeoffs between implementation
complexity and convergence rate; 2) it can be implemented
efficiently using VDF which allows the recovery of the desired
sequence in a sample by sample manner and enables the
online adaptation of the possibly changing channel mismatches
with low complexity; 3) its implementation complexity is
independent of the number of channels and only a few
iterations are required for convergence; and 4) the convergence
analysis can be conveniently carried out in time–frequency
domain for performance prediction. Simulation results show
that combining both estimation and iterative compensation
structures leads to a very efficient online calibration structure
which is able to meet most of the desired properties mentioned
earlier.

The rest of this paper is organized as follows. Section II
describes the background of the calibration problem with
offset, gain, and frequency response mismatches, and summa-
rizes some related system aspects and details studied in [21].
Section III is devoted to the proposed general system architec-
ture, which mainly consists of separate estimation and iterative
compensation modules. The details of these two modules
are, respectively, discussed in Sections IV and V. Design
examples and comparisons with other conventional approaches
are presented in Section VI. Finally, conclusion is drawn in
Section VII.

II. BACKGROUND

In an M-channel TI ADC, as shown in Fig. 1, there are
M parallel sub-ADCs operating in a TI manner. An aggregate
sampling rate of fs = 1/T can be achieved when the mth sub-
ADC samples the input signal xc(t) at time t = kMT + mT
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Fig. 1. General structure of an M-channel time-interleaved ADC with various
kinds of channel mismatches.

for integer k. However, calibration of the TI ADC is usually
required to estimate and compensate for any small mismatches
between the M sub-ADCs in order to improve the overall
system performance. Typical mismatches are also illustrated
in Fig. 1, where the mth sub-ADC exhibits its own offset αm ,
gain (1 + βm), and frequency response Fm( j�). Because of
these mismatches, one can only obtain an uncalibrated output
y[n], which deviates considerably from the expected output
x[n] = xc(nT ).

Blind calibration is a common approach to jointly estimate
and compensate for the mismatches to recover x[n] during the
normal operation of TI ADCs. Unfortunately, it always suffers
from a long latency to obtain the first valid sample which
incurs high complexity and delay for real-time operation.
On the other hand, compensation-only structure offers an
effective means to perform compensation, but relies on precise
knowledge of the mismatches obtained by either foreground
or background estimation. In foreground estimation, a known
test or training signal is required and hence the operation of
TI ADC has to be stopped during estimation. In background
estimation, TI ADC can operate as usual. However, like blind
calibration, one has to wait for a sufficiently accurate estimate.

In this paper, we propose a novel calibration structure
that permits simultaneous estimation and compensation of the
mismatches of TI ADC. However, it is interesting to note that
the proposed structure does not belong to the category of blind
calibration, nor is it a kind of compensation-only structure.
Actually, it is more like a compensation-only structure but
allows foreground estimation during the normal operation of
TI ADCs. We show later that our previously proposed iterative
framework in [21], which can be treated as a compensation-
only structure, plays an important role in developing the new
calibration structure considered in this paper. Because of page
limitations, below we only summarize the major results of [21]
that are useful to our subsequent discussions. For simplicity,
we also ignore the offset and gain mismatches in this section
because they can be easily corrected at the sub-ADCs’ outputs
should they be precisely estimated.

We start with the commonly used band-limiting assump-
tion that the input signal xc(t) is slightly oversampled
by a factor of

1

ε
= fs

(2 fmax)
(1)

where 0 < ε < 1 is the band-limiting parameter and fmax
is the maximum frequency of xc(t). Therefore, xc(t) can be

exactly recovered from its uniform samples x[n] according to
sampling theorem. Hence, the problem of compensating for
the frequency response mismatch is equivalent to recovering
x[n] from y[n]. We first establish an ideal discrete-time (DT)
model of TI ADCs with frequency response mismatches as
follows:

y[n] =
∞∑

k=−∞
x[k] · fn(n − k) (2)

where fn(n0) is the DT impulse response of the channel
filter Fn(e jω) = Fn( j�), and |ω| = |�T | ≤ π at time
instant n. Note that the above linear system may be viewed
as an M-periodic time-varying linear system with Fm( j�) =
Fn mod M ( j�) or Fn( j�) = Fn+M ( j�) if M channel filters
keep unchanged for a fair amount of time. Intuitively, we
can see from (2) that x[n] can be found by de convoluting
y[n] with the known time-varying filter fn(n0). However,
such deconvolution is considerably complicated by the infinite
support and time-varying nature of fn(n0). Fortunately, from
the assumption in (1), we know that the DT Fourier transform
(DTFT) of x[n] is zero for επ ≤ |ω| ≤ π . Therefore, we can
approximate fn(n0) by a practical finite-length filter hn(n0),
say a finite impulse response (FIR) filter, in the frequency
band of interest (i.e., 0 ≤ |ω| ≤ επ). Hence, (2) can be
approximated as

y[n] ≈
n+Nh1∑

k=n−Nh2

x[k] · hn[n − k] ∀n (3)

where Nh1 and Nh2 are positive integers. We can see that
hn(n0) has a support of Nh1 + Nh2 + 1 samples with hn(0) as
its center impulse response. For simplicity, we will only focus
on the FIR case with finite Nh = Nh1 = Nh2. In practice,
the differences between the two systems in (2) and (3) can be
made arbitrarily small by reducing the approximation error
between fn(n0) and hn(n0). For notation convenience, we
shall replace the approximate sign in (3) by the equality sign
subsequently.

By assuming that {y[n]} and {x[n]} are causal sequences
with a large number of samples N , we can rewrite (3) in its
matrix form as

y = Ax (4)

where y = [y[0], . . . , y[N − 1]]T , x = [x[0], . . . , x[N − 1]]T

and [A]n,k = hn[n−k], n, k = 0, 1, . . . , N −1. For the sake of
presentation, hn(n0) is assumed to be noncausal, which can
be made causal easily in practical implementation. Since N
is usually large but unknown in real-time applications, e.g.,
TI ADC systems, directly computing the inverse of A is not
recommended. In [21], we have proposed to solve (4) using
the following iteration:

Bx(m+1) = C x(m) + y (5)

where B − C = A, x(m) denotes the solution in the i th
iteration, and the initial guess is set as x(0) = y. Equation (5)
represents a general framework that includes a number of
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Fig. 2. Farrow structure for implementing a VDF.

iterative methods such as RI and GSI. These iterative methods
can be, respectively, expressed as

RI : x(m+1) = (I − A)x(m) + y (6)

GSI : x(m+1) = (D − L)−1U x(m) + (D − L)−1 y (7)

where D, L, and U are, respectively, the diagonal and the
negatives of the strictly lower and upper triangular parts of
the matrix A. One of the advantages of this framework is
that the iteration can be implemented in a sample-by-sample
manner. For example, the time-domain representation of GSI is

x (m+1)[n] = h−1
n [0]

⎛

⎝y[n] −
n−1∑

k=n−Nh2

x (m+1)[k] · hn[n − k]

−
n+Nh1∑

k=n+1

x (m)[k] · hn[n − k]
⎞

⎠ , n = 0, . . . , N − 1.

(8)

We can see that causal implementation of this equation
is viable because only the past samples of x (m+1)[n] are
involved in the second summation term.

For efficient implementation, the two summation terms can
be implemented using VDFs, as suggested in [21]. It is based
on the principle that all the channel filters of a practical TI
ADC should share similar frequency characteristics, but may
differ slightly, say, due to component variations in analog
circuits. To be specific, the impulse response of such a VDF
is given by

hn[n0] = h[n0, φ]|φ=φn
=

L−1∑

l=0

cl [n0] · φl

∣∣∣∣∣
φ=φn

(9)

where h[n0, φ] is the impulse response of the VDF under
consideration, L is the number of sub filters, cl[n0] is the
impulse response of the lth subfilter with fixed coefficients,
and φ is the spectral parameter which can be adjusted online
to vary the desired characteristics of the VDF. In (9), φn is the
value of φ at time instant n, and the resultant impulse response
is therefore related by hn(n0) = h[n0, φn]. Another important
advantage of (9) is that it can be implemented efficiently using
the well-known Farrow structure [1], [36], [37]. This is shown
in Fig. 2, where Cl(z) denotes the frequency response of cl [n0]
for l = 0, 1, . . . , L −1. For the efficient implementation of the
GSI in (8), the impulse response of the VDF in (9) is split into
two portions for the computation of the two summation terms,
each of which can also be implemented using the Farrow
structure. For more details, interested readers are referred
to [21]. In Section IV, we will also illustrate in detail how
to approximate the ideal channel response fn(n0) in (2) by
the VDF h[n0, φ] in (9).

)(txc

][~ ny
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0
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Fig. 3. Structure of the proposed TI ADC system.

Finally, we note from Fig. 2 that the Farrow structure
consists of digital subfilters with fixed coefficients and a
limited number of variable multipliers for the implementation
of the tuning parameter φ. As the coefficients of the subfilters
are fixed, they can be realized efficiently using sum-of-power-
of-two (SOPOT) coefficients instead of expensive general-
purpose multipliers [1]. More precisely, these fixed multipliers
can be replaced by a limited number of adders and hardwired
shifters. Also, if the subfilters are implemented in their trans-
posed form, the redundancy in realizing these SOPOT coef-
ficients can be further reduced by means of multiplier-block
technique [38]. Therefore, the resulting iterative structure is
amenable to high-speed TI ADCs.

III. PROPOSED TIADC STRUCTURE

In this paper, we consider a new TIADC system shown
in Fig. 3, which is able to simultaneously estimate and
compensate for the mismatches at an overall sampling rate
of fs = 1/T . Apart from a typical TI ADC module as
depicted in Fig. 1, it consists of two other main modules,
namely estimation and compensation modules. We can see
that the proposed system samples the continuous-time (CT)
signal xc(t) at a rate of fs = 1/T as usual, except that the
input is switched to a known signal σc(t) at time t = r Mσ T
for integer r . During these particular time instants, the signal
σc(t) [instead of xc(t)] is sampled by one of the sub-ADCs
in the TIADC module, and the corresponding DT samples
σ [r ] are collected and then fed into the estimation module.
With a known DT sample σref [r ] = σc(r Mσ T ) as another
input, the estimation module compares σ [r ] and σref [r ] so
as to determine the mismatch parameters γ̂ n required in the
iterative compensation module. These parameters may include
offset, gain, and frequency response mismatch parameters of
the sub-ADCs discussed in Section II.

Returning to the output of the typical TIADC module, we
know from the above mechanism that the samples collected
at time t = r Mσ T is completely irrelevant to xc(t), and they
have to be discarded before passing them to the compensation
module. For the reason which will become apparent later, these
samples are replaced by zero via another switch placed after
the output of the TIADC module. Consequently, we obtain the
following sampled sequence:

ỹ[n] =
{

0, n = r Mσ

y[n], otherwise.
(10)

In the compensation module, ỹ[n] will be used to find x̂[n],
which should be close to the desired sequence x[n] = xc(nT ).
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Consequently, we need to deal with the following two
problems.

1) Estimation of the mismatch parameter γ̂ n encapsulated
in σ [r ] with reference to the known sequence σref [r ].

2) Recovery of x[n] by compensating for the mismatch
errors in ỹ[n] with the parameter estimate γ̂ n .

As mentioned in Section I, the main objective of this paper is
to offer satisfactory solutions to the above two problems and
develop computationally efficient structures for high-speed and
real-time implementation of such TI ADC systems. Below is
a brief summary of the major considerations and difficulties
of these two problems.

The first problem is similar to a typical system identification
problem where σc(t) can be viewed as a known excitation
to the target ADC while its samples σ [r ] act as a desired
sequence measuring the ADC output response. On the other
hand, since σref [r ] is just a known sampled sequence of σc(t),
it can be fed into an equivalent DT model that mimics the
response of the target TIADC. The output so obtained can
then be compared with σ [r ] to estimate the set of parameters
(i.e., γ̂ n) that characterizes the model of all sub-ADCs. More
details will be discussed in Section IV.

However, the second problem is relatively more difficult
because we need to solve an underdetermined system where
partial samples of the TI ADC output are deliberately sac-
rificed in favor of the estimation module. This can be seen
from (4) when the number of samples in y is less than N due
to the lost samples. Hence, how to guarantee the uniqueness
of x and how to solve this problem efficiently would be two
of our primary concerns and contributions. In Section V, we
will present a computationally efficient iterative framework
that greatly extends our previous work in [21] in order to
solve simultaneously the frequency response compensation as
well as the missing sample problems.

IV. ESTIMATION MODULE

With the availability of the known input sequence σref [r ]
and the desired sequence σ [r ], estimating the characteristics of
all sub-ADCs is analogous to a system identification problem
as mentioned in Section III. Therefore, adaptive filtering
algorithms can be utilized to achieve this propose. Before
proceeding, we shall examine the choice of Mσ in order to
ensure that the proposed adaptive filter has a regular update
structure. To this end,we propose to choose Mσ such that

M and Mσ are coprime. (11)

By so doing, σ [r ] contains the samples coming from all sub-
ADCs. Otherwise, it may happen that only samples of either
even-indexed or odd-indexed sub-ADCs are collected. More
importantly, the sampling pattern is now repeated for every
M ′ = M Mσ samples with respect to ỹ[n] or M samples
with respect to σ [r ]. To be specific, within one period, there
are M samples in σ [r ], and each sample is obtained from
the kth sub-ADC, where k = mod(r Mσ , M). Owing to the
periodicity of k, we can further partition σ [r ] in M subsampled
sequences, each of which corresponds to the samples obtained
from only one of the sub-ADCs. For the sake of presentation,

we denote such subsampled sequence for the kth sub-ADC by
σk[r ′], and similarly the corresponding subsampled reference
sequence by σref,k[r ′]. As a result, we can separately estimate
the mismatch parameters of the sub-ADCs by considering
only their respective subsampled sequences. Moreover, we
note that both σk[r ′] and σref,k[r ′] can be viewed as an M ′-
fold decimated version of σc(nT ). Hence, to completely avoid
aliasing in σk[r ′] and σref,k[r ′] due to down sampling, we
further require that the known signal σc(t) is band-limited to
fs/(2M ′) or less. Upon satisfying this mild condition, σc(t)
can be any kind of signals.

Now, we are ready to present the adaptive filtering algorithm
in the estimation module. In order to demonstrate the flexibility
of the proposed algorithm, we will simultaneously estimate
gain, offset, and frequency response of each sub-ADC, which
are typical mismatches frequently encountered in TIADCs. To
start with, consider the following DT model of the kth sub-
ADC

σ̂k [r ′, γ̂ k] = α̂k + (1 + β̂k) · {σref,k[r ′] ∗ h[r ′, φ̂k]}

= α̂k + (1 + β̂k) ·
L−1∑

l=0

{σref,k[r ′] ∗ cl[r ′]} · φ̂l
k

= α̂k + (1 + β̂k) ·
L−1∑

l=0

uk,l [r ′] · φ̂l
k (12)

where γ̂ k = [α̂k, β̂k, φ̂k]T , ∗ denotes the convolution, uk,l [r ′]
is the lth subfilter output, and α̂k , β̂k , and h[r ′, φ̂k] are, respec-
tively, its offset, gain, and impulse response. In particular,
we note that the frequency response of the kth sub-ADC is
represented by its impulse response h[r ′, φ̂k] as in (3), and
it follows the VDF model in (9), which is an (L–1) order
polynomial function of a single tuning parameter φ̂k , i.e.,
h[r ′, φ̂k] = ∑L−1

l=0 cl[r ′] · φ̂l
k . Then, we can adaptively estimate

the parameters γ̂ k by minimizing the error between σk[r ′] and
σ̂k[r ′, γ̂ k] in (12).

In this paper, we will employ the well-known LMS and
NLMS algorithms to estimate γ̂ k because of their low
complexity [39]. Other efficient adaptive filter algorithms
may also be used, but we only focus on these LMS-based
algorithms for simplicity. First of all, define an error sequence
for the kth sub-ADC as

e
[
r ′, γ̂ k

] = σk
[
r ′] − σ̂k

[
r ′, γ̂ k

]
. (13)

Now consider the objective function

C(γ̂ k) = 0.5 · E
{

e2 [
r ′, γ̂ k

]}
(14)

where E{•} denotes the expectation. The solution of mini-
mizing C(γ̂ k) may be determined iteratively via the steepest
descent method [39] as

γ̂ k

[
r ′ + 1

] = γ̂ k

[
r ′] − μ∇C

(
γ̂ k

[
r ′]) = γ̂ k

[
r ′]

−μE
{
e
[
r ′, γ̂ k

[
r ′]] · ∇e

[
r ′, γ̂ k

[
r ′]]} (15)

where μ is the step size of update, and ∇C(γ̂ k[r ′]) =
E{e[r ′, γ̂ k[r ′]] · ∇e[r ′, γ̂ k[r ′]]} denotes the gradient vector
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with

∇e
[
r ′, γ̂ k

]

=
[

∂e
[
r ′, γ̂ k

]

∂α̂k
,

∂e
[
r ′, γ̂ k

]

∂β̂k
,

∂e
[
r ′, γ̂ k

]

∂φ̂k

]T

=
[
1,

L−1∑

l=0

uk,l
[
r ′] φ̂l

k, (1 + β̂k)

L−1∑

l=1

luk,l
[
r ′] φ̂l−1

k

]T

.

(16)

As is common practice, the expectation value in (15) is
approximated by its instantaneous value, and hence its update
equation can be derived as

γ̂ k

[
r ′ + 1

] = γ̂ k

[
r ′] − μe

[
r ′, γ̂ k

[
r ′]] · ∇e

[
r ′, γ̂ k

[
r ′]] (17)

which is similar to an LMS algorithm.
Alternatively, one may also employ the Newton’s method

to compute the argument for minimizing C(γ̂ k) [39]

γ̂ k

[
r ′ + 1

] = γ̂ k

[
r ′] − μ

{
∇2C

(
γ̂ k

[
r ′])}−1 ∇C

(
γ̂ k[r ′]) (18)

where ∇2C(γ̂ k[r ′]) denotes the Hessian matrix. To avoid the
expensive computation of {∇2C(γ̂ k[r ′])}−1, one can approxi-
mate the Hessian matrix as

∇2C
(
γ̂ k

[
r ′]) ≈ ζ I + ∇e

[
r ′, γ̂ k

[
r ′]] ∇T e[r ′, γ̂ k

[
r ′]] (19)

where ζ is a small positive regularization parameter as in
the Levenberg–Marquart (LM) algorithm, and the product of
the Jacobian matrix and its transpose in the Gauss–Newton
(GN) method is approximated by the instantaneous gradient.
Accordingly, the matrix inversion lemma can be invoked to
obtain

{ζ I + ∇e
[
r ′, γ̂ k

[
r ′]] ∇T e

[
r ′, γ̂ k

[
r ′]]}−1 · ∇e

[
r ′, γ̂ k

[
r ′]]

= ∇e
[
r ′, γ̂ k

[
r ′]]

ζ + ∥∥∇e[r ′, γ̂ k [r ′]
∥∥2 (20)

from which (18) can be further simplified to

γ̂ k

[
r ′ + 1

] = γ̂ k

[
r ′] − μ

e
[
r ′, γ̂ k

[
r ′]] · ∇e

[
r ′, γ̂ k

[
r ′]]

ζ + ∥∥∇e[r ′, γ̂ k [r ′]
∥∥2 (21)

which can be viewed as an NLMS algorithm. One can sim-
ilarly derive the corresponding LM or GN algorithms if a
window of samples is used instead of the instantaneous value.
Since the actual value of γ̂ k is usually small in practical TI
ADC systems, its initial guess can be simply set to zero. How-
ever, there are two important issues regarding the selection of
the step size. First, the step size μ can be set smaller to trade
a higher accuracy with a slower convergence, or vice versa.
Second, while the step size of the LMS update equation in
(17) somehow depends on the signal power of σc(t), a simple
choice of μ = 1 in the NLMS algorithm in (21) usually
leads to satisfactory convergence performance thanks to the
normalization term of

∥∥∇e[r ′, γ̂ k[r ′]∥∥2. Therefore, in practical
implementation, the NLMS algorithm is preferred over the
LMS algorithm in spite of its slightly higher complexity due
to the computation of the normalization term.

Moreover, we can see that the calculation of both update
equations of LMS and NLMS algorithms mainly hinges on
the computation of σ̂k [r ′, γ̂ k] in (12) and the gradient vector
∇e[r ′, γ̂ k[r ′]] in (16), which also follow the VDF model
in (9). Therefore, they can be implemented efficiently using the
Farrow structure as depicted in Fig. 2, and a possible structure
of the proposed estimate module is shown in Fig. 4.

V. ITERATIVE COMPENSATION MODULE

A. Problem Description

Once the estimation module obtains an estimate of γ n ,
one can compensate for the mismatches of TI ADCs. Since
offset and gain mismatches can be simply removed at the
sub-ADCs’ outputs according to (ỹ[n] − α̂n)/(1 + β̂n) for
n 	= r Mσ , we shall only focus on the compensation of
frequency response mismatch. As discussed in Section III,
the remaining problem we will encounter is actually a joint
TIADC frequency response mismatch problem and missing
sample problem, which can be expressed as

yS = S(y) = S(A)x = AS x (22)

where S(•) denotes the selection operator that only retains
the rows of vector or matrix inside the bracket correspond-
ing to the observed samples at time instants n 	= r Mσ .
Therefore, (22) is an underdetermined system where the exact
recovery of x may be infeasible if Mσ is not properly cho-
sen. Fortunately, according to the Nyquist–Landau density or
nonuniform sampling theorem [40], a CT input signal can still
be uniquely recovered from a set of its nonuniform samples
if the average sampling rate is greater than two times the
maximum input frequency. In the context of this paper, the
common assumption that the target CT signal xc(t) is slightly
oversampled by a factor of 1/ε in (1) offers us sufficient mar-
gin to exactly recover x even if part of the samples in y have
been discarded. More precisely, if the sampling rate fs and
the maximum input frequency are related by (1), the system
is affordable to lose at most (1−ε)×100% of the samples in y.
Hence, besides the suggestion in (11) from the point of view
of regular adaptive filter update structure, Mσ has to satisfy

Mσ > 1/(1 − ε) (23)

so that only one sample of xc(t) is actually lost for every Mσ

samples. Hence, the average sampling rate can be calculated
as fa = (Mσ − 1) fs/Mσ > ε fs = 2 fmax, which meets the
condition of the nonuniform sampling theorem.

Although the above choice of Mσ guarantees the recovery
of x from yS , we still have to look for any possible additional
information on x in order to compensate for the missing
information due to the lost samples. One possible way to do
so is to make use again of the oversampling assumption in (1),
which implicitly implies zero DTFT of x[n] for επ ≤ |ω| ≤ π ,
0 < ε < 1. This may also be interpreted as the time-domain
relation

x[n] =
n+Nw∑

k=n−Nw

x[k] · w[n − k] (24)



318 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 63, NO. 2, FEBRUARY 2014

)(2 zC )(1 zC )(0 zC

]][ˆ,[ˆ rr kk ′′ γσ

][ˆ rk ′α

LMS/NLMS

][ˆ1 rk ′+ β

][ˆ1 rk ′+ β

][ˆˆ
ˆ

]ˆ,[

rk

k

kk

re

′=
∂

′∂−

γγ

γ
β

][ˆˆ
ˆ

]ˆ,[

rk

k

kk

re

′=
∂

′∂−

γγ

γ
φ

][rk ′σ

)(1 zCL−

][ˆ rk ′φ

][ˆ rk ′φ

][, rkref ′σ

]1[ˆ +′rkγ

1−L 2

][2, ruk ′ ][1, ruk ′ ][0, ruk ′][1, ru Lk ′−

Fig. 4. VDF-based structure of the proposed estimation module.

where w[n0] is an impulse response of the low-pass filter. For
simplicity, we assume that it is a type I linear-phase FIR filter
with a passband cutoff frequency at ω = επ and a filter length
of 2Nw + 1. Again, we further assume w[n0] is a zero-phase
filter for the ease of presentation. Similar to the definition in
(4), (24) can be expressed in matrix form as

W x = x (25)

where the rows of W are related to w[n0]. This additional
information will be the key to restore a square system matrix
for which iterative methods naturally work with.

B. Conventional Iterative Frameworks

In this subsection, we briefly review several conventional
iterative methods for solving missing sample problem, which
employed the prior knowledge in (25) to overcome the system
deficiencies. These include the Papoulis–Gerchberg algorithm
[41]–[44], Youla’s alternating projection algorithm [45], and
the constrained iterative restoration algorithm [46]. Although
these works were reported independently by different authors,
it was suggested in [44] that the resulting algorithm actually
belongs to the same form of iteration as

x(m+1) = (I − D A)W x(m) + y (26)

or its alternate form as

x(m+1) = W(I − D A)x(m) + W y (27)

where D is a diagonal matrix with [D]n,n = 0 for n = r Mσ or
[D]n,n = 1 otherwise. In this paper, we refer the iterations in
(26) and (27) to as constrained iterative algorithm (CIA). Here,
we note that the iteration framework in [44] is modified to
deal with the frequency response mismatch considered in this
paper. When A = I , (26) and (27) reduce to the conventional
framework of CIA, since the original problem in [44] was
only concerned with uniform samples remaining on the regular
sampling grid. From the implementation point of view, the
CIA can be realized efficiently as a cascade of two digital
filters associated with A and W , which is similar to the idea we
previously reported in [21]. However, when further examining

the CIAs in (26) and (27), one can easily notice that both of
them indeed belong to the general form of RI in (6) because the
system matrices they encounter can be, respectively, viewed
as I − (I − D A)W and I − W(I − D A). As we will illustrate
in Section VI, the RI and its related algorithms such as CIA
are very ineffective in solving the present problem, and they
are usually outperformed by the GSI-based algorithms [21] in
terms of the convergence rate. For finite-dimensional problem,
the system matrices of the CIAs may alternatively be split
as suggested in (7) to form the GSI-based CIA for achieving
possible faster convergence. However, in real-time applications
such as TI ADCs, the problem dimension is usually unknown,
and, therefore, if efficient implementation structure is of inter-
est, the GSI may not be directly applicable in this case because
of the coupling of A and W . Fortunately, we are able to show
later in Section V-C that the GSI under the proposed iterative
framework can also be efficiently implemented using the VDF
based on Farrow’s structure.

There have been other attempts in [47] and [48] to combine
(22) and (25) by considering the following regularized least
squares problem:

min
x

∥∥yS − AS x
∥∥2 + λ ‖W x − x‖2 (28)

where λ is the regularization parameter. Based on its normal
equation, the iteration for solving (28) can be written as

x(m+1) = (I − AT
S AS − λW T W)x(m) + AT

S yS (29)

which is called regularized iterative algorithm (RIA). Again,
we can see that (29) belongs to an RI and the application of
GSI may not be so straightforward unless efficient filtering
structure is not a concern.

C. Proposed Iterative Framework

In this paper, we take a different way to incorporate (25)
into the problem, which facilitates the development of a more
efficient and flexible iterative framework than other conven-
tional iterative algorithms mentioned earlier. To start with, we
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consider a high-pass filter w̄[n0], which is complementary to
w[n0] as follows:

w̄[0] = 1 − w[0] and w̄[n0] = −w[n0] for n0 	= 0. (30)

It is clear from (24) that the output of filtering x[n] by w̄[n0]
is simply equal to zero. That is

0 =
n+Nw∑

k=n−Nw

x[k] · w̄[n − k] (31)

which can be viewed as an extra information of x[n] regardless
of the original time varying system in (3). Similar to (25), we
express (31) as

W̄x = (I − W)x = 0 (32)

where the rows of W̄ are constructed from w̄[n0]. Unlike the
conventional iterative methods that rely on (25), we are more
interested in (32) because it can be used to directly replace
the missing sample locations at n = r Mσ due to (10). More
precisely, it can be incorporated in (22) to form a new system
of linear equations as follows:

ỹ = Ãx (33)

where [ ỹ]n = ỹ[n] defined in (10) and

[ Ã]n =
{ [W̄]n, n = r Mσ

[A]n, otherwise.
(34)

Here, [•]n denotes the nth entry of vector or row of matrix
inside the bracket. This also justifies the insertion of zeros
to fill the void of y[n], as suggested in Section III. With the
new system (square) matrix Ã in (33), iterative methods such
as RI and GSI introduced in Section II can be applied to
solve the missing sample problem in (22). From (5), one can
immediately write the new iterative framework as

x(m+1) = G̃x
(m) + B̃

−1
y (35)

where G̃ = B̃
−1

C̃ , B̃ − C̃ = Ã and x(0) = y.
The major advantage of (35) is that it can be implemented

efficiently using Farrow structure as in [21]. Taking the GSI
as an example, we obtain from (8) that

x (m+1)[n] = h̃−1
n [0]

⎛

⎝y[n] −
n−1∑

k=n−Nh2

x (m+1)[k] · h̃n[n − k]

−
n+Nh1∑

k=n+1

x (m)[k] · h̃n[n − k]
⎞

⎠ , n = 0, . . . , N − 1 (36)

where

h̃n[n0] =
{

w̄[n0], n = r Mσ

hn[n0], otherwise.
(37)

Together with the selection criterion of Mσ in (11), we
further notice that (37) can be viewed as an M ′-periodic time-
varying linear system with M ′ = M Mσ . Now we rewrite (36)
as

x (m+1)[n] = h̃−1
n [0]

(
y[n] − s(m)

1 [n] − s(m)
2 [n]

)
(38)

][)1( nx m+
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Fig. 5. VDF-based compensation structure in the mth GSI.

TABLE I

IMPLEMENTATION COMPLEXITIES OF THE GSI AND RI IN ONE

ITERATION. VDF SUBFILTER LENGTH: Ph = Nh1 + Nh2 + 1

SUBFILTER NUMBER L HIGH-PASS FILTER LENGTH: Pw = 2Nw + 1

where s(m)
1 [n] can be viewed as an output of filtering

x (m+1)[n] by an M ′-periodic time varying filter Un(z) =∑
n0≥1 h̃n[n0]z−n and similarly s(m)

2 [n] as an output of filter-
ing x (m)[n] by Vn(z) = ∑

n0≤1 h̃n[n0]z−n . By the definition
of (37), at time instant n = r Mσ , we have Un(z) = UW̄ (z) =∑Nw

n0=1 w̄n[n0]z−n and Vn(z) = VW̄ (z) = ∑−Nw
n0=−1 w̄n[n0]z−n .

At the other time instants, Un(z) and Vn(z) can be real-
ized using the VDF model in (9). More precisely, they
are given by Vn(z) = V (z, φn) = ∑L−1

l=0 CV ,l(z)φl
n and

Un(z) = U(z, φn) = ∑L−1
l=0 CU,l(z)φl

n , where CV ,l(z) =∑−Nh
n0=−1 cl [n0]z−n and CU,l(z) = ∑Nh

n0=1 cl [n0]z−n are the lth

subfilter of U(z, φ) and V (z, φ). Fig. 5 suggests a VDF-based
structure for the implementation of GSI. In this structure, all
the filter coefficients of UW̄ (z), VW̄ (z), CV ,l(z), and CU,l(z)
are fixed, and only a few variable multipliers are required for
the tuning parameter φ. Similarly, the RI can be implemented
using VDF, though the recursive structure is not required [14],
[15]. The general implementation complexities of the GSI and
RI are shown in the Table I. We can see that both iterative
structures offer similar complexity. For the GSI particularly,
we can also see that the time-dependent variable multipliers
are solely required at n 	= r Mσ for the multiplications with
φn and h−1[0, φn], while the remaining multiplications are
all fixed. Although the fixed multipliers seem to contribute
to the major portion of hardware cost, the same multiplier-
less realization approaches mentioned in Section II can be
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applied here to replace them with limited number of adders and
shifters. Therefore, the proposed structure is computationally
efficient in the sense that there are only a few expensive
variable multipliers in one iteration. Moreover, it is shown
in [53] that the convergence of the proposed algorithm is
generally guaranteed with Mσ satisfying (23). In real appli-
cations, a reasonable input bandwidth efficiency related to ε
in (1) always leads to an appropriate choice of Mσ which
ensures that the problem is solvable and the proposed iterative
framework is convergent. These useful properties, in addition
to the superior convergence performance of the GSI, make the
proposed iterative framework very suitable to high-speed and
real-time applications.

Before proceeding, we would like to give several remarks
to the proposed iterative framework.

1) Acceleration of the Proposed Iterative Framework:
Motivated by the conventional iterative framework in (26) and
(27), it is natural to consider the following iteration:

x(m+1) = G̃W̃ x
(m) + B̃

−1
y (39)

where

[W̃]n =
{ [W]n, n = r Mσ

[I]n, otherwise.
(40)

Comparing with (35), the low-pass filtering prior knowledge
in (25) is utilized again to improve the approximation of x(m)

obtained in the previous iteration. In particular, we are only
interested in time instants n = r Mσ when the samples of y[n]
are purposely discarded for the foreground estimation. It is
expected that the prior knowledge can help to further speed
up the convergence. Since this slight modification is just a
prefiltering of x(m), it does not alter the efficient implementa-
tion structure mentioned earlier. The price to pay is an extra
complexity of low-pass filtering at n = r Mσ per iteration.
The corresponding RI-based and GSI-based iterations will be
called the accelerated RI-based (aRI) and accelerated GSI-
based (aGSI) algorithms, respectively.

2) Alternate Missing Sample Pattern: As discussed in
Section III, the time instants for the disposal of y[n] are
fixed at n = r Mσ only because it results in a regular update
structure which is suitable to high-speed and real-time TI ADC
application. In fact, the proposed iterative framework is also
applicable to other arbitrary missing sample pattern as long as
(23) is satisfied. This is attributed to another major advantage
of the proposed algorithm that the assumption of periodic time-
varying nature of the system is indeed not required. Such nice
property also suggests that the complexity of the proposed
framework is independent of the number of channels and it is
very effective in adapting to any possible system changes.

As an example of missing sample pattern, we may assume
that the missing samples are contiguously distributed. In view
of the proposed system, a possible way to achieve this setting
is to discard the samples of all sub-ADCs at a time and wait
for the next disposal so as to ensure (23) is satisfied. In this
way, the regular estimation and compensation structure can
still be kept. However, it should be noted the resulting missing
sample problem reduces to so-called extrapolation problem,
which could sometimes lead to ill-conditioned system of linear

of equations as suggested in [40]. Very often, its main adverse
effect is the degradation of the convergence performance
of the iterative algorithms. On the other hand, the uniform
missing sample pattern considered in this paper is usually
more desirable in providing a better conditioned system and
enhancing the convergence rate of the iterative algorithms.
Also, it facilitates the development of regular estimation and
compensation structures as we discussed earlier.

3) Application to Image Restoration and Other High-
Dimension Problems: Most iterative algorithms for missing
sample problem are mainly dedicated to the application of
image restoration and super resolution [41]–[48]. By the same
token, the proposed algorithm can also be generalized to
solve similar higher dimensional problem as long as it can
be formulated as a system of linear equations.

4) Extension to Handle Multiple Types of Frequency
Response Mismatches: In [21], we have proposed an extended
iterative structure which is able to cope with time-varying
systems involving more than one type of frequency response
mismatches such as timing and bandwidth mismatches. More
precisely, the resulting structure can be realized as a cascade
of iterative structures, each of which compensates for different
types of mismatches. A similar idea can be applied to the
proposed iterative structure, but details are omitted due to page
limitations.

VI. EXAMPLES

A. Offset, Gain, and Timing Mismatches

In this example, we shall investigate the performance of
the proposed estimation and iterative algorithms by means
of computer simulations. As an illustration, we consider
a four-channel TI ADC (i.e., M = 4) with offset mis-
match αk = [−0.03, 0.05,−0.08,−0.02], gain mismatch
βk = [0.05,−0.04, 0.02,−0.09], and timing mismatch φk =
[0.01,−0.05, 0.04,−0.03]. We also assume that the input
signal to be sampled is given by x[n] = ∑10

i=1 cos(nωi ),
with ωi = 2iπ/25, and hence its maximum frequency is
0.8π . This implies that the band-limiting parameter in (1) is
given by ε = 0.8. Therefore, we can set Mσ = 7 from (11)
and (23) to ensure that the estimation module has a regular
update structure and the recovery of x[n] is guaranteed in the
compensation module.

Before proceeding to the performance evaluation, we briefly
illustrate how to design an appropriate VDF for the timing
mismatch model reported in [15] and [21]. The channel
frequency response of the timing mismatch can be expressed
as Fn( j�) = e− j�Tφn or, equivalently, in DT domain as

Fn(e jω) = e− jωφn (41)

where φn denotes the time offsets with respect to the ideal
sampling time t = nT . We can see that the response Fn(e jω)
varies with a single spectral parameter φn , and therefore it
can be expressed as a function of frequency ω and spectral
parameter φ, i.e., F(e jω, φn) = Fn(e jω). As discussed in
Section IV, we employ a VDF h[n0, φ] in the form of (9)
to approximate F(e jω, φn). For example, it can be designed
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Fig. 6. Convergence of the LMS estimation algorithm for (a) offset αk , (b) gain βk , and (c) timing φk mismatches in a four-channel TIADC with
αk = [−0.03, 0.05, −0.08, −0.02], βk = [0.05, −0.04, 0.02, −0.09], and φk = [0.01, −0.05, 0.04, −0.03].

by solving the following minimax problem:

min max
(ω,φ)∈


∣∣∣H (e jω, φ) − F(e jω, φ)
∣∣∣ (42)

where 
 collectively denotes the frequency and tuning range
of interest, and H (e jω, φ) is the frequency response of
h[n0, φ]. Once it is solved, we obtain the VDF sub filter coeffi-
cients cl [n0] in (9), which will be used in both estimation and
iterative compensation modules. In principle, these modules
can utilize different VDFs depending on the required accuracy
and complexity.

1) Evaluation of Estimation Module: In the estimation
module, we further assume that the known input signal σ(t)
is a single sinusoidal signal with frequency 0.8π/M ′. For
the timing mismatch estimation, special care has to be taken
on the actual value of the estimate φ̂k that will be passed
to the compensation module. To be specific, consider the
sampling interval of σk[r ′] = σc(r ′M ′T + r Mσ T − φk T ),
where k = mod(r Mσ , M), as defined in Section III. When
comparing with the original sampling instant at t = nT −
φnT = nT − φk T , k = n mod M , one can notice that the
estimation module will indeed return an estimate of φk/M ′
(instead of φk) because the rate of σk[r ′] is M ′ times slower.
Hence, the actual estimate passed to the compensation module
should be M ′φ̂k . According to the maximum frequency of
σ(t), the rate of σk[r ′] and the maximum tuning range of
φk discussed earlier, 
 of the VDF in (42) can be chosen
as ω ∈ [−0.8π, 0.8π] and φ ∈ [−0.05/M ′, 0.05/M ′]. For
illustration purposes, we shall employ a VDF with Nh1 =
Nh2 = Nh = 15 and L = 3 subfilters, which is designed
using the method in [50]. Figs. 6 and 7 show the estimates
of various mismatches obtained, respectively, using the LMS
algorithm with an adaption step size μ = 0.2 and the NLMS
algorithm with μ = 1 and ζ = 1 × 10−6. We can see that
all the estimates of mismatches agree very well with the true
ones for both algorithms, and the NLMS algorithm appears to
converge faster than the LMS algorithm. Although the LMS
algorithm takes a longer time to reach the desired values,
its step size can be set larger to enhance the convergence
rate. However, as a fundamental tradeoff, its excess mean
square error also increases with the step size [39], which could
in turn degrade the overall system performance. The NLMS
algorithm has similar property, but it is relatively less sensitive

to the choice of μ because of the additional normalization

term
∥∥∇e[r ′, γ̂k[r ′]∥∥2 in (22). Owing to this, the NLMS

algorithm is a better option for its simpler parameter selection
in practical implementation although it has a slightly higher
complexity.

2) Evaluation of Compensation Module: Now we eval-
uate the performance of the proposed iterative framework
in (35) and its accelerated version in (39) as mentioned in
Section V-C. In particular, the GSI, aGSI, RI, and aRI are
considered. In order to fully assess their ultimate capability,
we assume that all the mismatches have already been precisely
estimated. As a comparison, we also consider the CIA in
(26), RIA in (29), and biconjugate gradient-stabilized method
(BiCGSTAB) in [51]. The latter is considered here because it is
arguably one of the fastest iterative algorithms in the literature
for solving nonsymmetric linear systems, and therefore can
be used as a benchmark to illustrate how fast an iterative
algorithm can perform. However, despite its expected superior
convergence performance, we note that, as a block-based algo-
rithm, it is indeed not suitable to real-time TI ADC application
because its complexity, in general, increases exponentially
with the unknown number of samples N . In the comparison,
the BiCGSTAB algorithm is used to solve the nonsymmetric
linear system in (33) which is identical to that solved by the
proposed iterative framework. To establish the linear system in
(33), we first design the VDF with the following specifications:
Nh1 = Nh2 = Nh = 25, L = 4, ω ∈ [−0.8π, 0.8π], and
φ ∈ [−0.05, 0.05]. Then, we design the low-pass filter w[n0]
with 2Nw = 132, pass-band cutoff frequency of 0.8π , and
stop-band cutoff frequency of 0.9π , and obtain the required
high-pass filter w̄[n0] as defined in (30). All the algorithms are
assessed using the signal-to-noise-and-distortion ratio (SNDR)
as follows:

SNDR(m)
a =

∑N−1

n=0
|x[n]|2

/∑N−1

n=0

∣∣∣x[n] − x (m)[n]
∣∣∣
2
. (43)

Fig. 8 shows the convergence performances of various
algorithms in terms of the SNDR. In particular, we can see
from Fig. 8(a) that the BiCGSTAB, aGSI, and GSI converge
within 10 iterations and they significantly outperform the aRI,
RI, CIA, and RIA. Among the least four algorithms, the
RIA exhibits the lowest convergence rate, but we note that
an optimal regularization parameter λ in (29) may have a
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Fig. 7. Convergence of the NLMS estimation algorithm for (a) offset αk , (b) gain βk , and (c) timing φk mismatches in a four-cbannel TIADC with
αk = [−0.03, 0.05, −0.08, −0.02], βk = [0.05, −0.04, 0.02, −0.09], and φk = [0.01, −0.05, 0.04, −0.03].

Fig. 8. SNDR performances of various iterative algorithms in (a) 100 iterations and (b) 10 iterations particularly for the easier discrimination between
BiCGSTAB, a GSI, and GSI.

Fig. 9. (a) Uncompensated output spectrum of y[n]. (b) Uncompensated output spectrum of ỹ[n]. Output spectra obtained using the GSI after (c) three and
(d) six iterations.

positive impact on the convergence rate [48]. Unfortunately,
finding such optimal value is nontrivial, and in this example
we only choose it as λ = 0.9 in a trial-and-error manner, which
seems to be the best value in a number of trials. Moreover,
while the RI and CIA offer similar performance, the simple
acceleration scheme introduced in Section V further improves
the convergence rate of the RI from about 70 to 30 iterations.
On the other hand, having a closer look at the three faster
iterative algorithms shown in Fig. 8(b), we can see that the
BiCGSTAB, aGSI, and GSI actually converge to about 95 dB
SNDR in three, five, and six iterations, respectively. Although

the GSI is slightly inferior to the BiCGSTAB, its efficient
filtering structure discussed in Section V-C makes it more
attractive than the block-based BiCGSTAB especially in real-
time TI ADC application. To further illustrate the performance
of the proposed iterative compensation framework, we show
in Fig. 9 the spectra of the uncalibrated signal y[n], the zero-
inserted uncalibrated signal ỹ[n], and the corrected signals
after three and six iterations of the GSI. Their maximum
undesired tones are, respectively, found to be –20.49, –16.89,
–50.28, and –94.31 dB. Such improvement (73.82 dB for
y[n] and 77.42 dB for ỹ[n]) illustrates the usefulness of
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Fig. 10. Mean-square error convergence behavior of the (a) estimation and (b) compensation modules evolved in time for a Monte Carlo simulation with
1000 trials.

the proposed iterative framework in compensating for the
frequency response mismatch even under the situation of partly
missing samples. In [53], we have also demonstrated the
multiplierless realization of the proposed iterative structure
and the effect of signal round-off error on the maximum
achievable SNDR. Unfortunately, details are omitted due to
page limitation. Interested readers are referred to [53] for more
details.

B. Offset, Gain, and Bandwidth Mismatches

Unlike the settings of the previous example, we shall
now evaluate the performance of the proposed calibration
algorithm when it is operated in tandem with the estima-
tion and compensation modules. Moreover, we shall con-
sider a practical scenario where the overall system suf-
fers from both quantization and estimation errors. To illus-
trate the versatility of the proposed approach, we consider
another type of frequency response mismatch, called band-
width mismatch in [17], [20], and [21], which is defined as
follows:

Fn( j�) = 1

1 + j �
�c

n

1 − e−(�c
n T + j�T )

1 − e−(�c
n T + j M�T )

(44)

where �c
n is a time-varying cutoff frequency. Similar to the

timing mismatch model, the equivalent DT representation
of (44) in terms of a single spectral parameter φn can be
expressed as

Fn(e jω)= F(e jω, φn)= 1

1 + j ω
(1+φn)π

1 − e−[(1+φn)π+ jω]

1 − e−[(1+φn)π+ j Mω]
(45)

where φn = �c
nT/π − 1. However, as suggested in [21],

directly deconvoluting with the time-varying filter hn(n0) that
approximates Fn(e jω) in (3) is not recommended because
the associated system matrix A in (4) is in general not a
diagonal dominant matrix. In this specific case, more number
of iterations is usually required. To avoid this problem, we fol-
low the approach in [21] and approximate the ideal response,
say, F(e jω, φ)/F(e jω, 0)[instead of F(e jω, φ)] by the VDF
H (e jω, φ). By so doing, the system matrix A becomes more

diagonally dominanant and exhibits better condition number.
Consequently, the convergence rate of the iterative framework
in (5) for solving (4) will be improved. Since the proposed
iterative framework is also developed based on (4), its con-
vergence rate would similarly be benefited from the better
conditioned system matrix. We note, however, that the recov-
ered spectrum would be F(e jω, 0)X (e jω) instead of the target
spectrum X (e jω), and hence an additional equalization module
is required to compensate for F(e jω, 0) after iterative compen-
sation of frequency response mismatches. Since F(e jω, 0) is
time-invariant and predetermined, equalizing it is preferable to
the growth of the complexity due to the increased number of
iterations.

To study the average behavior of the proposed estimation
and compensation algorithms, a Monte Carlo (MC) simulation
with P = 1000 trials is carried out. The system configuration
and filter parameters that will be considered in this example are
summarized as follows: 1) the number of channels is M = 3
and the resolution of the sub-ADCs is 12 bits; 2) the offset
αk , gain βk , and bandwidth mismatch parameter φk in (12) are
randomly chosen in the interval [−0.1, 0.1] for k = 0, 1, 2;
3) the target input is a white Gaussian signal band-limited
to 0.8π , starting from n = 0 to n = 3000; 4) the missing
sampling factor is Mσ = 7 and the known input σ(t) is a
sinusoidal signal with single frequency 0.8π/M ′; 5) the NLMS
algorithm is employed in the estimation module with μ = 1
and ζ = 1 × 10−6; 6) the parameters of VDF H (e jω, φ) for
both estimation and iterative compensation modules are ω ∈
[−0.8π, 0.8π], φ ∈ [−0.1, 0.1], Nh = 20 and L = 4; and
7) the pass-band cutoff frequency, stop-band cutoff frequency,
and filter length of the low-pass filter W (e jω) are, respectively,
0.8π , 0.9π , and 103.

According to Section III, the estimated mismatch vector
γ̂ k[r ′] of the kth sub-ADC is updated at n = r ′M ′+r Mσ with
k = mod(r Mσ , M). Thus, in order to investigate how the
performance of the estimation module evolves with increasing
sampling instant n, we consider the following mean-square
error (MSE):

eEST[r ′M ′] = 1
P

∑P
i=1

1
M

∑M−1
k=0

∣∣∣γ̂ (i)
k [r ′] − γk[r ′]

∣∣∣
2

(46)
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where γk denotes either αk , βk or φk , and the superscript (i)
denotes the i th trial of the MC simulation. We can see from
Fig. 10(a) that eEST[r ′M ′] quickly converges to the level of
1×10−7 in less than 1000T , and eventually settles at the level
of 1 × 10−8, which is mainly due to the error floor caused by
the quantization noise.

On the other hand, the performance of the proposed iterative
compensation algorithm is assessed using

e(m)
x [n] = 1

P

∑P
i=1

∣∣x (m),(i)[n] − x[n]∣∣2
(47)

where x (m),(i)[n] denotes the solution obtained in the i th trial
after m iterations. As an illustration, we only consider the
GSI with two and four iterations, as shown in Fig. 10(b).
We can see that e(4)

x [n] converges to a much deeper level
than e(2)

x [n], as expected. Moreover, e(4)
x [n] basically follows

the convergence curve of eEST[r ′M ′], which demonstrates that
the iterative compensation structure responses almost instanta-
neously with an improving estimate of mismatch parameters as
n increases, thanks to the efficient filtering structure. To further
quantify its performance, we consider the average SNDR over
P trials, and for each trial we compute the SNDR in (43)
from n = 1000 to n = 3000 samples. The average SNDR
of the corrected signal obtained after two and four iterations
of GSI are, respectively, found to be 51.56 and 72.17 dB.
For the latter, this implies an improvement of 50.61 dB for
the uncalibrated signal y[n] and 63.7 dB for the zero-inserted
uncalibrated signal ỹ[n]. Also, we note that an average SNDR
of 72.17 dB is already very close to the theoretical SNDR
estimated from the 12-bit resolution of the sub-ADCs. In this
case, increasing the number of iterations to more than four
will not further improve the performance, as the noise floor is
mainly dominated by the quantization error. For example, if
10-bit sub-ADCs are used instead, the noise floor in Fig. 10(b)
rises to an error level of about 1 × 10−6 because of the larger
quantization error. However, the simulation results are omitted
because of page limitations. The above results demonstrate
that the proposed calibration approach is able to achieve
satisfactory reconstruction accuracy in less than 1000 samples.
In fact, such convergence performance is far better than that of
other conventional blind calibration approaches, which usually
converge in more than 104–106 samples. Moreover, the NLMS
algorithm also allows slow time-varying mismatches to be
tracked online.

VII. CONCLUSION

An efficient online calibration structure to estimate and com-
pensate for mismatches in M-channel TI ADCs was presented.
To illustrate the versatility of the proposed approach, we
investigated the simultaneous calibration of offset, gain, and
frequency response mismatches that are mostly considered in
the literature. The overall calibration structure was formed by
a combination of novel estimation and iterative compensation
modules, both of which are applicable to arbitrary number of
channels and can be efficiently implemented using VDF. The
former is able to estimate and track the possibly changing
channel mismatches accurately, whereas the latter is useful in
online compensation of these mismatches with low complexity.

Through computer simulations, we have shown that the esti-
mation and iterative compensation modules are individually
very effective in achieving satisfactory performance with small
number of iterations. When these modules work in tandem for
the calibration purpose, simulation results also demonstrate the
superior performance of the proposed calibration structure in
terms of the convergence time and reconstruction accuracy.

A possible extension of the work is to study the stability
of the proposed iterative compensation structure due to the
time-varying and recursive natures of the GSI-based structure.
Another commonly considered problem is the signal round-off
analysis [52], which is particularly important to the determina-
tion of bit accuracy at the TI ADC’s output. Because of page
limitations, these issues will be reported in a future work.
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