509 research outputs found

    Noise Suppression in Images by Median Filter

    Full text link
    A new and efficient algorithm for high-density salt and pepper noise removal in images and videos is proposed. In the transmission of images over channels, images are corrupted by salt and pepper noise, due to faulty communications. Salt and Pepper noise is also referred to as Impulse noise. The objective of filtering is to remove the impulses so that the noise free image is fully recovered with minimum signal distortion. Noise removal can be achieved, by using a number of existing linear filtering techniques. We will deal with the images corrupted by salt-and-pepper noise in which the noisy pixels can take only the maximum or minimum values (i.e. 0 or 255 for 8-bit grayscale images)

    Parallel Peer Group Filter for Impulse Denoising in Digital Images on GPU

    Get PDF
    A new two-steps impulsive noise parallel Peer Group filter for color images using Compute Unified Device Architecture (CUDA) on a graphic card is proposed. It consists of two steps: impulsive noise detection, which uses a Fuzzy Metric as a distance criterion and a filtering step. For the needed ordering algorithm we are using the Marginal Median Filter with forgetful selection sort. Comparisons with other color filters for Graphics Processing Unit (GPU) architectures are presented, demonstrating that our proposal presents better performance in color preservation and noise suppression

    EEG signal analysis and characterization for the aid of disabled people

    Get PDF
    The effectiveness of assistive devices for disabled people is often limited by the human machine interface. This research proposes an intelligent wheelchair system especially for severely disabled people based on analysing electroencephalographic signals by using discrete wavelet transform and higher order statistical methods. The system to be implemented in Field Programmable Gate Array enables an accurate and efficient system of processing signals to control the wheelchair, which makes an attractive option in the hardware realization

    An Image Enhancement Approach to Achieve High Speed Using Adaptive Modified Bilateral Filter for Satellite Images Using FPGA

    Get PDF
    For real time application scenarios of image processing, satellite imaginary has grown more interest by researches due to the informative nature of image. Satellite images are captured using high quality cameras. These images are captured from space using on-board cameras. Wrong ISO setting, camera vibrations or wrong sensory setting causes noise. The degraded image can cause less efficient results during visual perception which is a challenging issue for researchers. Another reason is that noise corrupts the image during acquisition, transmission, interference or dust particles on the scanner screen of image from satellite to the earth stations. If quality degraded images are used for further processing then it may result in wrong information extraction. In order to cater this issue, image filtering or denoising approach is required. Since remote sensing images are captured from space using on-board camera which requires high speed operating device which can provide better reconstruction quality by utilizing lesser power consumption. Recently various approaches have been proposed for image filtering. Key challenges with these approaches are reconstruction quality, operating speed, image quality by preserving information at edges on image. Proposed approach is named as modified bilateral filter. In this approach bilateral filter and kernel schemes are combined. In order to overcome the drawbacks, modified bilateral filtering by using FPGA to perform the parallelism process for denoising is implemented

    Computational scrutiny of image denoising method found on DBAMF under SPN surrounding

    Get PDF
    Traditionally, rank order absolute difference (ROAD) has a great similarity capacity for identifying whether the pixel is SPN or noiseless because statistical characteristic of ROAD is desired for a noise identifying objective. As a result, the decision based adaptive median filter (DBAMF) that is found on ROAD technique has been initially proposed for eliminating an impulsive noise since 2010. Consequently, this analyzed report focuses to examine the similarity capacity of denoising method found on DBAMF for diverse SPN Surrounding. In order to examine the denoising capacity and its obstruction of the denoising method found on DBAMF, the four original digital images, comprised of Airplane, Pepper, Girl and Lena, are examined in these computational simulation for SPN surrounding by initially contaminating the SPN with diverse intensity. Later, all contaminated digital images are denoised by the denoising method found on DBAMF. In addition, the proposed denoised image, which is computed by this DBAMF denoising method, is confronted with the other denoised images, which is computed by Standard median filter (SMF), Gaussian Filter and Adaptive median filter (AMF) for demonstrating the DBAMF capacity under subjective measurement aspect

    Real-Time, Hardware Efficient Ocular Artifact Removal From Single Channel EEG data Using a Hybrid Algebraic and Wavelet Algorithm

    Get PDF
    Electroencephalography (EEG) is a promising technique to record brain activities in natural settings. EEG signal usually gets contaminated by Ocular Artifacts (OA), removal of which is critical for the feature extraction and classification. With the increasing interest in wearable technologies, single channel EEG systems are becoming more prevalent that often require real-time signal processing for immediate feedback. In this context, a new hybrid algorithm to detect OA and subsequently remove OA from single channel streaming EEG data is proposed here. The algorithm first detects the OA zones using Algebraic approach, and then removes artifact from the detected OA zones using Discrete Wavelet Transform (DWT) decomposition method. De-noising technique is applied only to the OA zone that minimizes interference to neural information outside of OA zone. The microcontroller hardware implemented hybrid OA removal algorithm demonstrated real-time execution with sufficient accuracy in both OA detection and removal. The performance evaluation was carried out qualitatively and quantitatively for 0.5 sec epoch in overlapping manner using time-frequency analysis, mean square coherence, Correlation Coefficient (CC) and Mutual Information statistics. Matlab implementation resulted in average CC of 0.3242 and average MI of 1.0042, while microcontroller implementation resulted in average CC of 0.4033 for all blinks. Successful implementation of OA removal from single channel real-time EEG data using the proposed algorithm shows promise for real-time feedabck applications of wearable EEG devices
    corecore