
University of Memphis University of Memphis

University of Memphis Digital Commons University of Memphis Digital Commons

Electronic Theses and Dissertations

5-27-2015

Real-Time, Hardware Efficient Ocular Artifact Removal From Real-Time, Hardware Efficient Ocular Artifact Removal From

Single Channel EEG data Using a Hybrid Algebraic and Wavelet Single Channel EEG data Using a Hybrid Algebraic and Wavelet

Algorithm Algorithm

Charvi Anand Majmudar

Follow this and additional works at: https://digitalcommons.memphis.edu/etd

Recommended Citation Recommended Citation
Majmudar, Charvi Anand, "Real-Time, Hardware Efficient Ocular Artifact Removal From Single Channel
EEG data Using a Hybrid Algebraic and Wavelet Algorithm" (2015). Electronic Theses and Dissertations.
1185.
https://digitalcommons.memphis.edu/etd/1185

This Thesis is brought to you for free and open access by University of Memphis Digital Commons. It has been
accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of University of
Memphis Digital Commons. For more information, please contact khggerty@memphis.edu.

https://digitalcommons.memphis.edu/
https://digitalcommons.memphis.edu/etd
https://digitalcommons.memphis.edu/etd?utm_source=digitalcommons.memphis.edu%2Fetd%2F1185&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.memphis.edu/etd/1185?utm_source=digitalcommons.memphis.edu%2Fetd%2F1185&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:khggerty@memphis.edu

REAL-TIME, HARDWARE EFFICIENT OCULAR ARTIFACT REMOVAL FROM

SINGLE CHANNEL EEG DATA USING A HYBRID ALGEBRAIC AND WAVELET

ALGORITHM

by

Charvi Majmudar

A Thesis

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Major: Electrical and Computer Engineering

The University of Memphis

August 2015

ii

 This thesis is dedicated to my husband Dr. Anand Majmudar, mother Mrs. Avani

Nanavaty, father Dr. Ravindra Nanavaty, aunt Dr. Nivedita Vora and beloved grand-

mother Late Dolar Mankad for their extreme support, encouragement and ever flowing

blessings.

iii

ACKNOWLEDGEMENTS

 I would like to take the opportunity to thank Dr. Bashir Morshed, for his constant

support, motivation, suggestions and help during the thesis work and writing this thesis. I

am extremely grateful to have him as my advisor throughout the course of study.

 I am highly thankful to Dr. Eddie Jacobs and Dr. Amy Curry who devoted their pre-

cious time for being in my thesis committee and for giving their valuable suggestions.

 I appreciate and feel thankful for the efforts, suggestions and support shown by my

lab mates Ruhi Mahajan, Saleha Khatun and other members at the ESARP during my

research work.

 Last but not the least, I would like to thank my family and friends for their constant

support and encouragement with complete patience to accomplish my research goal.

iv

ABSTRACT

Majmudar, Charvi, A., M.S. The University of Memphis. August 2015. Thesis title: Real-

Time, Hardware Efficient Ocular Artifact Removal from Single channel EEG data using

a Hybrid Algebraic and Wavelet algorithm. Dr. Bashir I. Moshed.

 Electroencephalography (EEG) is a promising technique to record brain activities in

natural settings. EEG signal usually gets contaminated by Ocular Artifacts (OA), removal

of which is critical for the feature extraction and classification. With the increasing interest

in wearable technologies, single channel EEG systems are becoming more prevalent that

often require real-time signal processing for immediate feedback. In this context, a new

hybrid algorithm to detect OA and subsequently remove OA from single channel steaming

EEG data is proposed here. The algorithm first detects the OA zones using Algebraic ap-

proach, and then removes artifact from the detected OA zones using Discrete Wavelet

Transform (DWT) decomposition method. De-noising technique is applied only to the OA

zone that minimizes interference to neural information outside of OA zone. The microcon-

troller hardware implemented hybrid OA removal algorithm demonstrated real-time exe-

cution with sufficient accuracy in both OA detection and removal. The performance eval-

uation was carried out qualitatively and quantitatively for 0.5 sec epoch in overlapping

manner using time-frequency analysis, mean square coherence, Correlation Coefficient

(CC) and Mutual Information statistics. Matlab implementation resulted in average CC of

0.3242 and average MI of 1.0042, while microcontroller implementation resulted in aver-

age CC of 0.4033 for all blinks. Successful implementation of OA removal from single

channel real-time EEG data using the proposed algorithm shows promise for real-time

feedback applications of wearable EEG devices.

v

TABLE OF CONTENTS

Chapter Page

1 Introduction 1

 1.1 Motivation 1

 1.2 OA removal algorithm requirements 3

 1.3 Overview of the literature review 4

 1.4 Overview of the proposed OA removal algorithm 4

 1.5 Key Results 5

 1.6 Key Outcomes 6

 1.7 Organization of this Thesis 6

2 Literature Review 7

 2.1 Wavelet Based OA removal Approach 7

 2.2 Modified Multiscale Sample entropy (mMSE)-wICA 9

 2.3 EMD-CCA based OA removal approach 10

 2.4 Algebraic method to detect OA 10

3 The proposed hybrid algorithm 12

 3.1 Algebraic Method – OA Detection 12

 3.2 Wavelet Transform – OA removal 14

 3.2.1 Wavelet basis functions 16

 3.2.2 DWT implementation steps 16

 3.3 Hybrid OA Detection and Removal algorithm 17

4 Test Setup and Procedure 21

 4.1 System Components 22

 4.1.1 Software Utilized 22

 4.1.2 Hardware Utilized 23

 4.1.3 Communication interfaces 24

 4.2 EEG Datasets utilized 25

 4.2.1 Offline Mode 25

 4.2.2 Online (Real-Time) Mode 25

 4.3 EEG Data Acquisition 26

 4.3.1 EEG Device data acquisition 26

 4.3.2 User console data acquisition 27

 4.4 Methodology 29

 4.4.1 Offline Mode 29

 4.4.1.1 MATLAB based algorithm 29

 4.4.1.2 C based algorithm 36

 4.4.2 Real-Time Mode 39

 4.4.2.1 MATLAB based algorithm 39

 4.4.2.2 C based algorithm 42

vi

5 Results and Performance Evaluation 52

 5.1 OA detection and removal Results 52

 5.1.1 Offline MATLAB based algorithm 52

 5.1.2 Online MATLAB based algorithm 55

 5.1.3 Online C based algorithm 57

 5.2 Performance Evaluation 60

 5.2.1 Performance Metrics 60

 5.2.2 Performance Evaluation Results 61

 5.2.2.1 Offline MATLAB based algorithm 61

 5.2.2.2 Online C based algorithm 66

6 Conclusion and Future scope 68

 6.1 Conclusion 68

 6.2 Future scope 71

References 72

Appendices 75

A. Offline MATLAB based OA removal Code 75

B. Online MATLAB based OA removal Code 80

C. Offline C based OA removal Code 87

D. Online C based OA removal Code 91

vii

LIST OF FIGURES

Figure Page

1 A representative raw EEG signal (FP1) vs a clean EEG signal 2

2 Block diagram of the proposed hybrid OA removal algorithm 4

3 Graphical presentation of sliding window method for OA detection

algorithm.

12

4 Block diagram of DWT based n-levels decomposition 15

5 Frequency bands achieved at every DWT decomposition level 15

6 Wave-shapes of different wavelet functions 16

7 Proposed hybrid OA removal algorithm 18

8 Flow chart describing epoch overlap method 19

9 Detailed flow chart of hybrid OA removal algorithm 20

10 Overview of offline and online mode OA removal algorithm

implementation

21

11 (a) Neuro Monitor device (b) Electrode placement used during EEG

recording

23

12 Data acquisition: subject to NM device and NM device to user console 26

13 EEG data acquisition system of NM EEG device 27

14 User Console remote Data acquisition software Graphical User

Interface panel

28

15 User console data acquisition system 28

16 Block diagram of MATLAB based algorithm implementation in

offline mode

29

17 OA detection results for Emotive device (dataset-1) 31

18 OA detection results for NM device (dataset-4) 31

19 Undetected eye blinks by OA detection without overlapping method 32

viii

20 Processing time bar plot DWT Vs SWT 33

21 OA removal results for Emotive device (subject-1) 35

22 OA removal results of NM device (channel-1(FP1) subject-2) 35

23 Block diagram of C based algorithm implementation in offline mode 36

24 Graphical presentation of DWT based decomposed signal vector 38

25 Hybrid algorithm results for NM device (C based – offline mode)

(subject-1) (a) MATLAB result, (b) C based result

38

26 Hybrid algorithm results for NM device (C based – offline mode)

(subject-2) (a) MATLAB result, (b) C based result

39

27 Block diagram of MATLAB based algorithm implementation in online

mode

40

28 Online mode – MATLAB based hybrid Algorithm result

(channel-1,subject-1)

41

29 Online mode – MATLAB based hybrid Algorithm result

(channel-1,subject-2)

41

30 Block diagram of C based algorithm implementation in online mode 42

31 Graphical presentation of ADC ISR execution steps 43

32 Online mode C based main program flowchart implemented on

PSoC-3 MCU

45-

46

33 Graphical presentation of real-time overlapping method

implementation

46

34 (a) ‘Clean_EEG’ output buffer formation, (b) Header formation 47

35 Ring buffer output comparison on user console – online mode

(C based)

48

36 (a) Online mode – C based hybrid Algorithm result (FP1 – dataset1)

(b) Verification of OA zone detection C based algorithm in real-time

(dataset1)

50

51

37 Plot showing minor mismatch in non-OA zone between raw and Clean

EEG of real-time hardware implemented algorithm output

51

38 OA detection results for Emotive device (dataset-2) 53

ix

39 OA detection results for Emotive device (dataset-3) 53

40 OA removal results of NM device (channel-1(FP1) subject-3) 54

41 OA removal results of NM device (channel-1(FP1) subject-4) 54

42 OA removal results of NM device (channel-2(FP2) subjects 2, 3 & 4) 55

43 Online mode – MATLAB based hybrid Algorithm result

(channel-1, subject-3)

56

44 Online mode – MATLAB based hybrid Algorithm result

(channel-1, subject-4)

56

45 (a) Online mode – C based hybrid Algorithm result (FP1 – dataset2)

(b) Verification of OA zone detection C based algorithm in real-time

(dataset2)

58

58

46 (a) Online mode – C based hybrid Algorithm result (FP1 – dataset3)

(b) Verification of OA zone detection C based algorithm in real-time

(dataset3)

59

59

47 Time-Frequency Analysis plot for subject-1 EEG data 61

48 Time-Frequency Analysis plot for subject-2 EEG data

(a) Channel-1 (FP1) (b) Channel-2 (FP2)

62

49 Time-Frequency Analysis plot for subject-3 EEG data

(a) Channel-1 (FP1) (b) Channel-2 (FP2)

62

50 Time-Frequency Analysis plot for subject-4 EEG data

(a) Channel-1 (FP1) (b) Channel-2 (FP2)

63

51 MSC plot for raw Vs clean EEG (subject-1) 64

52 MSC plot for raw Vs clean EEG (subject-2)

(a) Channel-1 (FP1) (b) Channel-2 (FP2)

64

53 MSC plot for raw Vs clean EEG (subject-3)

(a) Channel-1 (FP1) (b) Channel-2 (FP2)

64

54 MSC plot for raw Vs clean EEG (subject-4)

(a) Channel-1 (FP1) (b) Channel-2 (FP2)

65

x

LIST OF ABBREVIATIONS

Abbreviation Full name

ADC Analog to Digital Converter

ADHD Attention Deficit Hyperactive Disorder

AM Algebraic Method

ANC Adaptive Noise Cancellation

ANN Artificial Neural Network

BCI Brain Computer Interface

BT Bluetooth

CC Correlation of Coefficient

CCA Canonical Correlation Analysis

DWT Discrete Wavelet Transform

ECG Electrocardiography

EEG Electroencephalography

EEMD Ensembled Empirical Mode Decomposition

EMD Empirical Mode Decomposition

EMG Electromyography

EOG Electrooculography

FFT Fast Fourier Transform

FIFO First In First Out

FIR Finite Impulse Response

GPIO General Purpose Input- Output

GUI Graphic User Interface

HNN Hardware Neural Network

ICA Independent Component Analysis

ICs Independent Components

IMF Intrinsic Mode Functions

ISR Interrupt Service subroutine

MCU Microcontroller Unit

MI Mutual Information

xi

mMSE Modified Multi-scale Sample Entropy

MSC Magnitude Square Coherence

NM Neuromonitor

NN Neural Network

OA Ocular Artifacts

PSD Power Spectral Display

PSoC Programmable System on Chip

RAM Random Access Memory

RLS Recursive least Square

SAR Signal to Artifact Ratio

SURE Stein's Unbiased Risk Estimate

SWT Stationary Wavelet Transform

TFA Time Frequency Analysis

UART Universal Asynchronous Receiver Transmitter

WNN Wavelet Neural Network

WT Wavelet Transform

1

Chapter 1

INTRODUCTION

1.1 Motivation

 Electroencephalography (EEG) is the depiction of the neurological signals in terms of

the electrical signals corresponding to the brain activities from the scalp surface using

special metal electrodes and conductive media. EEG recording is a completely non-inva-

sive procedure that can be applied repeatedly to the patients, normal adults, and children

without virtually any counter effects, risk or limitation. The greatest advantage of EEG is

speed [1]. Complex continuously varying patterns of neural activity can be recorded and

displayed on the EEG machine screen as waveforms of varying frequency and amplitude

measured in micro-voltage. Being non-invasive and painless procedure, the EEG signals

are widely used to study the brain organization of cognitive processes such as perception,

memory, attention, language, and emotion in normal adults and children. Also the results

given by an EEG are commonly used to investigate information about certain disorders

such as Seizures, Epilepsy, Alzheimer’s diseases, ADHD (Attention-Deficit/Hyperactive

Disorder) etc.

 Electrical signals those detected along the scalp by an EEG, but originated from non-

cerebral origin are called artifacts. The most common EEG artifact sources can be classi-

fied in mainly two types: (i) Physiological artifacts: such as due to any minor body move-

ments, EMG (Electromyography), ECG (pulse, pace-maker), eye movements, sweating.

(ii) Non-Physiological artifacts: such as due to 50/60 Hz line frequency, impedance fluc-

tuation, cable movements, broken wire contacts, loose electrodes and low battery [1].

2

 The non-physiological artifacts are usually at a separate spectral band and can be

dealt with high order analog and digital filters. However, physiological artifacts are usu-

ally in the same spectral bands and very difficult to remove without loss of critical neu-

ronal information during the occurrence of the artifact. This work focuses on removal of

physiological artifacts arising from eye-blinks and movement of the eyeballs which are

collectively known as Ocular Artifacts (OA), while preserving as much neuronal infor-

mation as possible. Regular EEG signals in the order of microvolts are contaminated by

these OA in the order of millivolts. The frequency range of interest for most of the EEG

applications lies up to 100 Hz, and typical amplitude are 0.5μV to 100μV [1] whereas OA

occurs within the range of 0 to 16 Hz having amplitude more than 10 times the regular

cortical signals [2]. The Fig.1 shows a typical raw EEG data (FP1) with OA and the

cleaned EEG data.

Fig.1: A representative raw EEG signal (FP1) vs a clean EEG signal

 Eye blink artifacts can create inaccuracy or even can cause critical errors for feature

extraction and classification effecting diagnosis process or automated brain-computer in-

terfacing (BCI) applications. To improve the processing of EEG signals for accurate clin-

ical and experimental analysis, removal of these artifacts are of prime interest.

Contaminated EEG

Clean

EEG

Eye blink

3

 In today’s wearable technology and trend, ambulatory devices are of more interest

and therefore EEG devices are also emerging with portability in nature. Such EEG ambu-

latory devices should be portable enough, light in weight and comfortable to carry on for

the patients or subject under test. EEG electrode application for infants is difficult and

challenging, due to the small head size and the limited space within a humidified incuba-

tor [3]. Also Alzheimer’s disease recognition is often based on single channel EEG sys-

tems [4]. To accomplish these requirements and criticality of the EEG recordings, single

channel EEG devices will be more relevant as well as convenient.

1.2 OA removal algorithm requirements

 For remote monitoring of the subject using such ambulatory EEG devices, it is sub-

stantial to process EEG signals automatically in real-time for better diagnosis purpose.

Moreover, to receive directly the clean EEG without eye blinks in real-time, the OA re-

moval process should be running on the remote EEG device itself for the automation.

Accordingly, the designed and developed OA removal algorithm mainly fulfilled basic

three requirements:

 i.e. OA removal algorithm should be:

1. Applicable to Single Channel EEG devices.

2. Executable in Real-time

3. Implementable on Microcontroller Hardware

1.3 Overview of the literature review

 Literature on removal of the eye blink artifacts was critically reviewed to examine

algorithm’s single channel applicability with low computational complexity. The

frequency spectrum of OA overlaps with the EEG frequency band, therefore filtering

4

techniques to remove OA directly, might also eliminate important neural information.

Many techniques have been developed to eliminate OA from EEG signals. Some meth-

ods used Wavelet Transform (WT) [5,6,7], EMD (Empirical Mode Decomposition) -

CCA (Canonical Correlation Analysis) [8,9] and Algebraic Method (AM) [4] based ap-

proaches, which are covered in Chapter-2.

1.4 Overview of the proposed OA removal algorithm

 In this thesis we have developed a hybrid algorithm to detect and thereby remove OA

from online EEG data. Two methods are combined:

(i) Algebraic method – to detect the OA zone [4],

(ii) Discrete WT (DWT) - to de-noise the detected OA zone [7] so as to obtain the

artifact free EEG signal.

 The proposed fully automated method neither needs recording of additional reference

EOG signal nor relies on the other EEG channels. The algebraic method to detect OA

zone has fast processing time, a key feature suitable for real-time applications. Whereas,

WT method is suitable for non-stationary signals such as EEG and it also can process sin-

gle channel data. The overall representation of this hybrid algorithm is as shown in Fig.2.

 F

Fig.2: Block diagram of the proposed hybrid OA removal algorithm

Raw EEG Clean EEG

OA Detection

[Algebraic

Method]

OA Removal

[DWT Method]

5

 In the first phase of offline mode, the hybrid OA removal algorithm was developed

and tested using MATLAB (MathWorks Inc., Natwick, MA) software tool to verify the

results and finalize the algorithm. In the second phase, algorithm was developed in C to

run on PSoC-3 Microcontroller-Unit (MCU) hardware and results were cross checked

with MATLAB results for verification. The NeuroMonitor (NM) EEG device and its sin-

gle channel placed at FP1 or FP2 location (international 10-20 system) was used through-

out the work for capturing EEG as well as hardware based algorithm implementation for

the online mode.

 The performance of the OA de-noising algorithm was statistically evaluated with time

domain metrics - Correlation of Coefficient (CC) and Mutual Information (MI) and fre-

quency domain metrics - Time-Frequency analysis (TFA) and Magnitude Square Coher-

ence (MSC) estimation.

1.5 Key Results

 The OA removal algorithm performed as expected in real-time settings on user con-

sole using MATLAB based OA removal algorithm. CC and MSC were evaluated for OA

zone and non-OA zones separately where it was observed that for non-OA zone their val-

ues were ‘1’, indicated that the EEG signal information remain unaltered whereas for OA

zone, their values were less than ‘1’, highlighted significant cleaning of eye blink in those

zones. Also on MCU of EEG device using C based OA removal algorithm achieved

proper OA de-noising from real-time single channel EEG recordings. The hybrid OA re-

moval algorithm implemented on micro-controller utilized 28.1% of flash memory and

executed in near real-time which further can be optimized. Also it resulted in average CC

of 0.4033 for all blinks indicated significant removal of artifacts from detected OA zones.

6

1.6 Key outcomes

• Conference paper accepted: C. Majmudar, R. Mahajan, and B. I. Morshed, “Real-

Time Hybrid Ocular Artifact Detection and Removal for Single Channel EEG”,

IEEE Electro/Information Technology (EIT), (accepted), 2015.

• Conference paper abstract accepted: Charvi Majmudar and B. I. Morshed, “Hard-

ware implementation of real-time hybrid OA detection and removal algorithm for

single channel EEG signals”, IEEE GHTC conf., (Abstract accepted) Oct. 2015.

1.7 Organization of this thesis

 This thesis contains total of six chapters with separate Reference and Appendix sec-

tions. Chapter 2 is furnished to take a glance on past work done related to OA removal

techniques from EEG. In chapter 3, theory background of OA detection and removal meth-

ods are covered up. It ends with giving the overview of basic steps followed in proposed

hybrid OA removal algorithm with required flowcharts. The core contents of the thesis

resides in chapter 4. This chapter takes upon in detail how the thesis work has been divided

in two major part: offline mode and online mode having MATLAB and C based algorithms

with theirs thorough explanation and respective results. Chapter 5 is included to present all

the remaining results for every mode of operation of the thesis work which have not been

included in chapter 4. The Chapter 5 also depicts the performance analysis for the results

achieved in offline MATLAB and online C based algorithms. Finally, the chapter 6 con-

cludes the entire work with the future scope of the research topic considered.

7

Chapter – 2

LITERATURE REVIEW

 In this section the summary of the reviewed literatures for the relevant prior work

done in the same EEG ocular artifact removal area is presented.

2.1 Wavelet Based OA removal Approach

 WT as a novel approach was introduce in [5] in the year 2004 to remove eye blink

from EEG. Here, Stationary Wavelet Transform (SWT) with Haar wavelet of high orders

was applied to decompose the original contaminated signal. De-noising was done by hard

- thresholding and finally wavelet inverse transform was applied to reconstruct the EEG

signal. The author of this paper concluded that wavelet based technique removed eye

blink from EEG successfully. Thus, this paper gave good initial foundation for WT tech-

niques to remove OA from EEG effectively applicable to single channel.

 Adaptive Algorithm using WT to de-noise the EEG data, sampled at 128 samples/sec,

was carried out in [6]. The significance of the proposed method was that it didn’t affect

the low frequency components in non-OA zones and preserved the information of the

EEG signal by applying the de-noising technique only to the OA zone rather than to the

entire EEG signal. The Algorithm proposed in this paper [6], detected the OA zone using

Discrete Wavelet Transform (DWT) with Haar wavelet as the basis function. Next, SWT

was applied only to the detected OA zone and Adaptive algorithm based on Stein’s Unbi-

ased Risk Estimation (SURE) and the soft-like thresholding function were used to de-

noise EEG. The performance metrics such as Power Spectral Density (PSD) and correla-

tion in frequency domain evaluated here, showed that by de-noising the EEG only in eye

8

blink zone, improved the performance by preserving low frequency components in the

non-OA zone.

 The proposed technique in [7] was motivated to reduce the computational complexity

of the adaptive algorithm of [6] and used Statistical Method to de-noise the EEG. The

algorithm proposed here applied SWT to the contaminated EEG signal with ‘Sym3’ as a

basis function with 8-level of decomposition for the data sampled at 128 samples/sec.

The OA zone was identified using a statistical approach - coefficient of variation. The de-

noising technique was then applied using fixed suitable threshold value and threshold

function from the detected artifact zones. On examining the approach it was found that

only for threshold calculation detected OA zone was utilized otherwise de-noising was

applied to the 10 sec of EEG epoch, which resulted in distortion of EEG signal in non-

OA zone.

 In [10], a wavelet neural network (WNN) based algorithm for EEG artifact removal

was discussed. The algorithm combined the universal approximation characteristics of

neural networks and the time/frequency property of wavelet transform, where the Neural

Network (NN) was trained on a simulated dataset with known ground truths. Coefficients

at low frequency sub- bands: 0–2, 2–4, 4–8 and 8–16 Hz after WT using ‘coif3’ as basis

function up to 6 decomposition level, were passed through an Artificial NN (ANN) with

the structure of 4-6-4 (4-input units, 6-hidden units and 4-output units) for training pur-

poses. The performance of WNN method was found better when compared with WT

using adaptive algorithm. Also the computational cost point of view this method outper-

formed ICA (Independent Component Analysis) but no evidence to show faster pro-

cessing time than WT based technique. Additionally, if wavelet decomposition level is

9

higher in value then NN design would become complex and hardware components

needed would be higher. Also specialized hardware called Hardware Neural Networks

(HNN) [11] are required to obtain maximum advantage of ANN implementation on hard-

ware but HNN then would be an additional requirement for the existing system.

 In another method [12], DWT decomposition up to 7 levels with ‘db4’ basis function

and thresholding based on SURE with soft thresholding technique was applied to the

single channel EEG to construct the reference OA signal. Next, Adaptive Noise Cancella-

tion (ANC) technique based on Recursive Least Square (RLS) algorithm was applied to

remove OA from contaminated EEG. Results of this paper revealed that when compared

to SWT with thresholding technique, this proposed method outperformed that approach.

But the processing time plot as compared with ICA showed that for higher samples under

processing, time taken by this algorithm drastically increases.

2.2 Modified Multiscale Sample entropy (mMSE)-wICA

 This paper [13] presented an unsupervised, fast algorithm for fully automatic identifi-

cation and suppression of the eye blink related ICs by using mMSE and Kurtosis as

markers and wavelet decomposition as de-noising tool. The mMSE efficiently identified

the ICs with eye blink characteristics by fetching the regularity information from the ICs

over multiple temporal scales. Kurtosis was used to enhance the performance by identify-

ing the ICs with super-Gaussian ‘peaked’ probability distributions, which imitates the eye

blink distributions. The blink related artifactual ICs identified were then denoised using

DWT with the Biorthogonal wavelet function. But the method described required more

number of EEG channels which contradicted the single channel requirements of the thesis

work.

10

2.3 EMD-CCA based OA removal approach

 Another single channel EEG OA removal technique described in [8] used EMD-CCA

based approach. Here, OA template was determined from contaminated EEG using EMD

(Empirical Mode Decomposition), which decomposes a time series signal into multiple

“intrinsic mode functions” (IMFs) and then CCA (Canonical Correlation Analysis) was

applied on the OA template and contaminated signal to get the clean EEG. The article

compared results based on Correlation Coefficient and SAR (signal to artifact ratio),

which concluded that this proposed method was found better than ICA, CCA, EMD-ICA.

There was no comparison given with WT based technique but was provided in article [9],

which was the modification of EMD-CCA. In [9], EEMD (Ensemble EMD) improved the

performance by eliminating the mode mixing dilemma existing with [8]. The computa-

tional cost comparison given in article [9] revealed that WT based method was better or

equal in performance as compared with EEMD-CCA method. Also [14] concluded that

WT and EMD both have their own advantages and limitations using different metrics

such as time consumption, SAR and PSD. Additionally, CCA method has considerable

amount of spectral error and thus it cannot be implemented in real-time [15] which limits

its use for the proposed OA removal algorithm considering the basic three requirements.

2.4 Algebraic method to detect OA

 Only the Detection of OA using Algebraic method was presented in [4]. Proposed

method used Operational Calculus leading to joint detection and change point detection,

where the signal was represented with a piecewise polynomial model in interval [0,T].

Using algorithms defined in [16] and [17] second order equation derived as:

 ak * (tk)
2 + bk * tk + ck = 0; (1)

11

 Where, each term was the output of Finite Impulse Response (FIR) filter and if there

existed discontinuity (eye blink) in the interval [0,T], these coefficients would be non-

zero else they all would be zero. Thus, in the proposed method ‘Qk = |ak*bk*ck|’ was cal-

culated and if this value exceeded the given threshold, spike existed at time ‘tk’ otherwise

not. Proposed method only detected the OA but it showed that accuracy was nearly same

as WT, whereas computational cost was significantly less when compared with WT

based OA detection. Article showed that for 7.5min long input EEG signal, WT took

27.31sec whereas algebraic method took 3.22sec.

 We have implemented the hybrid approach combining OA detection using Algebraic

method [4] for its fast processing time benefit and OA removal using WT based de-nois-

ing technique applied only to the detected OA zone referring [7], as WT is commonly

used robust method for single channel and hardware implementation capability. Each of

the methods and final hybrid algorithm is described in next chapter.

12

Chapter – 3

THE PROPOSED HYBRID ALGORITHM

 This section describes each method used for the proposed hybrid algorithm in detail

along with its required mathematical background. The section starts with Algebraic

Method, followed by Wavelet Transform Method and finally represents overview of the

implemented overall hybrid algorithm for OA removal from single channel EEG.

3.1 Algebraic Method – OA Detection

 Due to the eye blink during regular EEG signal recording, spike like artifact is gener-

ated, which is considered as irregularity in the neuronal signal. This method [4] detects

the abrupt changes and estimate their locations for the given noisy observation y(t), of a

piecewise regular signal x(t). It considers that there exists at most one spike in each inter-

val ‘I’, [τ, τ + T], where, τ is the origin and T is the length of ‘I’. In this interval, FIR fil-

ter of the order ‘M’ is applied to extract FIR filter coefficients using sliding window tech-

nique, which is repeated ‘n’ times, where ‘n’ represents the number of sliding windows of

interval ‘T’ for the considered EEG epoch length, refer Fig.3.

Fig.3: Graphical presentation of sliding window method for OA detection algorithm

FIR filter

n

FIR filter

n = x

FIR filter

n = 1 n = 2

T
1 2

T
x T n

Epoch length = 0.5 sec

n: no. of windows

13

 The impulse response equation used for implementing FIR filter is shown in (2)

which has been derived using operational calculus method to find the change point detec-

tion described in [16].

 ℎ����� = �	
���
��	
�! ��

����
�1 + ������ ���	

 ; 0 ≤ tm ≤ T (2)

 = 0 ; otherwise

 Using this Impulse response, discrete FIR filter coefficients are calculated using con-

volution method as (3).

 ����� ≈ ��,! = ∑ ℎ�,� #!�$	�$�%& (3)

 Where, ��,! = FIR filter coefficients for ‘n’ sliding windows for four values of ‘k’ (0, 1,

2, 3). ‘��’ value represents the each term in (1), such that with ‘k’ values as 0, 1 and 2 for

ak, bk and ck respectively. Similarly, FIR coefficients are also calculated for the values of

‘k’ as 1, 2 and 3 for ak, bk and ck respectively which then can be represented as the matrix

form representing two different quadratic equations as shown in (4).

 ' �� ���
���
 ����()�����
* = − '�������,((4)

 Next, the Decision function, ‘Fk,n’ is calculated using (4) as described by (5) for every

sliding windows ‘n’.

 -�,! = .���
,!/� − ��,!����,! (5)

14

 This decision function for spike detection which corresponds to Volterra filtering of

the neural signal reducing the noise and highlighting spikes [18]. Final Decision function

‘Fn’ is derived as (6) where in our case ‘K’ has been taken as 2 as only two different

quadratic equations were considered here as described by (4).

 -! = ∏ -�,!1	
�%& ; 3 = 0,1,2 … (6)

 This decision function (6) is then compared with the threshold value to decide

whether the eye blink (spike) exists in the given considered period or not. For the same,

the threshold equation used here was:

 6 = 7
8� 9 (7)

 where, N = Constant; µ = mean; σ = Standard Deviation.

 The threshold equation (7) was referenced from [7] and ‘N’ was fixed to 0.001 so as

to detect only the OA in the given EEG epoch. ‘N’ was fixed after number of trials using

different EEG data sets and found consistent enough to detect eye blink only in EEG sig-

nals ignoring possible artifacts due to some other muscle movements or loose electrodes

etc. Once this threshold value is calculated, ‘-!’ is compared with it to make the decision

for the existence of the OA at the time ‘tk’. Due to the presence of the noise in the actual

signal, ‘Fn’ is compared with the threshold instead of zero. Each eye blink would have

two spikes detected at two different ‘tk’ corresponding to starting edge and ending edge

of the eye blink. Finally based on detected edges, the sample numbers for OA-Zones in

each epoch were stored for further de-noising purpose.

15

3.2 Wavelet Transform – OA removal

 WT has emerged as one of the robust methods in processing non-stationary signals

such as EEG. The advantage of Wavelet Transform over Fourier Transform is that the

windows in WT vary. The Discrete WT (DWT) decomposition for denoising OA from

EEG is implemented here. The result obtained at each decomposition level is composed

by two types of coefficients: Approximation coefficients and Detail coefficients as shown

in Fig.4. The original signal is convolved with a low and high pass filter whose impulse

response is determined by the wavelet chosen [19]. The approximation coefficients are

obtained by low-pass filtering the input sequence, followed by down-sampling. The detail

coefficients are obtained by high-pass filtering the input sequence followed by down-

sampling. The sequence of approximation coefficients constitutes the input for the next

iteration. Different possible scaling with DWT is as shown in Fig.5 at every level.

Fig.4: Block diagram of DWT based n-levels decomposition

Fig.5: Frequency bands achieved at every DWT decomposition level [20]

D3

Up to

level n

A3

Level 3

LPF

HPF

2

2

Dn: level-n Detail Coefficient

An: level-n Approximation Coefficient

Level 2

D2

LPF

HPF 2

2
A2

Level 1

D1

x[n] HPF

LPF 2

2

A1

16

 The Discrete Wavelet Transform has two features: the wavelet mother ψ and the

number of decomposition levels. Discrete wavelets can be scaled and translated in dis-

crete steps having general wavelet representation as following: [21]

 :;,!��� =

<�= : >�	 �=!

�= ? (8)

 where, j is the scale factor and n is the translation index.

The DWT is invertible, meaning after decomposing the original signal up to desired

levels, decomposed signal can be composed back using inverse DWT method to get back

original signal. It is the reverse process of decomposition where starting from highest

level of decomposition, the coefficients are first up-sampled by the factor of 2 and then

passed from low-pass and high-pass filters and merged to form the approximation coeffi-

cients for the next lower level.

3.2.1 Wavelet basis functions

 The eye blink shapes vary for every subject and thus different wavelet functions

(mother wavelets - refer Fig.6) were tested for their suitability during the developmental

phase of the de-noising algorithm. For the hardware implementation, ‘haar’ wavelet was

used with DWT based de-noising as a first stepping stone for the algorithm verification.

Fig.6: Wave-shapes of different wavelet functions

Sym3 Db4 Coif3 Haar Bior4.4

17

3.2.2 DWT implementation steps

 The proposed DWT based OA removal algorithm involved the following steps:

1. Apply DWT only to the detected OA zone to decompose it up to eight levels using

selected basis function.

2. The detail coefficients of decomposition levels 4 to 8 are compared with the

threshold equation (7). If the coefficient value exceeds the threshold value, it is re-

placed with zero else retains its value as it is.

3. Finally, the inverse DWT was applied to reconstruct the clean EEG signal from the

decomposed signal.

 Two types of WT decomposition methods, SWT and DWT were compared during

developmental phase for their respective performances to determine the final approach

using different mother wavelets such as ‘coif3’,’sym3’, ‘db4’, ‘haar’ and their other vari-

ants. Due to the discrepancy of up-sampling and down-sampling at the every decomposi-

tion level in SWT and DWT respectively, DWT was preferred over SWT for its faster

processing time and equivalent accurate de-noising ability, considering real-time imple-

mentation aspect of the algorithm. Moreover, to preserve the low frequency components

in the non-OA zone, DWT was applied only to the detected OA zone (identified by al-

gebraic method) and non-OA zone remained intact ensuring the critical EEG background

information persisted in this region.

3.3 Hybrid OA Detection and Removal algorithm

Overall algorithm proposed in this thesis work implemented Algebraic approach to

detect the OA zone and DWT based de-noising technique applied only to the detected

OA zone for eye blink removal, refer Fig.7. Algorithm was found to be suitable for real-

18

time implementation for single channel EEG signal OA removal on MATLAB software

platform as well as executable on actual microcontroller hardware to perform as

expected preserving the regular EEG information in the non-OA zones.

Fig.7: Proposed hybrid OA removal algorithm

• Some key considerations for implementing hybrid algorithm were as described:

a. For the algebraic method, to ensure that there exists at the most one eye blink (irregu-

lar point) in ‘T’, the length of the interval ‘T’ had been taken as 0.29 sec, which gave

sufficient resolution as eye blinks are typically longer than 0.3 sec. (the average eye

blink duration is generally 0.2 to 0.4 sec [2,22]).

b. The FIR filter delay which is generally half of the filter order [23] which was adjusted

while calculating the exact OA zone locations.

c. For online EEG data testing, the EEG epoch length of 128 samples (0.5sec data @

256 sps) was considered in the real-time to execute the entire de-noising algorithm.

Raw EEG Signal

FIR Filter

coefficients

Decision

Function

OA Zone

Detection
Algebraic Method

Clean EEG Signal

Threshold based

De-noising
Inverse DWT

Signal

Reconstruction

WT based De-noising

DWT

Decomposition

19

d. Due to the filter delay, there are chances that the eye blinks occurring at the end of the

epoch, might get undetected by the algorithm. It has been avoided by overlapping the

epochs with the ratio of ~31% as illustrated in Fig.8, to ensure the correct OA zone

detection by testing over several datasets.

 The implemented EEG epoch overlapping method for the hybrid OA removal algo-

rithm is as depicted in Fig.8, where out of the total epoch length of 128 samples, last 40

samples were reconsidered for the next epoch processing to ensure the correct OA detec-

tion. The overall hybrid OA removal algorithm is illustrated as flowchart in Fig.9.

Fig.8: Flow chart describing epoch overlap method

Output Buffer

Clean EEG 88 samples

 Clean EEG 88 samples 40 Samples

 New Data (88 samples)

 Old Data New Data (88 samples)

N
e

x
t

 I

te
ra

ti
o

n

N
e

x
t O

A
 Z

o
n

e

OA Detection (128 samples)

No Is OA detected

array empty?

Yes

OA Zone

DWT

De-noising

iDWT

De-noised zone

Replace OA

Zone with

De-noised Zone

0 127

20

Fig.9: Detailed flow chart of hybrid OA removal algorithm

Raw EEG

Signal

OA Detection –

Algebraic Method
DWT

De-noising

De-noised

EEG signal

EEG Epoch of length ‘T’ for

OA zone detection

Calculate Impulse Response

‘hk’ using (2)

Derive FIR filter coefficients

‘vk’ using (3)

Repeat the process for ‘n’

sliding windows

Calculate Decision function

‘Fk’, using (5) & (6)

Get Threshold value using (7)

and compare ‘Fk’

Spikes

detected?

Output clean

EEG skipping

off DWT

de-noising

Calculate OA-

Zone for further

DWT de-noising

Y N

Apply DWT to decompose the

selected signal using proper

basis function up to 8 levels

Select decomposed levels 4 to 8

for 0.5 - 16 Hz

(OA frequency range)

Take Detected OA zone as the

input signal

Apply Threshold and de-noise

the signal using

hard thresholding

Apply inverse DWT to recon-

struct De-noised clean EEG

21

Chapter – 4

TEST SETUP AND PROCEDURE

 Testing of the OA detection and removal algorithm was divided in two parts:

I.) Offline mode, II.) Online (real-time) mode. Offline mode was carried out to verify and

finalize the hybrid algorithm and then the same algorithm was checked for its online exe-

cution in Real-Time mode. Overview of the entire process carried out is as illustrated in

Fig.10.

 Hybrid Algorithm: (OA Detection + OA Removal)

 Fig.10: Overview of offline and online mode OA removal algorithm implementation

 This section describes the system components such as software, hardware and

communication interfaces used throughout the experiment, datasets and data acquisition

details and finally procedure followed in offline – online modes in detail with respective

results achieved.

Offline Online

Hybrid Algorithm

 MATLAB Code

EEG Data used

Stored

offline data

(CSV file)

Hybrid Algorithm

 C Code

(Visual Studio 2010)

EEG Data used

Stored

offline data

(text file)

EEG Acquisition

&

Hybrid Algorithm

 MATLAB Code

EEG Data used

Wirelessly

received online

data from

NM device

EEG Remote Acquisition

 MATLAB Code

EEG Data used

ADC output of PSoC

microcontroller of

NM device

Hybrid Algorithm

Runs on PSoC

microcontroller of

NM device

22

4.1 System Components

 All testing were carried out on computer having Intel(R) Core i5-3337U CPU @ 1.80

GHz, with 4.0 GB RAM and 64-bit Operating system of Windows 7/8.1. Other system

components utilized during the work are listed below.

4.1.1 Software Utilized

 Table.1: LIST OF SOFTWARE TOOLS USED WITH THEIR UTILITY IN THESIS WORK

Software

name

Symbol / Logo Version Utility in thesis work

MATLAB

(MathWorks

Inc.,

Natwick,

MA)

2011a

• Algorithm testing in offline

mode

• Raw/clean EEG remote acquisi-

tion code

• Algorithm Performance Evalua-

tion and result verification

EEGLAB

free

software

from SCCN

(ucsd) [24]

 EEGLAB v13

• For Time-Frequency analysis as

performance evaluation

Microsoft

Visual

Studio

Microsoft

Visual Studio

C++ 2010

• Verification of C code of OA

detection and removal algorithm

in offline mode

PSoC

Creator

PSoC

Creator 3.0
• Raw EEG digitization and

transmission via Bluetooth in C

language

• Implementation of proposed

algorithm on PSoC microcon-

troller hardware for online

mode in C language

23

4.1.2 Hardware Utilized

I. NeuroMonitor:

NeuroMonitor (NM) is an ambulatory EEG device used to capture raw EEG sig-

nal and transmit it wirelessly to the remote device [25]. It is a miniature, lightweight,

two-channel referential montage based EEG device that is practically deployable in

real-life settings using PSoC-3 MCU and can wirelessly transmit data using Bluetooth

at the baud rate of 115.2 kbps in online mode, while being concealed within head acces-

sories like a cap/headband having sampling rate of 256 sps as shown in Fig.11 (a).

• Electrodes utilized:

 The commercial disposable adhesive pre-gelled electrodes (GS-26, Bio-Medical

Instruments, Warren, MI) suitable for EEG data collection from the prefrontal cortex are

used in NM device. The sensor contains a 0.5 percent saline base gel on a 10 mm flat

pellet Ag/AgCl electrode surrounded by a paper-thin transparent self-adhesive tape disc

of 1-inch diameter [26]. Electrodes position FP1 and FP2 on human scalp (based on 10-

20 International electrode system) were used throughout the work as shown in Fig.11 (b).

Fig.11:(a) NeuroMonitor device [26] (b) Electrode placement used during EEG recording

• NM EEG device was used for the following purposes:

i. To Capture EEG signals from human scalp using electrodes attached

(a)
Side view

NM Device

Ref

Front view

FP1 FP2

R L

(b)

24

ii. To Digitize and process captured EEG using on-board Microcontroller

iii. To implement proposed hybrid algorithm on on-chip MCU in online mode

iv. To transmit raw and/or clean EEG signal wirelessly using Bluetooth device

II. PSoC-3 Microcontroller

• Basic Technical Features [25]

 Some of the useful technical details about PSoC-3 MCU are listed here.

PSoC-3 CY8C38 family : 8-bit 8051 CPU

RAM : 8 KB

Flash memory : 64KB

Clock : 3-62 MHz internal Oscillator

On-chip ADC : 16-bit

On-Chip UART : -

• PSoC-3 MCU Usage:

 PSoC-3 MCU which is on-board of NM device was basically deployed to cap-

ture EEG using electrodes, filter and amplify the analog EEG signal, digitize the same us-

ing on-chip 16-bit ADC on interrupt basis at 256 sps and finally to output digitized EEG

wirelessly using on-board Bluetooth device, refer Fig.13.

4.1.3 Communication interfaces

I. Bluetooth transceiver (RN-42 (Roving Networks)):

• Specifications:

 It’s a Class 2 Bluetooth (BT) module with inbuilt antenna. Running in the 2.4

GHz ISM band, this BT device can cover range up to 20 meters [27]. The baud rate for

transmission was set to be 115,200 bps.

• BT Usage:

 BT transceiver was used on NM device for initial synchronization and wireless

data transfer in online mode.

25

4.2 EEG Datasets utilized

4.2.1 Offline Mode

• MATLAB based algorithm: The datasets used were as mentioned in Table.2 and

they were read from respective ‘CSV’ file for the further processing.

 Table.2: DATASET LIST FOR OFFLINE MATLAB BASED ALGORITHM

 Device Name No. of Datasets Sampling rate

Samples/sec

OA Detection Emotive 3 subjects (single channel) 128

NueroMonitor 1 subject (single channel) 256

OA Removal Emotive 1 subject (single channel) 128

NueroMonitor 3 subjects (single channel) 256

• C based algorithm: Total 2 stored datasets of two different subjects from only NM

device were used to test entire hybrid algorithm, which were read as respective

‘text’ file for further processing.

4.2.2 Online (Real-Time) Mode

• MATLAB based algorithm: The MATLAB written OA removal code was tested

in real-time mode using online data received from NM EEG device by existing

MATLAB acquisition software [25]. The EEG was recorded from single-channel

FP1 (channel-1) (based on 10-20 International electrode system) location of total 4

subjects by following mentioned protocol: During the EEG recording process, sub-

ject was asked to blink at every 5 second of interval for 30 seconds. Thus, for each

subject, data from each channel, contained 30 seconds of EEG recording comprised

of 5 eye blinks.

26

• Hardware implemented C code: The C based hybrid algorithm implementation on

hardware was verified using total three different datasets belonging to single

subject from single-channel (FP1) using NM EEG device.

4.3 EEG Data Acquisition

 Data acquisition was required on two sides: one on NM device from subject and the

other on user console monitor from NM device as shown in Fig.12. Both data acquisition

methods are described in the following sections.

Fig.12: Data acquisition: subject to NM device and NM device to user console

4.3.1 EEG Device data acquisition

 Captured EEG from scalp using electrodes attached to NM device, passes from

several analog signal conditioning stages using instrumentation amplifiers, filtering and

gain amplifiers successively. The amplified and filtered signal is required to be digitized

before being wirelessly transmitted which is achieved via a 16-bit analog-to-digital

(ADC) converter on-chip to the PSoC-3 at the sampling frequency of 256 sps. The digit-

ized signal gets stored in real-time with two FIFO (fist in first out) buffers acquiring data

in tandem, while data can be sent wirelessly. Each buffer size considered was 512 bytes

requiring 0.5 seconds to fill up holding the sampled data every 3.9 ms for the two chan-

nels [27]. Interrupts were triggered when a buffer was filled and the buffered data was

Wireless Transmission

Using Bluetooth

User console NeuroMonitor

27

then wirelessly transmitted using Bluetooth in online mode, while the other buffer was

being filled up. The complete block diagram of the data acquisition system of NM EEG

device is given in Fig.13.

Fig.13: EEG data acquisition system of NM EEG device

4.3.2 User console data acquisition

 The EEG raw data sent by NM device wirelessly using Bluetooth was captured

remotely on user console where MATLAB software based data acquisition program was

executed. Before sending the 512 bytes of sampled ADC data wirelessly as described in

previous section, 22 bytes of header was appended to the buffer (making total 534 bytes

of buffer size to be transmitted). All data packets were marked with headers of the packet

start reference and packet count to ensure the reliable transmission from NM device. At

the receiver side in MATLAB, wireless data was captured serially and header start refer-

ence and packet count were checked for the reliability of the received data. In case of any

data loss, the user was notified by the Missed Packets count in Graphical User Interface

(GUI) panel of data acquisition software, refer Fig.14. On receiving the data packet suc-

cessfully, acquisition software separates channel-1 and channel-2 from received 512

bytes of buffer discarding the header. The original sample was 16-bit long which was

Filtering

+

Amplification

stages

Signal

Conditioning ADC

Ch1

Ch2

Buf1

512

bytes

Buf2

512

bytes

Output

Buffer

512 bytes

(BUF1 or

BUF2)

Electrode 1

Electrode 2

Wireless

Tx

NeuroMonitor Device

28

sent as 2 bytes remotely and thus, for each channel, every sample was reformed to repre-

sent the 16-bit data. Next, the digitized and the amplified sample was scaled down to

original microvolt level by respective scaling function. Finally, processed and converted

actual raw data was stored as ‘CSV’ file for further analysis. Entire data acquisition soft-

ware process on remote user console side is depicted as a block diagram in Fig.15.

 Fig.14: User Console remote Data acquisition software Graphical User Interface panel

Fig.15: User console data acquisition system

16-bit

sample

formation

for each

channel

Scaling

to

retrieve

original

EEG

Storage

Raw EEG

stored as

‘CSV file

Channel-1

&

Channel-2

Separation

(128 sam-

ples/channel)

Display

Status

Header

Check

Header start

reference

+

packet count

check

Receiver

Serially

received

raw EEG

data

User console Data Acquisition

29

4.4 Methodology

 As depicted in Fig.10, entire thesis work was organized in two parts: Offline and

Online for the proposed hybrid algorithm, each part having the MATLAB based and C

language based microcontroller applicable algorithms. This section illustrates each mode

with algorithm specific details, implemented methodology along with the achieved re-

spective results to depict the validity of the developed algorithm.

4.4.1 Offline Mode

4.4.1.1 MATLAB based algorithm

 Main designing part of the proposed hybrid algorithm resides in this devel-

opmental phase i.e. MATLAB based algorithm development in offline mode. Being

offline, as explained in Table.2 of section 4.2.1, total 4 stored EEG datasets from two dif-

ferent devices (Emotive and NM) were used to verify the results at each stage of the algo-

rithm for its overall performance evaluation. As mentioned in Fig.16, EEG data reading

from CSV files, OA Detection – Removal and performance evaluation, everything was

carried out using MATLAB software.

 Fig.16: Block diagram of MATLAB based algorithm implementation in offline mode

• OA Detection:

 OA detection code in MATLAB was developed as described in section 3.1 where

FIR filter was implemented using MATLAB inbuilt function ‘filter’ to extract the filter

coefficients at every sliding window. The EEG epoch length as input to the algorithm

Dataset

‘CSV’ file

reading

OA Detection

- Algebraic

Method

OA Removal

- DWT

De-noising

Performance

Evaluation

30

was taken for the entire length of recording as read from the CSV file. The interval length

‘T’ and the FIR filter order considered were as mentioned below:

Interval Length ‘T’ (sec) Sampling rate ‘Ts’ (sec) FIR filter order M = T/Ts

0.29

Emotive device: 0.0078 37

NM device: 0.0039 74

 The threshold function used was ′A ∗ 1.5 ′, where, A is the standard deviation of the

EEG epoch. Using this threshold value, OA zone having starting edge and ending edge

was determined in the algorithm. The verification of the entire process was tested using 4

datasets out of which the results of one emotive and one NM device EEG data are shown

here, whereas for the other datasets the results are mentioned in Chapter 5.

• Results: For emotive EEG data, epoch length taken was 9984 samples (78 seconds

data) which was having total 9 eye blinks. The comparative plot in Fig.17 shows that OA

detection algorithm accurately detected the eye blinks as well as the detected OA zones

exactly matched with the actual existing eye blinks placements in raw EEG. The contents

of OA zone detection array represents the OA zones in pairwise manner representing

starting edge and ending edge respectively as indicated in Fig.17. The OA zone sample

numbers were adjusted with FIR filter delay and 10 additional samples on each side.

Similar results for FP1 (channel-1) location are presented in Fig.18 for NM device EEG

data having epoch length of 11488 samples (45 seconds), consisting total of 8 eye blinks.

For the FP2 (channel-2) location also similar results were observed.

31

Fig.17: OA detection results for Emotive device (dataset-1)

Fig.18: OA detection results for NM device (dataset-4)

2850 2900 2950 3000 3050 3100 3150
-100

0

100

200

300

No.Samples

Detected

OA Zone

0 2000 4000 6000 8000 10000
-200

0

200

400

600 Raw EEG Vs OA detection plot

A
m
p
li
tu
d
e

Raw EEG

OA Detection

OA Zone detection Array

Sample #

0 2000 4000 6000 8000 10000
-200

0

200

400

600

800

Raw EEG Vs OA detection plot

A
m
p
lit
u
d
e

Raw EEG

OA Detection

4900 4950 5000 5050

-100

-50

0

50

100

150

200

250

No.Samples

OA Zone detection Array

Detected

OA Zone

Sample #

32

• Addition of Overlapping Concept: As discussed, the OA detection was carried out

for the entire length of EEG recording. Whereas for the real-time application, the EEG

epoch length should be as small as possible around 1 second or even 0.5 second to ensure

the online processing without the longer latency periods. Thus, the same algorithm was

tested for 2 seconds of epoch length for emotive dataset1. But it was observed that for the

less than 2 seconds of epoch length, the OA detection algorithm missed some of the eye

blinks getting detected as shown in Fig.19. This was probably due to the eye blink occur-

ring at the end of the epoch. To overcome this issue, overlapping concept of every epoch

was introduced as described in Fig.8 and as a result, even for the epoch length as small as

0.5 seconds, the eye blinks were detected without getting missed even a single one. With

overlapping technique to detect the OA, threshold function (7) was found consistent.

 Fig.19: Undetected eye blinks by OA detection without overlapping method

 Thus, OA detection code was verified for its performance with two different devices

having different sampling rates and it was found consistent enough in detecting OAs.

1000 2000 3000 4000 5000 6000 7000 8000 9000

-100

0

100

200

300

400

500 Raw EEG Vs OA detection plot

No.Samples

A
m
p
lit
u
d
e

Raw EEG

OA detection

4000 4500 5000 5500 6000 6500 7000

-100

0

100

200

300

400

Eye blink

undetected

Eye blink

undetected

33

• OA Removal

 As discussed before, OA removal algorithm uses WT based de-noising technique and

it was applied only to the detected OA zones rather than to the entire EEG epoch. Thus,

only on detection of the OA zone, OA removal code gets executed otherwise it is skipped

and hybrid algorithm seeks for the next EEG epoch. As per the section 3.1.2, SWT and

DWT both were implemented initially to remove the detected OA from EEG and com-

pared for their performances to select one out of the two for the final OA removal

method. It was evident from the result shown in Fig.20 that the processing time of DWT

was much lesser than SWT as predicted because of their individual processing methods

of down-sampling and up-sampling respectively. The Fig.20 shows processing time com-

parison for each eye blink in the considered dataset. And looking to the real-time and

hardware applicability, DWT was selected for the final hybrid OA removal algorithm.

 Fig.20: Processing time bar plot DWT Vs SWT

 DWT decomposition was carried out up to level 7 for Emotive EEG device hav-

ing 128 samples/sec data-rate whereas up to level 8 for NM EEG device having sampling

rate of 256 samples/sec. For the decomposition, different wavelet functions, namely db6,

1 2 3 4 5 6
0

0.05

0.1

0.15

0.2
Processing time SWT Vs DWT

Blink detection event

T
im

e
 (
S

e
c
)

SWT

DWT

34

coif3/5 and bior4.4 were evaluated for their performances. It was observed that wavelet

function effectiveness was subjective depending on the individual’s eye blink shape. But

bior4.4 was found to be consistent with majority of the datasets and all results shown

here used bior4.4 wavelet function. For the threshold based de-noising, the detailed coef-

ficients of levels 3-7 for Emotive and levels 4-8 for NM were compared with threshold

value and made to ‘0’ if exceeded the threshold value. The eye blink occurs between 0-

16Hz and the detail coefficients for the levels 3 to 7 and 4 to 8 belong to the frequency

range of 0.5 - 16Hz [28] for the respective devices. The frequency band information at

each DWT decomposition level is as mentioned below:

Decomposition

level

Frequency bandwidth

(Hz)

Decomposition

level

Frequency bandwidth

(Hz)

D1 64-128 D5 4-8

D2 32-64 D6 2-4

D3 16-32 D7 1-2

D4 8-16 D8 0.5-1

 Finally, the reconstruction was carried out by replacing these de-noised chunks with

the original signal to form the clean EEG.

 For the OA removal algorithm evaluation, as per the Table.2, total 4 datasets were used

to verify the OA removal algorithm out of which one dataset belonged to Emotive EEG

device, whereas remaining three were of NM device as finally the hybrid algorithm was to

be implemented on NM device only. All results are plotted for the raw EEG Vs de-noised

EEG after OA removal along with zoomed plot using bior4.4 wavelet function. The Emo-

tive dataset results are shown in Fig.21, although it was observed that db6 worked better

for this particular dataset. Also it is evident from Fig.21 that de-noising was carried out

only in OA Zone and non-OA zones remained entirely intact without modifying any EEG

information in that region.

35

Fig.21: OA removal results for Emotive device (subject-1)

 For all NM device datasets comprising two channels of three different subjects,

bior4.4 showed equivalent satisfactory results out of which one dataset (channel1) result

is mentioned in Fig.22 whereas others are shown in result section of Chapter 5.

Fig.22: OA removal results of NM device (channel-1(FP1) subject-2)

42 42.5 43 43.5 44 44.5

-100

0

100

200

300

Time (Seconds)

0 10 20 30 40 50 60

-100

0

100

200

300

400

A
m

p
li
tu

d
e
 (
µ
V
)

Raw EEG Vs Clean EEG Signal

Raw EEG

Clean EEG

Unaltered

Non-OA Zone

De-noised

OA Zone
Unaltered

Non-OA Zone

20.5 21 21.5 22 22.5 23

-150

-100

-50

0

50

100

150

Time (Seconds)

5 10 15 20 25 30

-150

-100

-50

0

50

100

150

A
m
p
li
tu
d
e
 (
µ
V
)

Raw EEG Vs Clean EEG Signal [DWT]

Raw EEG

Clean EEG

Unaltered

Non-OA Zone

De-noised

OA Zone
Other Artifact

36

 Discussion: It was noticed after de-noising in OA Zone that at times the edges had sharp

drops or falls as visible in Fig.20. One possible reason of this might be the abrupt OA-

zone cut-off from the regular EEG signal. Also from Fig.22 it is evident that artifacts

other than OA didn’t get detected or de-noise.

 After this developmental phase of MATLAB based offline algorithm evaluation, the

hybrid OA removal algorithm was finalized with algebraic method based OA detection

and DWT based OA removal using bior4.4 wavelet function by implementing overlap-

ping of EEG epochs having 0.5 second of length for NM EEG device.

4.4.1.2 C based algorithm

 Offline C language based code was simply the prototype of online C based

microcontroller implementable OA removal code which was developed similar to the

MATLAB based finalized hybrid algorithm using Visual Studio 2010 software tool. The

verification of the offline C code was done in MATLAB by comparing MATLAB and C

code very precisely at every step of the algorithm, refer Fig.23.

 Fig.23: Block diagram of C based algorithm implementation in offline mode

 There was one major difference in C based algorithm as compared to finalized hybrid

OA removal technique and that was the wavelet function used. So far discussed, bior4.4

Dataset

‘text’ file

reading

OA Detection -

Algebraic

Method

OA Removal -

DWT

De-noising

Clean EEG

Output

‘text’ file

Comparative

results

Evaluation

Clean EEG

output reading

as ‘csv’ file

37

wavelet was used to decompose the EEG epoch using DWT for all the datasets as that

matched the most with the shape of the eye blinks of different subjects producing satis-

factory results. The C based algorithm was basically developed for implementing it on

MCU and thus, as a first stepping stone, to simplify and reduce the algorithm complexity,

instead of bior4.4 wavelet, haar wavelet was implemented.

 A haar wavelet is the simplest type of wavelet and it serves as a prototype for all the

other wavelet transforms. The Haar transform decomposes a discrete signal into approxi-

mation and detailed coefficients each of half its length. The approximation coefficients

are the running average whereas the detailed coefficients are the running difference. The

precise formula for the approximation (am) and detailed (dm) coefficients for the discrete

signal f of length N are given as (9) and (10) respectively, for m = 1, 2, 3, …., N/2. [29]

 E� = F��G� F��
√� (9)

 I� = F��G	 F��
√� (10)

 The discrete signal under process was EEG signal of length 128 samples (i.e. 0.5 sec

data - using 256 sps) and another minor change made to induce simplicity was that the

signal decomposition levels instead of eight, seven was performed using haar wavelet

(without compromising with the result accuracy). For the threshold based de-noising,

levels 4-7 (0.5 - 16 Hz) were compared with threshold value for de-noising purpose. The

graphical representation of the decomposed signal vector is shown in Fig.24. Finally,

inverse DWT for the signal reconstruction was carried out as per (11) to retrieve the clean

EEG.

38

 J = K>L� �
√� ? , >L	 �

√� ? , . . , >LM/�� �M/�
√� ? , >LM/�	 �M/�

√� ?O (11)

Fig.24: Graphical presentation of DWT based decomposed signal vector

 NM device datasets of two subjects were tested to verify C code based OA removal

algorithm against the same MATLAB algorithm results using haar wavelet. Comparative

results are shown in Fig.25 and Fig.26 which clearly depicts that the developed C code

gave better to equivalent results when compared with MATLAB based algorithm outputs.

Fig.25: Hybrid algorithm results for NM device (C based – offline mode) (subject-1)

(a) MATLAB result, (b) C based result

A7

(0-1)

D7

(1-2)

D6

(2-4)

D5

(4-8)

D4

(8-16)

D3

(16-32)

D2

(32-64)

D1

(64-128)

Threshold based De-noising
A7 : Level-7 Approximation Coefficient

D1-7 : Detail Coefficients Levels 1 to 7

0 5 10 15 20 25 30

-100

0

100

A
m

p
lit

u
d

e
 (

µ
V

)

Raw EEG Vs Clean EEG Signal [DWT]

Raw EEG

Clean EEG

25.6 25.8 26 26.2 26.4 26.6 26.8 27 27.2

-100

0

100

Time (Seconds)

0 5 10 15 20 25 30

-150

-100

-50

0

50

100

150

Time (Seconds)

A
m

p
lit

u
d
e
 (

µ
V

)

Raw EEG Vs Clean EEG Signal

Raw EEG

Clean EEG

25.6 25.8 26 26.2 26.4 26.6 26.8 27 27.2

-100

-50

0

50

100

150

Time (Seconds)

(a) (b)

39

Fig.26: Hybrid algorithm results for NM device (C based – offline mode) (subject-2)

 (a) MATLAB result, (b) C based result

 This verified C based OA removal algorithm in offline mode was then ready to be

implemented on PSoC-3 MCU of NM device in real-time as described in next section.

4.4.2 Real-Time Mode

4.4.2.1 MATLAB based algorithm

 In real-time mode, instead of already stored EEG datasets, raw EEG was

acquired using NM device as described in section 4.3 following the protocol mentioned

in section 4.2.2 where EEG recordings from 4 subjects in real-time, consisting total of

30 seconds of EEG having total 5 eye blinks at every 5 seconds interval were considered.

The wireless EEG data were captured serially using MATLAB data acquisition software

[25] and hybrid algorithm written in MATLAB was ran as a sequential part of data acqui-

sition software to obtain clean EEG in real-time, refer block diagram of Fig.27. Because

0 5 10 15 20 25 30

-200

-100

0

100

200

300

A
m

p
lit

u
d

e
 (

µ
V

)

Raw EEG Vs Clean EEG Signal [DWT]

Raw EEG

Clean EEG

18.5 19 19.5 20 20.5

-100

0

100

200

Time (Seconds)

0 5 10 15 20 25 30

-100

0

100

200

300

Time (Seconds)

A
m

p
lit

u
d
e

 (
µ

V
)

Raw EEG Vs Clean EEG Signal

Raw EEG

Clean EEG

18.5 19 19.5 20 20.5

-50

0

50

100

150

200

250

Time (Seconds)

(a) (b)

40

of the 40 samples of overlapping method, on the receipt of every 0.5 second (128 sam-

ples) EEG data, 88 samples were stored as a clean EEG output and last 40 samples were

reconsidered as a part of new epoch of 128 samples, refer Fig.8.

Fig.27: Block diagram of MATLAB based algorithm implementation in online mode

 The real-time performance of the MATLAB based OA removal algorithm using

channel-1 EEG recording of 2 subjects are shown in Fig.28 to Fig.29 whereas results for

the other 2 subjects are shown in chapter 5. The results show the comparative plots of

raw EEG and clean EEG stored at the end of the execution of the online OA removal

algorithm. It was found that MATLAB based finalized hybrid OA removal algorithm

(section 4.4.1.1) worked accurately and efficiently in real-time without any miss of the

data or glitch in the OA detection or OA removal algorithm.

OA Detection

- Algebraic

Method

OA Removal

- DWT

De-noising

Clean

EEG

Actual raw

EEG signal

input

0.5 Sec raw

EEG serial

data receiver

Header check

+ raw EEG

scaling

NeuroMonitor

Wireless

Data

Hybrid Algorithm

Data Acquisition

41

Fig.28: Online mode – MATLAB based hybrid Algorithm result (channel-1, subject-1)

Fig.29: Online mode – MATLAB based hybrid Algorithm result (channel-1, subject-2)

0 5 10 15 20 25 30

-100

0

100

200

Time (Seconds)

A
m

p
lit

u
d
e
 (
µ
V
)

Raw EEG Vs Clean EEG (online)

17.5 18 18.5 19

-100

-50

0

50

100

150

200

Time (Seconds)

Raw EEG

Clean EEG

0 5 10 15 20 25

-300

-200

-100

0

100

200

300

A
m

p
lit

u
d
e
 (
µ
V

)

Raw EEG Vs Clean EEG (online)

11.5 12 12.5 13 13.5 14 14.5

-150

-100

-50

0

50

100

150

200

Time (Seconds)

Raw EEG

Clean EEG

42

4.4.2.2 C based algorithm

 Online C based hybrid OA removal algorithm was developed to be exe-

cuted in real-time on PSoC-3 MCU situated on NM board. The PSoC-3 MCU of NM de-

vice was already in-use for recording EEG in real-time settings and sending EEG data

wirelessly to the user console. Thus, this existing hardware was chosen to implement the

hybrid OA removal algorithm for the algorithm verification purpose. The verified C

based hybrid OA removal algorithm in offline mode was combined with PSoC-3 based

EEG acquisition software (described in section 4.3.1) and finally the raw EEG along with

the clean EEG was transmitted wirelessly using Bluetooth communication. This wire-

lessly sent output buffer was received remotely on MATLAB based user console, where

scaling of the received raw EEG along with mean adjustment was carried out to compare

with PSoC-3 processed and de-noised EEG, for the online C based algorithm verification.

The entire process is illustrated as block diagram in Fig.30. The software tool used to

program PSoC-3 MSU, was ‘PSoC creator 3.0’ whereas the remote data acquisition soft-

ware was written in MATLAB (refer section 4.3.2).

Fig.30: Block diagram of C based algorithm implementation in online mode

ADC ISR

&

Ring Buf

Raw EEG

Scaling & mean

adjustment

OA

Detection &

Removal

Real-Time NM device Processing + Hybrid Algorithm + wireless EEG transmission

Output

Buffer

Formation

Wireless Tx

of Output

Buffer

Comparative

Result

Evaluation

Wireless Rx

of Raw &

Clean EEG

Received Raw

EEG Scaling &

mean adjustment

Remote Data Acquisition + Algorithm Result Evaluation

Tx: Transmit, Rx: Receive

43

• Overlapping method implementation challenge: Main challenge for the online C

based hybrid OA removal method was to implement the overlapping of the epochs in

real-time. This was carried out using the single ring-buffer technique. The size of the ring

buffer designed in the code was 768 bytes long where 16-bit ADC sampled EEG data

gets stored at every 3.9 ms (256 sps) on ADC generated interrupt. The respective inter-

rupt service subroutine (ISR) stored two bytes (16-bit sample) sequentially in ring buffer.

The ring-buffer was indexed with ‘LAST’ and ‘FIRST’ variables as ‘put index’ and ‘get

index’ respectively. On every 16-bit ADC data arrival, ISR gets executed where two

bytes were stored in ring buffer at the locations pointed by the put index – LAST. The get

index – FIRST was used to fetch the samples for processing from ring buffer in main pro-

gram running in real-time. The ISR execution graphical representation is given in Fig.31.

‘OverFlow’ variable is set to ‘1’ whenever LAST crosses the buffer size and gets reset to

starting index ‘0’. As in Fig.31, the race condition between FIRST and LAST was also

checked whenever OverFlow was ‘1’ and avoided new sampled data to get stored by

holding (dropping) them.

Fig.31: Graphical presentation of ADC ISR execution steps

LAST: Put Index,

FIRST: Get Index,

Buffer Size = 768,

0

767

FIRST

LAST

LSB byte

MSB byte

LSB byte

MSB byte

Sample 1

Ring Buffer

LAST

=

Buffer Size?

Hold Data

OverFlow = 1?

&

(FIRST-2) = LAST?

Store 2-bytes

(LSB:MSB) of

EEG data in

Ring Buffer

Yes

No
Start

LAST = 0;

OverFlow = 1;

LAST = LAST+2

Yes

No

End ADC Interrupt Service Subroutine

44

• Microcotroller implemented program flow: Fig.32 illustrates the overall main pro-

gram flow implemented on PSoC-3 MCU comprising ring buffer access, steps to perform

epoch overlapping, OA detection, OA removal, output data buffer formation and its serial

transmission. The code is attached in Appendix A. In the flowchart of Fig.32, the ‘count’

indicates the output buffer packet number which was incremented after every output

buffer transmission. In the algorithm, for the very first EEG epoch i.e. processing at the

time zero, ‘count’ value was ‘0’, when 128 samples were fetched from the ring buffer

starting from the location pointed by the global variable get index-FIRST. For all other

consecutive EEG epochs, only 88 samples of new data from ring buffer pointed by

FIRST were fetched because the last 40 samples from previous epoch were considered as

the starting 40 samples for the next epoch out of total 128 samples to be processed.

‘Valid_Data’ holds the count of available data between the two ring buffer indexes,

LAST and FIRST for the next epoch processing. The ‘y1’ buffer holds the scaled and

mean adjusted actual 128 samples of raw EEG as input for the on-chip OA detection and

removal algorithm to get the de-noised EEG in real-time. ‘Clean_EEG’ is the output

buffer of length 537 bytes which is finally transmitted wirelessly using Bluetooth serial

communication. The ‘Clean_EEG’ buffer is comprised of three parts: Header (9 bytes),

raw EEG (88 x 2 = 176 bytes) and clean EEG (88 x 4 = 352 bytes). The raw EEG data

being 16-bits long, occupied 2-bytes whereas clean EEG data was the outcome of hybrid

OA removal algorithm having float values, occupied 4-bytes per data sample. Consider-

ing overlapping method, for the processed EEG of array ‘y1’, always the first de-noised

88 samples were stored in ‘Clean_EEG’ buffer as clean EEG whereas for the raw EEG,

overlapping of the data was performed as shown in Fig.33.

45

Fig.32: Online mode C based main program flowchart implemented on PSoC-3 MCU

Y

Y N

Valid_Data > = sz?

count = 0

Form 16-bit EEG sample

For 0 to 87 samples:

Clean_EEG[9:184] = Buf[First]

For 0 to 39 samples:

Clean_EEG[9:88] = Temp[0:87]

Store in y1[i]

For new 88 to 127 samples:

Temp[0:87] = Buf[First]

For 88 to 127 samples:

Temp[0:39] = Buf[First]

For 40 to 87 samples:

Clean_EEG[89:184] = Buf[First]

Scaling + Mean adjustment of ‘y1’

Con-Continue

First + 2

< Buf_Size? First = First + 2
Overflow = 0;

First = 0;

i > 128

i = i + 1

Buffer Header Start:

Clean_EEG[0] = ‘D’

count = 0
sz = 176; sz = 256;

Calculate Valid_Data

Repeat

N

Y

Y N

Y N

N

46

Fig.32: Online mode C based main program flowchart implemented on PSoC-3 MCU

Fig.33: Graphical presentation of real-time overlapping method implementation

OA Detection

OA Detected?

Clean_EEG[1:6] = Detected OA

OA Removal

Storing 352 (88*4) bytes of 88 float data:

Clean_EEG[186:537] = y1

Overlap[0:39] = y1 [last 40 samples]

y1 [first 40 samples] = Overlap[0:39]

Clean_EEG[8:9] = count

count = count + 1

Send Clean_EEG[0:536] using

BlueTooth serial communication

Con-Continue

Repeat

Y

N

40 48 40 48 40

40 48 40 48

 For

Count = 0
For

Count > 0

Clean_EEG output buffer (Raw EEG - 88 samples)

128 Samples

Raw EEG

128 Samples

Raw EEG

Overlap

Overlap

Temp buf

Overlap

Temp buf

47

 For the 1st data packet (i.e. count =0), out of 128 new data fetched from ring buffer,

initial 88 samples were stored in ‘Clean_EEG’. The last 40 samples were moved to the

temporary buffer which was then stored in ‘Clean_EEG’ for all the next epochs (i.e count

> 0) followed by next new 48 samples as shown in Fig.33. The ‘Clean_EEG’ output

buffer formation is indicated in Fig.34 (a). In 9-bytes long header, 1st byte contains the

start-up key designated as character ‘D’ which was extracted at the remote user console

to authenticate the start of the received packet and the packet count was stored as 8th and

9th bytes. The intermediate 6 bytes were utilized to store up to three detected OA zone

sample locations in pairwise manner (starting edge and ending edge) per epoch. The

header formation described is represented graphically in Fig.34 (b).

Fig.34: (a) ‘Clean_EEG’ output buffer formation, (b) Header formation

• Results verification: The implemented online hybrid OA removal algorithm, was ver-

ified for its performance using MATLAB based remote data acquisition software. The

‘Clean_EEG’ was received at the remote console, where raw EEG and clean EEG were

separated and compared for the MCU implemented algorithm evaluation. It was im-

portant to first verify the ring buffer performance as that was the most critical part in the

Header

Raw EEG

(88 samples)

Clean EEG

(processed)

(88 samples)

0

8
9

184

185

536
(a)

0 6 8

9 bytes

D Detected OA (up to 3 OA zones) Buf Count

1 7

(b)

48

online C based code. For this purpose, only the code with ring buffer performing overlap-

ping for raw and clean EEG was tested in real-time, by skipping off OA detection and re-

moval algorithms for the instance. To authenticate the performance of the ring buffer in

real-time, the raw and clean EEG should contain exactly the same data at the receiver as

no OA removal processing is carried out for this test. The implemented ring buffer and

overlapping methods worked perfectly without any mismatch. The raw and clean EEG

received at the user console were plotted for comparison and it was observed that both

matched one to one without any discrepancy, refer Fig.35.

Fig.35: Ring buffer output comparison on user console – online mode (C based)

 After verifying the ring buffer consistency, the hybrid OA removal algorithm was

then included along with the ring buffer to observe the final outcome. On comparing raw

and clean EEG on MATLAB platform, it was noticed that hybrid OA removal algorithm

did de-noise the existing eye blink in the EEG successfully. The test was carried out for 3

0 1000 2000 3000 4000
-200

-100

0

100

200

300

400

A
m

p
lit
u
d
e
 (
µ
V
)

Raw EEG Vs Clean EEG Signal (only ring buffer)

Raw EEG

Clean EEG

1400 1450 1500 1550 1600 1650 1700

-100

0

100

200

300

No of Samples

49

datasets of EEG recordings from single subject and results for dataset1 is shown in Fig.36

(a). The detected OA zones for dataset1 is shown in Fig.36 (b), where the snapshots of

MATLAB results of ‘Clean_EEG’ array header contents (index 1 to 9) are highlighted.

Every packet of length 537 bytes starts with character ‘D’ (received as ‘68’), next 6 bytes

contains the OA zones if detected followed by the packet count numbers as highlighted in

the Fig.36 (b).

Discussion: Before the OA zone was detected, there were total 9 complete packets hav-

ing 88 samples in each. Thus, the calculation for OA zone for the 10th packet as detected

is shown in the Fig.36 (b), which matched with the actual position of the eye blink. This

shows that OA detection algorithm worked perfectly on PSoC-3 hardware in real-time

accurately. Accordingly, the de-noised eye blink zone is noticeable in Fig.36 (a) which

depicts that also the OA removal algorithm implemented on PSoC-3 MCU performed

satisfactorily as desired in the online mode.

• Challenges faced:

1. The original order of FIR filter implemented was 74. But it was observed that im-

plementing this higher order FIR on hardware for real-time operation, the MCU pro-

cessing became very slow and remotely received EEG data encountered some packet

misses. This slow processing was resolved by reducing the FIR filter order down to 38 by

considering small interval ‘T’ (refer section 3.1) as 0.15 seconds instead of original 0.29

seconds.

2. The small region of the raw and clean EEG as zoomed-in plots for dataset1 is

shown in Fig.37. It was observed that in non-OA zone, both of the signals had little dis-

50

crepancy and didn’t overlap on each other. After investigating it was found that the rea-

son for this mismatch was the difference in mean adjustment done for raw and clean

EEG. For the clean EEG, mean was calculated in real-time on PSoC-3 MCU whereas for

the raw EEG, it was carried out in offline mode in MATLAB before comparative results

study. Thus, the epoch length considered for calculating mean differed in both cases

which ultimately resulted in little mismatch or non-overlapping EEG samples as shown in

Fig.37. Though this does not create much adverse effect on the received EEG signal but

the mismatch problem can be resolve by adding small MATLAB script to extract and cal-

culate the exact epoch considered in real-time on PSoC-3 using the information of actual

packet count received on the user console and then carry out the mean for raw EEG. This

additional MATLAB script can help to resolve the mismatch issue which has not been

implemented here in the thesis work. Also this mismatch still implies that the EEG infor-

mation in non-OA zone remained unchanged as there was no OA detection in that region.

Fig.36: (a) Online mode – C based hybrid Algorithm result (FP1 – dataset1)

0 0.5 1 1.5 2 2.5 3 3.5

-50

0

50

100

150

200

No of Samples

A
m
p
lit
u
d
e
 (
µ
V
)

Raw EEG Vs Clean EEG Signal (real-time on PSoC)

Raw EEG

Clean EEG

2.6 2.8 3 3.2 3.4 3.6

-50

0

50

100

150

200

No of Samples

Time (sec)

51

Fig.36: (b) Verification of OA zone detection C based algorithm in real-time (dataset1)

 Fig.37: Plot showing minor mismatch in non-OA zone between raw and Clean EEG of

real-time hardware implemented algorithm output

800 850 900 950

-50

0

50

100

150

200

X: 843

Y: -2.449

X: 919

Y: -59.22

9*88 + 51 = 843 9*88 + 127 = 919

Received packet counts (8th and 9th bytes of header) 9th packet 10th packet

No of samples

Received 537 bytes long packets on user console (MATLAB)

0.5 1 1.5

-50

0

50

0 0.5 1 1.5 2 2.5 3 3.5

-50

0

50

100

150

200

No of Samples

A
m

p
lit
u
d
e
 (
µ
V
)

Raw EEG Vs Clean EEG Signal (real-time on PSoC)

Raw EEG

Clean EEG

Time (sec)

52

Chapter 5

RESULTS AND PERFORMANCE EVALUATION

5.1 OA Detection and Removal Results

 In chapter 4 along with the methodology, the respective results achieved were pre-

sented in detail for some of the datasets. In this section the remaining datasets for each

offline and online modes which were not covered up in previous chapter, are presented

with required discussion. The results of offline C based algorithm for all datasets were

mentioned in previous chapter and thus it has not been included in here.

5.1.1 Offline MATLAB based algorithm

 The offline MATLAB based algorithm results are presented in two parts:

 i.) OA detection results ii.) OA removal results

• OA detection results:

 The OA detection algorithm results of datasets (Emotive device – 128 sps) for

subject-2 and subject-3 are as shown in Fig.38 and Fig.39.

Discussion:

 It is evident from the results that OA detection algorithm detected existing eye blinks

in EEG accurately without detecting the noise present as other artifact. The detected start-

ing and ending edge of the eye blink exactly pointed the OA position in the raw EEG

signal.

53

Fig.38: OA detection results for Emotive device (dataset-2)

Fig.39: OA detection results for Emotive device (dataset-3)

OA Zone

detection

Array
2000 2200 2400 2600 2800 3000 3200 3400 3600 3800

-100

0

100

200

300

400

No.Samples

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

-200

-100

0

100

200

300

400

Raw EEG Vs OA detection plot

No.Samples

A
m

p
lit
u
d
e

Raw EEG

OA Detection

Array index

(7-8)
Array index

(9-10)

Array index

(11-12)

Sample #

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

-50

0

50

100

150

Raw EEG Vs OA detection plot

A
m

p
lit
u
d
e

Raw EEG

OA Detection

1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200

-20

0

20

40

60

80

100

120

140

No.Samples

OA Zone detection Array

Sample #

54

• OA removal results:

 Offline MATLAB based OA removal algorithm results for the subjects 3 and 4

for channel1 (FP1) and for the subjects 2, 3 and 4 for channel2 (FP2) are shown in

Fig.40, Fig.41 and Fig.42.

 Fig.40: OA removal results of NM device (channel-1(FP1) subject-3)

Fig.41: OA removal results of NM device (channel-1(FP1) subject- 4)

0 5 10 15 20 25 30 35

-100

0

100

200

300

A
m
p
li
tu
d
e
 (
µ
V
)

Raw EEG Vs Clean EEG Signal [DWT]

Raw EEG

Clean EEG

18.6 18.8 19 19.2 19.4 19.6 19.8 20 20.2 20.4

-50

0

50

100

150

200

250

Time (Seconds)

5 10 15 20 25 30

-50

0

50

100

150

200

Time (Seconds)

A
m
p
li
tu
d
e
 (
µ
V
)

Raw EEG Vs Clean EEG Signal [DWT]

9.4 9.6 9.8 10 10.2 10.4

-50

0

50

100

150

200

Time (Seconds)

Raw EEG

Clean EEG

55

 Fig.42: OA removal results of NM device (channel-2(FP2), subjects 2, 3 & 4)

 The subject-2 dataset had total 5 OA, subject-3 had 6 OA and subject-4 had total 9

eye blinks in the EEG recording which all were removed using DWT decomposition

method with bior4.4 successfully. It was observed that in non-OA zone the background

EEG information was not modified at all by retaining all important information.

5.1.2 Online MATLAB based algorithm

 Out of the total 4 subjects EEG data captured in real-time, results of subjects 3

and 4 for MATLAB based hybrid OA removal algorithm in online mode is presented in

Fig.43 and Fig.44.

(a) Subject-2, channel -2 (FP2) EEG plot

(b) Subject-3, channel -2 (FP2) EEG plot

(c) Subject-4, channel -2 (FP2) EEG plot

 (All datasets belonged to NM EEG device)

0 5 10 15 20 25 30
-200

-100

0

100

200

300

Time (Seconds)

A
m

p
li
tu

d
e

 (
µ

V
)

Raw EEG Vs Clean EEG Signal [DWT]

Raw EEG

Clean EEG

(b)

0 5 10 15 20 25 30

-150

-100

-50

0

50

100

150

200

Time (Seconds)

A
m

p
li
tu

d
e

 (
µ

V
)

Raw EEG Vs Clean EEG Signal [DWT]

Raw EEG

Clean EEG

(a)

0 5 10 15 20 25 30

-100

-50

0

50

100

150

200

250

300

A
m

p
li
tu

d
e

 (
µ

V
)

Raw EEG Vs Clean EEG Signal [DWT]

(c)

56

Fig.43: Online mode – MATLAB based hybrid Algorithm result (channel-1, subject-3)

Fig.44: Online mode – MATLAB based hybrid Algorithm result (channel-1, subject-4)

0 5 10 15 20 25

-200

0

200

400

A
m

p
lit

u
d
e
 (
µ
V

)

Raw EEG Vs Clean EEG (online)

13.4 13.6 13.8 14 14.2

-100

0

100

200

300

Time (Seconds)

Raw EEG

Clean EEG

0 5 10 15 20 25

-200

-100

0

100

200

A
m

p
lit

u
d
e
 (
µ
V
)

Raw EEG Vs Clean EEG (online)

0.5 1 1.5 2 2.5 3 3.5

-100

0

100

200

Time (Seconds)

Raw EEG

Clean EEG

57

 As shown in Fig.43, the subject-3 blinked consecutively four times in 1sec to 2.5 sec

duration. It was observed that even for such immediate occurrences of eye blinks in real-

time, the hybrid OA removal algorithm, worked accurately for OA detection as well as

removal of the exact OA zones in EEG. Again the non-OA zone remained unchanged and

retained original EEG information for both subjects 3 and 4.

5.1.3 Online C based algorithm

 This result category belongs to when hybrid OA removal algorithm was imple-

mented on PSoC-3 MCU mounted on NM EEG device and evaluated in real-time. The

performance of the C based hybrid algorithm implemented on MCU in real-time was

tested using total three real-time EEG acquisitions from single subject. Out of them for 2

datasets, the overall hybrid OA removal algorithm performance results in real-time are

shown in Fig.45 (a) and Fig.46 (a). The results in Fig 45 (b) and Fig 46 (b) illustrates and

maps the position of the detected OA zone on actual EEG signal for verification.

For the simplicity in algorithm to be implemented on PSoC-3 MCU, OA removal tech-

nique used DWT decomposition with the very simplest wavelet function haar. The real-

time algorithm implemented ring buffer (refer section 4.4.2.2) to perform overlapping

method along with hybrid OA detection and removal algorithm and Fig.45 (a) and

Fig.46(a) reveals that the microcontroller hardware implementation of the same, worked

efficiently. Also Fig 45(b) and Fig.45 (b) clearly indicates that the OA detection algo-

rithm accurately detected and removed the eye blinks in real-time.

58

Fig.45: (a) Online mode – C based hybrid Algorithm result (FP1 – dataset2)

Fig.45: (b) Verification of OA zone detection C based algorithm in real-time (dataset2)

450 500 550 600 650

-100

0

100

200

300

X: 482

Y: 4.99
X: 641

Y: 2.681

5*88 + 42 = 482; 5*88 + 127 = 567

6*88 + 24 = 552; 6*88 + 113 = 641

Received 537 bytes long packets on user console (MATLAB)

No of samples

9 bytes long header Received Packet counts Detected OA Zone

0 0.5 1 1.5 2 2.5 3

-100

0

100

200

300

A
m

p
lit
u
d
e
 (
µ
V
)

Raw EEG Vs Clean EEG Signal (real-time on PSoC)

Raw EEG

Clean EEG

1.6 1.8 2 2.2 2.4 2.6

-100

0

100

200

300

Time(sec)

59

Fig.46: (a) Online mode – C based hybrid Algorithm result (FP1 – dataset3)

Fig.46: (b) Verification of OA zone detection C based algorithm in real-time (dataset3)

1.8 2 2.2 2.4 2.6 2.8 3 3.2

-200

-100

0

100

200

300

Time(sec)

 0 1 2 3 4

-200

-100

0

100

200

300

A
m

p
lit

u
d
e
 (
µ
V

)

Raw EEG Vs Clean EEG Signal (real-time on PSoC)

Raw EEG

Clean EEG

520 540 560 580 600 620 640 660 680

-200

-100

0

100

200

300

X: 571

Y: -29.93

X: 655

Y: 16.33

740 760 780 800 820
-100

-50

0

50

100

150

X: 763

Y: 46.57

X: 811

Y: 6.968

6*88 + 43 = 571

6*88 + 127 = 655

8*88 + 59 = 763

8*88 + 107 = 811

Received 537 bytes long packets on user console (MATLAB)

No of samples No of samples

60

5.2 Performance Evaluation

 For the validation of the developed hybrid OA removal technique, Time-Frequency

Analysis (TFA), Magnitude Square Coherence (MSC) plot and two statistical parameters:

Correlation of Coefficient (CC) and Mutual Information (MI), are utilized.

5.2.1 Performance Metrics

• Time-Frequency analysis:

 The EEG being non-stationary signal, the wavelet based time-frequency analysis

is one of the most suitable methods to analyze EEG. It provides the information of energy

of the frequencies exiting at a given time simultaneously. The TFA is carried out here us-

ing EEGLAB [24] function.

• Magnitude Square Coherence:

 MSC plot is generated using the MATLAB function ‘mscohere’. MSC gives the

estimate of the frequency coherence between the two signals x and y, where values

between 0 and 1 indicates how well signal x corresponds to y at each frequency. The

MSC is a function of the power spectral densities, Pxx(f) and Pyy(f), of x and y, and the

cross power spectral density, Pxy(f), of x and y as given in (12).

 PQR�J� = STUV�F�S�

TUU�F�TVV�F� (12)

 Power spectral densities are calculated over FFT length of 256 with 50% overlapped

Hamming window using MATLAB mscohere function.

• Correlation of Coefficient:

 CC computes the similarity between the raw and corrected EEG signals.

MATLAB (MathWorks Inc., Natwick, MA) function ‘corrcoef’ is used to determine it

61

and result ranges between 0 being no match at all and 1 being exact match. CC is sepa-

rately computed for non-OA zone and OA zone to clearly show the correlation in respec-

tive areas.

• Mutual Information:

 MI measures how much one random variables tells us about another. The higher

the value of MI metric, the better the mutual information content. The open source

MATLAB function minfo.m developed by Dr.Jason Palmer [online] (available at:

http://sccn.ucsd.edu/~jason/minfo.m) is used to compute MI.

5.2.2 Performance Evaluation Results

5.2.2.1 Offline MATLAB based algorithm

1. Time – Frequency Analysis

 The TFA was carried out for total four subjects where for subject-1 (Emotive

device) TFA plot was generated for Raw Vs Clean EEG for the epoch length of 6sec to

68sec whereas for remaining three (NM device) subjects, it was 5sec to 34sec as shown

in Fig.47 to Fig.50 respectively.

• Dataset-1 (Subject-1: single channel)

 Fig.47: Time-Frequency Analysis plot for subject-1 EEG data

ERSP(dB)

-20

0

2020 30 40 50 60
-80
20

d
B

20

40

0 60

F
re

q
u
e
n
c
y
 (

H
z
)

dB

Raw EEG

20 30 40 50 60
-60
20

Time (ms)

d
B

20

40

20 60

dB

Clean EEG

62

• Dataset-2 (Subject-2: two channels)

Fig.48: Time-Frequency Analysis plot for subject-2 EEG data

(a) Channel-1 (FP1) (b) Channel-2 (FP2)

• Dataset-3 (Subject-3: two channels)

 Fig.49: Time-Frequency Analysis plot for subject-3 EEG data

(a) Channel-1 (FP1) (b) Channel-2 (FP2)

ERSP(dB)

-20

0

20

9 14 19 24 29 34
-60
20

d
B

10

20

30

40

50

20 60

F
re

q
u

e
n

c
y

 (
H

z
)

dB

Raw EEG

9 14 19 24 29 34
-60
20

Time (ms)

d
B

10

20

30

40

50

4060

dB

Clean EEG

ERSP(dB)

-20

0

20

9 14 19 24 29 34
-60
20

d
B

10

20

30

40

50

20 60

F
re

q
u

e
n

c
y

 (
H

z
)

dB

Raw EEG

9 14 19 24 29 34
-60
20

Time (ms)

d
B

10

20

30

40

50

4060

dB

Clean EEG

(a) (b)

ERSP(dB)

-20

0

20

7 12 17 22 27 32
-60
20

d
B

10

20

30

40

50

20 60

F
re

q
u

e
n

c
y

 (
H

z
)

dB

Raw EEG

7 12 17 22 27 32
-60
20

Time (ms)
d

B

10

20

30

40

50

20 60

dB

Clean EEG

ERSP(dB)

-20

0

20

7 12 17 22 27 32
-60
20

d
B

10

20

30

40

50

2060

F
re

q
u

e
n

c
y

 (
H

z
)

dB

Raw EEG

7 12 17 22 27 32
-80
20

Time (ms)

d
B

10

20

30

40

50

20 60

dB

Clean EEG

(a) (b)

63

• Dataset-4 (Subject-4: two channels)

Fig.50: Time-Frequency Analysis plot for subject-4 EEG data

(a) Channel-1 (FP1) (b) Channel-2 (FP2)

 From all the TFA plots, it is evident that the energy level of low frequency compo-

nents in EEG was significantly dampened in eye blink zones whereas high frequency

component energy retained its values. These results of TFA shows that de-noising of

EEG by suppressing OA from raw EEG worked as anticipated.

2. Mean-Squared Coherence

 Next performance evaluation considered was MSC between raw and clean EEG.

For the lower frequency components where OA resides should show less coherence

whereas higher than 16 Hz frequency components should show maximum coherence with

each other as those frequency components are not taken into account while de-noising the

raw EEG. The results of MSC plots for the frequencies between 0 – 40 Hz are shown in

Fig.51 to Fig.54.

9 14 19 24 29 34
-80
20

d
B

10

20

30

40

50

20 60

F
re

q
u

e
n

c
y

 (
H

z
)

dB

Raw EEG

ERSP(dB)

-20

0

20

9 14 19 24 29 34
-60
20

Time (ms)

d
B

10

20

30

40

50

20 60

dB

Clean EEG

ERSP(dB)

-20

0

20

9 14 19 24 29 34
-60
20

d
B

10

20

30

40

50

20 60

F
re

q
u

e
n

c
y

 (
H

z
)

dB

Raw EEG

9 14 19 24 29 34
-60
20

Time (ms)

d
B

10

20

30

40

50

4060

dB

Clean EEG

(a) (b)

64

• Dataset-1 (Subject-1: single channel)

Fig.51: MSC plot for raw Vs clean EEG (subject-1)

• Dataset-2 (Subject-2: two channels)

Fig.52: MSC plot for raw Vs clean EEG (subject-2)

 (a) Channel-1 (FP1) (b) Channel-2 (FP2)

• Dataset-3 (Subject-3: two channels)

Fig.53: MSC plot for raw Vs clean EEG (subject-3)

 (a) Channel-1 (FP1) (b) Channel-2 (FP2)

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1
Magnitude Squared coherence plot[DWT]

Frequency (Hz)

C
x
y

0 10 20 30 40
0

0.5

1
Magnitude Squared coherence plot [DWT]

Frequency (Hz)

C
x

y

0 10 20 30 40
0

0.5

1
Magnitude Squared coherence plot[DWT]

Frequency (Hz)

C
x
y

(a) (b)

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1
Magnitude Squared coherence plot[DWT]

Frequency (Hz)

C
x
y

0 10 20 30 40
0

0.5

1
Magnitude Squared coherence plot[DWT]

Frequency (Hz)

C
x

y

(a)
(b)

65

• Dataset-4 (Subject-4: two channels)

Fig.54: MSC plot for raw Vs clean EEG (subject-4)

 (a) Channel-1 (FP1) (b) Channel-2 (FP2)

 The coherence between the frequencies higher than 16 Hz should be 1 as DWT based

de-noising in OA zone was carried out only for the frequency range of 0.5-16 Hz. But as

observed in MSC plots, the frequencies higher than the 16 Hz also are getting modified.

This variances of higher than 16 Hz frequencies were affected differently with different

wavelet functions used and this requires further investigation. Although, the less coher-

ence values in lower frequency range 0.5-16 Hz shows significant removal of artifacts.

3. Coefficients of Correlation & Mutual Information

Table.3: PERFORMANCE METRICS FOR CC AND MI FOR OFFLINE MODE (MATLAB BASED)

 Correlation of Coefficient

MI
Subject

Blink

1

Blink

2

Blink

3

Blink

4

Blink

5

Blink

6

Blink

7

Blink

8

Blink

9

1 FP1 0.1459 0.2493 0.3469 0.2562 0.2491 0.1609 0.2203 0.1543 0.1483 1.4973

2
FP1 0.1798 0.670 0.2813 0.314 0.5962

NA
1.1399

FP2 -0.054 0.7940 0.2981 0.4118 0.6230 1.1224

3
FP1 0.0396 0.2118 0.2576 0.1691 0.2443 0.3351

NA
0.9621

FP2 0.0480 0.1953 0.2442 0.1581 0.2039 0.2876 0.9520

4
FP1 0.7690 0.3036 0.3735 0.6040 0.3394 0.5683 0.3994 0.1601 0.2672 1.2530

FP2 0.2086 0.3145 0.3846 0.6718 0.1640 0.5218 0.363 0.1668 0.2977 1.0545

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1
Magnitude Squared coherence plot[DWT]

Frequency (Hz)

C
x
y

0 10 20 30 40
0

0.5

1
Magnitude Squared coherence plot[DWT]

Frequency (Hz)

C
x

y

(a) (b)

66

 Table.3 shows the CC and MI for each datasets where CC has been tabulated for the

each OA zone (blink) present in the respective EEG signal whereas MI calculated over

the entire dataset. For calculating CC for every blink, OA zones were selected manually

with visual inspection. For subject-1 only single channel EEG evaluation was carried out

whereas for all three other subjects CC and MI for both channels are mentioned. Due to

the manual selection of OA zone for computing CC, there might be some variation in the

values but overall it clearly indicates that OA zones were satisfactorily removed from

contaminated EEG to obtain clean EEG. It is to be noted that CC and MSC for all of the

non-OA zones were ‘1’, which indicated that the entire EEG information in terms of

amplitude and frequency both, in non-OA zone were intact and completely preserved.

5.2.2.2 Online C based algorithm

 To verify the performance of online C based algorithm, only CC was com-

puted for OA and non-OA zone for all existing eye blinks in the all the three datasets and

the results are tabulated below:

Table.4: PERFORMANCE METRICS FOR CC FOR ONLINE MODE (C BASED)

Dataset Zone
Correlation of Coefficient

Blink 1 Blink 2

1
OA zone 0.2476 NA

Non- OA 0.9981

2
OA zone 0.1255 NA

Non- OA 0.9459

3
OA zone 0.6303 0.6096

Non- OA 0.9839

67

 From the lesser values of CC in the OA zone in the above table, it is evident that the

EEG got de-noised by suppressing the eye blink spikes. Whereas it was also observed

that like in all other cases, non-OA zone CC was not ‘1’. The reason for this is mentioned

before that there exist little discrepancy in both received raw EEG and cleaned EEG in

real-time because of the mean adjustment calculation difference. But even then the CC

values for non-OA was obtained nearly equal to ‘1’ which indicated that both the raw and

clean EEG signals differ insignificantly and thus preserves the critical neural information

in that region.

 Finally, the Table.5 lists the total flash memory and RAM utilized by the Microcon-

troller implemented proposed OA removal algorithm. From the Table.5 it is clear that the

entire code implemented on PSoC-3 has not utilized more than 30% of the flash memory

and still there exist significant space for any additional algorithms such as for feature ex-

traction or characterization to be implemented along with the proposed hybrid OA re-

moval algorithm to make the EEG data capturing and its analysis entirely in real-time and

micro-controller hardware implementable.

Table.5: MICROCONTROLLER UNIT MEMORY USAGE SUMMARY

PSoC-3 CY8C38 family 8-bit 8051 CPU

RAM 8 KB

Flash memory 64KB

Used RAM 67.9% (5.56KB)

Used Flash memory 28.1% (18.1KB)

68

Chapter 6

CONCLUSION AND FUTURE SCOPE

6.1 Conclusion

 In this thesis, a hybrid algorithm to remove OA from single channel EEG data is pro-

posed which comprised of algebraic method based OA detection, followed by DWT

decomposition based OA removal technique. DWT was chosen over SWT mainly for its

faster operational speed. The developed algorithm was tested in real-time settings using

MATLAB based algorithm running on user console as well as C based algorithm running

on actual hardware of PSoC-3 MCU.

 The chapter 2 described the various existing OA removal techniques suitable for

single EEG channel such as different WT based methods, EMD-CCA based algorithm

and Algebraic method to detect the irregularity in the signal (eye blink in EEG). After the

review, in order to have the algorithm to be real-time applicable and the hardware imple-

mentable, the methods using less computational complexities were chosen. Accordingly,

the Algebraic method to detect the OA and DWT based de-noising technique was final-

ized for hybrid OA removal algorithm.

 In chapter 3, basic theory for each method, i.e. Algebraic and DWT were covered up

to give sufficient mathematical background. The algebraic method basically used FIR fil-

ter to get the coefficients to be compared with the threshold value to detect the change

point in the considered small interval signal. DWT based decomposition was carried out

up to level-8 and detail coefficients from frequency range of 0.5-16 Hz were suppressed

if they exceeded the threshold value to get the de-noised EEG signal by reconstructing

using inverse DWT. The chapter 3 also illustrated the actual implementation method

69

where, algebraic method applied to detect the OA zone and DWT based de-noising was

applied ONLY to the detected eye blink zones to preserve the low frequency components

of original EEG in non-OA zone.

 The chapter 4 was the core content chapter describing every method in detail with re-

spective results. It showed the relevant results to demonstrate that the developed algo-

rithm worked efficiently in both offline and online modes using MATLAB and C based

algorithm strategies. In this chapter it was also clearly indicated that how the overlapping

method improved the real-time functionality of the hybrid algorithm. The key conclusion

which can be derived from chapter 4 is that the implemented hybrid algorithm was suita-

ble for single channel EEG as well as microcontroller executable in online mode. For the

MCU based algorithm implementation, ring buffer technique was introduced to realize

overlapping of 0.5 sec EEG epochs in real-time.

 In the chapter 5, all achieved results in offline and online modes using MATLAB and

C based code were clearly shown. It was concluded that the algorithm was efficient

enough to detect and remove OA for consecutively occurring eye blinks and online mi-

crocontroller hardware executable algorithm written in C demonstrated successful OA

detection and respective de-noising in real-time. The second part of the chapter 5, was

dedicated to mention the performance metrics for the implemented hybrid OA removal

algorithm. The Correlation of Coefficient and Magnitude Squared Coherence plot indi-

cate that the raw EEG signal completely matches with the corrected EEG signal in non-

OA zone. This concludes that the algorithm output, i.e. de-noised EEG, does not impact

the useful EEG information in non-OA zone by retaining its all values as original raw

70

EEG. In the OA zone, the neuronal information were retained while artifacts were signifi-

cantly suppressed. This shows effectiveness of applying WT de-noising only to the Eye

blink zone rather than entire signal. The TFA plots and MI values derived the conclusion

about successful suppression of lower frequency components in OA zones and sufficient

mutual information between the raw and clean EEG respectively. Also the MSC variation

for the frequencies higher than 16 Hz was required to be investigated.

 Thus, the thesis work presented here concludes that the Implemented hybrid OA re-

moval algorithm was:

• Suitable for single EEG channel

• Online Applicable by processing as small as 0.5 second EEG epoch in real-time

• Found accurate detection of eye blinks without missing them at the boundary of

the epoch because of the epoch overlapping technique addition.

• Capable of preserving important background EEG information in non-OA zones

• Successfully implemented on microcontroller hardware to achieve satisfactory

OA detection and removal results in real-time settings.

• This is probably the first work done to detect and then remove OA from single

channel EEG in real-time implemented on microcontroller unit on actual EEG

device.

 Moreover, this hybrid approach can also be applied for any number of multichannel

EEG systems making it versatile in nature.

71

6.2 Future Scope

 The determination of threshold function was found very challenging in OA detec-

tion and WT based de-noising technique. The OA removal algorithm developed can be

made robust and device independent by investigating more on best suitable threshold

function for the given objective. The microcontroller implemented hybrid algorithm was

verified using the simplest wavelet function, haar. The algorithm further can be furnished

to be efficient using more relevant wavelet function for proper OA removal from EEG.

 The algorithm was implemented on NM device which uses BT to transmit EEG wire-

lessly. The algorithm can be upgraded for more sophisticated network communication

channels. This can lead to more promising algorithm application area in ‘Wearable tech-

nologies’ and ‘Internet of Things’. The MCU implemented OA detected algorithm in

real-time can be further optimized to run faster in nearly real-time by implementing lower

order FIR filter. Also to optimize the MCU hardware implemented DWT based de-nois-

ing algorithm, instead of implemented recursive low pass and high pass filtering, sequen-

tial and parallel DWT techniques can be utilized to increase efficiency in terms of com-

putation requirements, storage requirements and reconstructed signal with better signal-

to-ratio [30].

 Finally, OA removal algorithm can further be developed to make it generic for other

artifacts removal generated in EEG, such as artifacts due to ECG, muscle movements,

etc. such that EEG signal feature extraction and characterization can be implemented

along with the proposed algorithm for entirely automatic EEG analysis and processing in

real-time using single channel EEG on microcontroller hardware.

72

REFERENCES

 [1] M. Teplan, "Fundamentals of EEG measurement," Measurement Science Review,

vol. 2, pp. 1-11, 2002.

 [2] C. A. Joyce, I. F. Gorodnitsky and M. Kutas, "Automatic removal of eye movement

and blink artifacts from EEG data using blind component separation," Psychophysi-

ology, vol. 41, pp. 313-325, 2004.

[3] R. Lloyd, R. Goulding, P. Filan and G. Boylan, "Overcoming the practical challenges

of electroencephalography for very preterm infants in the neonatal intensive care

unit," Acta Paediatrica, vol. 104, pp. 152-157, 2015.

[4] Z. Tiganj, M. Mboup, C. Pouzat and L. Belkoura, "An algebraic method for eye blink

artifacts detection in single channel EEG recordings," in 17th International Confer-

ence on Biomagnetism Advances in Biomagnetism–Biomag2010, 2010, pp. 175-178.

[5] S. V. Ramanan, N. Kalpakam and J. Sahambi, "A novel wavelet based technique for

detection and de-noising of ocular artifact in normal and epileptic electroencephalo-

gram," Brain Inspired Cognitive Systems conference, 2004.

[6] V. Krishnaveni, S. Jayaraman, L. Anitha and K. Ramadoss, "Removal of ocular arti-

facts from EEG using adaptive thresholding of wavelet coefficients," Journal of

Neural Engineering, vol. 3, pp. 338, 2006.

[7] P. S. Kumar, R. Arumuganathan, K. Sivakumar and C. Vimal, "A wavelet based sta-

tistical method for de-noising of ocular artifacts in EEG signals," International Jour-

nal of Computer Science and Network Security, vol. 8, pp. 87-92, 2008.

[8] M. H. Soomro, N. Badruddin, M. Z. Yusoff and M. A. Jatoi, "Automatic eye-blink ar-

tifact removal method based on EMD-CCA," in Complex Medical Engineering

(CME), 2013 ICME International Conference on, 2013, pp. 186-190.

[9] K. T. Sweeney, S. F. McLoone and T. E. Ward, "The use of ensemble empirical mode

decomposition with canonical correlation analysis as a novel artifact removal tech-

nique," Biomedical Engineering, IEEE Transactions on, vol. 60, pp. 97-105, 2013.

[10] H. T. Nguyen, J. Musson, F. Li, W. Wang, G. Zhang, R. Xu, C. Richey, T. Schnell,

F. D. McKenzie and J. Li, "EOG artifact removal using a wavelet neural network

[WNN]." Neurocomputing, vol. 97, pp. 374-389, 2012.

[11] J. Misra and I. Saha, "Artificial neural networks in hardware: A survey of two dec-

ades of progress," Neurocomputing, vol. 74, pp. 239-255, 2010.

73

[12] H. Peng, B. Hu, Q. Shi, M. Ratcliffe, Q. Zhao, Y. Qi and G. Gao, "Removal of Ocu-

lar Artifacts in EEG—an Improved Approach Combining DWT and ANC for Porta-

ble Applications," Biomedical and Health Informatics, IEEE Journal of, vol. 17, pp.

600-607, 2013.

[13] Ruhi Mahajan, B. I. Morshed, “Unsupervised Eye Blink Artifact Denoising in EEG

data with Modified Multiscale Sample Entropy, Kurtosis and Wavelet-ICA”, IEEE

Journal of Biomedical and Health Informatics, vol. 19 (1), pp. 158-165, Jan. 2015.

[14] A. Joseph and G. Titus, "Removal of blink artifacts from EEG: Performance com-

parison of wavelet transform and empirical mode decomposition," in International

Journal of Engineering Research and Technology, 2014.

[15] P. Balaiah and I. Ilavennila, "Comparative evaluation of adaptive filter and neuro-

fuzzy filter in artifacts removal from electroencephalogram signal," American Jour-

nal of Applied Sciences, vol. 9, 2012.

[16] M. Mboup, "A Volterra filter for neuronal spike detection Research report,

 INRIA, http://hal inria fr/inria-00347048/fr/." 2008.

[17] M. Fliess and H. Sira-Ramirez, "An algebraic framework for linear identification,"

ESAIM Controle Optimisation Et Calcul Des Variations, vol. 9, pp. 151, 2004.

[18] N. Debbabi, M. Kratz, M. Mboup and S. El Asmi, "Combining algebraic approach

with extreme value theory for spike detection," in Signal Processing Conference

(EUSIPCO), 2012 Proceedings of the 20th European, 2012, pp. 1836-1840.

[19] H. T. Gorji, A. Koohpayezadeh and J. Haddadnia, "Ocular Artifact Detection and

Removing from EEG by wavelet families: A Comparative Study," Journal of Infor-

mation Engineering and Applications, vol. 3, pp. 39-47, 2013.

[20] M. O. Oliveira and A. S. Bretas, "Application of discrete wavelet transform for dif-

ferential protection of power transformers," in PowerTech, 2009 IEEE Bucharest,

2009, pp. 1-8.

[21] S. Mallat, A Wavelet Tour of Signal Processing. Academic press, 1999.

[22] M. Haak, S. Bos, S. Panic and L. Rothkrantz, "Detecting stress using eye blinks and

brain activity from EEG signals," Proceeding of the 1st Driver Car Interaction and

Interface (DCII 2008), 2009.

[23] W. Xiaohua and H. Yigang, "Design of complex FIR filters with arbitrary magnitude

and group delay responses," Systems Engineering and Electronics, Journal of, vol.

20, pp. 942-947, 2009.

74

[24] Delorme A and Makeig S, “EEGLAB: An open source toolbox for analysis of sin-

gle-trial EEG dynamics,” J Neuroscience Methods, vol.134, pp.9-21, 2004.

[25] R. Mahajan, C. A. Majmudar, S. Khatun and B. I. Morshed, "NeuroMonitor Ambu-

latory EEG Device: Comparative Analysis and Its Application for Cognitive Load

Assessment,", Healthcare Innovation Conference (HIC), pp. 133-136, 2014.

[26] S. Consul-Pacareu, R. Mahajan, N. Sahadat and B. I. Morshed, "Wearable Ambula-

tory 2-Channel EEG NeuroMonitor Platform for Real-Life Engagement Monitoring

Based on Brain Activities at the Prefrontal Cortex,", Proceedings of The 2014 IAJC-

ISAM International Conference, 2014.

 [27] R. Mahajan, S. Consul-Pacareu, M. Abusaud, M. N. Sahadat and B. I. Morshed,

"Ambulatory EEG NeuroMonitor platform for engagement studies of children with

development delays," in SPIE Defense, Security, and Sensing, 2013, pp. 87190L-

87190L-10.

 [28] S. A. Hosseini and M. B. Naghibi-Sistani, Classification of Emotional Stress using

Brain Activity. INTECH Open Access Publisher, 2011.

 [29] J. S. Walker, "A primer on wavelets and their scientific applications. 1999," Chap-

man&Hall/CRC, New York,.

 [30] K. Shukla and A. K. Tiwari, Efficient Algorithms for Discrete Wavelet Transform:

With Applications to Denoising and Fuzzy Inference Systems. Springer Science &

Business Media, 2013.

75

APPENDICES

A: OFFLINE MATLAB BASED OA REMOVAL CODE

% Offline mode: MATLAB based hybrid OA detection and removal algorithm
% Considering 128 samples EEG epoch
% WT denoising applied using DWT; level = 8
% By: Charvi Majmudar: 01/25/2015 (Thesis work)

clc; close all; clear all;

%%================== Offline mode EEG Data reading ===================
%% EMOTIVE Device datasets --
filename = 'Fp1.csv'; % Dataset-1 (subject1)
% filename = 'Fp1_1.csv'; % Dataset-2 (subject2)
% filename = 'ManNorm.csv'; % Dataset-3 (subject3)
y2 = csvread(filename);
y2 = y2(1:8961,1);

%% Neuromonitor (NM) Datasets ---
% a1 = csvread('final_value.csv'); % Dataset-4 (subject4)
% channel1= a1(:,1);
% channel2= a1(:,2);
% Ch1_offclean= mean(channel1)-channel1; % - ve because Inverting

opamp %output
% Ch2_offclean=-(channel2- mean(channel2));
% y2 = Ch2_offclean;
% y2 = y2(513:end); % ignoring inital 2sec data
%%===

y1 = y2;
y_swt = y2;

%% intialization ..
T = 0.29; % Signal epoch
Ts = 0.0078; %sampling rate 128sps
% Ts = 0.0039; %sampling rate 256sps
M = round(T/Ts);
k = [0 1 2 3];
v = 3; % v >=2
m = 1:1:M+1;
tm = Ts.* m;
K = 2;
Wm = ones(1,length(m));
N = 128;
Delay = ceil(M/2); % filter order/2 appx
wName='bior4.4'; %coif3 coif5 sym3 db5
level = 8;
CleanEEG = [];
CleanEEG_swt = [];
Overlap = 40;

76

for iter = 1:100 % iteration for every 0.5 sec epoch to process

entire % EEG signal
y = y1(1:N); % 128 samples epoch
n = (length(y)- M); % no. of sliding windows
vkn = zeros(M,n,length(k));
array = [];
y3 = zeros(2^level,1);
y4 = zeros(2^level,1);
f = zeros(M,n,K);
f1 = zeros(M,n);
f2sec_epoch = zeros(length(y),1);

%% calculating impulse response (hk)-----------------------------------
g0 = Wm.*((-1)^(k(1)+1))/factorial(v-1).*(4.*tm.*(2.*tm - 2) + 2.*(tm -

1).^2 + 2.*tm.^2);

g1 = Wm.*((-1)^(k(2)+1))/factorial(v-1).*(-12.*tm.*(tm - 1).^2 - 2.*(tm

- 1).^3 - 3.*tm.^2.*(2.*tm - 2));

g2 = Wm.*((-1)^(k(3)+1))/factorial(v-1).*(16.*tm.*(tm - 1).^3 + 2.*(tm

- 1).^4 + 12.*tm.^2.*(tm - 1).^2);

g3 = Wm.*((-1)^(k(4)+1))/factorial(v-1).*(-20.*tm.*(tm - 1).^4 - 2.*(tm

- 1).^5 - 20.*tm.^2.*(tm - 1).^3);

%% FIR filter ---
for j = 1:n
 vkn(:,j,1) = filter(g0, 1, y(j:(j+M-1))); %k = 0
 vkn(:,j,2) = filter(g1, 1, y(j:(j+M-1))); %k = 1
 vkn(:,j,3) = filter(g2, 1, y(j:(j+M-1))); %k = 2
 vkn(:,j,4) = filter(g3, 1, y(j:(j+M-1))); %k = 3
end

%% Volterra Filter for decision function calculation ------------------
for s = 1:K
 for r = 1:n
 f(:,r,s) = (vkn(:,r,s+1).^2) - (vkn(:,r,s).* vkn(:,r,s+2));
 f(:,r,s) = (max(0,f(:,r,s))/1000000);
 end
end
for d = 1:n
 f1(:,d) = f(:,d,1).* f(:,d,2);
 f2sec_epoch(d:d+M-1) = f2sec_epoch(d:d+M-1) + f1(:,d);
end

%% Threshold Function ---
Gamma1 = 0.001/(mean(f2sec_epoch)+ std(f2sec_epoch));

Threshold = (f2sec_epoch > Gamma1);
Threshold = Threshold';
%% OA Zone detection --
ind = find(Threshold);
ii = 1;
while(ii <= (length(ind)-2))
 temp = ind(ii);

77

 while((ii < length(ind)) && ((ind(ii+1) - ind(ii)) == 1))
 ii = ii+1;
 end
 Edge_start = max(1, temp – Delay -10); % to avoid -ve index...so

min. it % can take is '1'
 Edge_end = min(numel(y),ind(ii)); % Max 128 can be the OA index

for % the given epoch
 array = [array; Edge_start; Edge_end];
 ii = ii+1;
end

%% Wavelet Transform Denoising
%% DWT
len1 = 0;
if(numel(array) ~= 0)
 for den = 1:2:length(array)
 y3(1:array(den+1)-array(den)+1) = y1(array(den):array(den+1));

 [C,L] = wavedec(y3,level,wName); % WT decomposition levle=8

 for iL = 2:1:6 % Detail coefficients from level 4 to 8
 len1 = len1 + L(iL-1,:);
 Decoef = C(len1+1:len1+L(iL,:)); % detail coefficients
 G1 = mad(Decoef,1)*1.5; % Threshold function

% threshold based denoising........
 for u = 1:size(Decoef)
 if(Decoef(u) > G1)
 Decoef(u) = 0;
 elseif(Decoef(u) < -G1)
 Decoef(u) = 0;
 else
 Decoef(u) = Decoef(u);
 end
 end
 C(len1+1:len1+L(iL,:)) = Decoef;
 end
 A0 = waverec(C,L,wName); % Reconstructing signal
 y1(array(den):array(den+1)) = A0(1:array(den+1)-array(den)+1);

 % replacing with original signal
 end
end
%------------ Steps performed for Overlapping method ------------------
CleanEEG = [CleanEEG; y1(1:N-Overlap)];
y1(1:N-Overlap) = [];

%% SWT de-noising used for comparison
if(numel(array) ~= 0)
 for den = 1:2:length(array)
 y4(1:array(den+1)-array(den)+1) = y_swt(array(den):array(den+1));
 tic;
 [swa,swd] = swt(y4,level,wName);
 for iL = 4:1:level
 [rw,clm] = size(swd(iL,:));

 G2 = mad(swd(iL,:),1)*1.5;

78

 for u = 1:clm
 if(swd(iL,u) >= G2)
 swd(iL,u) = 0;
 elseif(swd(iL,u) <= -G2)
 swd(iL,u) = 0;
 end
 end
 end
 A0 = iswt(swa,swd,wName);
 y_swt(array(den):array(den+1)) = A0(1:array(den+1)-array(den)+1);
 end

end
%---
CleanEEG_swt = [CleanEEG_swt; y_swt(1:N-Overlap)];
y_swt(1:N-Overlap) = [];

end

csvwrite('CleanEEG.csv',CleanEEG);
csvwrite('Raw_Data1_S1.csv',y2(1:length(CleanEEG)));

count = size(CleanEEG,1);
fs = 256;
time = 0:1/fs:((((count))/fs));
time = time';

%% DWT time-base plot ……
figure(1);plot(time(1:end-1),y2(1:length(CleanEEG)),'b-','lin-

ewidth',2);
hold on;
figure(1);plot(time(1:end-1),CleanEEG,'r--','linewidth',2);
xlabel('Time (Seconds)','FontSize',12,'FontName','Arial'); ylabel('Am-

plitude (µV)','FontSize',12,'FontName','Arial');
legend('Raw EEG','Clean EEG');
title('Raw EEG Vs Clean EEG Signal','FontSize',12,'FontName','Arial');

figure(3);plot(y2(1:length(CleanEEG)),'b-'); % Sample base DWT

%% Performance Evaluation is shown only for single dataset1:

%% Correlation Coefficients (CC) for OA zones (manually selected)
%% CC : Dataset1 [FP1] DWT
CC1 = corrcoef(y2(2937:3028),CleanEEG(2937:3028));
CC2 = corrcoef(y2(3561:3649),CleanEEG(3561:3649));
CC3 = corrcoef(y2(4225:4266),CleanEEG(4225:4266));
CC4 = corrcoef(y2(4837:4878),CleanEEG(4837:4878));
CC5 = corrcoef(y2(5485:5568),CleanEEG(5485:5568));
CC6 = corrcoef(y2(6091:6194),CleanEEG(6091:6194));
CC7 = corrcoef(y2(6800:6889),CleanEEG(6800:6889));
CC8 = corrcoef(y2(7428:7517),CleanEEG(7428:7517));
CC9 = corrcoef(y2(8100:8140),CleanEEG(8100:8140));

79

DWT_CC_FP1 =

[CC1(1,2);CC2(1,2);CC3(1,2);CC4(1,2);CC5(1,2);CC6(1,2);CC7(1,2);CC8(1,2

);CC9(1,2)]
csvwrite('DWT_CC_DS_1_ch2.csv',DWT_CC_FP1);

%% Mutual Information DWT
y2_MI = y2(1:length(CleanEEG))';
CleanEEG_MI = CleanEEG';
MI_dwt = minfo(y2_MI,CleanEEG_MI)

%% MSCOHERE DWT ...
[Cxy,F] = mscohere(y2(1:length(CleanEEG)),CleanEEG,[],[],256,128);
figure;stem(F(1:40),Cxy(1:40),'ko','linewidth', 2);
title('Magnitude Squared coherence plot[DWT]','FontSize',12,'Font-

Name','Arial');
xlabel('Frequency (Hz)','FontSize',12,'FontName','Arial');
ylabel('Cxy','FontSize',12,'FontName','Arial');

%% Time-Freq_Analysis DWT......................................
[ALLEEG EEG CURRENTSET ALLCOM] = eeglab;
EEG = pop_importdata('dataform-

at','ascii','nbchan',0,'data','C:\\Charvi\\Spring_15\\Thesis\\Spike_De-

tec-

tion_Code_Feb12_15\\Raw_Data1_S1.csv','srate',128,'pnts',0,'xmin',0);
[ALLEEG EEG CURRENTSET] = pop_newset(ALLEEG, EEG, 0,'set-

name','Ch1','gui','off');
EEG = eeg_checkset(EEG);
figure(5);subplot(2,1,1); pop_newtimef(EEG, 1, 1, [6000 69000], [3

0.5] , 'baseline',[0], 'plotitc' , 'off', 'plotphase', 'off', 'pa-

dratio', 1);
title('Raw EEG');

EEG = pop_importdata('dataform-

at','ascii','nbchan',0,'data','C:\\Charvi\\Spring_15\\Thesis\\Spike_De-

tection_Code_Feb12_15\\CleanEEG.csv','srate',128,'pnts',0,'xmin',0);
[ALLEEG EEG CURRENTSET] = pop_newset(ALLEEG, EEG, 0,'set-

name','Clean_EEG','gui','off');
EEG = eeg_checkset(EEG);
subplot(2,1,2); pop_newtimef(EEG, 1, 1, [6000 69000], [3 0.5]

, 'baseline',[0], 'plotitc' , 'off', 'plotphase', 'off', 'padratio',

1);
title('Clean EEG');

80

B: ONLINE MATLAB BASED OA REMOVAL CODE

 MATLAB script presented here is a part of the entire code of “data acquisition sys-

tem” for the two GUI buttons: ‘Start’ and ‘Save Data’. Where ‘Start’ button starts the

online data acquisition with hybrid OA removal algorithm. ‘Save Data’ saves the raw

EEG, Clean EEG on hard disk for the future analysis purpose.

%% Executes on pressing the button "Start" on GUI.
function data_Callback(hObject, eventdata, handles)

global handle;
global uC32;
global chan1_final_uv;
global chan2_final_uv;
global time;
global M;
global marker;
global numIteration;
global Loop_Time;

global raw_data;
global newraw_data; % For saving Raw data
%====== EEG Denoising =====================
global y1;
global CleanEEG;
global NM_Ch1;
global NM_Ch2;
%==
set(handles.edit3,'String','');
set(handles.listbox1,'String','');
set(handles.listbox2,'String','');
set(handles.edit5,'String','');

oldmsgs = cellstr(get(handles.listbox1,'String'));
set(handles.listbox1,'String',[oldmsgs;{'Setting Up connection and pro-

files'}]); % Status msg in GUI

if ismac == 0
 uC32 = serial('COM4','BaudRate',115200,'DataBits',8, 'Parity',

'none', 'StopBits', 1,'InputBufferSize',1*534);
else
 uC32 = serial('/dev/tty.usbserial-AE00DNQ1','BaudRate',115200,'Dat-

aBits',8, 'Parity', 'none', 'StopBits', 1,'InputBufferSize',1*534);
end

oldmsgs = cellstr(get(handles.listbox1,'String'));
set(handles.listbox1,'String',[oldmsgs;{'Serial Port opening...'}]);

% Status msg in GUI

fopen(uC32)
oldmsgs = cellstr(get(handles.listbox1,'String'));

81

set(handles.listbox1,'String',[oldmsgs;{'Serial Port opened...'}]);

% Status msg in GUI

pause(4);

raw_data=[];
newraw_data = [];
chan1_final_uv=[];
chan2_final_uv=[];
marker=[];
Loop_Time=[];
NM_Ch1 = [];
NM_Ch2 = [];

%% ======= Hybrid OA removal algorithm appended here ==================
%% intialization ..
y1 = [];
CleanEEG = [];
T = 0.29; % Signal epoch
Ts = 0.0039; %sampling rate 256sps
M = round(T/Ts);
k = [0 1 2 3];
v = 3;
m = 1:1:M+1;
tm = Ts.* m;
K = 2;
Wm = ones(1,length(m));
N = 128;
Delay = ceil(M/2);% filter order/2 appx : [36/2]
wName='bior4.4'; %coif3 bior4.4
level = 8;
Overlap = 40;
%========================= Denoising Declaration ends ================
try
set(handles.pushbutton5,'UserData',0) % To ensure stop button also

stops %reading port
 EEG_start=clock

 oldmsgs = cellstr(get(handles.listbox1,'String'));
 set(handles.listbox1,'String',[oldmsgs;{'EEG_Start '};

 {num2str(EEG_start)}]); % Status msg in GUI

for numIteration = 1:1:500

 set(handles.edit3,'String',num2str(numIteration)); % displays cur-

rent %Iteration

on GUI

pause(0.1);
 if get(handles.pushbutton5,'UserData')
 break
 end

 a = fread(uC32); % stores received online raw data
 raw_data = a;

82

 newraw_data(numIteration,:) = a;
 count1 = size(raw_data,1);
 count2=count1-22;
 chan1_final = [];
 chan2_final = [];
 fs = 256;
 time = 0:1/fs:(((count2-1)/4)/fs);
 time = time';

 i=1;

 %% 22 bytes Header checking code -------------------------------------

 if(a(i)=='D') %Start key header check

 oldmsgs = cellstr(get(handles.listbox1,'String'));
 set(handles.listbox1,'String',[oldmsgs;{'Header Received!'}]);

% Status msg in GUI

 cnt_0 = a(18);
 cnt_8 = a(17);
 cnt_16 = a(16);
 cnt = 2^16*cnt_16+2^8*cnt_8+cnt_0; % bit 15,16,17 repre-

sents the % packet count

 if(numIteration == 1)
 cnt_ref = cnt;
 else
 diff = cnt - cnt_ref;
 if(diff > 1)

 oldmsgs = cellstr(get(handles.listbox2,'String'));
 set(handles.listbox2,'String',[oldmsgs;{num2str(nu-

mIteration)}]); % packet missed display on GUI
 end
 cnt_ref = cnt;
 end
 else
 oldmsgs = cellstr(get(handles.listbox2,'String'));
 set(handles.listbox2,'String',[oldmsgs;{num2str(numItera-

tion)}]); % Header missed packet number display on GUI

 oldmsgs = cellstr(get(handles.listbox1,'String'));
 set(handles.listbox1,'String',[oldmsgs;{'Header Missed!'}]);

% Status msg in GUI
 end

raw_data=raw_data(23:end) ;
%% 16 bit Raw EEG data formation
 while i<count2

 chan1_lsb=raw_data(i);
 i=i+1;
 chan1_msb=raw_data(i);
 i=i+1;

83

 chan1=2^8*chan1_msb+chan1_lsb;
 chan1_final=[chan1_final;chan1];
 chan2_lsb=raw_data(i);
 i=i+1;
 chan2_msb=raw_data(i);
 i=i+1;

 chan2=2^8*chan2_msb+chan2_lsb;
 chan2_final=[chan2_final;chan2];
 end

 e1=find(chan1_final>29821);
 e2=find(chan2_final>29821);

 e11=isempty(e1);
 e22=isempty(e2);

 if(e11==0)
 set(handles.edit1,'String','Check elect1');
 else
 set(handles.edit1,'String','');
 end

 if(e22==0)
 set(handles.edit2,'String','Check elect2');
 else
 set(handles.edit2,'String','');
 end
 Ch1 = ((chan1_final)*3.3*1000000)/(65536*750.8);

% Actual data conversion with gain adjustment
 Ch2 = ((chan2_final)*3.3*1000000)/(65536*750.8);

 chan1_final_uv=[chan1_final_uv;Ch1];
 chan2_final_uv=[chan2_final_uv;Ch2];

%========= Ch1 & Ch2 conversion to actual raw data ====================

NM_S1_Ch1= -(Ch1 - mean(Ch1)); % - ve because Inverting opamp output
NM_S1_Ch2= -(Ch2 - mean(Ch2));
NM_Ch1 = [NM_Ch1;NM_S1_Ch1];
NM_Ch2 = [NM_Ch2;NM_S1_Ch2];

%===================== Ch1 or Ch2 EEG De-Noising ======================
if(numIteration > 4)
 y1 = [y1;NM_S1_Ch2];

 y = y1(1:N);
 n = (length(y)- M);
 vkn = zeros(M,n,length(k));
 array = [];
 y3 = zeros(2^level,1);
 f = zeros(M,n,K);

84

 f1 = zeros(M,n);
 f2sec_epoch = zeros(length(y),1);

%--------------- calculating impulse response (hk)---------------------
g0 = Wm.*((-1)^(k(1)+1))/factorial(v-1).*(4.*tm.*(2.*tm - 2) + 2.*(tm -

1).^2 + 2.*tm.^2);
g1 = Wm.*((-1)^(k(2)+1))/factorial(v-1).*(-12.*tm.*(tm - 1).^2 - 2.*(tm

- 1).^3 - 3.*tm.^2.*(2.*tm - 2));
g2 = Wm.*((-1)^(k(3)+1))/factorial(v-1).*(16.*tm.*(tm - 1).^3 + 2.*(tm

- 1).^4 + 12.*tm.^2.*(tm - 1).^2);
g3 = Wm.*((-1)^(k(4)+1))/factorial(v-1).*(-20.*tm.*(tm - 1).^4 - 2.*(tm

- 1).^5 - 20.*tm.^2.*(tm - 1).^3);

%% FIR filter ---
for j = 1:n
 vkn(:,j,1) = filter(g0, 1, y(j:(j+M-1))); %k = 0
 vkn(:,j,2) = filter(g1, 1, y(j:(j+M-1))); %k = 1
 vkn(:,j,3) = filter(g2, 1, y(j:(j+M-1))); %k = 2
 vkn(:,j,4) = filter(g3, 1, y(j:(j+M-1))); %k = 3

end
%% Volterra Filter for decision function calculation ------------------
for s = 1:K
 for r = 1:n
 f(:,r,s) = (vkn(:,r,s+1).^2) - (vkn(:,r,s).* vkn(:,r,s+2));
 f(:,r,s) = (max(0,f(:,r,s))/1000000);
 end
end
for d = 1:n
 f1(:,d) = f(:,d,1).* f(:,d,2);
 f2sec_epoch(d:d+M-1) = f2sec_epoch(d:d+M-1) + f1(:,d);
end

%% Threshold Function ---
Gamma1 = 0.001/(mean(f2sec_epoch)+ std(f2sec_epoch));

Threshold = (f2sec_epoch > Gamma1);
Threshold = Threshold';
%% OA Zone detection --
ind = find(Threshold);
ii = 1;
while(ii <= (length(ind)-2))
 temp = ind(ii);
 while((ii < length(ind)) && ((ind(ii+1) - ind(ii)) == 1))
 ii = ii+1;
 end
 Edge_start = max(1, temp - Delay - 10);

 % to avoid -ve index...so min it can take is '1'
 Edge_end = min(numel(y),ind(ii));

 % if detected spike edge at the end it should retain
 array = [array; Edge_start; Edge_end];
 ii = ii+1;
end

85

%----------Wavelet Denoising..............................

%% DWT
len1 = 0;
if(numel(array) ~= 0)
 for den = 1:2:length(array)
 y3(1:array(den+1)-array(den)+1) = y1(array(den):array(den+1));
 tic;
 [C,L] = wavedec(y3,level,wName);

 for iL = 2:1:6
 len1 = len1 + L(iL-1,:);
 Decoef = C(len1+1:len1+L(iL,:));

 G1 = Gamma1;

 for u = 1:size(Decoef)
 if(Decoef(u) > G1)
 Decoef(u) = 0;
 elseif(Decoef(u) < -G1)
 Decoef(u) = 0;
 else
 Decoef(u) = Decoef(u);
 end
 end
 C(len1+1:len1+L(iL,:)) = Decoef;

 end
 A0 = waverec(C,L,wName); % Reconstructing signal
 timelog = [timelog;toc];
 y1(array(den):array(den+1)) = A0(1:array(den+1)-array(den)+1);

% replacing with original wave to denoise
 end
end
%---
% gives exact location on actual data
CleanEEG = [CleanEEG; y1(1:N-Overlap)];
y1(1:N-Overlap) = [];
%=====================EEG De-noising ends ===========================
end

end

catch
 fclose(uC32);
 delete(uC32);
 disp('Fcloseruncatch')
end

 EEG_portstop=clock
fclose(uC32);
delete(uC32);
 disp('Fcloserun')
disp('Channel clossed and cleared');

86

%% --- Executes on button press "Save Data":
function pushbutton5_Callback(hObject, eventdata, handles)

global chan1_final_uv;
global chan2_final_uv;
global final_val;
global newraw_data;
global CleanEEG;
global NM_Ch1;
global NM_Ch2;

disp('Stop invoked')
set(handles.pushbutton5,'UserData',1)
EEG_stop=clock
csvwrite('Newraw_data.csv', newraw_data);
final_val=[chan1_final_uv,chan2_final_uv];
csvwrite('final_value.csv',final_val);
csvwrite('CleanEEG.csv',CleanEEG);
csvwrite('Ch1_Data.csv',NM_Ch1);
csvwrite('Ch2_Data.csv',NM_Ch2);

87

C: OFFLINE C BASED OA REMOVAL CODE

#include <stdio.h>
#include <math.h>

#include <string.h>

void main()

{

 int M=74,win = 54, n=M+1,d,fl1=0,temp=0,OA_index[10]={0},i,overlap=40,iter;

 float T = 0.29,Ts = 0.0039,Mean_f_DF = 0.0,SD_DF = 0.0, Gamma1,y_mean;
 float g0[75],g1[75],g2[75],g3[75],y[9000],f,y1[128]={0};

 float vkn0,vkn1,vkn2,vkn3;

 float f1,f2,DF,final_DF[128]= {0},temp_DF[128]= {0};
 float y3[128] = {0},y4[128] = {0},clean_EEG[9000]={0};

 int j=1,w,FIR_delay = 37,Index_Falg = 0,level=7;

 int g,h,L[9]={0}; // y = input to the filter; vkn = o/p coefficients

 // input data text file reading...

 FILE *ptr_file = fopen("input_C_Ch1.txt","r");; //input_C_Ch1.txt

 if (!ptr_file)
 d = 1;

 while(fscanf(ptr_file,"%f",&f) != EOF)

 {
 y[fl1] = f;

 fl1+=1;

 }
 fclose(ptr_file);

// impulse response h(n) calculations...
 for(j=1; j<=M+1; j++)

 {

g0[j-1] = -0.5*(4*(j*Ts)*(2*(j*Ts)-2) + 2*((j*Ts)-1)*((j*Ts)-1) +

2*(j*Ts)*(j*Ts));

g1[j-1] = 0.5*(-12*(j*Ts)*((j*Ts)-1)*((j*Ts)-1) - 2*((j*Ts)-1)*((j*Ts)-1)*((j*Ts)-

1) - 3*(j*Ts)*(j*Ts)*(2*(j*Ts)-2));

g2[j-1] = -0.5*(16*(j*Ts)*((j*Ts)-1)*((j*Ts)-1)*((j*Ts)-1) + 2*((j*Ts)-1)*((j*Ts)-

1)*((j*Ts)-1)*((j*Ts)-1) + 12*(j*Ts)*(j*Ts)*((j*Ts)-1)*((j*Ts)-1));

g3[j-1] = 0.5*(-20*(j*Ts)*((j*Ts)-1)*((j*Ts)-1)*((j*Ts)-1)*((j*Ts)-1) - 2*((j*Ts)-

1)*((j*Ts)-1)*((j*Ts)-1)*((j*Ts)-1)*((j*Ts)-1) - 20*(j*Ts)*(j*Ts)*((j*Ts)-

1)*((j*Ts)-1)*((j*Ts)-1));
 }

for(iter=0;iter<=99;iter++)
{

 for (w=0;w<128;w++)
 y1 [w] = y[iter*(128-overlap)+w]; // overlapping purpose

// FIR filter implementation using Convolution....................................

for(w=0; w<win; w++) //No of sliding windows = 'win'

 {

 for (g=0; g<M+1; g++)
 {

 vkn0 = 0.0;

88

 vkn1 = 0.0;

 vkn2 = 0.0;
 vkn3 = 0.0;

 for (h=0; h<=g; h++)
 {

 vkn0 = vkn0 + y1[h+w]*g0[g-h]; //k=0

 vkn1 = vkn1 + y1[h+w]*g1[g-h]; //k=1

 vkn2 = vkn2 + y1[h+w]*g2[g-h]; //k=2
 vkn3 = vkn3 + y1[h+w]*g3[g-h]; //k=3

 }

// Voltera Filter..
 f1 = (vkn1*vkn1 - vkn0*vkn2)/1000000;

 f2 = (vkn2*vkn2 - vkn1*vkn3)/1000000;

 if (f1 < 0.0)
 f1 = 0.0;

 if (f2 < 0.0)

 f2 = 0.0;

// Decision Function..

 DF = f1 * f2;

 temp_DF[g+w] = temp_DF[g+w] + DF;
 }

 }

// Mean Calculations...

Mean_f_DF=0;

for (w=0;w<128;w++){
 final_DF[w] = temp_DF[w];

 temp_DF[w] = 0.0;

 Mean_f_DF = Mean_f_DF + final_DF[w]; }

 Mean_f_DF = Mean_f_DF/128; //Mean

//STD Calculations...

 SD_DF=0;
for (w=0;w<128;w++)

 SD_DF += (final_DF[w] - Mean_f_DF)*(final_DF[w] - Mean_f_DF);

 SD_DF = sqrt(SD_DF/127); //SD

// Threshold Calculation...

Gamma1 = 0.001/(Mean_f_DF + SD_DF);

// OA Zone detection...

for(w=0;w<=9;w++)
 OA_index[w]=0; //Array Initialization to 0

w=0;Index_Falg=0;int s=0,e=0;
while(w<128)

{

 if(final_DF[w] > Gamma1)

 {
 temp = w;

 while((final_DF[w] > Gamma1) && w <128)

 w+=1;

89

//Start Index

 s = (temp-FIR_delay);
 if (s > 0)

 OA_index[Index_Falg] = s;

//end Index

 e = w-1+10;

 if (e < 128)
 OA_index[Index_Falg+1] = e;

 else

 OA_index[Index_Falg+1] = 127;
 Index_Falg += 2;

 }

 w+=1;
 } // end of OA zones detection

// OA Removal code starts here..

if(Index_Falg != 0)

{

 for (h=0;h<Index_Falg/2;h++) //loop for each OA zone...

 {

 g=0;
 for(j=OA_index[2*h];j<=OA_index[2*h+1];j++)

 {

 y4[g] = y1[j];
 g+=1;

 }

 // start of DWT using HAAR wavelet function

 w = 128; j=0;
 while(w>1)

 {

 L[j] = w;
 w/=2;

 for(i=0;i<w;i++)

 {
 y3[i] = (y4[2*i] + y4[2*i+1])/sqrt(2.0); //Approximation coefficients

 y3[i+w] = (y4[2*i] - y4[2*i+1])/sqrt(2.0); //Detail coefi

 }

 for(i=0;i<w;i++)
 y4[i] = y3[i];

 j+=1;

 } // End of DWT
//thresholding statrs here..

for(g=1;g<16;g++) // detail coefficients form level 4-8

{
 if(y3[g] > Gamma1)

 y3[g] = 0.0;

 else if (y3[g] < -Gamma1)

 y3[g] = 0.0;
}

// iDWT starts here...
 w=1;

 while(w<65)

 {

90

 for(i=0;i<w;i++)

 {
 y4[2*i] = (y3[i] + y3[i+w])/sqrt(2.0); //Approximation coefficients

 y4[2*i+1] = (y3[i] - y3[i+w])/sqrt(2.0); //Detail coefi

 }
 w*=2;

 for(i=0;i<w;i++)

 y3[i] = y4[i];

 } // End of iDWT
// iDWT ends here....

 g=0;

 for(j=OA_index[2*h];j<=OA_index[2*h+1];j++)
 {

 y1[j] = y4[g]; //clean samples replaced with original

 g+=1;
 }

 } // end of denoising for single OA zone

} // end of denoising of all existing OAs in the current chunk

//clean EEG storing...

for(i=0;i<88;i++)
clean_EEG[88*iter + i] = y1[i]; //output buffer with clean EEG

for(i=0;i<40;i++)

 y[(iter+1)*(128-overlap)+i] = y1[88+i]; // moving last 40 samples to first 40
sample block for next iteration considering overlapping

} // end of iter loop

// Clean EEG storage in .txt file...

FILE *r = fopen("DS_C_output.txt", "w"); //output_C_Ch1.txt

if (f == NULL)
 printf("Error opening file!\n");

for(i=0;i<8800;i++)

 fprintf(r,"%f \n",clean_EEG[i]);

fclose(r);

//--
} // end of main

91

D: ONLINE C BASED OA REMOVAL CODE

 The online C based hybrid OA removal code was developed using PSoC creator 3.0

and here in appendix D, only the parts of ADC ISR and main code blocks are mentioned

related to the thesis work done.

• ADC ISR code block:

// ========================== ADC ISR block ==========================
 // Check for the Overflow

if(Last == buffer_size)

 {

 Last = 0;

 Overflow = 1;

 }

 //To avoid race condition between First and Last

 // First always > Last if Overflow = 1

if((Overflow == 1) && ((First – 2) < Last))

 // hold_Flag = 1 holds new data to get stored in Ring buffer

 hold_Flag = 1;

else

 hold_Flag = 0; //allows new ADC data to get stored in ring buffer

 // New ADC sampled EEG 16- bit data storage in ring buffer

if((Last < buffer_size) && (hold_Flag == 0))

 {

 buffer1[Last++] = chan1 & 0X00FF;

 buffer1[Last++] = (chan1>>8) & 0X00FF;

 }

// ===================== ADC ISR block ends ==========================

• ‘Main’ code block:

// ===================== PSoC-3 main code block =======================

#include <device.h>

#include <math.h>

#include <string.h>

void timer_configuration(uint8);

void BT_datarate(void);

void writeData(uint8);

void main()

{

 int M = 38,i,y_mean,overlap=40,y,w,g,win = 90,h,s,e,flag=0;

 int Valid_Data = 0,sz,iter = 0,temp=0,Index_Falg;

 int m,j=1,FIR_delay = 37,level=7,OA_index[10];

 float Ts=0.0039,Mean_f_DF = 0.0,SD_DF = 0.0, Gamma1;

 float g0[75],g1[75],g2[75],g3[75],y1[128]={0};

 float vkn0,vkn1,vkn2,vkn3;

 float f1,f2,DF,final_DF[129]={0},temp_DF[129]= {0};

 float y3[128] = {0},y4[128] = {0},Temp_Overlap[40]={0};

92

 char clean_EEG[537]={0},Temp_Out_Buf[80]={0};

 char a[sizeof(float)];

// ================= Pre-existing code block ==========================

 /* Enable Global Interrupts */

 CyGlobalIntEnable;

 // initialize components

 enAMP_Write(0); //Instr. Ampl. Enable (Active low)

 AMuxSeq_1_Start();

 //VDAC8_1_Start();//ch2

 AMuxSeq_1_Start();

 //VDAC8_1_Start();//ch2

 VDAC8_2_Start();//ch1

 //VDAC8_3_Start();//VBiasElec

 VDAC8_4_Start();

 Opamp_1_Start();

 Opamp_2_Start();

 Opamp_3_Start();

 Opamp_4_Start();

 ResetBT_Write(1);

 UART_Init();

 UART_Start();

 CyXTAL_32KHZ_Start();

 UART_ClearRxBuffer();

 UART_ClearTxBuffer();

 ADC_DelSig_1_Start();

 timer_configuration(1);

// ========== Pre-existing code block ends here =======================

// ======== OA Detection algorithm starts here (Thesis work)===========

clean_EEG[0] = 0x44; //’D’ : header start key

 // impulse response h(n) calculations..................

for(j=1; j<=M+1; j++)

 {

 g0[j-1] = -0.5*(4*(j*Ts)*(2*(j*Ts)-2) + 2*((j*Ts)-1)*((j*Ts)-1) +

2*(j*Ts)*(j*Ts));

 g1[j-1] = 0.5*(-12*(j*Ts)*((j*Ts)-1)*((j*Ts)-1) - 2*((j*Ts)-

1)*((j*Ts)-1)*((j*Ts)-1) - 3*(j*Ts)*(j*Ts)*(2*(j*Ts)-2));

 g2[j-1] = -0.5*(16*(j*Ts)*((j*Ts)-1)*((j*Ts)-1)*((j*Ts)-1) +

2*((j*Ts)-1)*((j*Ts)-1)*((j*Ts)-1)*((j*Ts)-1) +

12*(j*Ts)*(j*Ts)*((j*Ts)-1)*((j*Ts)-1));

 g3[j-1] = 0.5*(-20*(j*Ts)*((j*Ts)-1)*((j*Ts)-1)*((j*Ts)-1)*((j*Ts)-

1) - 2*((j*Ts)-1)*((j*Ts)-1)*((j*Ts)-1)*((j*Ts)-1)*((j*Ts)-1) -

20*(j*Ts)*(j*Ts)*((j*Ts)-1)*((j*Ts)-1)*((j*Ts)-1));

 }

93

while(1)

 {

 Pin_1_Write(1);

 Pin_2_Write(0);

 //cnt = 0: very first iteration at time ‘0’; cnt = 1; otherwise;

 if(cnt == 0){

 sz = 256;

 g = 128;

 i = 0;

 m=9;

 flag=0;

 }

 else{

 sz = 176;

 g = 88;

 i = overlap;

 m=89;

 }

 // Valid_Data calculation

 if(Overflow == 0)

 Valid_Data = Last - First;

 else

 Valid_Data = Last + 768 - First; // due to ring counter

 // start raw EEG processing if Valid_Data >= 176 or 256

 if(Valid_Data >= sz)

 {

 // Raw EEG storage : Temp buf to clean_EEG buffer

 if(flag==1){

 j=0;

 while(j<overlap){

 clean_EEG[9 + 2*j] = Temp_Out_Buf[2*j];

 clean_EEG[10 + 2*j] = Temp_Out_Buf[2*j+1];

 }

 }

 y_mean = 0;

 w = i;

 j=0;

 while(w < 128)

 {

 if(w<88){

 clean_EEG[m++] = buffer1[First]; //last 48 Raw samples

 clean_EEG[m++] = buffer1[First+1];

 }

 else{

 // temp overlapped 40 raw sampled storage

 Temp_Out_Buf[j++] = buffer1[First];

 Temp_Out_Buf[j++] = buffer1[First+1];

 }

 // making 16 bit data

 y = (buffer1[First+1] & 0xFF00) | buffer1[First];

 //conversion to original data

 y1[w] = y*0.067099; // gain adjustment

 // mean calculation

94

 y_mean += y1[w];

 w++;

 if((First+2) < 768)

 First += 2;

 else{

 Overflow = 0;

 First = 0;

 }

 }

 flag=1;

 y_mean = y_mean/g; // mean

 while(i < 128)

 y1[i++] = -(y1[i] - y_mean); // mean adjustment

//================OA Detection Code:==================================

// FIR filter implementation using Convolution....

for(w=0; w<win; w++) //No of win = 'n' = 90

 {

 for (g=0; g<M+1; g++)

 {

 vkn0 = 0.0;

 vkn1 = 0.0;

 vkn2 = 0.0;

 vkn3 = 0.0;

 for (h=0; h<=g; h++)

 {

 vkn0 = vkn0 + y1[h+w]*g0[g-h]; //k=0

 vkn1 = vkn1 + y1[h+w]*g1[g-h]; //k=1

 vkn2 = vkn2 + y1[h+w]*g2[g-h]; //k=2

 vkn3 = vkn3 + y1[h+w]*g3[g-h]; //k=3

 }

// Voltera Filter..

 f1 = (vkn1*vkn1 - vkn0*vkn2)/1000000;

 f2 = (vkn2*vkn2 - vkn1*vkn3)/1000000;

 if (f1 < 0.0)

 f1 = 0.0;

 if (f2 < 0.0)

 f2 = 0.0;

// Decision Function..

 DF = f1 * f2;

 temp_DF[g+w] = temp_DF[g+w] + DF;

 }

 }

// Mean Calculations..

Mean_f_DF=0;

for (w=0;w<128;w++){

 final_DF[w] = temp_DF[w];

 temp_DF[w] = 0.0;

95

 Mean_f_DF = Mean_f_DF + final_DF[w]; }

 Mean_f_DF = Mean_f_DF/128; //Mean

//STD Calculations...

 SD_DF=0;

for (w=0;w<128;w++)

 SD_DF += (final_DF[w] - Mean_f_DF)*(final_DF[w] - Mean_f_DF);

 SD_DF = sqrt(SD_DF/127); //SD

// Threshold Calculation..

Gamma1 = 0.001*(1/(Mean_f_DF + SD_DF));

// OA Zone detection...

for(w=0;w<=9;w++)

 OA_index[w]=0; //Array Initialization to 0

for(w=1;w<=6;w++)

 clean_EEG[w] = 0;

w=0;Index_Falg=0;s=0,e=0;

while(w<128)

{

 if(final_DF[w] > Gamma1)

 {

 temp = w;

 while((final_DF[w] > Gamma1) && w <128)

 w+=1;

//Start Index

 s = (temp-FIR_delay);

 if (s > 0)

 OA_index[Index_Falg] = s;

//end Index

 e = w-1+10;

 if (e < 128)

 OA_index[Index_Falg+1] = e;

 else

 OA_index[Index_Falg+1] = 127;

 Index_Falg += 2;

 }

 w+=1;

 } // end of OA zones detection

// OA Removal code starts here =======================================

if(Index_Falg != 0)

{

 for (h=0;h<Index_Falg/2;h++) //loop for each OA zone...

 {

 clean_EEG[2*h+1] = OA_index[2*h] & 0X00FF; //storing Detected

OA_Zones Starting edge

 clean_EEG[2*h+2] = OA_index[2*h+1] & 0X00FF; //storing Detected

OA_Zones ending edge

 g=0;

 for(j=OA_index[2*h];j<=OA_index[2*h+1];j++)

 y4[g++] = y1[j];//copying only OA zone data for denoising in y4

96

 // start of DWT using Haar

 w = 128;

 while(w>1)

 {

 w/=2;

 for(i=0;i<w;i++)

 {

 y3[i] = (y4[2*i] + y4[2*i+1])/sqrt(2.0); //Approximation coeffi-

cients

 y3[i+w] = (y4[2*i] - y4[2*i+1])/sqrt(2.0); //Detail coefi

 }

 for(i=0;i<w;i++)

 y4[i] = y3[i]; //y3 = C

 } // End of DWT

//thresholding statrs here..

for(g=1;g<16;g++)

{

 if(y3[g] > Gamma1)

 y3[g] = 0.0;

 else if (y3[g] < -Gamma1)

 y3[g] = 0.0;

}

// iDWT starts here...

 w=1;

 while(w<65)

 {

 for(i=0;i<w;i++)

 {

 y4[2*i] = (y3[i] + y3[i+w])/sqrt(2.0); //Approximation coeffi-

cients

 y4[2*i+1] = (y3[i] - y3[i+w])/sqrt(2.0); //Detail coefi

 }

 w*=2;

 for(i=0;i<w;i++)

 y3[i] = y4[i];

 } // End of iDWT

// iDWT ends here....

 g=0;

 for(j=OA_index[2*h];j<=OA_index[2*h+1];j++)

 y1[j] = y4[g++]; //clean samples replaced with original

 } // end of denoising for single OA zone

} // end of denoising of all existing OAs in the current chunk

//clean EEG storing..

i=0;w=0;

while(i<352){

 //7-0 bits

memcpy(a, &y1[w], sizeof(float));

 clean_EEG[185 + i] = a[0];; //output buffer with clean EEG

 i++;

 //15-8 bits

 clean_EEG[185 + i] = a[1];

 i++;

 //23-16 bits

97

clean_EEG[185 + i] = a[2]; //output buffer with clean EEG

 i++;

 //31-24 bits

 clean_EEG[185 + i] = a[3];

 i++;

 w++;

}

for(i=0;i<40;i++){

 Temp_Overlap[i] = y1[88+i]; // moving last 40 samples to first 40

sample block for next iteration considering overlapping

 y1[i] = Temp_Overlap[i];

}

//....................

m=8;

 clean_EEG[m--]= cnt & 0X00FF;

 clean_EEG[m]= (cnt>>8) & 0X00FF;

cnt++;

for(i=0;i<537;i++)

 UART_PutChar(clean_EEG[i]); //sending header[9] + Raw Data[176] +

Clean EEG []

 }

 }

 }

	Real-Time, Hardware Efficient Ocular Artifact Removal From Single Channel EEG data Using a Hybrid Algebraic and Wavelet Algorithm
	Recommended Citation

	Microsoft Word - MS_Thesis_Charvi_2015

