
University of Memphis University of Memphis 

University of Memphis Digital Commons University of Memphis Digital Commons 

Electronic Theses and Dissertations 

5-27-2015 

Real-Time, Hardware Efficient Ocular Artifact Removal From Real-Time, Hardware Efficient Ocular Artifact Removal From 

Single Channel EEG data Using a Hybrid Algebraic and Wavelet Single Channel EEG data Using a Hybrid Algebraic and Wavelet 

Algorithm Algorithm 

Charvi Anand Majmudar 

Follow this and additional works at: https://digitalcommons.memphis.edu/etd 

Recommended Citation Recommended Citation 
Majmudar, Charvi Anand, "Real-Time, Hardware Efficient Ocular Artifact Removal From Single Channel 
EEG data Using a Hybrid Algebraic and Wavelet Algorithm" (2015). Electronic Theses and Dissertations. 
1185. 
https://digitalcommons.memphis.edu/etd/1185 

This Thesis is brought to you for free and open access by University of Memphis Digital Commons. It has been 
accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of University of 
Memphis Digital Commons. For more information, please contact khggerty@memphis.edu. 

https://digitalcommons.memphis.edu/
https://digitalcommons.memphis.edu/etd
https://digitalcommons.memphis.edu/etd?utm_source=digitalcommons.memphis.edu%2Fetd%2F1185&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.memphis.edu/etd/1185?utm_source=digitalcommons.memphis.edu%2Fetd%2F1185&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:khggerty@memphis.edu


 

 

 

 

 

 

 

REAL-TIME, HARDWARE EFFICIENT OCULAR ARTIFACT REMOVAL FROM 

SINGLE CHANNEL EEG DATA USING A HYBRID ALGEBRAIC AND WAVELET 

ALGORITHM  

 

by 

 

Charvi Majmudar 

 

 

 

 

 

 

A Thesis 

 

Submitted in Partial Fulfillment of the  

 

Requirements for the Degree of  

 

Master of Science 

 

 

 

Major: Electrical and Computer Engineering 

 

 

 

 

 

 

 

The University of Memphis 

 

August 2015 

 

 

 

 



ii 
 

 

 

 

 

 

        This thesis is dedicated to my husband Dr. Anand Majmudar, mother Mrs. Avani 

Nanavaty, father Dr. Ravindra Nanavaty, aunt Dr. Nivedita Vora and beloved grand-

mother Late Dolar Mankad for their extreme support, encouragement and ever flowing 

blessings. 

 

 

 

 

 

 



iii 
 

ACKNOWLEDGEMENTS 

      I would like to take the opportunity to thank Dr. Bashir Morshed, for his constant 

support, motivation, suggestions and help during the thesis work and writing this thesis. I 

am extremely grateful to have him as my advisor throughout the course of study.  

      I am highly thankful to Dr. Eddie Jacobs and Dr. Amy Curry who devoted their pre-

cious time for being in my thesis committee and for giving their valuable suggestions.  

      I appreciate and feel thankful for the efforts, suggestions and support shown by my 

lab mates Ruhi Mahajan, Saleha Khatun and other members at the ESARP during my   

research work. 

      Last but not the least, I would like to thank my family and friends for their constant 

support and encouragement with complete patience to accomplish my research goal.           

 

 

 

 

 

 



iv 
 

ABSTRACT 

Majmudar, Charvi, A., M.S. The University of Memphis. August 2015. Thesis title: Real-

Time, Hardware Efficient Ocular Artifact Removal from Single channel EEG data using 

a Hybrid Algebraic and Wavelet algorithm. Dr. Bashir I. Moshed. 

 

      Electroencephalography (EEG) is a promising technique to record brain activities in 

natural settings. EEG signal usually gets contaminated by Ocular Artifacts (OA), removal 

of which is critical for the feature extraction and classification. With the increasing interest 

in wearable technologies, single channel EEG systems are becoming more prevalent that 

often require real-time signal processing for immediate feedback. In this context, a new 

hybrid algorithm to detect OA and subsequently remove OA from single channel steaming 

EEG data is proposed here. The algorithm first detects the OA zones using Algebraic ap-

proach, and then removes artifact from the detected OA zones using Discrete Wavelet 

Transform (DWT) decomposition method. De-noising technique is applied only to the OA 

zone that minimizes interference to neural information outside of OA zone. The microcon-

troller hardware implemented hybrid OA removal algorithm demonstrated real-time exe-

cution with sufficient accuracy in both OA detection and removal. The performance eval-

uation was carried out qualitatively and quantitatively for 0.5 sec epoch in overlapping 

manner using time-frequency analysis, mean square coherence, Correlation Coefficient 

(CC) and Mutual Information statistics. Matlab implementation resulted in average CC of 

0.3242 and average MI of 1.0042, while microcontroller implementation resulted in aver-

age CC of 0.4033 for all blinks. Successful implementation of OA removal from single 

channel real-time EEG data using the proposed algorithm shows promise for real-time 

feedback applications of wearable EEG devices.      
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Chapter 1 

INTRODUCTION 

 

1.1 Motivation  

 
      Electroencephalography (EEG) is the depiction of the neurological signals in terms of 

the electrical signals corresponding to the brain activities from the scalp surface using 

special metal electrodes and conductive media. EEG recording is a completely non-inva-

sive procedure that can be applied repeatedly to the patients, normal adults, and children 

without virtually any counter effects, risk or limitation. The greatest advantage of EEG is 

speed [1]. Complex continuously varying patterns of neural activity can be recorded and 

displayed on the EEG machine screen as waveforms of varying frequency and amplitude 

measured in micro-voltage. Being non-invasive and painless procedure, the EEG signals 

are widely used to study the brain organization of cognitive processes such as perception, 

memory, attention, language, and emotion in normal adults and children. Also the results 

given by an EEG are commonly used to investigate information about certain disorders 

such as Seizures, Epilepsy, Alzheimer’s diseases, ADHD (Attention-Deficit/Hyperactive 

Disorder) etc.  

      Electrical signals those detected along the scalp by an EEG, but originated from non-

cerebral origin are called artifacts. The most common EEG artifact sources can be classi-

fied in mainly two types: (i) Physiological artifacts: such as due to any minor body move-

ments, EMG (Electromyography), ECG (pulse, pace-maker), eye movements, sweating. 

(ii) Non-Physiological artifacts: such as due to 50/60 Hz line frequency, impedance fluc-

tuation, cable movements, broken wire contacts, loose electrodes and low battery [1].      
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      The non-physiological artifacts are usually at a separate spectral band and can be 

dealt with high order analog and digital filters. However, physiological artifacts are usu-

ally in the same spectral bands and very difficult to remove without loss of critical neu-

ronal information during the occurrence of the artifact. This work focuses on removal of 

physiological artifacts arising from eye-blinks and movement of the eyeballs which are 

collectively known as Ocular Artifacts (OA), while preserving as much neuronal infor-

mation as possible. Regular EEG signals in the order of microvolts are contaminated by 

these OA in the order of millivolts. The frequency range of interest for most of the EEG 

applications lies up to 100 Hz, and typical amplitude are 0.5μV to 100μV [1] whereas OA 

occurs within the range of 0 to 16 Hz having amplitude more than 10 times the regular 

cortical signals [2]. The Fig.1 shows a typical raw EEG data (FP1) with OA and the 

cleaned EEG data.  

 

 

 

 

 
Fig.1: A representative raw EEG signal (FP1) vs a clean EEG signal       

      Eye blink artifacts can create inaccuracy or even can cause critical errors for feature 

extraction and classification effecting diagnosis process or automated brain-computer in-

terfacing (BCI) applications. To improve the processing of EEG signals for accurate clin-

ical and experimental analysis, removal of these artifacts are of prime interest.  

Contaminated EEG 

Clean 

EEG 

Eye blink 
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      In today’s wearable technology and trend, ambulatory devices are of more interest 

and therefore EEG devices are also emerging with portability in nature. Such EEG ambu-

latory devices should be portable enough, light in weight and comfortable to carry on for 

the patients or subject under test. EEG electrode application for infants is difficult and 

challenging, due to the small head size and the limited space within a humidified incuba-

tor [3]. Also Alzheimer’s disease recognition is often based on single channel EEG sys-

tems [4]. To accomplish these requirements and criticality of the EEG recordings, single 

channel EEG devices will be more relevant as well as convenient. 

1.2  OA removal algorithm requirements 

       For remote monitoring of the subject using such ambulatory EEG devices, it is sub-

stantial to process EEG signals automatically in real-time for better diagnosis purpose. 

Moreover, to receive directly the clean EEG without eye blinks in real-time, the OA re-

moval process should be running on the remote EEG device itself for the automation.  

Accordingly, the designed and developed OA removal algorithm mainly fulfilled basic 

three requirements: 

 i.e. OA removal algorithm should be:  

1. Applicable to Single Channel EEG devices. 

2. Executable in Real-time 

3. Implementable on Microcontroller Hardware       

1.3  Overview of the literature review 

       Literature on removal of the eye blink artifacts was critically reviewed to examine 

algorithm’s single channel applicability with low computational complexity. The         

frequency spectrum of OA overlaps with the EEG frequency band, therefore filtering 
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techniques to remove OA directly, might also eliminate important neural information. 

Many techniques have been developed to eliminate OA from EEG signals. Some meth-

ods used Wavelet Transform (WT) [5,6,7], EMD (Empirical Mode Decomposition) - 

CCA (Canonical Correlation Analysis) [8,9] and Algebraic Method (AM) [4] based ap-

proaches, which are covered in Chapter-2.  

1.4  Overview of the proposed OA removal algorithm 

       In this thesis we have developed a hybrid algorithm to detect and thereby remove OA 

from online EEG data. Two methods are combined:  

(i) Algebraic method – to detect the OA zone [4],  

(ii) Discrete WT (DWT) - to de-noise the detected OA zone [7] so as to obtain the 

artifact free EEG signal.  

      The proposed fully automated method neither needs recording of additional reference 

EOG signal nor relies on the other EEG channels. The algebraic method to detect OA 

zone has fast processing time, a key feature suitable for real-time applications. Whereas, 

WT method is suitable for non-stationary signals such as EEG and it also can process sin-

gle channel data. The overall representation of this hybrid algorithm is as shown in Fig.2. 

  

     F 

 

 

 

 

 
Fig.2: Block diagram of the proposed hybrid OA removal algorithm 

       

 

Raw EEG Clean EEG 

OA Detection 

[Algebraic 

Method] 

OA Removal 

[DWT Method] 
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      In the first phase of offline mode, the hybrid OA removal algorithm was developed 

and tested using MATLAB (MathWorks Inc., Natwick, MA) software tool to verify the 

results and finalize the algorithm. In the second phase, algorithm was developed in C to 

run on PSoC-3 Microcontroller-Unit (MCU) hardware and results were cross checked 

with MATLAB results for verification. The NeuroMonitor (NM) EEG device and its sin-

gle channel placed at FP1 or FP2 location (international 10-20 system) was used through-

out the work for capturing EEG as well as hardware based algorithm implementation for 

the online mode.    

      The performance of the OA de-noising algorithm was statistically evaluated with time 

domain metrics - Correlation of Coefficient (CC) and Mutual Information (MI) and fre-

quency domain metrics - Time-Frequency analysis (TFA) and Magnitude Square Coher-

ence (MSC) estimation.  

1.5 Key Results  

      The OA removal algorithm performed as expected in real-time settings on user con-

sole using MATLAB based OA removal algorithm. CC and MSC were evaluated for OA 

zone and non-OA zones separately where it was observed that for non-OA zone their val-

ues were ‘1’, indicated that the EEG signal information remain unaltered whereas for OA 

zone, their values were less than ‘1’, highlighted significant cleaning of eye blink in those 

zones. Also on MCU of EEG device using C based OA removal algorithm achieved 

proper OA de-noising from real-time single channel EEG recordings. The hybrid OA re-

moval algorithm implemented on micro-controller utilized 28.1% of flash memory and 

executed in near real-time which further can be optimized. Also it resulted in average CC 

of 0.4033 for all blinks indicated significant removal of artifacts from detected OA zones. 
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1.6 Key outcomes 

• Conference paper accepted: C. Majmudar, R. Mahajan, and B. I. Morshed, “Real-

Time Hybrid Ocular Artifact Detection and Removal for Single Channel EEG”, 

IEEE Electro/Information Technology (EIT), (accepted), 2015. 

• Conference paper abstract accepted: Charvi Majmudar and B. I. Morshed, “Hard-

ware implementation of real-time hybrid OA detection and removal algorithm for 

single channel EEG signals”, IEEE GHTC conf., (Abstract accepted) Oct. 2015.  

1.7 Organization of this thesis  

      This thesis contains total of six chapters with separate Reference and Appendix sec-

tions. Chapter 2 is furnished to take a glance on past work done related to OA removal 

techniques from EEG. In chapter 3, theory background of OA detection and removal meth-

ods are covered up. It ends with giving the overview of basic steps followed in proposed 

hybrid OA removal algorithm with required flowcharts. The core contents of the thesis 

resides in chapter 4. This chapter takes upon in detail how the thesis work has been divided 

in two major part: offline mode and online mode having MATLAB and C based algorithms 

with theirs thorough explanation and respective results. Chapter 5 is included to present all 

the remaining results for every mode of operation of the thesis work which have not been 

included in chapter 4. The Chapter 5 also depicts the performance analysis for the results 

achieved in offline MATLAB and online C based algorithms. Finally, the chapter 6 con-

cludes the entire work with the future scope of the research topic considered.    
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Chapter – 2 

LITERATURE REVIEW 

            In this section the summary of the reviewed literatures for the relevant prior work 

done in the same EEG ocular artifact removal area is presented.  

2.1  Wavelet Based OA removal Approach 

       WT as a novel approach was introduce in [5] in the year 2004 to remove eye blink 

from EEG. Here, Stationary Wavelet Transform (SWT) with Haar wavelet of high orders 

was applied to decompose the original contaminated signal. De-noising was done by hard 

- thresholding and finally wavelet inverse transform was applied to reconstruct the EEG 

signal. The author of this paper concluded that wavelet based technique removed eye 

blink from EEG successfully. Thus, this paper gave good initial foundation for WT tech-

niques to remove OA from EEG effectively applicable to single channel. 

      Adaptive Algorithm using WT to de-noise the EEG data, sampled at 128 samples/sec, 

was carried out in [6]. The significance of the proposed method was that it didn’t affect 

the low frequency components in non-OA zones and preserved the information of the 

EEG signal by applying the de-noising technique only to the OA zone rather than to the 

entire EEG signal. The Algorithm proposed in this paper [6], detected the OA zone using 

Discrete Wavelet Transform (DWT) with Haar wavelet as the basis function. Next, SWT 

was applied only to the detected OA zone and Adaptive algorithm based on Stein’s Unbi-

ased Risk Estimation (SURE) and the soft-like thresholding function were used to de-

noise EEG. The performance metrics such as Power Spectral Density (PSD) and correla-

tion in frequency domain evaluated here, showed that by de-noising the EEG only in eye 
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blink zone, improved the performance by preserving low frequency components in the 

non-OA zone.  

      The proposed technique in [7] was motivated to reduce the computational complexity 

of the adaptive algorithm of [6] and used Statistical Method to de-noise the EEG. The   

algorithm proposed here applied SWT to the contaminated EEG signal with ‘Sym3’ as a 

basis function with 8-level of decomposition for the data sampled at 128 samples/sec. 

The OA zone was identified using a statistical approach - coefficient of variation. The de-

noising technique was then applied using fixed suitable threshold value and threshold 

function from the detected artifact zones. On examining the approach it was found that 

only for threshold calculation detected OA zone was utilized otherwise de-noising was 

applied to the 10 sec of EEG epoch, which resulted in distortion of EEG signal in non-

OA zone.  

      In [10], a wavelet neural network (WNN) based algorithm for EEG artifact removal 

was discussed. The algorithm combined the universal approximation characteristics of 

neural networks and the time/frequency property of wavelet transform, where the Neural 

Network (NN) was trained on a simulated dataset with known ground truths. Coefficients 

at low frequency sub- bands: 0–2, 2–4, 4–8 and 8–16 Hz after WT using ‘coif3’ as basis 

function up to 6 decomposition level, were passed through an Artificial NN (ANN) with 

the structure of 4-6-4 (4-input units, 6-hidden units and 4-output units) for training pur-

poses. The performance of WNN method was found better when compared with WT    

using adaptive algorithm. Also the computational cost point of view this method outper-

formed ICA (Independent Component Analysis) but no evidence to show faster pro-

cessing time than WT based technique. Additionally, if wavelet decomposition level is 
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higher in value then NN design would become complex and hardware components 

needed would be higher. Also specialized hardware called Hardware Neural Networks 

(HNN) [11] are required to obtain maximum advantage of ANN implementation on hard-

ware but HNN then would be an additional requirement for the existing system.      

      In another method [12], DWT decomposition up to 7 levels with ‘db4’ basis function 

and thresholding based on SURE with soft thresholding technique was applied to the   

single channel EEG to construct the reference OA signal. Next, Adaptive Noise Cancella-

tion (ANC) technique based on Recursive Least Square (RLS) algorithm was applied to 

remove OA from contaminated EEG. Results of this paper revealed that when compared 

to SWT with thresholding technique, this proposed method outperformed that approach. 

But the processing time plot as compared with ICA showed that for higher samples under 

processing, time taken by this algorithm drastically increases. 

2.2 Modified Multiscale Sample entropy (mMSE)-wICA 

      This paper [13] presented an unsupervised, fast algorithm for fully automatic identifi-

cation and suppression of the eye blink related ICs by using mMSE and Kurtosis as 

markers and wavelet decomposition as de-noising tool. The mMSE efficiently identified 

the ICs with eye blink characteristics by fetching the regularity information from the ICs 

over multiple temporal scales. Kurtosis was used to enhance the performance by identify-

ing the ICs with super-Gaussian ‘peaked’ probability distributions, which imitates the eye 

blink distributions. The blink related artifactual ICs identified were then denoised using 

DWT with the Biorthogonal wavelet function. But the method described required more 

number of EEG channels which contradicted the single channel requirements of the thesis 

work. 
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2.3  EMD-CCA based OA removal approach 

      Another single channel EEG OA removal technique described in [8] used EMD-CCA 

based approach. Here, OA template was determined from contaminated EEG using EMD 

(Empirical Mode Decomposition), which decomposes a time series signal into multiple 

“intrinsic mode functions” (IMFs) and then CCA (Canonical Correlation Analysis) was 

applied on the OA template and contaminated signal to get the clean EEG. The article 

compared results based on Correlation Coefficient and SAR (signal to artifact ratio), 

which concluded that this proposed method was found better than ICA, CCA, EMD-ICA. 

There was no comparison given with WT based technique but was provided in article [9], 

which was the modification of EMD-CCA. In [9], EEMD (Ensemble EMD) improved the 

performance by eliminating the mode mixing dilemma existing with [8]. The computa-

tional cost comparison given in article [9] revealed that WT based method was better or 

equal in performance as compared with EEMD-CCA method. Also [14] concluded that 

WT and EMD both have their own advantages and limitations using different metrics 

such as time consumption, SAR and PSD. Additionally, CCA method has considerable 

amount of spectral error and thus it cannot be implemented in real-time [15] which limits 

its use for the proposed OA removal algorithm considering the basic three requirements. 

2.4 Algebraic method to detect OA 

      Only the Detection of OA using Algebraic method was presented in [4]. Proposed 

method used Operational Calculus leading to joint detection and change point detection, 

where the signal was represented with a piecewise polynomial model in interval [0,T]. 

Using algorithms defined in [16] and [17] second order equation derived as: 

                                                   

                                             ak * (tk)
2 + bk * tk + ck = 0;                                                (1) 
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      Where, each term was the output of Finite Impulse Response (FIR) filter and if there 

existed discontinuity (eye blink) in the interval [0,T], these coefficients would be non-

zero else they all would be zero. Thus, in the proposed method ‘Qk = |ak*bk*ck|’ was cal-

culated and if this value exceeded the given threshold, spike existed at time ‘tk’ otherwise 

not. Proposed method only detected the OA but it showed that accuracy was nearly same 

as WT, whereas computational cost was significantly less when compared with WT 

based OA detection. Article showed that for 7.5min long input EEG signal, WT took 

27.31sec whereas algebraic method took 3.22sec.     

      We have implemented the hybrid approach combining OA detection using Algebraic 

method [4] for its fast processing time benefit and OA removal using WT based de-nois-

ing technique applied only to the detected OA zone referring [7], as WT is commonly 

used robust method for single channel and hardware implementation capability. Each of 

the methods and final hybrid algorithm is described in next chapter. 
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Chapter – 3 

THE PROPOSED HYBRID ALGORITHM 

      This section describes each method used for the proposed hybrid algorithm in detail 

along with its required mathematical background. The section starts with Algebraic 

Method, followed by Wavelet Transform Method and finally represents overview of the 

implemented overall hybrid algorithm for OA removal from single channel EEG.  

3.1 Algebraic Method – OA Detection 

      Due to the eye blink during regular EEG signal recording, spike like artifact is gener-

ated, which is considered as irregularity in the neuronal signal. This method [4] detects 

the abrupt changes and estimate their locations for the given noisy observation y(t), of a 

piecewise regular signal x(t). It considers that there exists at most one spike in each inter-

val ‘I’, [τ, τ + T], where, τ is the origin and T is the length of ‘I’. In this interval, FIR fil-

ter of the order ‘M’ is applied to extract FIR filter coefficients using sliding window tech-

nique, which is repeated ‘n’ times, where ‘n’ represents the number of sliding windows of 

interval ‘T’ for the considered EEG epoch length, refer Fig.3.  

       

 

 

 

 

 

Fig.3: Graphical presentation of sliding window method for OA detection algorithm 
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      The impulse response equation used for implementing FIR filter is shown in (2) 

which has been derived using operational calculus method to find the change point detec-

tion described in [16].  

 

              ℎ����� =    �	
���
��	
�!  ��

����
�1 + ������ ���	
 

     ; 0 ≤  tm ≤ T                           (2) 

                              =     0                                                          ; otherwise     

       Using this Impulse response, discrete FIR filter coefficients are calculated using con-

volution method as (3).  

   

                                   ����� ≈ ��,! =  ∑ ℎ�,� #!�$	�$�%&                              (3) 

 Where, ��,! = FIR filter coefficients for ‘n’ sliding windows for four values of ‘k’ (0, 1, 

2, 3). ‘��’ value represents the each term in (1), such that with ‘k’ values as 0, 1 and 2 for 

ak, bk and ck respectively. Similarly, FIR coefficients are also calculated for the values of 

‘k’ as 1, 2 and 3 for ak, bk and ck respectively which then can be represented as the matrix 

form representing two different quadratic equations as shown in (4).  

 

                                       ' �� ���
���
 ����( )�����
* =  − '�������,(                                       (4) 

      Next, the Decision function, ‘Fk,n’ is calculated using (4) as described by (5) for every 

sliding windows ‘n’.  

                                       -�,! = .���
,!/� − ��,!����,!                                   (5) 
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      This decision function for spike detection which corresponds to Volterra filtering of 

the neural signal reducing the noise and highlighting spikes [18]. Final Decision function 

‘Fn’ is derived as (6) where in our case ‘K’ has been taken as 2 as only two different 

quadratic equations were considered here as described by (4).  

 

                                 -!  =  ∏ -�,!1	
�%&          ; 3 = 0,1,2 …                                       (6) 

      This decision function (6) is then compared with the threshold value to decide 

whether the eye blink (spike) exists in the given considered period or not. For the same, 

the threshold equation used here was: 

 

                                                   6 =  7
8� 9                                                                            (7) 

       where, N = Constant; µ = mean; σ = Standard Deviation. 

      The threshold equation (7) was referenced from [7] and ‘N’ was fixed to 0.001 so as 

to detect only the OA in the given EEG epoch. ‘N’ was fixed after number of trials using 

different EEG data sets and found consistent enough to detect eye blink only in EEG sig-

nals ignoring possible artifacts due to some other muscle movements or loose electrodes 

etc. Once this threshold value is calculated, ‘-!’ is compared with it to make the decision 

for the existence of the OA at the time ‘tk’. Due to the presence of the noise in the actual 

signal, ‘Fn’ is compared with the threshold instead of zero. Each eye blink would have 

two spikes detected at two different ‘tk’ corresponding to starting edge and ending edge 

of the eye blink. Finally based on detected edges, the sample numbers for OA-Zones in 

each epoch were stored for further de-noising purpose.  
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3.2  Wavelet Transform – OA removal  

       WT has emerged as one of the robust methods in processing non-stationary signals 

such as EEG. The advantage of Wavelet Transform over Fourier Transform is that the 

windows in WT vary. The Discrete WT (DWT) decomposition for denoising OA from 

EEG is implemented here. The result obtained at each decomposition level is composed 

by two types of coefficients: Approximation coefficients and Detail coefficients as shown 

in Fig.4. The original signal is convolved with a low and high pass filter whose impulse 

response is determined by the wavelet chosen [19]. The approximation coefficients are 

obtained by low-pass filtering the input sequence, followed by down-sampling. The detail 

coefficients are obtained by high-pass filtering the input sequence followed by down-

sampling. The sequence of approximation coefficients constitutes the input for the next 

iteration. Different possible scaling with DWT is as shown in Fig.5 at every level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4: Block diagram of DWT based n-levels decomposition  

 

 

       

Fig.5: Frequency bands achieved at every DWT decomposition level [20] 
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       The Discrete Wavelet Transform has two features: the wavelet mother ψ and the 

number of decomposition levels. Discrete wavelets can be scaled and translated in dis-

crete steps having general wavelet representation as following: [21] 

 

                                              :;,!��� =  

<�=  : >�	 �=!

�= ?                                           (8) 

      where, j is the scale factor and n is the translation index.  

The DWT is invertible, meaning after decomposing the original signal up to desired 

levels, decomposed signal can be composed back using inverse DWT method to get back 

original signal. It is the reverse process of decomposition where starting from highest 

level of decomposition, the coefficients are first up-sampled by the factor of 2 and then 

passed from low-pass and high-pass filters and merged to form the approximation coeffi-

cients for the next lower level.    

3.2.1 Wavelet basis functions  

            The eye blink shapes vary for every subject and thus different wavelet functions 

(mother wavelets - refer Fig.6) were tested for their suitability during the developmental 

phase of the de-noising algorithm. For the hardware implementation, ‘haar’ wavelet was 

used with DWT based de-noising as a first stepping stone for the algorithm verification.  

   

 

 

 

 
Fig.6: Wave-shapes of different wavelet functions  
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3.2.2 DWT implementation steps  

      The proposed DWT based OA removal algorithm involved the following steps:  

1. Apply DWT only to the detected OA zone to decompose it up to eight levels using  

selected basis function. 

2. The detail coefficients of decomposition levels 4 to 8 are compared with the 

threshold equation (7). If the coefficient value exceeds the threshold value, it is re-

placed with zero else retains its value as it is. 

3. Finally, the inverse DWT was applied to reconstruct the clean EEG signal from the 

decomposed signal.  

      Two types of WT decomposition methods, SWT and DWT were compared during  

developmental phase for their respective performances to determine the final approach 

using different mother wavelets such as ‘coif3’,’sym3’, ‘db4’, ‘haar’ and their other vari-

ants. Due to the discrepancy of up-sampling and down-sampling at the every decomposi-

tion level in SWT and DWT respectively, DWT was preferred over SWT for its faster 

processing time and equivalent accurate de-noising ability, considering real-time imple-

mentation aspect of the algorithm. Moreover, to preserve the low frequency components 

in the non-OA zone, DWT was applied only to the detected OA zone (identified by al-

gebraic method) and non-OA zone remained intact ensuring the critical EEG background 

information persisted in this region.   

3.3  Hybrid OA Detection and Removal algorithm  

Overall algorithm proposed in this thesis work implemented Algebraic approach to 

detect the OA zone and DWT based de-noising technique applied only to the detected 

OA zone for eye blink removal, refer Fig.7. Algorithm was found to be suitable for real-
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time implementation for single channel EEG signal OA removal on MATLAB software 

platform as well as executable on actual microcontroller hardware to perform as           

expected preserving the regular EEG information in the non-OA zones.  

 

 

 

 

 

 

 

 

 

 

Fig.7: Proposed hybrid OA removal algorithm 

• Some key considerations for implementing hybrid algorithm were as described:  
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blink duration is generally 0.2 to 0.4 sec [2,22]).  

b. The FIR filter delay which is generally half of the filter order [23] which was adjusted 

while calculating the exact OA zone locations.  

c. For online EEG data testing, the EEG epoch length of 128 samples (0.5sec data @ 

256 sps) was considered in the real-time to execute the entire de-noising algorithm.  
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d. Due to the filter delay, there are chances that the eye blinks occurring at the end of the 

epoch, might get undetected by the algorithm. It has been avoided by overlapping the 

epochs with the ratio of ~31% as illustrated in Fig.8, to ensure the correct OA zone 

detection by testing over several datasets.  

      The implemented EEG epoch overlapping method for the hybrid OA removal algo-

rithm is as depicted in Fig.8, where out of the total epoch length of 128 samples, last 40 

samples were reconsidered for the next epoch processing to ensure the correct OA detec-

tion. The overall hybrid OA removal algorithm is illustrated as flowchart in Fig.9.  

 

 

 

 

 

 

      

 

 

 

 

 

Fig.8: Flow chart describing epoch overlap method 
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Fig.9: Detailed flow chart of hybrid OA removal algorithm 
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Chapter – 4 

TEST SETUP AND PROCEDURE 

      Testing of the OA detection and removal algorithm was divided in two parts:            

I.) Offline mode, II.) Online (real-time) mode. Offline mode was carried out to verify and 

finalize the hybrid algorithm and then the same algorithm was checked for its online exe-

cution in Real-Time mode. Overview of the entire process carried out is as illustrated in 

Fig.10. 

 

 

 

 

 

 

 

     

 

                                                                                                       Hybrid Algorithm: (OA Detection + OA Removal) 

      Fig.10: Overview of offline and online mode OA removal algorithm implementation 
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4.1 System Components  

      All testing were carried out on computer having Intel(R) Core i5-3337U CPU @ 1.80 

GHz, with 4.0 GB RAM and 64-bit Operating system of Windows 7/8.1. Other system 

components utilized during the work are listed below.  

4.1.1 Software Utilized 

 

 
     Table.1: LIST OF SOFTWARE TOOLS USED WITH THEIR UTILITY IN THESIS WORK 

 

Software 

name 

Symbol / Logo Version Utility in thesis work 

MATLAB 
 

(MathWorks 

Inc.,         

Natwick, 

MA) 

 

2011a 

   
• Algorithm testing in offline 

mode 

• Raw/clean EEG remote acquisi-

tion code 

• Algorithm Performance Evalua-

tion and result verification 

EEGLAB 

 

free       

software 

from SCCN 

(ucsd) [24] 

  

 EEGLAB v13 
 

• For Time-Frequency analysis as 

performance evaluation  

Microsoft  

Visual   

Studio  

 

Microsoft     

Visual Studio 

C++ 2010 

• Verification of C code of OA 

detection and removal algorithm 

in offline mode 

PSoC  

Creator 

 

PSoC  

Creator 3.0 
• Raw EEG digitization and 

transmission via Bluetooth in C 

language 

• Implementation of proposed   

algorithm on PSoC microcon-

troller hardware for online 

mode in C language 
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4.1.2 Hardware Utilized 

I. NeuroMonitor: 

NeuroMonitor (NM) is an ambulatory EEG device used to capture raw EEG sig-

nal and transmit it wirelessly to the remote device [25]. It is a miniature, lightweight, 

two-channel referential montage based EEG device that is practically deployable in 

real-life settings using PSoC-3 MCU and can wirelessly transmit data using Bluetooth 

at the baud rate of 115.2 kbps in online mode, while being concealed within head acces-

sories like a cap/headband having sampling rate of 256 sps as shown in Fig.11 (a). 

• Electrodes utilized: 

             The commercial disposable adhesive pre-gelled electrodes (GS-26, Bio-Medical 

Instruments, Warren, MI) suitable for EEG data collection from the prefrontal cortex are 

used in NM device. The sensor contains a 0.5 percent saline base gel on a 10 mm flat  

pellet Ag/AgCl electrode surrounded by a paper-thin transparent self-adhesive tape disc 

of 1-inch diameter [26]. Electrodes position FP1 and FP2 on human scalp (based on 10-

20 International electrode system) were used throughout the work as shown in Fig.11 (b). 

 
 

 

 

                                                                          

 
Fig.11:(a) NeuroMonitor device [26] (b) Electrode placement used during EEG recording 

• NM EEG device was used for the following purposes: 

i. To Capture EEG signals from human scalp using electrodes attached  
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ii. To Digitize and process captured EEG using on-board Microcontroller 

iii. To implement proposed hybrid algorithm on on-chip MCU in online mode 

iv. To transmit raw and/or clean EEG signal wirelessly using Bluetooth device     

II. PSoC-3 Microcontroller 

• Basic Technical Features [25] 

         Some of the useful technical details about PSoC-3 MCU are listed here. 

 

PSoC-3 CY8C38 family :  8-bit 8051 CPU 

RAM :  8 KB 

Flash memory :  64KB 

Clock :  3-62 MHz internal Oscillator 

On-chip ADC :  16-bit 

On-Chip UART :  - 

  

•  PSoC-3 MCU Usage: 

                PSoC-3 MCU which is on-board of NM device was basically deployed to cap-

ture EEG using electrodes, filter and amplify the analog EEG signal, digitize the same us-

ing on-chip 16-bit ADC on interrupt basis at 256 sps and finally to output digitized EEG 

wirelessly using on-board Bluetooth device, refer Fig.13.     

4.1.3 Communication interfaces 

I. Bluetooth transceiver (RN-42 (Roving Networks)):  

• Specifications: 

             It’s a Class 2 Bluetooth (BT) module with inbuilt antenna. Running in the 2.4 

GHz ISM band, this BT device can cover range up to 20 meters [27]. The baud rate for 

transmission was set to be 115,200 bps. 

• BT Usage: 

              BT transceiver was used on NM device for initial synchronization and wireless 

data transfer in online mode. 
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4.2  EEG Datasets utilized        

4.2.1 Offline Mode  

• MATLAB based algorithm: The datasets used were as mentioned in Table.2 and 

they were read from respective ‘CSV’ file for the further processing.   

                      
       Table.2: DATASET LIST FOR OFFLINE MATLAB BASED ALGORITHM 

 Device Name No. of Datasets Sampling rate 

Samples/sec 

OA Detection Emotive 3 subjects (single channel) 128 

NueroMonitor 1 subject (single channel) 256 

OA Removal Emotive 1 subject (single channel) 128 

NueroMonitor 3 subjects (single channel) 256 

 

  

• C based algorithm: Total 2 stored datasets of two different subjects from only NM 

device were used to test entire hybrid algorithm, which were read as respective 

‘text’ file for further processing. 

4.2.2 Online (Real-Time) Mode 

•  MATLAB based algorithm: The MATLAB written OA removal code was tested 

in real-time mode using online data received from NM EEG device by existing 

MATLAB acquisition software [25]. The EEG was recorded from single-channel 

FP1 (channel-1) (based on 10-20 International electrode system) location of total 4 

subjects by following mentioned protocol: During the EEG recording process, sub-

ject was asked to blink at every 5 second of interval for 30 seconds. Thus, for each 

subject, data from each channel, contained 30 seconds of EEG recording comprised 

of 5 eye blinks. 
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• Hardware implemented C code:  The C based hybrid algorithm implementation on 

hardware was verified using total three different datasets belonging to single     

subject from single-channel (FP1) using NM EEG device.   

4.3  EEG Data Acquisition 

       Data acquisition was required on two sides: one on NM device from subject and the 

other on user console monitor from NM device as shown in Fig.12. Both data acquisition 

methods are described in the following sections. 

 

 

 

 

 

Fig.12: Data acquisition: subject to NM device and NM device to user console 

  

4.3.1 EEG Device data acquisition 

             Captured EEG from scalp using electrodes attached to NM device, passes from 

several analog signal conditioning stages using instrumentation amplifiers, filtering and 

gain amplifiers successively. The amplified and filtered signal is required to be digitized 

before being wirelessly transmitted which is achieved via a 16-bit analog-to-digital 

(ADC) converter on-chip to the PSoC-3 at the sampling frequency of 256 sps. The digit-

ized signal gets stored in real-time with two FIFO (fist in first out) buffers acquiring data 

in tandem, while data can be sent wirelessly. Each buffer size considered was 512 bytes 

requiring 0.5 seconds to fill up holding the sampled data every 3.9 ms for the two chan-

nels [27]. Interrupts were triggered when a buffer was filled and the buffered data was 
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then wirelessly transmitted using Bluetooth in online mode, while the other buffer was 

being filled up. The complete block diagram of the data acquisition system of NM EEG 

device is given in Fig.13. 

 

 

 

 

 

 

 

Fig.13: EEG data acquisition system of NM EEG device 
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sent as 2 bytes remotely and thus, for each channel, every sample was reformed to repre-

sent the 16-bit data. Next, the digitized and the amplified sample was scaled down to 

original microvolt level by respective scaling function. Finally, processed and converted 

actual raw data was stored as ‘CSV’ file for further analysis. Entire data acquisition soft-

ware process on remote user console side is depicted as a block diagram in Fig.15. 

 

 

   Fig.14: User Console remote Data acquisition software Graphical User Interface panel 
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4.4   Methodology 

        As depicted in Fig.10, entire thesis work was organized in two parts: Offline and 

Online for the proposed hybrid algorithm, each part having the MATLAB based and C 

language based microcontroller applicable algorithms. This section illustrates each mode 

with algorithm specific details, implemented methodology along with the achieved re-

spective results to depict the validity of the developed algorithm.           

4.4.1 Offline Mode  

4.4.1.1   MATLAB based algorithm  

                    Main designing part of the proposed hybrid algorithm resides in this devel-

opmental phase i.e. MATLAB based algorithm development in offline mode. Being      

offline, as explained in Table.2 of section 4.2.1, total 4 stored EEG datasets from two dif-

ferent devices (Emotive and NM) were used to verify the results at each stage of the algo-

rithm for its overall performance evaluation. As mentioned in Fig.16, EEG data reading 

from CSV files, OA Detection – Removal and performance evaluation, everything was 

carried out using MATLAB software.    

      

 

 

 

    Fig.16: Block diagram of MATLAB based algorithm implementation in offline mode 
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was taken for the entire length of recording as read from the CSV file. The interval length 

‘T’ and the FIR filter order considered were as mentioned below: 

Interval Length ‘T’ (sec) Sampling rate ‘Ts’ (sec) FIR filter order M = T/Ts 

0.29 

Emotive device: 0.0078 37 

NM device: 0.0039 74 

     

      The threshold function used was ′A ∗  1.5 ′, where, A is the standard deviation of the 

EEG epoch. Using this threshold value, OA zone having starting edge and ending edge 

was determined in the algorithm. The verification of the entire process was tested using 4 

datasets out of which the results of one emotive and one NM device EEG data are shown 

here, whereas for the other datasets the results are mentioned in Chapter 5.  

• Results: For emotive EEG data, epoch length taken was 9984 samples (78 seconds 

data) which was having total 9 eye blinks. The comparative plot in Fig.17 shows that OA 

detection algorithm accurately detected the eye blinks as well as the detected OA zones 

exactly matched with the actual existing eye blinks placements in raw EEG. The contents 

of OA zone detection array represents the OA zones in pairwise manner representing 

starting edge and ending edge respectively as indicated in Fig.17. The OA zone sample 

numbers were adjusted with FIR filter delay and 10 additional samples on each side.  

Similar results for FP1 (channel-1) location are presented in Fig.18 for NM device EEG 

data having epoch length of 11488 samples (45 seconds), consisting total of 8 eye blinks. 

For the FP2 (channel-2) location also similar results were observed.   
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Fig.17: OA detection results for Emotive device (dataset-1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.18: OA detection results for NM device (dataset-4)  

2850 2900 2950 3000 3050 3100 3150
-100

0

100

200

300

No.Samples

 

 

Detected 

OA Zone 

0 2000 4000 6000 8000 10000
-200

0

200

400

600 Raw EEG Vs OA detection plot

A
m
p
li
tu
d
e

 

 
Raw EEG

OA Detection

OA Zone detection Array 

Sample # 

0 2000 4000 6000 8000 10000
-200

0

200

400

600

800

Raw EEG Vs OA detection plot

A
m
p
lit
u
d
e

 

 
Raw EEG

OA Detection

4900 4950 5000 5050

-100

-50

0

50

100

150

200

250

No.Samples

 

 

OA Zone detection Array 

Detected 

OA Zone 

Sample # 



32 

 

• Addition of Overlapping Concept: As discussed, the OA detection was carried out 

for the entire length of EEG recording. Whereas for the real-time application, the EEG 

epoch length should be as small as possible around 1 second or even 0.5 second to ensure 

the online processing without the longer latency periods. Thus, the same algorithm was 

tested for 2 seconds of epoch length for emotive dataset1. But it was observed that for the 

less than 2 seconds of epoch length, the OA detection algorithm missed some of the eye 

blinks getting detected as shown in Fig.19. This was probably due to the eye blink occur-

ring at the end of the epoch. To overcome this issue, overlapping concept of every epoch 

was introduced as described in Fig.8 and as a result, even for the epoch length as small as 

0.5 seconds, the eye blinks were detected without getting missed even a single one. With 

overlapping technique to detect the OA, threshold function (7) was found consistent.    

  

 

 

 

 

 

 

 

 

   Fig.19: Undetected eye blinks by OA detection without overlapping method 
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• OA Removal 

      As discussed before, OA removal algorithm uses WT based de-noising technique and 

it was applied only to the detected OA zones rather than to the entire EEG epoch. Thus, 

only on detection of the OA zone, OA removal code gets executed otherwise it is skipped 

and hybrid algorithm seeks for the next EEG epoch. As per the section 3.1.2, SWT and 

DWT both were implemented initially to remove the detected OA from EEG and com-

pared for their performances to select one out of the two for the final OA removal 

method. It was evident from the result shown in Fig.20 that the processing time of DWT 

was much lesser than SWT as predicted because of their individual processing methods 

of down-sampling and up-sampling respectively. The Fig.20 shows processing time com-

parison for each eye blink in the considered dataset. And looking to the real-time and 

hardware applicability, DWT was selected for the final hybrid OA removal algorithm.   

    

 

 

 

 

 

 

                   Fig.20: Processing time bar plot DWT Vs SWT 
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coif3/5 and bior4.4 were evaluated for their performances. It was observed that wavelet 

function effectiveness was subjective depending on the individual’s eye blink shape. But 

bior4.4 was found to be consistent with majority of the datasets and all results shown 

here used bior4.4 wavelet function. For the threshold based de-noising, the detailed coef-

ficients of levels 3-7 for Emotive and levels 4-8 for NM were compared with threshold 

value and made to ‘0’ if exceeded the threshold value. The eye blink occurs between 0-

16Hz and the detail coefficients for the levels 3 to 7 and 4 to 8 belong to the frequency 

range of 0.5 - 16Hz [28] for the respective devices. The frequency band information at 

each DWT decomposition level is as mentioned below:  

Decomposition    

level 

Frequency bandwidth 

(Hz) 

Decomposition    

level 

Frequency bandwidth 

(Hz) 

D1 64-128 D5 4-8 

D2 32-64 D6 2-4 

D3 16-32 D7 1-2 

D4 8-16 D8 0.5-1 

 

      Finally, the reconstruction was carried out by replacing these de-noised chunks with 

the original signal to form the clean EEG.                 

      For the OA removal algorithm evaluation, as per the Table.2, total 4 datasets were used 

to verify the OA removal algorithm out of which one dataset belonged to Emotive EEG 

device, whereas remaining three were of NM device as finally the hybrid algorithm was to 

be implemented on NM device only. All results are plotted for the raw EEG Vs de-noised 

EEG after OA removal along with zoomed plot using bior4.4 wavelet function. The Emo-

tive dataset results are shown in Fig.21, although it was observed that db6 worked better 

for this particular dataset. Also it is evident from Fig.21 that de-noising was carried out 

only in OA Zone and non-OA zones remained entirely intact without modifying any EEG 

information in that region. 
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Fig.21: OA removal results for Emotive device (subject-1) 

 

 

      For all NM device datasets comprising two channels of three different subjects, 

bior4.4 showed equivalent satisfactory results out of which one dataset (channel1) result 

is mentioned in Fig.22 whereas others are shown in result section of Chapter 5. 

 

 

 

 

 

 

 

 

   

 

Fig.22: OA removal results of NM device (channel-1(FP1) subject-2) 
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 Discussion: It was noticed after de-noising in OA Zone that at times the edges had sharp 

drops or falls as visible in Fig.20. One possible reason of this might be the abrupt OA-

zone cut-off from the regular EEG signal. Also from Fig.22 it is evident that artifacts 

other than OA didn’t get detected or de-noise.  

      After this developmental phase of MATLAB based offline algorithm evaluation, the 

hybrid OA removal algorithm was finalized with algebraic method based OA detection 

and DWT based OA removal using bior4.4 wavelet function by implementing overlap-

ping of EEG epochs having 0.5 second of length for NM EEG device.      

4.4.1.2   C based algorithm  

                      Offline C language based code was simply the prototype of online C based 

microcontroller implementable OA removal code which was developed similar to the 

MATLAB based finalized hybrid algorithm using Visual Studio 2010 software tool. The 

verification of the offline C code was done in MATLAB by comparing MATLAB and C 

code very precisely at every step of the algorithm, refer Fig.23. 

   

 

 

 

 

 

 Fig.23: Block diagram of C based algorithm implementation in offline mode 
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wavelet was used to decompose the EEG epoch using DWT for all the datasets as that 

matched the most with the shape of the eye blinks of different subjects producing satis-

factory results. The C based algorithm was basically developed for implementing it on 

MCU and thus, as a first stepping stone, to simplify and reduce the algorithm complexity, 

instead of bior4.4 wavelet, haar wavelet was implemented.  

      A haar wavelet is the simplest type of wavelet and it serves as a prototype for all the 

other wavelet transforms. The Haar transform decomposes a discrete signal into approxi-

mation and detailed coefficients each of half its length. The approximation coefficients 

are the running average whereas the detailed coefficients are the running difference. The 

precise formula for the approximation (am) and detailed (dm) coefficients for the discrete 

signal f of length N are given as (9) and (10) respectively, for m = 1, 2, 3, …., N/2. [29] 

 

                                                    E� =  F��G� F��
√�                                               (9) 

                                          I� =  F��G	 F��
√�                                             (10) 

 

      The discrete signal under process was EEG signal of length 128 samples (i.e. 0.5 sec 

data - using 256 sps) and another minor change made to induce simplicity was that the 

signal decomposition levels instead of eight, seven was performed using haar wavelet 

(without compromising with the result accuracy). For the threshold based de-noising,  

levels 4-7 (0.5 - 16 Hz) were compared with threshold value for de-noising purpose. The 

graphical representation of the decomposed signal vector is shown in Fig.24. Finally,     

inverse DWT for the signal reconstruction was carried out as per (11) to retrieve the clean 

EEG. 
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               J =  K>L� �
√� ? , >L	 �

√� ? , . . , >LM/�� �M/�
√� ? , >LM/�	 �M/�

√� ?O                  (11) 

 

 

 

 

 

Fig.24: Graphical presentation of DWT based decomposed signal vector 

       

      NM device datasets of two subjects were tested to verify C code based OA removal 

algorithm against the same MATLAB algorithm results using haar wavelet. Comparative 

results are shown in Fig.25 and Fig.26 which clearly depicts that the developed C code 

gave better to equivalent results when compared with MATLAB based algorithm outputs. 

 

 

 

 

 

 

 

 

 

 

 

Fig.25: Hybrid algorithm results for NM device (C based – offline mode) (subject-1) 
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Fig.26: Hybrid algorithm results for NM device (C based – offline mode) (subject-2) 

                (a) MATLAB result, (b) C based result 
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of the 40 samples of overlapping method, on the receipt of every 0.5 second (128 sam-

ples) EEG data, 88 samples were stored as a clean EEG output and last 40 samples were 

reconsidered as a part of new epoch of 128 samples, refer Fig.8.             

 

 

 

 

 

 

 

 
Fig.27: Block diagram of MATLAB based algorithm implementation in online mode 
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Fig.28: Online mode – MATLAB based hybrid Algorithm result (channel-1, subject-1) 

 

 

 

 

 

 

 

 

 

 

 

Fig.29: Online mode – MATLAB based hybrid Algorithm result (channel-1, subject-2) 
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4.4.2.2  C based algorithm  

                      Online C based hybrid OA removal algorithm was developed to be exe-

cuted in real-time on PSoC-3 MCU situated on NM board. The PSoC-3 MCU of NM de-

vice was already in-use for recording EEG in real-time settings and sending EEG data 

wirelessly to the user console. Thus, this existing hardware was chosen to implement the 

hybrid OA removal algorithm for the algorithm verification purpose. The verified C 

based hybrid OA removal algorithm in offline mode was combined with PSoC-3 based 

EEG acquisition software (described in section 4.3.1) and finally the raw EEG along with 

the clean EEG was transmitted wirelessly using Bluetooth communication. This wire-

lessly sent output buffer was received remotely on MATLAB based user console, where 

scaling of the received raw EEG along with mean adjustment was carried out to compare 

with PSoC-3 processed and de-noised EEG, for the online C based algorithm verification. 

The entire process is illustrated as block diagram in Fig.30. The software tool used to 

program PSoC-3 MSU, was ‘PSoC creator 3.0’ whereas the remote data acquisition soft-

ware was written in MATLAB (refer section 4.3.2).    

          

 

 

 

 

 

 

 

Fig.30: Block diagram of C based algorithm implementation in online mode 
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• Overlapping method implementation challenge: Main challenge for the online C 

based hybrid OA removal method was to implement the overlapping of the epochs in 

real-time. This was carried out using the single ring-buffer technique. The size of the ring 

buffer designed in the code was 768 bytes long where 16-bit ADC sampled EEG data 

gets stored at every 3.9 ms (256 sps) on ADC generated interrupt. The respective inter-

rupt service subroutine (ISR) stored two bytes (16-bit sample) sequentially in ring buffer. 

The ring-buffer was indexed with ‘LAST’ and ‘FIRST’ variables as ‘put index’ and ‘get 

index’ respectively. On every 16-bit ADC data arrival, ISR gets executed where two 

bytes were stored in ring buffer at the locations pointed by the put index – LAST. The get 

index – FIRST was used to fetch the samples for processing from ring buffer in main pro-

gram running in real-time. The ISR execution graphical representation is given in Fig.31. 

‘OverFlow’ variable is set to ‘1’ whenever LAST crosses the buffer size and gets reset to 

starting index ‘0’. As in Fig.31, the race condition between FIRST and LAST was also 

checked whenever OverFlow was ‘1’ and avoided new sampled data to get stored by 

holding (dropping) them.   

 

              

 

 

 

 

 

 
Fig.31: Graphical presentation of ADC ISR execution steps 
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• Microcotroller implemented program flow: Fig.32 illustrates the overall main pro-

gram flow implemented on PSoC-3 MCU comprising ring buffer access, steps to perform 

epoch overlapping, OA detection, OA removal, output data buffer formation and its serial 

transmission. The code is attached in Appendix A. In the flowchart of Fig.32, the ‘count’ 

indicates the output buffer packet number which was incremented after every output 

buffer transmission. In the algorithm, for the very first EEG epoch i.e. processing at the 

time zero, ‘count’ value was ‘0’, when 128 samples were fetched from the ring buffer 

starting from the location pointed by the global variable get index-FIRST. For all other 

consecutive EEG epochs, only 88 samples of new data from ring buffer pointed by 

FIRST were fetched because the last 40 samples from previous epoch were considered as 

the starting 40 samples for the next epoch out of total 128 samples to be processed.   

‘Valid_Data’ holds the count of available data between the two ring buffer indexes, 

LAST and FIRST for the next epoch processing. The ‘y1’ buffer holds the scaled and 

mean adjusted actual 128 samples of raw EEG as input for the on-chip OA detection and 

removal algorithm to get the de-noised EEG in real-time. ‘Clean_EEG’ is the output 

buffer of length 537 bytes which is finally transmitted wirelessly using Bluetooth serial 

communication. The ‘Clean_EEG’ buffer is comprised of three parts: Header (9 bytes), 

raw EEG (88 x 2 = 176 bytes) and clean EEG (88 x 4 = 352 bytes). The raw EEG data 

being 16-bits long, occupied 2-bytes whereas clean EEG data was the outcome of hybrid 

OA removal algorithm having float values, occupied 4-bytes per data sample. Consider-

ing overlapping method, for the processed EEG of array ‘y1’, always the first de-noised 

88 samples were stored in ‘Clean_EEG’ buffer as clean EEG whereas for the raw EEG, 

overlapping of the data was performed as shown in Fig.33.             
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Fig.32: Online mode C based main program flowchart implemented on PSoC-3 MCU 
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Fig.32: Online mode C based main program flowchart implemented on PSoC-3 MCU 

 

 

 

 

 

 

 

 

Fig.33: Graphical presentation of real-time overlapping method implementation 
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     For the 1st data packet (i.e. count =0), out of 128 new data fetched from ring buffer, 

initial 88 samples were stored in ‘Clean_EEG’. The last 40 samples were moved to the 

temporary buffer which was then stored in ‘Clean_EEG’ for all the next epochs (i.e count 

> 0) followed by next new 48 samples as shown in Fig.33. The ‘Clean_EEG’ output 

buffer formation is indicated in Fig.34 (a). In 9-bytes long header, 1st byte contains the 

start-up key designated as character ‘D’ which was extracted at the remote user console 

to authenticate the start of the received packet and the packet count was stored as 8th and 

9th bytes. The intermediate 6 bytes were utilized to store up to three detected OA zone 

sample locations in pairwise manner (starting edge and ending edge) per epoch. The 

header formation described is represented graphically in Fig.34 (b). 

 

 

 

 

 

 

 

               
Fig.34: (a) ‘Clean_EEG’ output buffer formation, (b) Header formation 
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online C based code. For this purpose, only the code with ring buffer performing overlap-

ping for raw and clean EEG was tested in real-time, by skipping off OA detection and re-

moval algorithms for the instance. To authenticate the performance of the ring buffer in 

real-time, the raw and clean EEG should contain exactly the same data at the receiver as 

no OA removal processing is carried out for this test. The implemented ring buffer and 

overlapping methods worked perfectly without any mismatch. The raw and clean EEG 

received at the user console were plotted for comparison and it was observed that both 

matched one to one without any discrepancy, refer Fig.35.  

 

 

 

 

 

       

 

 

 

 

 
Fig.35: Ring buffer output comparison on user console – online mode (C based) 
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datasets of EEG recordings from single subject and results for dataset1 is shown in Fig.36 

(a). The detected OA zones for dataset1 is shown in Fig.36 (b), where the snapshots of 

MATLAB results of ‘Clean_EEG’ array header contents (index 1 to 9) are highlighted. 

Every packet of length 537 bytes starts with character ‘D’ (received as ‘68’), next 6 bytes 

contains the OA zones if detected followed by the packet count numbers as highlighted in 

the Fig.36 (b).  

Discussion: Before the OA zone was detected, there were total 9 complete packets hav-

ing 88 samples in each. Thus, the calculation for OA zone for the 10th packet as detected 

is shown in the Fig.36 (b), which matched with the actual position of the eye blink. This 

shows that OA detection algorithm worked perfectly on PSoC-3 hardware in real-time  

accurately. Accordingly, the de-noised eye blink zone is noticeable in Fig.36 (a) which 

depicts that also the OA removal algorithm implemented on PSoC-3 MCU performed  

satisfactorily as desired in the online mode.  

• Challenges faced:  

1. The original order of FIR filter implemented was 74. But it was observed that im-

plementing this higher order FIR on hardware for real-time operation, the MCU pro-

cessing became very slow and remotely received EEG data encountered some packet 

misses. This slow processing was resolved by reducing the FIR filter order down to 38 by 

considering small interval ‘T’ (refer section 3.1) as 0.15 seconds instead of original 0.29 

seconds.   

2. The small region of the raw and clean EEG as zoomed-in plots for dataset1 is 

shown in Fig.37. It was observed that in non-OA zone, both of the signals had little dis-
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crepancy and didn’t overlap on each other. After investigating it was found that the rea-

son for this mismatch was the difference in mean adjustment done for raw and clean 

EEG. For the clean EEG, mean was calculated in real-time on PSoC-3 MCU whereas for 

the raw EEG, it was carried out in offline mode in MATLAB before comparative results 

study. Thus, the epoch length considered for calculating mean differed in both cases 

which ultimately resulted in little mismatch or non-overlapping EEG samples as shown in 

Fig.37. Though this does not create much adverse effect on the received EEG signal but 

the mismatch problem can be resolve by adding small MATLAB script to extract and cal-

culate the exact epoch considered in real-time on PSoC-3 using the information of actual 

packet count received on the user console and then carry out the mean for raw EEG. This 

additional MATLAB script can help to resolve the mismatch issue which has not been 

implemented here in the thesis work. Also this mismatch still implies that the EEG infor-

mation in non-OA zone remained unchanged as there was no OA detection in that region.     

 

 

                              

 

 

 

 

 

 

 

Fig.36: (a) Online mode – C based hybrid Algorithm result (FP1 – dataset1) 
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Fig.36: (b) Verification of OA zone detection C based algorithm in real-time (dataset1) 
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Chapter 5 

RESULTS AND PERFORMANCE EVALUATION 

5.1 OA Detection and Removal Results 

      In chapter 4 along with the methodology, the respective results achieved were pre-

sented in detail for some of the datasets. In this section the remaining datasets for each 

offline and online modes which were not covered up in previous chapter, are presented 

with required discussion. The results of offline C based algorithm for all datasets were 

mentioned in previous chapter and thus it has not been included in here.   

5.1.1 Offline MATLAB based algorithm 

               The offline MATLAB based algorithm results are presented in two parts: 

                i.) OA detection results ii.) OA removal results 

• OA detection results: 

               The OA detection algorithm results of datasets (Emotive device – 128 sps) for 

subject-2 and subject-3 are as shown in Fig.38 and Fig.39.  

Discussion: 

      It is evident from the results that OA detection algorithm detected existing eye blinks 

in EEG accurately without detecting the noise present as other artifact. The detected start-

ing and ending edge of the eye blink exactly pointed the OA position in the raw EEG  

signal. 
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Fig.38: OA detection results for Emotive device (dataset-2) 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.39: OA detection results for Emotive device (dataset-3) 
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• OA removal results: 

            Offline MATLAB based OA removal algorithm results for the subjects 3 and 4 

for channel1 (FP1) and for the subjects 2, 3 and 4 for channel2 (FP2) are shown in 

Fig.40, Fig.41 and Fig.42.   

 

 

 

 

 

 

 

 

 

 

                 Fig.40: OA removal results of NM device (channel-1(FP1) subject-3) 

 

 

 

 

 

 

 

 

                       

 
Fig.41: OA removal results of NM device (channel-1(FP1) subject- 4) 
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            Fig.42: OA removal results of NM device (channel-2(FP2), subjects 2, 3 & 4) 

      The subject-2 dataset had total 5 OA, subject-3 had 6 OA and subject-4 had total 9 

eye blinks in the EEG recording which all were removed using DWT decomposition 

method with bior4.4 successfully. It was observed that in non-OA zone the background 

EEG information was not modified at all by retaining all important information. 

5.1.2 Online MATLAB based algorithm 

               Out of the total 4 subjects EEG data captured in real-time, results of subjects 3 

and 4 for MATLAB based hybrid OA removal algorithm in online mode is presented in 

Fig.43 and Fig.44.  

 

 

(a) Subject-2,  channel -2 (FP2) EEG plot 

 

(b) Subject-3,  channel -2 (FP2) EEG plot 

 

(c) Subject-4,  channel -2 (FP2) EEG plot 
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Fig.43: Online mode – MATLAB based hybrid Algorithm result (channel-1, subject-3) 

 

 

 

 

 

 

 

 

 

 

 

Fig.44: Online mode – MATLAB based hybrid Algorithm result (channel-1, subject-4) 
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      As shown in Fig.43, the subject-3 blinked consecutively four times in 1sec to 2.5 sec 

duration. It was observed that even for such immediate occurrences of eye blinks in real-

time, the hybrid OA removal algorithm, worked accurately for OA detection as well as 

removal of the exact OA zones in EEG. Again the non-OA zone remained unchanged and 

retained original EEG information for both subjects 3 and 4.     

5.1.3 Online C based algorithm  

               This result category belongs to when hybrid OA removal algorithm was imple-

mented on PSoC-3 MCU mounted on NM EEG device and evaluated in real-time. The 

performance of the C based hybrid algorithm implemented on MCU in real-time was 

tested using total three real-time EEG acquisitions from single subject. Out of them for 2 

datasets, the overall hybrid OA removal algorithm performance results in real-time are 

shown in Fig.45 (a) and Fig.46 (a). The results in Fig 45 (b) and Fig 46 (b) illustrates and 

maps the position of the detected OA zone on actual EEG signal for verification. 

For the simplicity in algorithm to be implemented on PSoC-3 MCU, OA removal tech-

nique used DWT decomposition with the very simplest wavelet function haar. The real-

time algorithm implemented ring buffer (refer section 4.4.2.2) to perform overlapping 

method along with hybrid OA detection and removal algorithm and Fig.45 (a) and 

Fig.46(a) reveals that the microcontroller hardware implementation of the same, worked 

efficiently. Also Fig 45(b) and Fig.45 (b) clearly indicates that the OA detection algo-

rithm accurately detected and removed the eye blinks in real-time.  
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Fig.45: (a) Online mode – C based hybrid Algorithm result (FP1 – dataset2) 

 

 

 

 

 

 

 

 

 

 

 

Fig.45: (b) Verification of OA zone detection C based algorithm in real-time (dataset2) 
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Fig.46: (a) Online mode – C based hybrid Algorithm result (FP1 – dataset3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.46: (b) Verification of OA zone detection C based algorithm in real-time (dataset3) 
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5.2 Performance Evaluation 

       For the validation of the developed hybrid OA removal technique, Time-Frequency 

Analysis (TFA), Magnitude Square Coherence (MSC) plot and two statistical parameters: 

Correlation of Coefficient (CC) and Mutual Information (MI), are utilized. 

5.2.1 Performance Metrics 

• Time-Frequency analysis: 

              The EEG being non-stationary signal, the wavelet based time-frequency analysis 

is one of the most suitable methods to analyze EEG. It provides the information of energy 

of the frequencies exiting at a given time simultaneously. The TFA is carried out here us-

ing EEGLAB [24] function. 

• Magnitude Square Coherence: 

              MSC plot is generated using the MATLAB function ‘mscohere’. MSC gives the 

estimate of the frequency coherence between the two signals x and y, where values 

between 0 and 1 indicates how well signal x corresponds to y at each frequency. The 

MSC is a function of the power spectral densities, Pxx(f) and Pyy(f), of x and y, and the 

cross power spectral density, Pxy(f), of x and y as given in (12). 

 

                                               PQR�J� =  STUV�F�S�

TUU�F�TVV�F�                                        (12) 

 

      Power spectral densities are calculated over FFT length of 256 with 50% overlapped 

Hamming window using MATLAB mscohere function. 

• Correlation of Coefficient: 

             CC computes the similarity between the raw and corrected EEG signals. 

MATLAB (MathWorks Inc., Natwick, MA) function ‘corrcoef’ is used to determine it 
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and result ranges between 0 being no match at all and 1 being exact match. CC is sepa-

rately computed for non-OA zone and OA zone to clearly show the correlation in respec-

tive areas. 

• Mutual Information:  

             MI measures how much one random variables tells us about another. The higher 

the value of MI metric, the better the mutual information content. The open source 

MATLAB function minfo.m developed by Dr.Jason Palmer [online] (available at: 

http://sccn.ucsd.edu/~jason/minfo.m) is used to compute MI. 

5.2.2 Performance Evaluation Results 

5.2.2.1  Offline MATLAB based algorithm 

1. Time – Frequency Analysis 

                   The TFA was carried out for total four subjects where for subject-1 (Emotive 

device) TFA plot was generated for Raw Vs Clean EEG for the epoch length of 6sec to 

68sec whereas for remaining three (NM device) subjects, it was 5sec to 34sec as shown 

in Fig.47 to Fig.50 respectively.     

• Dataset-1 (Subject-1: single channel)  

 

 

 

 

 

 

 
                    Fig.47: Time-Frequency Analysis plot for subject-1 EEG data 
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• Dataset-2 (Subject-2: two channels) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.48: Time-Frequency Analysis plot for subject-2 EEG data                                            

(a) Channel-1 (FP1) (b) Channel-2 (FP2)             

 

 

• Dataset-3 (Subject-3: two channels) 

 

 

 

 

 

 

 

 

 

 

      Fig.49: Time-Frequency Analysis plot for subject-3 EEG data                                                 

(a) Channel-1 (FP1) (b) Channel-2 (FP2) 
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• Dataset-4 (Subject-4: two channels) 

 

 

 

 

 

 

 

 

Fig.50: Time-Frequency Analysis plot for subject-4 EEG data                                                

(a) Channel-1 (FP1) (b) Channel-2 (FP2) 
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EEG by suppressing OA from raw EEG worked as anticipated.     

2. Mean-Squared Coherence 

            Next performance evaluation considered was MSC between raw and clean EEG. 

For the lower frequency components where OA resides should show less coherence 

whereas higher than 16 Hz frequency components should show maximum coherence with 
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raw EEG. The results of MSC plots for the frequencies between 0 – 40 Hz are shown in 

Fig.51 to Fig.54.     
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• Dataset-1 (Subject-1: single channel) 

 

 

 

 

                                                             

Fig.51: MSC plot for raw Vs clean EEG (subject-1) 

 

• Dataset-2 (Subject-2: two channels) 

 

 

 

 

 

Fig.52: MSC plot for raw Vs clean EEG (subject-2) 

                                            (a) Channel-1 (FP1) (b) Channel-2 (FP2) 

 

• Dataset-3 (Subject-3: two channels) 

 

 

 

 

 

Fig.53: MSC plot for raw Vs clean EEG (subject-3) 

          (a) Channel-1 (FP1) (b) Channel-2 (FP2) 
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• Dataset-4 (Subject-4: two channels) 

 

 

 

 

 

Fig.54: MSC plot for raw Vs clean EEG (subject-4) 

          (a) Channel-1 (FP1) (b) Channel-2 (FP2) 

 

      The coherence between the frequencies higher than 16 Hz should be 1 as DWT based 
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observed in MSC plots, the frequencies higher than the 16 Hz also are getting modified. 

This variances of higher than 16 Hz frequencies were affected differently with different 

wavelet functions used and this requires further investigation. Although, the less coher-

ence values in lower frequency range 0.5-16 Hz shows significant removal of artifacts.    

3. Coefficients of Correlation & Mutual Information 

 

Table.3: PERFORMANCE METRICS FOR CC AND MI FOR OFFLINE MODE (MATLAB BASED)  
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      Table.3 shows the CC and MI for each datasets where CC has been tabulated for the 

each OA zone (blink) present in the respective EEG signal whereas MI calculated over 

the entire dataset. For calculating CC for every blink, OA zones were selected manually 

with visual inspection. For subject-1 only single channel EEG evaluation was carried out 

whereas for all three other subjects CC and MI for both channels are mentioned. Due to 

the manual selection of OA zone for computing CC, there might be some variation in the 

values but overall it clearly indicates that OA zones were satisfactorily removed from 

contaminated EEG to obtain clean EEG. It is to be noted that CC and MSC for all of the 

non-OA zones were ‘1’, which indicated that the entire EEG information in terms of   

amplitude and frequency both, in non-OA zone were intact and completely preserved.      

5.2.2.2  Online C based algorithm  

                      To verify the performance of online C based algorithm, only CC was com-

puted for OA and non-OA zone for all existing eye blinks in the all the three datasets and 

the results are tabulated below: 

 

Table.4: PERFORMANCE METRICS FOR CC FOR ONLINE MODE (C BASED) 

 

 

 

 

 

 

  

 

Dataset Zone 
Correlation of Coefficient 

Blink 1 Blink 2 

1 
OA zone 0.2476 NA 

Non- OA 0.9981 

2 
OA zone 0.1255 NA 

Non- OA 0.9459 

3 
OA zone 0.6303 0.6096 

Non- OA 0.9839 
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      From the lesser values of CC in the OA zone in the above table, it is evident that the 

EEG got de-noised by suppressing the eye blink spikes. Whereas it was also observed 

that like in all other cases, non-OA zone CC was not ‘1’. The reason for this is mentioned 

before that there exist little discrepancy in both received raw EEG and cleaned EEG in 

real-time because of the mean adjustment calculation difference. But even then the CC 

values for non-OA was obtained nearly equal to ‘1’ which indicated that both the raw and 

clean EEG signals differ insignificantly and thus preserves the critical neural information 

in that region. 

      Finally, the Table.5 lists the total flash memory and RAM utilized by the Microcon-

troller implemented proposed OA removal algorithm. From the Table.5 it is clear that the 

entire code implemented on PSoC-3 has not utilized more than 30% of the flash memory 

and still there exist significant space for any additional algorithms such as for feature ex-

traction or characterization to be implemented along with the proposed hybrid OA re-

moval algorithm to make the EEG data capturing and its analysis entirely in real-time and 

micro-controller hardware implementable.  

 

Table.5: MICROCONTROLLER UNIT MEMORY USAGE SUMMARY 

PSoC-3 CY8C38 family 8-bit 8051 CPU 

RAM 8 KB 

Flash memory 64KB 

Used RAM 67.9% (5.56KB) 

Used Flash memory 28.1% (18.1KB) 
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Chapter 6 

CONCLUSION AND FUTURE SCOPE 

6.1 Conclusion 

       In this thesis, a hybrid algorithm to remove OA from single channel EEG data is pro-

posed which comprised of algebraic method based OA detection, followed by DWT     

decomposition based OA removal technique. DWT was chosen over SWT mainly for its 

faster operational speed. The developed algorithm was tested in real-time settings using 

MATLAB based algorithm running on user console as well as C based algorithm running 

on actual hardware of PSoC-3 MCU.  

      The chapter 2 described the various existing OA removal techniques suitable for    

single EEG channel such as different WT based methods, EMD-CCA based algorithm 

and Algebraic method to detect the irregularity in the signal (eye blink in EEG). After the 

review, in order to have the algorithm to be real-time applicable and the hardware imple-

mentable, the methods using less computational complexities were chosen. Accordingly, 

the Algebraic method to detect the OA and DWT based de-noising technique was final-

ized for hybrid OA removal algorithm.  

      In chapter 3, basic theory for each method, i.e. Algebraic and DWT were covered up 

to give sufficient mathematical background. The algebraic method basically used FIR fil-

ter to get the coefficients to be compared with the threshold value to detect the change 

point in the considered small interval signal. DWT based decomposition was carried out 

up to level-8 and detail coefficients from frequency range of 0.5-16 Hz were suppressed 

if they exceeded the threshold value to get the de-noised EEG signal by reconstructing     

using inverse DWT. The chapter 3 also illustrated the actual implementation method 
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where, algebraic method applied to detect the OA zone and DWT based de-noising was 

applied ONLY to the detected eye blink zones to preserve the low frequency components 

of original EEG in non-OA zone.  

      The chapter 4 was the core content chapter describing every method in detail with re-

spective results. It showed the relevant results to demonstrate that the developed algo-

rithm worked efficiently in both offline and online modes using MATLAB and C based 

algorithm strategies. In this chapter it was also clearly indicated that how the overlapping 

method improved the real-time functionality of the hybrid algorithm. The key conclusion 

which can be derived from chapter 4 is that the implemented hybrid algorithm was suita-

ble for single channel EEG as well as microcontroller executable in online mode. For the 

MCU based algorithm implementation, ring buffer technique was introduced to realize 

overlapping of 0.5 sec EEG epochs in real-time. 

      In the chapter 5, all achieved results in offline and online modes using MATLAB and 

C based code were clearly shown. It was concluded that the algorithm was efficient 

enough to detect and remove OA for consecutively occurring eye blinks and online mi-

crocontroller hardware executable algorithm written in C demonstrated successful OA 

detection and respective de-noising in real-time. The second part of the chapter 5, was 

dedicated to mention the performance metrics for the implemented hybrid OA removal 

algorithm. The Correlation of Coefficient and Magnitude Squared Coherence plot indi-

cate that the raw EEG signal completely matches with the corrected EEG signal in non-

OA zone. This concludes that the algorithm output, i.e. de-noised EEG, does not impact 

the useful EEG information in non-OA zone by retaining its all values as original raw 
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EEG. In the OA zone, the neuronal information were retained while artifacts were signifi-

cantly suppressed. This shows effectiveness of applying WT de-noising only to the Eye 

blink zone rather than entire signal. The TFA plots and MI values derived the conclusion 

about successful suppression of lower frequency components in OA zones and sufficient 

mutual information between the raw and clean EEG respectively. Also the MSC variation 

for the frequencies higher than 16 Hz was required to be investigated.   

      Thus, the thesis work presented here concludes that the Implemented hybrid OA re-

moval algorithm was:  

• Suitable for single EEG channel  

• Online Applicable by processing as small as 0.5 second EEG epoch in real-time 

• Found accurate detection of eye blinks without missing them at the boundary of 

the epoch because of the epoch overlapping technique addition. 

• Capable of preserving important background EEG information in non-OA zones 

• Successfully implemented on microcontroller hardware to achieve satisfactory 

OA detection and removal results in real-time settings.    

• This is probably the first work done to detect and then remove OA from single 

channel EEG in real-time implemented on microcontroller unit on actual EEG  

device.  

       Moreover, this hybrid approach can also be applied for any number of multichannel 

EEG systems making it versatile in nature.  
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6.2 Future Scope 

         The determination of threshold function was found very challenging in OA detec-

tion and WT based de-noising technique. The OA removal algorithm developed can be 

made robust and device independent by investigating more on best suitable threshold 

function for the given objective. The microcontroller implemented hybrid algorithm was 

verified using the simplest wavelet function, haar. The algorithm further can be furnished 

to be efficient using more relevant wavelet function for proper OA removal from EEG. 

      The algorithm was implemented on NM device which uses BT to transmit EEG wire-

lessly. The algorithm can be upgraded for more sophisticated network communication 

channels. This can lead to more promising algorithm application area in ‘Wearable tech-

nologies’ and ‘Internet of Things’. The MCU implemented OA detected algorithm in 

real-time can be further optimized to run faster in nearly real-time by implementing lower 

order FIR filter. Also to optimize the MCU hardware implemented DWT based de-nois-

ing algorithm, instead of implemented recursive low pass and high pass filtering, sequen-

tial and parallel DWT techniques can be utilized to increase efficiency in terms of com-

putation requirements, storage requirements and reconstructed signal with better signal-

to-ratio [30]. 

      Finally, OA removal algorithm can further be developed to make it generic for other 

artifacts removal generated in EEG, such as artifacts due to ECG, muscle movements, 

etc. such that EEG signal feature extraction and characterization can be implemented 

along with the proposed algorithm for entirely automatic EEG analysis and processing in 

real-time using single channel EEG on microcontroller hardware. 
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APPENDICES 

 

A: OFFLINE MATLAB BASED OA REMOVAL CODE 
 
% Offline mode: MATLAB based hybrid OA detection and removal algorithm 
% Considering 128 samples EEG epoch  
% WT denoising applied using DWT; level = 8 
% By: Charvi Majmudar: 01/25/2015 (Thesis work) 

  
clc; close all; clear all; 

  
%%================== Offline mode EEG Data reading =================== 
%% EMOTIVE Device datasets -------------------------------------------- 
filename = 'Fp1.csv';                  % Dataset-1 (subject1) 
% filename = 'Fp1_1.csv';                % Dataset-2 (subject2) 
% filename = 'ManNorm.csv';              % Dataset-3 (subject3) 
y2 = csvread(filename); 
y2 = y2(1:8961,1); 

  
%% Neuromonitor (NM) Datasets ----------------------------------------- 
% a1 = csvread('final_value.csv');        % Dataset-4 (subject4) 
% channel1= a1(:,1); 
% channel2= a1(:,2); 
% Ch1_offclean= mean(channel1)-channel1;  % - ve because Inverting 

opamp %output 
% Ch2_offclean=-(channel2- mean(channel2));  
% y2 = Ch2_offclean; 
% y2 = y2(513:end);                       % ignoring inital 2sec data 
%%===================================================================== 

  
y1 = y2; 
y_swt = y2; 

  
%% intialization .................................................. 
T = 0.29;         % Signal epoch 
Ts = 0.0078;    %sampling rate   128sps 
% Ts = 0.0039;     %sampling rate   256sps 
M = round(T/Ts); 
k = [0 1 2 3]; 
v = 3;            % v >=2 
m = 1:1:M+1; 
tm = Ts.* m;    
K = 2; 
Wm = ones(1,length(m)); 
N = 128; 
Delay = ceil(M/2);   % filter order/2 appx  
wName='bior4.4';     %coif3  coif5 sym3 db5 
level = 8; 
CleanEEG = []; 
CleanEEG_swt = []; 
Overlap = 40; 
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for iter = 1:100     % iteration for every 0.5 sec epoch to process 

entire % EEG signal   
y = y1(1:N);         % 128 samples epoch 
n = (length(y)- M);  % no. of sliding windows 
vkn = zeros(M,n,length(k)); 
array = []; 
y3 = zeros(2^level,1); 
y4 = zeros(2^level,1); 
f = zeros(M,n,K); 
f1 = zeros(M,n); 
f2sec_epoch = zeros(length(y),1); 

  
%% calculating impulse response (hk)----------------------------------- 
g0 = Wm.*((-1)^(k(1)+1))/factorial(v-1).*(4.*tm.*(2.*tm - 2) + 2.*(tm - 

1).^2 + 2.*tm.^2); 

 
g1 = Wm.*((-1)^(k(2)+1))/factorial(v-1).*(-12.*tm.*(tm - 1).^2 - 2.*(tm 

- 1).^3 - 3.*tm.^2.*(2.*tm - 2)); 

 
g2 = Wm.*((-1)^(k(3)+1))/factorial(v-1).*(16.*tm.*(tm - 1).^3 + 2.*(tm 

- 1).^4 + 12.*tm.^2.*(tm - 1).^2); 

 
g3 = Wm.*((-1)^(k(4)+1))/factorial(v-1).*(-20.*tm.*(tm - 1).^4 - 2.*(tm 

- 1).^5 - 20.*tm.^2.*(tm - 1).^3); 

 
%% FIR filter --------------------------------------------------------- 
for j = 1:n   
      vkn(:,j,1) = filter(g0, 1, y(j:(j+M-1)));     %k = 0       
      vkn(:,j,2) = filter(g1, 1, y(j:(j+M-1)));     %k = 1      
      vkn(:,j,3) = filter(g2, 1, y(j:(j+M-1)));     %k = 2       
      vkn(:,j,4) = filter(g3, 1, y(j:(j+M-1)));     %k = 3       
end 
 

%% Volterra Filter for decision function calculation ------------------ 
for s = 1:K      
    for r = 1:n 
    f(:,r,s) = (vkn(:,r,s+1).^2) - (vkn(:,r,s).* vkn(:,r,s+2));      
    f(:,r,s) = (max(0,f(:,r,s))/1000000);     
    end 
end     
for d = 1:n 
    f1(:,d) = f(:,d,1).* f(:,d,2);     
    f2sec_epoch(d:d+M-1) = f2sec_epoch(d:d+M-1) + f1(:,d);    
end 

  
%% Threshold Function ------------------------------------------------- 
Gamma1 = 0.001/(mean(f2sec_epoch)+ std(f2sec_epoch)); 

  
Threshold = (f2sec_epoch > Gamma1); 
Threshold = Threshold'; 
%% OA Zone detection -------------------------------------------------- 
ind = find(Threshold); 
ii = 1; 
while(ii <= (length(ind)-2)) 
    temp = ind(ii); 
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     while((ii < length(ind)) && ((ind(ii+1) - ind(ii)) == 1))           
         ii = ii+1; 
     end 
    Edge_start = max(1, temp – Delay -10);   % to avoid -ve index...so 

min. it   % can take is '1' 
    Edge_end = min(numel(y),ind(ii));  % Max 128 can be the OA index 

for % the given epoch 
    array = [array; Edge_start; Edge_end];      
    ii = ii+1; 
end   

  
%% Wavelet Transform Denoising ............................ ......... 
%% DWT 
len1 = 0; 
if(numel(array) ~= 0) 
    for den = 1:2:length(array) 
      y3(1:array(den+1)-array(den)+1) = y1(array(den):array(den+1));          

       
      [C,L] = wavedec(y3,level,wName);      % WT decomposition levle=8 

  
     for iL = 2:1:6            % Detail coefficients from level 4 to 8 
         len1 = len1 + L(iL-1,:); 
         Decoef = C(len1+1:len1+L(iL,:));   % detail coefficients  
         G1 = mad(Decoef,1)*1.5;            % Threshold function 

          
% threshold based denoising........ ......... ......... ......... 
        for u = 1:size(Decoef) 
           if(Decoef(u) > G1) 
             Decoef(u) = 0; 
           elseif(Decoef(u) < -G1) 
             Decoef(u) = 0;  
           else 
             Decoef(u) = Decoef(u);    
           end              
        end 
        C(len1+1:len1+L(iL,:)) = Decoef;  
     end 
     A0 = waverec(C,L,wName);               % Reconstructing signal 
     y1(array(den):array(den+1)) = A0(1:array(den+1)-array(den)+1);   

                                   % replacing with original signal 
   end      
end  
%------------ Steps performed for Overlapping method ------------------ 
CleanEEG = [CleanEEG; y1(1:N-Overlap)]; 
y1(1:N-Overlap) = [];  

  
%% SWT de-noising used for comparison ................................ 
if(numel(array) ~= 0)     
   for den = 1:2:length(array) 
      y4(1:array(den+1)-array(den)+1) = y_swt(array(den):array(den+1)); 
      tic; 
      [swa,swd] = swt(y4,level,wName);      
      for iL = 4:1:level 
         [rw,clm] = size(swd(iL,:));  

          
         G2 = mad(swd(iL,:),1)*1.5; 
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         for u = 1:clm 
           if(swd(iL,u) >= G2) 
            swd(iL,u) = 0; 
           elseif(swd(iL,u) <= -G2) 
            swd(iL,u) = 0;  
           end              
        end 
      end 
     A0 = iswt(swa,swd,wName); 
     y_swt(array(den):array(den+1)) = A0(1:array(den+1)-array(den)+1);      
   end  

      
end  
%----------------------------------------------------------------- 
CleanEEG_swt = [CleanEEG_swt; y_swt(1:N-Overlap)]; 
y_swt(1:N-Overlap) = [];  

  
end 

  
csvwrite('CleanEEG.csv',CleanEEG); 
csvwrite('Raw_Data1_S1.csv',y2(1:length(CleanEEG))); 

  
count = size(CleanEEG,1);    
fs = 256; 
time = 0:1/fs:((((count))/fs)); 
time = time'; 

  
%% DWT time-base plot ………………………………………………………………………………………………………………………… 
figure(1);plot(time(1:end-1),y2(1:length(CleanEEG)),'b-','lin-

ewidth',2); 
hold on; 
figure(1);plot(time(1:end-1),CleanEEG,'r--','linewidth',2); 
xlabel('Time (Seconds)','FontSize',12,'FontName','Arial'); ylabel('Am-

plitude (µV)','FontSize',12,'FontName','Arial'); 
legend('Raw EEG','Clean EEG'); 
title('Raw EEG Vs Clean EEG Signal','FontSize',12,'FontName','Arial'); 

  
figure(3);plot(y2(1:length(CleanEEG)),'b-');    % Sample base DWT 

  
%% Performance Evaluation is shown only for single dataset1: .......... 

  
%% Correlation Coefficients (CC) for OA zones (manually selected) 
%% CC : Dataset1 [FP1] DWT 
CC1 = corrcoef(y2(2937:3028),CleanEEG(2937:3028)); 
CC2 = corrcoef(y2(3561:3649),CleanEEG(3561:3649)); 
CC3 = corrcoef(y2(4225:4266),CleanEEG(4225:4266)); 
CC4 = corrcoef(y2(4837:4878),CleanEEG(4837:4878)); 
CC5 = corrcoef(y2(5485:5568),CleanEEG(5485:5568)); 
CC6 = corrcoef(y2(6091:6194),CleanEEG(6091:6194)); 
CC7 = corrcoef(y2(6800:6889),CleanEEG(6800:6889)); 
CC8 = corrcoef(y2(7428:7517),CleanEEG(7428:7517)); 
CC9 = corrcoef(y2(8100:8140),CleanEEG(8100:8140)); 
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DWT_CC_FP1 = 

[CC1(1,2);CC2(1,2);CC3(1,2);CC4(1,2);CC5(1,2);CC6(1,2);CC7(1,2);CC8(1,2

);CC9(1,2)] 
csvwrite('DWT_CC_DS_1_ch2.csv',DWT_CC_FP1); 
  

 
%% Mutual Information DWT ..................................... 
y2_MI = y2(1:length(CleanEEG))'; 
CleanEEG_MI = CleanEEG'; 
MI_dwt = minfo(y2_MI,CleanEEG_MI) 

  
%% MSCOHERE DWT ............................................... 
[Cxy,F] = mscohere(y2(1:length(CleanEEG)),CleanEEG,[],[],256,128); 
figure;stem(F(1:40),Cxy(1:40),'ko','linewidth', 2);  
title('Magnitude Squared coherence plot[DWT]','FontSize',12,'Font-

Name','Arial'); 
xlabel('Frequency (Hz)','FontSize',12,'FontName','Arial'); 
ylabel('Cxy','FontSize',12,'FontName','Arial'); 

  
%% Time-Freq_Analysis DWT...................................... 
[ALLEEG EEG CURRENTSET ALLCOM] = eeglab; 
EEG = pop_importdata('dataform-

at','ascii','nbchan',0,'data','C:\\Charvi\\Spring_15\\Thesis\\Spike_De-

tec-

tion_Code_Feb12_15\\Raw_Data1_S1.csv','srate',128,'pnts',0,'xmin',0); 
[ALLEEG EEG CURRENTSET] = pop_newset(ALLEEG, EEG, 0,'set-

name','Ch1','gui','off');  
EEG = eeg_checkset( EEG ); 
figure(5);subplot(2,1,1); pop_newtimef( EEG, 1, 1, [6000  69000], [3         

0.5] , 'baseline',[0], 'plotitc' , 'off', 'plotphase', 'off', 'pa-

dratio', 1); 
title('Raw EEG'); 

  
EEG = pop_importdata('dataform-

at','ascii','nbchan',0,'data','C:\\Charvi\\Spring_15\\Thesis\\Spike_De-

tection_Code_Feb12_15\\CleanEEG.csv','srate',128,'pnts',0,'xmin',0); 
[ALLEEG EEG CURRENTSET] = pop_newset(ALLEEG, EEG, 0,'set-

name','Clean_EEG','gui','off');  
EEG = eeg_checkset( EEG ); 
subplot(2,1,2); pop_newtimef( EEG, 1, 1, [6000  69000], [3         0.5] 

, 'baseline',[0], 'plotitc' , 'off', 'plotphase', 'off', 'padratio', 

1); 
title('Clean EEG'); 
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B: ONLINE MATLAB BASED OA REMOVAL CODE 
 

      MATLAB script presented here is a part of the entire code of “data acquisition sys-

tem” for the two GUI buttons: ‘Start’ and ‘Save Data’. Where ‘Start’ button starts the 

online data acquisition with hybrid OA removal algorithm. ‘Save Data’ saves the raw 

EEG, Clean EEG on hard disk for the future analysis purpose.   

 

  
%% Executes on pressing the button "Start" on GUI. 
function data_Callback(hObject, eventdata, handles) 

  
global handle; 
global uC32;  
global chan1_final_uv; 
global chan2_final_uv; 
global time; 
global M; 
global marker; 
global numIteration; 
global Loop_Time; 

  
global raw_data;    
global newraw_data;  % For saving Raw data 
%====== EEG Denoising ===================== 
global y1; 
global CleanEEG; 
global NM_Ch1; 
global NM_Ch2; 
%========================================== 
set(handles.edit3,'String','');  
set(handles.listbox1,'String',''); 
set(handles.listbox2,'String',''); 
set(handles.edit5,'String',''); 

  
oldmsgs = cellstr(get(handles.listbox1,'String')); 
set(handles.listbox1,'String',[oldmsgs;{'Setting Up connection and pro-

files'}]);  % Status msg in GUI 

  
if ismac == 0  
    uC32 = serial('COM4','BaudRate',115200,'DataBits',8, 'Parity', 

'none', 'StopBits', 1,'InputBufferSize',1*534);  
else 
    uC32 = serial('/dev/tty.usbserial-AE00DNQ1','BaudRate',115200,'Dat-

aBits',8, 'Parity', 'none', 'StopBits', 1,'InputBufferSize',1*534);  
end 

  
oldmsgs = cellstr(get(handles.listbox1,'String')); 
set(handles.listbox1,'String',[oldmsgs;{'Serial Port opening...'}]);         

% Status msg in GUI 

  
fopen(uC32) 
oldmsgs = cellstr(get(handles.listbox1,'String')); 
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set(handles.listbox1,'String',[oldmsgs;{'Serial Port opened...'}]);    

% Status msg in GUI 

  
pause(4); 

  
raw_data=[]; 
newraw_data = []; 
chan1_final_uv=[]; 
chan2_final_uv=[]; 
marker=[]; 
Loop_Time=[]; 
NM_Ch1 = []; 
NM_Ch2 = []; 

  
%% ======= Hybrid OA removal algorithm appended here ================== 
%% intialization ...................................................... 
y1 = []; 
CleanEEG = []; 
T = 0.29;        % Signal epoch 
Ts = 0.0039;     %sampling rate   256sps 
M = round(T/Ts); 
k = [0 1 2 3]; 
v = 3;  
m = 1:1:M+1; 
tm = Ts.* m;    
K = 2; 
Wm = ones(1,length(m)); 
N = 128; 
Delay = ceil(M/2);% filter order/2 appx : [36/2]  
wName='bior4.4';  %coif3  bior4.4 
level = 8; 
Overlap = 40; 
%========================= Denoising Declaration ends ================ 
try                                         
set(handles.pushbutton5,'UserData',0)    % To ensure stop button also 

stops %reading port 
   EEG_start=clock 

    
   oldmsgs = cellstr(get(handles.listbox1,'String')); 
   set(handles.listbox1,'String',[oldmsgs;{'EEG_Start '}; 

      {num2str(EEG_start)}]);     % Status msg in GUI 

  
for numIteration = 1:1:500 

  
    set(handles.edit3,'String',num2str(numIteration)); % displays cur-

rent  %Iteration 

on GUI 

     
pause(0.1); 
  if get(handles.pushbutton5,'UserData') 
      break 
  end 

  
    a = fread(uC32);            % stores received online raw data 
    raw_data = a; 
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    newraw_data(numIteration,:) = a; 
    count1 = size(raw_data,1); 
    count2=count1-22; 
    chan1_final = []; 
    chan2_final = []; 
    fs = 256; 
    time = 0:1/fs:(((count2-1)/4)/fs); 
    time = time'; 

    
    i=1; 

  
 %% 22 bytes Header checking code -------------------------------------   

     
    if(a(i)=='D')  %Start key header check          

        
        oldmsgs = cellstr(get(handles.listbox1,'String')); 
        set(handles.listbox1,'String',[oldmsgs;{'Header Received!'}]);       

% Status msg in GUI 

                
            cnt_0 = a(18); 
            cnt_8 = a(17); 
            cnt_16 = a(16); 
            cnt = 2^16*cnt_16+2^8*cnt_8+cnt_0; % bit 15,16,17 repre-

sents the % packet count 

             
          if(numIteration == 1) 
              cnt_ref = cnt;               
          else 
              diff = cnt - cnt_ref; 
                if(diff > 1) 

                     
                    oldmsgs = cellstr(get(handles.listbox2,'String')); 
                    set(handles.listbox2,'String',[oldmsgs;{num2str(nu-

mIteration)}]);            % packet missed display on GUI                    
                end 
              cnt_ref = cnt; 
          end   
    else     
        oldmsgs = cellstr(get(handles.listbox2,'String')); 
        set(handles.listbox2,'String',[oldmsgs;{num2str(numItera-

tion)}]);      % Header missed packet number display on GUI 

         
        oldmsgs = cellstr(get(handles.listbox1,'String')); 
        set(handles.listbox1,'String',[oldmsgs;{'Header Missed!'}]);         

% Status msg in GUI 
  end 

      
raw_data=raw_data(23:end) ;  
%% 16 bit Raw EEG data formation .......................      
    while i<count2         

             
        chan1_lsb=raw_data(i); 
        i=i+1; 
        chan1_msb=raw_data(i); 
        i=i+1;  
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        chan1=2^8*chan1_msb+chan1_lsb; 
        chan1_final=[chan1_final;chan1]; 
        chan2_lsb=raw_data(i); 
        i=i+1; 
        chan2_msb=raw_data(i); 
        i=i+1; 

  
        chan2=2^8*chan2_msb+chan2_lsb;       
        chan2_final=[chan2_final;chan2]; 
    end 

     
    e1=find(chan1_final>29821);  
    e2=find(chan2_final>29821); 

     
    e11=isempty(e1); 
    e22=isempty(e2); 

     
    if(e11==0) 
        set(handles.edit1,'String','Check elect1');  
    else 
        set(handles.edit1,'String',''); 
    end 

     
     if(e22==0) 
        set(handles.edit2,'String','Check elect2');  
    else 
        set(handles.edit2,'String',''); 
     end 
    Ch1 = ((chan1_final)*3.3*1000000)/(65536*750.8);                          

% Actual data conversion with gain adjustment 
    Ch2 = ((chan2_final)*3.3*1000000)/(65536*750.8); 

     
    chan1_final_uv=[chan1_final_uv;Ch1];   
    chan2_final_uv=[chan2_final_uv;Ch2]; 

  
%========= Ch1 & Ch2 conversion to actual raw data ==================== 

  
NM_S1_Ch1= -(Ch1 - mean(Ch1));   % - ve because Inverting opamp output 
NM_S1_Ch2= -(Ch2 - mean(Ch2));  
NM_Ch1 = [NM_Ch1;NM_S1_Ch1];    
NM_Ch2 = [NM_Ch2;NM_S1_Ch2];  
  

 

 
%===================== Ch1 or Ch2 EEG De-Noising ====================== 
if(numIteration > 4) 
  y1 = [y1;NM_S1_Ch2]; 

  
    y = y1(1:N); 
    n = (length(y)- M); 
    vkn = zeros(M,n,length(k)); 
    array = []; 
    y3 = zeros(2^level,1); 
    f = zeros(M,n,K); 
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    f1 = zeros(M,n); 
    f2sec_epoch = zeros(length(y),1);             

  
%--------------- calculating impulse response (hk)--------------------- 
g0 = Wm.*((-1)^(k(1)+1))/factorial(v-1).*(4.*tm.*(2.*tm - 2) + 2.*(tm - 

1).^2 + 2.*tm.^2); 
g1 = Wm.*((-1)^(k(2)+1))/factorial(v-1).*(-12.*tm.*(tm - 1).^2 - 2.*(tm 

- 1).^3 - 3.*tm.^2.*(2.*tm - 2)); 
g2 = Wm.*((-1)^(k(3)+1))/factorial(v-1).*(16.*tm.*(tm - 1).^3 + 2.*(tm 

- 1).^4 + 12.*tm.^2.*(tm - 1).^2); 
g3 = Wm.*((-1)^(k(4)+1))/factorial(v-1).*(-20.*tm.*(tm - 1).^4 - 2.*(tm 

- 1).^5 - 20.*tm.^2.*(tm - 1).^3); 

  
%% FIR filter --------------------------------------------------------- 
for j = 1:n   
      vkn(:,j,1) = filter(g0, 1, y(j:(j+M-1)));     %k = 0       
      vkn(:,j,2) = filter(g1, 1, y(j:(j+M-1)));     %k = 1      
      vkn(:,j,3) = filter(g2, 1, y(j:(j+M-1)));     %k = 2       
      vkn(:,j,4) = filter(g3, 1, y(j:(j+M-1)));     %k = 3       

       
end 
%% Volterra Filter for decision function calculation ------------------ 
for s = 1:K       
    for r = 1:n 
    f(:,r,s) = (vkn(:,r,s+1).^2) - (vkn(:,r,s).* vkn(:,r,s+2));      
    f(:,r,s) = (max(0,f(:,r,s))/1000000);     
    end 
end     
for d = 1:n 
    f1(:,d) = f(:,d,1).* f(:,d,2);     
    f2sec_epoch(d:d+M-1) = f2sec_epoch(d:d+M-1) + f1(:,d);    
end 

  
%% Threshold Function ------------------------------------------------- 
Gamma1 = 0.001/(mean(f2sec_epoch)+ std(f2sec_epoch)); 

  
Threshold = (f2sec_epoch > Gamma1); 
Threshold = Threshold'; 
%% OA Zone detection -------------------------------------------------- 
ind = find(Threshold); 
ii = 1; 
while(ii <= (length(ind)-2)) 
    temp = ind(ii); 
     while((ii < length(ind)) && ((ind(ii+1) - ind(ii)) == 1))           
         ii = ii+1; 
     end 
    Edge_start = max(1, temp - Delay - 10);      

 % to avoid -ve index...so min it can take is '1' 
    Edge_end = min(numel(y),ind(ii));      

 % if detected spike edge at the end it should retain 
    array = [array; Edge_start; Edge_end];      
    ii = ii+1; 
end   

 

  



85 

 

%----------Wavelet Denoising.............................. 

  
%% DWT 
len1 = 0; 
if(numel(array) ~= 0) 
    for den = 1:2:length(array) 
      y3(1:array(den+1)-array(den)+1) = y1(array(den):array(den+1));           
       tic;  
      [C,L] = wavedec(y3,level,wName);       

  
     for iL = 2:1:6 
         len1 = len1 + L(iL-1,:); 
         Decoef = C(len1+1:len1+L(iL,:));  

            
       G1 = Gamma1; 

  
        for u = 1:size(Decoef) 
           if(Decoef(u) > G1) 
             Decoef(u) = 0; 
           elseif(Decoef(u) < -G1) 
             Decoef(u) = 0; 
           else 
             Decoef(u) = Decoef(u);    
           end              
        end 
        C(len1+1:len1+L(iL,:)) = Decoef; 

  
     end 
     A0 = waverec(C,L,wName);  % Reconstructing signal 
     timelog = [timelog;toc]; 
     y1(array(den):array(den+1)) = A0(1:array(den+1)-array(den)+1);    

% replacing with original wave to denoise 
   end      
end  
%----------------------------------------------------------------- 
% gives exact location on actual data  
CleanEEG = [CleanEEG; y1(1:N-Overlap)]; 
y1(1:N-Overlap) = [];  
%=====================EEG De-noising ends =========================== 
end 

  
end 

  
catch  
    fclose(uC32);                 
    delete(uC32); 
    disp('Fcloseruncatch') 
end 

  
 EEG_portstop=clock 
fclose(uC32); 
delete(uC32); 
 disp('Fcloserun') 
disp('Channel clossed and cleared'); 
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%% --- Executes on button press "Save Data": 
function pushbutton5_Callback(hObject, eventdata, handles) 

  
global chan1_final_uv;  
global chan2_final_uv; 
global final_val; 
global newraw_data; 
global CleanEEG; 
global NM_Ch1; 
global NM_Ch2; 

  
disp('Stop invoked') 
set(handles.pushbutton5,'UserData',1)    
EEG_stop=clock 
csvwrite('Newraw_data.csv', newraw_data); 
final_val=[chan1_final_uv,chan2_final_uv]; 
csvwrite('final_value.csv',final_val); 
csvwrite('CleanEEG.csv',CleanEEG); 
csvwrite('Ch1_Data.csv',NM_Ch1); 
csvwrite('Ch2_Data.csv',NM_Ch2); 
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C: OFFLINE C BASED OA REMOVAL CODE 
 

#include <stdio.h> 
#include <math.h> 

#include <string.h> 

 
void main() 

{ 

 int M=74,win = 54, n=M+1,d,fl1=0,temp=0,OA_index[10]={0},i,overlap=40,iter;   

 float T = 0.29,Ts = 0.0039,Mean_f_DF = 0.0,SD_DF = 0.0, Gamma1,y_mean; 
 float g0[75],g1[75],g2[75],g3[75],y[9000],f,y1[128]={0}; 

 float vkn0,vkn1,vkn2,vkn3; 

 float f1,f2,DF,final_DF[128]= {0},temp_DF[128]= {0}; 
       float y3[128] = {0},y4[128] = {0},clean_EEG[9000]={0}; 

 int j=1,w,FIR_delay = 37,Index_Falg = 0,level=7;  

 int g,h,L[9]={0};      //  y = input to the filter; vkn = o/p coefficients     
   

 // input data text file reading................................................. 

 FILE *ptr_file = fopen("input_C_Ch1.txt","r");;   //input_C_Ch1.txt 

    if (!ptr_file) 
     d = 1; 

 while(fscanf(ptr_file,"%f",&f) != EOF) 

 { 
  y[fl1] = f; 

  fl1+=1; 

    } 
 fclose(ptr_file); 

 

// impulse response h(n) calculations............................................. 
   for(j=1; j<=M+1; j++) 

   { 

g0[j-1] = -0.5*(4*(j*Ts)*(2*(j*Ts)-2) + 2*((j*Ts)-1)*((j*Ts)-1) + 

2*(j*Ts)*(j*Ts)); 
 

g1[j-1] = 0.5*(-12*(j*Ts)*((j*Ts)-1)*((j*Ts)-1) - 2*((j*Ts)-1)*((j*Ts)-1)*((j*Ts)-

1) - 3*(j*Ts)*(j*Ts)*(2*(j*Ts)-2)); 
 

g2[j-1] = -0.5*(16*(j*Ts)*((j*Ts)-1)*((j*Ts)-1)*((j*Ts)-1) + 2*((j*Ts)-1)*((j*Ts)-

1)*((j*Ts)-1)*((j*Ts)-1) + 12*(j*Ts)*(j*Ts)*((j*Ts)-1)*((j*Ts)-1)); 
 

g3[j-1] = 0.5*(-20*(j*Ts)*((j*Ts)-1)*((j*Ts)-1)*((j*Ts)-1)*((j*Ts)-1) - 2*((j*Ts)-

1)*((j*Ts)-1)*((j*Ts)-1)*((j*Ts)-1)*((j*Ts)-1) - 20*(j*Ts)*(j*Ts)*((j*Ts)-

1)*((j*Ts)-1)*((j*Ts)-1)); 
   } 

 

for(iter=0;iter<=99;iter++) 
{ 

 

 for (w=0;w<128;w++) 
  y1 [w] = y[iter*(128-overlap)+w]; // overlapping purpose 

 

// FIR filter implementation using Convolution.................................... 
  

for(w=0; w<win; w++)  //No of sliding windows = 'win'  

 { 

   for (g=0; g<M+1; g++) 
    { 

     vkn0 = 0.0; 
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  vkn1 = 0.0; 

  vkn2 = 0.0; 
  vkn3 = 0.0; 

 

  for (h=0; h<=g; h++) 
  { 

         vkn0 = vkn0 + y1[h+w]*g0[g-h]; //k=0 

   vkn1 = vkn1 + y1[h+w]*g1[g-h];   //k=1 

   vkn2 = vkn2 + y1[h+w]*g2[g-h];   //k=2 
   vkn3 = vkn3 + y1[h+w]*g3[g-h];   //k=3 

  } 

// Voltera Filter........................................................ 
   f1 = (vkn1*vkn1 - vkn0*vkn2)/1000000; 

   f2 = (vkn2*vkn2 - vkn1*vkn3)/1000000; 

   if (f1 < 0.0) 
    f1 = 0.0; 

   if (f2 < 0.0) 

    f2 = 0.0; 

 
// Decision Function...................................................... 

   DF = f1 * f2;    

   temp_DF[g+w] = temp_DF[g+w] + DF; 
   } 

 } 

 
// Mean Calculations..................................................... 

Mean_f_DF=0; 

for (w=0;w<128;w++){ 
  final_DF[w] = temp_DF[w]; 

  temp_DF[w] = 0.0; 

  Mean_f_DF = Mean_f_DF + final_DF[w]; } 

  Mean_f_DF = Mean_f_DF/128;  //Mean 
 

//STD Calculations....................................................... 

  SD_DF=0; 
for (w=0;w<128;w++) 

  SD_DF += (final_DF[w] - Mean_f_DF)*(final_DF[w] - Mean_f_DF); 

  SD_DF = sqrt(SD_DF/127);   //SD 
   

 

// Threshold Calculation................................................. 

Gamma1 = 0.001/(Mean_f_DF + SD_DF); 
 

// OA Zone detection..................................................... 

for(w=0;w<=9;w++) 
 OA_index[w]=0;   //Array Initialization to 0 

 

w=0;Index_Falg=0;int s=0,e=0; 
while(w<128) 

{ 

  if(final_DF[w] > Gamma1) 

  {  
   temp = w; 

   while((final_DF[w] > Gamma1) && w <128) 

     w+=1; 
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//Start Index 

 s = (temp-FIR_delay); 
   if (s > 0)       

     OA_index[Index_Falg] = s; 

 
 

//end Index   

 e = w-1+10;  

   if (e < 128) 
    OA_index[Index_Falg+1] = e; 

   else 

    OA_index[Index_Falg+1] = 127; 
   Index_Falg += 2; 

  } 

  w+=1; 
 }  // end of OA zones detection 

 

// OA Removal code starts here................................................ 

 
if(Index_Falg != 0) 

{  

  
    for (h=0;h<Index_Falg/2;h++)  //loop for each OA zone... 

 { 

  g=0; 
     for(j=OA_index[2*h];j<=OA_index[2*h+1];j++) 

  { 

      y4[g] = y1[j]; 
   g+=1; 

  } 

  // start of DWT using HAAR wavelet function 

  w = 128; j=0; 
  while(w>1) 

  {  

      L[j] = w; 
   w/=2;    

   for(i=0;i<w;i++) 

   { 
       y3[i] = (y4[2*i] + y4[2*i+1])/sqrt(2.0); //Approximation coefficients  

    y3[i+w] = (y4[2*i] - y4[2*i+1])/sqrt(2.0); //Detail coefi  

   } 

   for(i=0;i<w;i++) 
       y4[i] = y3[i];  

   j+=1; 

   } // End of DWT 
//thresholding statrs here........................................................ 

for(g=1;g<16;g++)    // detail coefficients form level 4-8 

{ 
  if(y3[g] > Gamma1)  

   y3[g] = 0.0; 

  else if (y3[g] < -Gamma1) 

   y3[g] = 0.0; 
} 

 

// iDWT starts here............................................................... 
  w=1; 

   while(w<65) 

  {  
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      for(i=0;i<w;i++) 

   { 
    y4[2*i] = (y3[i] + y3[i+w])/sqrt(2.0); //Approximation coefficients  

    y4[2*i+1] = (y3[i] - y3[i+w])/sqrt(2.0); //Detail coefi  

   } 
   w*=2; 

   for(i=0;i<w;i++) 

       y3[i] = y4[i]; 

   } // End of iDWT 
// iDWT ends here.... 

  g=0; 

  for(j=OA_index[2*h];j<=OA_index[2*h+1];j++) 
  { 

      y1[j] = y4[g];   //clean samples replaced with original 

   g+=1; 
  } 

 } // end of denoising for single OA zone 

}  // end of denoising of all existing OAs in the current chunk 

 
//clean EEG storing............................................................... 

 

for(i=0;i<88;i++) 
clean_EEG[88*iter + i] = y1[i];  //output buffer with clean EEG 

for(i=0;i<40;i++) 

  y[(iter+1)*(128-overlap)+i] = y1[88+i]; // moving last 40 samples to first 40 
sample block for next iteration considering overlapping 

 

}  // end of iter loop 
 

// Clean EEG storage in .txt file............................................... 

FILE *r = fopen("DS_C_output.txt", "w"); //output_C_Ch1.txt 

if (f == NULL) 
    printf("Error opening file!\n"); 

for(i=0;i<8800;i++) 

 fprintf(r,"%f \n",clean_EEG[i]); 
 

fclose(r); 

//---------------------------------------------------------------------------- 
}  // end of main 
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D: ONLINE C BASED OA REMOVAL CODE 

 
      The online C based hybrid OA removal code was developed using PSoC creator 3.0 

and here in appendix D, only the parts of ADC ISR and main code blocks are mentioned 

related to the thesis work done.  

 

• ADC ISR code block: 

 
// ========================== ADC ISR block ========================== 
          // Check for the Overflow 

if(Last == buffer_size) 

  { 

   Last = 0; 

   Overflow = 1; 

  }  

 

          //To avoid race condition between First and Last 

          // First always > Last if Overflow = 1  

if((Overflow == 1) && ((First – 2) < Last))           

          // hold_Flag = 1 holds new data to get stored in Ring buffer  

  hold_Flag = 1;                              

else 

  hold_Flag = 0;  //allows new ADC data to get stored in ring buffer 

 

          // New ADC sampled EEG 16- bit data storage in ring buffer 

     

if((Last < buffer_size) && (hold_Flag == 0)) 

  { 

    buffer1[Last++] = chan1 & 0X00FF; 

    buffer1[Last++] = (chan1>>8) & 0X00FF;        

  } 

 

// ===================== ADC ISR block ends ========================== 

• ‘Main’ code block: 
 

// ===================== PSoC-3 main code block ======================= 

 

#include <device.h> 

#include <math.h> 

#include <string.h> 

 

void timer_configuration(uint8); 

void BT_datarate(void); 

void writeData(uint8); 

 

void main() 

{    

    int M = 38,i,y_mean,overlap=40,y,w,g,win = 90,h,s,e,flag=0; 

    int Valid_Data = 0,sz,iter = 0,temp=0,Index_Falg; 

    int m,j=1,FIR_delay = 37,level=7,OA_index[10]; 

    float Ts=0.0039,Mean_f_DF = 0.0,SD_DF = 0.0, Gamma1;  

    float g0[75],g1[75],g2[75],g3[75],y1[128]={0}; 

    float vkn0,vkn1,vkn2,vkn3; 

    float f1,f2,DF,final_DF[129]={0},temp_DF[129]= {0}; 

    float y3[128] = {0},y4[128] = {0},Temp_Overlap[40]={0}; 



92 

 

    char clean_EEG[537]={0},Temp_Out_Buf[80]={0}; 

    char a[sizeof(float)]; 

 

// ================= Pre-existing code block ========================== 

  

 /* Enable Global Interrupts */ 

      CyGlobalIntEnable;   

    

 // initialize components 

   enAMP_Write(0); //Instr. Ampl. Enable (Active low) 

 

 AMuxSeq_1_Start(); 

 //VDAC8_1_Start();//ch2 

  

    AMuxSeq_1_Start(); 

 //VDAC8_1_Start();//ch2 

    VDAC8_2_Start();//ch1 

    //VDAC8_3_Start();//VBiasElec 

    VDAC8_4_Start(); 

    Opamp_1_Start(); 

    Opamp_2_Start(); 

    Opamp_3_Start(); 

    Opamp_4_Start(); 

    ResetBT_Write(1);          

   

    UART_Init(); 

    UART_Start(); 

  

    CyXTAL_32KHZ_Start(); 

 

    UART_ClearRxBuffer(); 

 UART_ClearTxBuffer();    

    ADC_DelSig_1_Start();     

 timer_configuration(1);  

// ========== Pre-existing code block ends here =======================  

  

// ======== OA Detection algorithm starts here (Thesis work)=========== 

 

clean_EEG[0] = 0x44;   //’D’ : header start key     

 // impulse response h(n) calculations.................. 

for(j=1; j<=M+1; j++) 

  { 

   g0[j-1] = -0.5*(4*(j*Ts)*(2*(j*Ts)-2) + 2*((j*Ts)-1)*((j*Ts)-1) + 

2*(j*Ts)*(j*Ts)); 

 

   g1[j-1] = 0.5*(-12*(j*Ts)*((j*Ts)-1)*((j*Ts)-1) - 2*((j*Ts)-

1)*((j*Ts)-1)*((j*Ts)-1) - 3*(j*Ts)*(j*Ts)*(2*(j*Ts)-2)); 

 

   g2[j-1] = -0.5*(16*(j*Ts)*((j*Ts)-1)*((j*Ts)-1)*((j*Ts)-1) + 

2*((j*Ts)-1)*((j*Ts)-1)*((j*Ts)-1)*((j*Ts)-1) + 

12*(j*Ts)*(j*Ts)*((j*Ts)-1)*((j*Ts)-1)); 

 

   g3[j-1] = 0.5*(-20*(j*Ts)*((j*Ts)-1)*((j*Ts)-1)*((j*Ts)-1)*((j*Ts)-

1) - 2*((j*Ts)-1)*((j*Ts)-1)*((j*Ts)-1)*((j*Ts)-1)*((j*Ts)-1) - 

20*(j*Ts)*(j*Ts)*((j*Ts)-1)*((j*Ts)-1)*((j*Ts)-1)); 

   } 
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while(1) 

    { 

  Pin_1_Write(1); 

  Pin_2_Write(0);  

        

    //cnt = 0: very first iteration at time ‘0’; cnt = 1; otherwise; 

 if(cnt == 0){ 

        sz = 256; 

        g = 128; 

        i = 0; 

        m=9; 

        flag=0; 

                } 

    else{ 

        sz = 176; 

        g = 88; 

        i = overlap;  

        m=89; 

         }     

       

   // Valid_Data calculation  

    if(Overflow == 0) 

     Valid_Data = Last - First; 

    else 

     Valid_Data = Last + 768 - First;  // due to ring counter 

     

   // start raw EEG processing if Valid_Data >= 176 or 256    

 if(Valid_Data >= sz) 

    { 

        // Raw EEG storage : Temp buf to clean_EEG buffer   

        if(flag==1){ 

            j=0; 

          while(j<overlap){ 

          clean_EEG[9 + 2*j] = Temp_Out_Buf[2*j]; 

          clean_EEG[10 + 2*j] = Temp_Out_Buf[2*j+1];         

        }         

        } 

        y_mean = 0; 

        w = i; 

                

        j=0; 

  while(w < 128) 

  { 

          if(w<88){                    

             clean_EEG[m++] = buffer1[First];   //last 48 Raw samples 

             clean_EEG[m++] = buffer1[First+1]; 

                  } 

          else{ 

              // temp overlapped 40 raw sampled storage 

              Temp_Out_Buf[j++] = buffer1[First];   

              Temp_Out_Buf[j++] = buffer1[First+1]; 

              }         

             //  making 16 bit data 

   y = (buffer1[First+1] & 0xFF00) | buffer1[First];  

             //conversion to original data 

     y1[w] = y*0.067099;  // gain adjustment 

     // mean calculation  
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       y_mean += y1[w];    

       w++; 

 

         

        if((First+2) < 768) 

          First += 2; 

        else{ 

         Overflow = 0; 

         First = 0;    

            } 

        } 

         

        flag=1; 

        y_mean = y_mean/g;   // mean 

         

        while(i < 128)  

         y1[i++] = -(y1[i] - y_mean);  // mean adjustment  

             

//================OA Detection Code:==================================  

   

// FIR filter implementation using Convolution.... 

  

for(w=0; w<win; w++)  //No of win = 'n' = 90  

 { 

   for (g=0; g<M+1; g++) 

    { 

     vkn0 = 0.0; 

  vkn1 = 0.0; 

  vkn2 = 0.0; 

  vkn3 = 0.0; 

  for (h=0; h<=g; h++) 

  { 

        vkn0 = vkn0 + y1[h+w]*g0[g-h]; //k=0 

   vkn1 = vkn1 + y1[h+w]*g1[g-h];   //k=1 

   vkn2 = vkn2 + y1[h+w]*g2[g-h];   //k=2 

   vkn3 = vkn3 + y1[h+w]*g3[g-h];   //k=3 

  } 

 

// Voltera Filter.................................................... 

   f1 = (vkn1*vkn1 - vkn0*vkn2)/1000000; 

   f2 = (vkn2*vkn2 - vkn1*vkn3)/1000000; 

   if (f1 < 0.0) 

    f1 = 0.0; 

   if (f2 < 0.0) 

    f2 = 0.0; 

 

// Decision Function................................................ 

   DF = f1 * f2;    

   temp_DF[g+w] = temp_DF[g+w] + DF; 

   } 

 } 

 

// Mean Calculations................................................ 

Mean_f_DF=0; 

for (w=0;w<128;w++){ 

  final_DF[w] = temp_DF[w]; 

  temp_DF[w] = 0.0; 
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  Mean_f_DF = Mean_f_DF + final_DF[w]; } 

  Mean_f_DF = Mean_f_DF/128;  //Mean 

 

//STD Calculations............................................... 

  SD_DF=0; 

for (w=0;w<128;w++) 

  SD_DF += (final_DF[w] - Mean_f_DF)*(final_DF[w] - Mean_f_DF); 

  SD_DF = sqrt(SD_DF/127);   //SD 

   

// Threshold Calculation.............................................. 

Gamma1 = 0.001*(1/(Mean_f_DF + SD_DF)); 

 

// OA Zone detection................................................. 

for(w=0;w<=9;w++) 

 OA_index[w]=0;   //Array Initialization to 0 

for(w=1;w<=6;w++)  

    clean_EEG[w] = 0;  

 

w=0;Index_Falg=0;s=0,e=0; 

while(w<128) 

{ 

  if(final_DF[w] > Gamma1) 

  {  

   temp = w; 

   while((final_DF[w] > Gamma1) && w <128) 

     w+=1; 

  

//Start Index 

 s = (temp-FIR_delay); 

   if (s > 0)       

     OA_index[Index_Falg] = s; 

//end Index   

 e = w-1+10;  

   if (e < 128) 

    OA_index[Index_Falg+1] = e; 

   else 

    OA_index[Index_Falg+1] = 127; 

   Index_Falg += 2; 

  } 

  w+=1; 

 }  // end of OA zones detection 

 

// OA Removal code starts here ======================================= 

 

if(Index_Falg != 0) 

{   

    for (h=0;h<Index_Falg/2;h++)  //loop for each OA zone... 

 { 

     clean_EEG[2*h+1] = OA_index[2*h] & 0X00FF;    //storing Detected 

OA_Zones Starting edge 

     clean_EEG[2*h+2] = OA_index[2*h+1] & 0X00FF;  //storing Detected 

OA_Zones ending edge 

     

  g=0; 

     for(j=OA_index[2*h];j<=OA_index[2*h+1];j++) 

   

      y4[g++] = y1[j];//copying only OA zone data for denoising in y4 
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 // start of DWT using Haar 

  w = 128; 

  while(w>1) 

  {  

      w/=2;    

   for(i=0;i<w;i++) 

   { 

       y3[i] = (y4[2*i] + y4[2*i+1])/sqrt(2.0); //Approximation coeffi-

cients  

    y3[i+w] = (y4[2*i] - y4[2*i+1])/sqrt(2.0); //Detail coefi  

   } 

   for(i=0;i<w;i++) 

       y4[i] = y3[i]; //y3 = C   

   } // End of DWT 

//thresholding statrs here........................................ 

for(g=1;g<16;g++) 

{ 

  if(y3[g] > Gamma1)  

   y3[g] = 0.0; 

  else if (y3[g] < -Gamma1) 

   y3[g] = 0.0; 

} 

// iDWT starts here............................................... 

  w=1; 

   while(w<65) 

  {  

      for(i=0;i<w;i++) 

   { 

    y4[2*i] = (y3[i] + y3[i+w])/sqrt(2.0); //Approximation coeffi-

cients  

    y4[2*i+1] = (y3[i] - y3[i+w])/sqrt(2.0); //Detail coefi  

   } 

   w*=2; 

   for(i=0;i<w;i++) 

       y3[i] = y4[i]; 

   } // End of iDWT 

// iDWT ends here.... 

  g=0; 

  for(j=OA_index[2*h];j<=OA_index[2*h+1];j++)   

      y1[j] = y4[g++];   //clean samples replaced with original 

      

 } // end of denoising for single OA zone 

}  // end of denoising of all existing OAs in the current chunk 

 

//clean EEG storing................................................ 

i=0;w=0; 

while(i<352){ 

  //7-0 bits 

memcpy(a, &y1[w], sizeof(float)); 

  

 clean_EEG[185 + i] = a[0];;  //output buffer with clean EEG 

  i++; 

 //15-8 bits 

 clean_EEG[185 + i] = a[1]; 

 i++; 

  //23-16 bits 
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clean_EEG[185 + i] = a[2]; //output buffer with clean EEG 

 i++; 

  //31-24 bits 

 clean_EEG[185 + i] = a[3]; 

  i++; 

  w++; 

} 

for(i=0;i<40;i++){ 

  Temp_Overlap[i] = y1[88+i]; // moving last 40 samples to first 40 

sample block for next iteration considering overlapping 

  y1[i] = Temp_Overlap[i]; 

} 

//....................  

m=8; 

 clean_EEG[m--]= cnt & 0X00FF;  

 clean_EEG[m]= (cnt>>8) & 0X00FF;  

cnt++;    

  

for(i=0;i<537;i++) 

  UART_PutChar(clean_EEG[i]);  //sending header[9] + Raw Data[176] + 

Clean EEG []          

    

 }    

 } 

 }        
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