154 research outputs found

    PROSPECTIVE UPON MULTI-SOURCE URBAN SCALE DATA FOR 3D DOCUMENTATION AND MONITORING OF URBAN LEGACIES

    Get PDF
    Abstract. The investigation on the built urban heritage and its current transformations can progressively benefit from the use of geospatial data related to urban environment. This is even more interesting when urban design studies of historical and stratified cities meet the contribution of 4D geospatial data within the urban morphology researches, aiming at quickly and accurately identifying and then measuring with a spatial relationship, both localized transformation (volumes demolitions, addition, etc…) and wide-scale substantial modification resulting from urban zones of diversification spaces that incorporates urban legacies. In this domain, the comparison and analysis of multi-source and multi-scale information belonging to Spatial Data Infrastructures (SDI) organized by Municipality and Region Administration (mainly, orthoimages and DSM and digital mapping) are a crucial support for multi-temporal spatial analysis, especially if compared with new DSMs related to past urban situations. The latter can be generated by new solution of digital image-matching techniques applicable to the available historical aerial images. The goal is to investigate the amount of available data and their effectiveness, to later test different experimental tools and methods for quick detection, localization and quantification of morphological macro-transformation at urban scale. At the same time, it has been examined the opportunity to made available, with up-and-coming Mobile Mapping Systems (MMS) based on image- and range-based techniques, a rapid and effective approach of data gathering, updating and sharing at validated urban scales. The presented research, carried out in the framework of the FULL@Polito research lab, applies to urban legacies and their regeneration, and is conducted on a key redevelopment area in northern Torino, the Parco Dora, that was occupied by steel industries actively working up to 1992. The long-standing steel structures of the Ferriere FIAT lot have been refurbished and incorporated in the new urban park, generating a contemporary space with a new evolving urban fabric, and being integrated in the new updated geo-spatial databases as well.</p

    Heritage Recording and 3D Modeling with Photogrammetry and 3D Scanning

    Get PDF
    The importance of landscape and heritage recording and documentation with optical remote sensing sensors is well recognized at international level. The continuous development of new sensors, data capture methodologies and multi-resolution 3D representations, contributes significantly to the digital 3D documentation, mapping, conservation and representation of landscapes and heritages and to the growth of research in this field. This article reviews the actual optical 3D measurement sensors and 3D modeling techniques, with their limitations and potentialities, requirements and specifications. Examples of 3D surveying and modeling of heritage sites and objects are also shown throughout the paper

    PROSPECTIVE UPON MULTI-SOURCE URBAN SCALE DATA FOR 3D DOCUMENTATION AND MONITORING OF URBAN LEGACIES

    Get PDF
    The investigation on the built urban heritage and its current transformations can progressively benefit from the use of geospatial data related to urban environment. This is even more interesting when urban design studies of historical and stratified cities meet the contribution of 4D geospatial data within the urban morphology researches, aiming at quickly and accurately identifying and then measuring with a spatial relationship, both localized transformation (volumes demolitions, addition, etc…) and wide-scale substantial modification resulting from urban zones of diversification spaces that incorporates urban legacies. In this domain, the comparison and analysis of multi-source and multi-scale information belonging to Spatial Data Infrastructures (SDI) organized by Municipality and Region Administration (mainly, orthoimages and DSM and digital mapping) are a crucial support for multi-temporal spatial analysis, especially if compared with new DSMs related to past urban situations. The latter can be generated by new solution of digital image-matching techniques applicable to the available historical aerial images. The goal is to investigate the amount of available data and their effectiveness, to later test different experimental tools and methods for quick detection, localization and quantification of morphological macro-transformation at urban scale. At the same time, it has been examined the opportunity to made available, with up-and-coming Mobile Mapping Systems (MMS) based on image- and range-based techniques, a rapid and effective approach of data gathering, updating and sharing at validated urban scales. The presented research, carried out in the framework of the FULL@Polito research lab, applies to urban legacies and their regeneration, and is conducted on a key redevelopment area in northern Torino, the Parco Dora, that was occupied by steel industries actively working up to 1992. The long-standing steel structures of the Ferriere FIAT lot have been refurbished and incorporated in the new urban park, generating a contemporary space with a new evolving urban fabric, and being integrated in the new updated geo-spatial databases as well

    Crowd And Acoustical Modelling In Digital Cultural Heritage

    Get PDF
    The broad term of heritage refers to the study of human activity in the past and its cultural narratives and to virtualize heritage means to actualize the heritage content digitally. Istilah warisan secara meluas merujuk kepada kajian kegiatan manusia pada masa lampau dan pengkisahan budayanya dan memayakan warisan bermaksud merealisasikan kandungan warisan secara digital

    Panoramic Augmented Reality for Persistence of Information in Counterinsurgency Environments (PARPICE)

    Get PDF
    Modern Counter-Insurgency (COIN) and Irregular Warfare (IW) are increasingly complex. Contributing to this complexity is the need to develop and maintain a mental map of relevant environmental and historical factors and their interactions, generated from disparate sources of information that must be organized, processed and integrated. Compounding this challenge is the fact that mental pictures cannot easily be passed from one soldier to the next. This is a problem when the tactical situation dictates frequent changes in unit Areas of Operations (AOs), and particularly in cases where units rotate on a regular basis. When units hand over an AO, the incoming unit must quickly rebuild a mental picture and narrative of its operating environment. Because of this, historical organizational knowledge is lost that could otherwise increase combat effectiveness and reduce casualties. This thesis discusses a prototype architecture for a system that will enable a vehicle crew commander to spatially input, organize and view fused tactical information through placement of 3D interactive symbols directly into the real-life on-site scene from the vehicle perspective. A panoramic camera, dashboard monitor and head tracker give the commander a complete view of the vehicle surroundings for improved situational awareness, and a 360-degree LiDAR scanner supplies depth information for accurate annotation geo-location. This system is intended to generate greater situational understanding of the complex environment present in COIN operations, in order to allow greater performance and survivability of the vehicle crew. Such a system, if fielded, can create the ability to add numerous other capabilities to the combat vehicle crew.http://archive.org/details/panoramicaugment109455057JIEDDO; HQDA G-8 CAAUS Army (USA) authorApproved for public release; distribution is unlimited

    3D Modelling from Real Data

    Get PDF
    The genesis of a 3D model has basically two definitely different paths. Firstly we can consider the CAD generated models, where the shape is defined according to a user drawing action, operating with different mathematical “bricks” like B-Splines, NURBS or subdivision surfaces (mathematical CAD modelling), or directly drawing small polygonal planar facets in space, approximating with them complex free form shapes (polygonal CAD modelling). This approach can be used for both ideal elements (a project, a fantasy shape in the mind of a designer, a 3D cartoon, etc.) or for real objects. In the latter case the object has to be first surveyed in order to generate a drawing coherent with the real stuff. If the surveying process is not only a rough acquisition of simple distances with a substantial amount of manual drawing, a scene can be modelled in 3D by capturing with a digital instrument many points of its geometrical features and connecting them by polygons to produce a 3D result similar to a polygonal CAD model, with the difference that the shape generated is in this case an accurate 3D acquisition of a real object (reality-based polygonal modelling). Considering only device operating on the ground, 3D capturing techniques for the generation of reality-based 3D models may span from passive sensors and image data (Remondino and El-Hakim, 2006), optical active sensors and range data (Blais, 2004; Shan & Toth, 2008; Vosselman and Maas, 2010), classical surveying (e.g. total stations or Global Navigation Satellite System - GNSS), 2D maps (Yin et al., 2009) or an integration of the aforementioned methods (Stumpfel et al., 2003; Guidi et al., 2003; Beraldin, 2004; Stamos et al., 2008; Guidi et al., 2009a; Remondino et al., 2009; Callieri et al., 2011). The choice depends on the required resolution and accuracy, object dimensions, location constraints, instrument’s portability and usability, surface characteristics, working team experience, project’s budget, final goal, etc. Although aware of the potentialities of the image-based approach and its recent developments in automated and dense image matching for non-expert the easy usability and reliability of optical active sensors in acquiring 3D data is generally a good motivation to decline image-based approaches. Moreover the great advantage of active sensors is the fact that they deliver immediately dense and detailed 3D point clouds, whose coordinate are metrically defined. On the other hand image data require some processing and a mathematical formulation to transform the two-dimensional image measurements into metric three-dimensional coordinates. Image-based modelling techniques (mainly photogrammetry and computer vision) are generally preferred in cases of monuments or architectures with regular geometric shapes, low budget projects, good experience of the working team, time or location constraints for the data acquisition and processing. This chapter is intended as an updated review of reality-based 3D modelling in terrestrial applications, with the different categories of 3D sensing devices and the related data processing pipelines

    Modeling and Simulation in Engineering

    Get PDF
    This book provides an open platform to establish and share knowledge developed by scholars, scientists, and engineers from all over the world, about various applications of the modeling and simulation in the design process of products, in various engineering fields. The book consists of 12 chapters arranged in two sections (3D Modeling and Virtual Prototyping), reflecting the multidimensionality of applications related to modeling and simulation. Some of the most recent modeling and simulation techniques, as well as some of the most accurate and sophisticated software in treating complex systems, are applied. All the original contributions in this book are jointed by the basic principle of a successful modeling and simulation process: as complex as necessary, and as simple as possible. The idea is to manipulate the simplifying assumptions in a way that reduces the complexity of the model (in order to make a real-time simulation), but without altering the precision of the results

    3D Spatial Data Infrastructures for web-based Visualization

    Get PDF
    In this thesis, concepts for developing Spatial Data Infrastructures with an emphasis on visualizing 3D landscape and city models in distributed environments are discussed. Spatial Data Infrastructures are important for public authorities in order to perform tasks on a daily basis, and serve as research topic in geo-informatics. Joint initiatives at national and international level exist for harmonizing procedures and technologies. Interoperability is an important aspect in this context - as enabling technology for sharing, distributing, and connecting geospatial data and services. The Open Geospatial Consortium is the main driver for developing international standards in this sector and includes government agencies, universities and private companies in a consensus process. 3D city models are becoming increasingly popular not only in desktop Virtual Reality applications but also for being used in professional purposes by public authorities. Spatial Data Infrastructures focus so far on the storage and exchange of 3D building and elevation data. For efficient streaming and visualization of spatial 3D data in distributed network environments such as the internet, concepts from the area of real time 3D Computer Graphics must be applied and combined with Geographic Information Systems (GIS). For example, scene graph data structures are commonly used for creating complex and dynamic 3D environments for computer games and Virtual Reality applications, but have not been introduced in GIS so far. In this thesis, several aspects of how to create interoperable and service-based environments for 3D spatial data are addressed. These aspects are covered by publications in journals and conference proceedings. The introductory chapter provides a logic succession from geometrical operations for processing raw data, to data integration patterns, to system designs of single components, to service interface descriptions and workflows, and finally to an architecture of a complete distributed service network. Digital Elevation Models are very important in 3D geo-visualization systems. Data structures, methods and processes are described for making them available in service based infrastructures. A specific mesh reduction method is used for generating lower levels of detail from very large point data sets. An integration technique is presented that allows the combination with 2D GIS data such as roads and land use areas. This approach allows using another optimization technique that greatly improves the usability for immersive 3D applications such as pedestrian navigation: flattening road and water surfaces. It is a geometric operation, which uses data structures and algorithms found in numerical simulation software implementing Finite Element Methods. 3D Routing is presented as a typical application scenario for detailed 3D city models. Specific problems such as bridges, overpasses and multilevel networks are addressed and possible solutions described. The integration of routing capabilities in service infrastructures can be accomplished with standards of the Open Geospatial Consortium. An additional service is described for creating 3D networks and for generating 3D routes on the fly. Visualization of indoor routes requires different representation techniques. As server interface for providing access to all 3D data, the Web 3D Service has been used and further developed. Integrating and handling scene graph data is described in order to create rich virtual environments. Coordinate transformations of scene graphs are described in detail, which is an important aspect for ensuring interoperability between systems using different spatial reference systems. The Web 3D Service plays a central part in nearly all experiments that have been carried out. It does not only provide the means for interactive web-visualizations, but also for performing further analyses, accessing detailed feature information, and for automatic content discovery. OpenStreetMap and other worldwide available datasets are used for developing a complete architecture demonstrating the scalability of 3D Spatial Data Infrastructures. Its suitability for creating 3D city models is analyzed, according to requirements set by international standards. A full virtual globe system has been developed based on OpenStreetMap including data processing, database storage, web streaming and a visualization client. Results are discussed and compared to similar approaches within geo-informatics research, clarifying in which application scenarios and under which requirements the approaches in this thesis can be applied

    Senseable Spaces: from a theoretical perspective to the application in augmented environments

    Get PDF
    Grazie all’ enorme diffusione di dispositivi senzienti nella vita di tutti i giorni, nell’ ultimo decennio abbiamo assistito ad un cambio definitivo nel modo in cui gli utenti interagiscono con lo spazio circostante. Viene coniato il termine Spazio Sensibile, per descrivere quegli spazi in grado di fornire servizi contestuali agli utenti, misurando e analizzando le dinamiche che in esso avvengono, e di reagire conseguentemente a questo continuo flusso di dati bidirezionale. La ricerca è stata condotta abbracciando diversi domini di applicazione, le cui singole esigenze hanno reso necessario testare il concetto di Spazi Sensibili in diverse declinazioni, mantenendo al centro della ricerca l’utente, con la duplice accezione di end-user e manager. Molteplici sono i contributi rispetto allo stato dell’ arte. Il concetto di Spazio Sensibile è stato calato nel settore dei Beni Culturali, degli Spazi Pubblici, delle Geosciences e del Retail. I casi studio nei musei e nella archeologia dimostrano come l’ utilizzo della Realtà Aumentata possa essere sfruttata di fronte a un dipinto o in outdoor per la visualizzazione di modelli complessi, In ambito urbano, il monitoraggio di dati generati dagli utenti ha consentito di capire le dinamiche di un evento di massa, durante il quale le stesse persone fruivano di servizi contestuali. Una innovativa applicazione di Realtà Aumentata è stata come servizio per facilitare l’ ispezione di fasce tampone lungo i fiumi, standardizzando flussi di dati e modelli provenienti da un Sistema Informativo Territoriale. Infine, un robusto sistema di indoor localization è stato istallato in ambiente retail, per scopi classificazione dei percorsi e per determinare le potenzialità di un punto vendita. La tesi è inoltre una dimostrazione di come Space Sensing e Geomatica siano discipline complementari: la geomatica consente di acquisire e misurare dati geo spaziali e spazio temporali a diversa scala, lo Space Sensing utilizza questi dati per fornire servizi all’ utente precisi e contestuali.Given the tremendous growth of ubiquitous services in our daily lives, during the last few decades we have witnessed a definitive change in the way users' experience their surroundings. At the current state of art, devices are able to sense the environment and users’ location, enabling them to experience improved digital services, creating synergistic loop between the use of the technology, and the use of the space itself. We coined the term Senseable Space, to define the kinds of spaces able to provide users with contextual services, to measure and analyse their dynamics and to react accordingly, in a seamless exchange of information. Following the paradigm of Senseable Spaces as the main thread, we selected a set of experiences carried out in different fields; central to this investigation there is of course the user, placed in the dual roles of end-user and manager. The main contribution of this thesis lies in the definition of this new paradigm, realized in the following domains: Cultural Heritage, Public Open Spaces, Geosciences and Retail. For the Cultural Heritage panorama, different pilot projects have been constructed from creating museum based installations to developing mobile applications for archaeological settings. Dealing with urban areas, app-based services are designed to facilitate the route finding in a urban park and to provide contextual information in a city festival. We also outlined a novel application to facilitate the on-site inspection by risk managers thanks to the use of Augmented Reality services. Finally, a robust indoor localization system has been developed, designed to ease customer profiling in the retail sector. The thesis also demonstrates how Space Sensing and Geomatics are complementary to one another, given the assumption that the branches of Geomatics cover all the different scales of data collection, whilst Space Sensing gives one the possibility to provide the services at the correct location, at the correct time
    corecore