
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322407317?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


3 

3D Modelling from Real Data 

Gabriele Guidi1 and Fabio Remondino2 
1Politecnico di Milano 

2Fondazione Bruno Kessler, Trento 
Italy 

1. Introduction  

The genesis of a 3D model has basically two definitely different paths. Firstly we can 

consider the CAD generated models, where the shape is defined according to a user 

drawing action, operating with different mathematical “bricks” like B-Splines, NURBS or 

subdivision surfaces (mathematical CAD modelling), or directly drawing small polygonal 

planar facets in space, approximating with them complex free form shapes (polygonal CAD 

modelling). This approach can be used for both ideal elements (a project, a fantasy shape in 

the mind of a designer, a 3D cartoon, etc.) or for real objects. In the latter case the object has 

to be first surveyed in order to generate a drawing coherent with the real stuff.  

If the surveying process is not only a rough acquisition of simple distances with a 

substantial amount of manual drawing, a scene can be modelled in 3D by capturing with a 

digital instrument many points of its geometrical features and connecting them by polygons 

to produce a 3D result similar to a polygonal CAD model, with the difference that the shape 

generated is in this case an accurate 3D acquisition of a real object (reality-based polygonal 

modelling). 

Considering only device operating on the ground, 3D capturing techniques for the 
generation of reality-based 3D models may span from passive sensors and image data 
(Remondino and El-Hakim, 2006), optical active sensors and range data (Blais, 2004; Shan & 
Toth, 2008; Vosselman and Maas, 2010), classical surveying (e.g. total stations or Global 
Navigation Satellite System - GNSS), 2D maps (Yin et al., 2009) or an integration of the 
aforementioned methods (Stumpfel et al., 2003; Guidi et al., 2003; Beraldin, 2004; Stamos et 
al., 2008; Guidi et al., 2009a; Remondino et al., 2009; Callieri et al., 2011). The choice depends 
on the required resolution and accuracy, object dimensions, location constraints, 
instrument’s portability and usability, surface characteristics, working team experience, 
project’s budget, final goal, etc.  
Although aware of the potentialities of the image-based approach and its recent 
developments in automated and dense image matching for non-expert the easy usability 
and reliability of optical active sensors in acquiring 3D data is generally a good motivation 
to decline image-based approaches. Moreover the great advantage of active sensors is the 
fact that they deliver immediately dense and detailed 3D point clouds, whose coordinate are 
metrically defined. On the other hand image data require some processing and a 
mathematical formulation to transform the two-dimensional image measurements into 
metric three-dimensional coordinates. Image-based modelling techniques (mainly 
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photogrammetry and computer vision) are generally preferred in cases of monuments or 
architectures with regular geometric shapes, low budget projects, good experience of the 
working team, time or location constraints for the data acquisition and processing. 
This chapter is intended as an updated review of reality-based 3D modelling in terrestrial 
applications, with the different categories of 3D sensing devices and the related data 
processing pipelines. 

2. Passive and active 3D sensing technologies 

In the following sections the two most used 3D capturing techniques, i.e. photogrammetry 
(section 2.1) and active range sensing (section 2.2 and 2.3) are reported and discussed. 

2.1 Passive sensors for image-based 3D modelling techniques 

Passive sensors like digital cameras deliver 2D image data which need to be transformed 

into 3D information. Normally at least two images are required and 3D data can be derived 

using perspective or projective geometry formulations (Gruen & Huang, 2001; Sturm et al., 

2011). Images can be acquired using terrestrial, aerial or satellite sensors according to the 

applications and needed scale. Terrestrial digital cameras come in many different forms and 

format: single CCD/CMOS sensor, frame, linear, multiple heads, SLR-type, industrial, off-

the-shelf, high-speed, panoramic head, still-video, etc. (Mass, 2008). Common terrestrial 

cameras have at least 10–12 Megapixels at very low price while high-end digital back 

cameras feature more than 40 Megapixel sensors. Mobile phone cameras have up to 5 

Megapixels and they could be even used for photogrammetric purposes (Akca & Gruen, 

2009). Panoramic linear array cameras are able to deliver very high resolution images with 

great metric performances (Luhmann & Tecklenburg, 2004; Parian & Gruen, 2004). The high 

cost of these sensors is limiting their market and thus panoramic images are also generated 

stitching together a set of partly overlapped images acquired from a unique point of view 

with a consumer or SLR digital camera rotated around its perspective centre. This easy and 

low-cost solution allows to acquire almost Gigapixel images with great potential not only 

for visual needs (e.g., Google Street View, 1001 Wonders, etc.), but also for metric 

applications and 3D modelling purposes (Fangi, 2007; Barazzetti et al., 2010).  

An interesting and emerging platform for image acquisition and terrestrial 3D modelling 

applications is constituted by Unmanned Aerial Vehicles (UAVs). UAVs can fly in an 

autonomous mode, using integrated GNSS with Inertial Navigation Systems (INS), 

stabilizer platform and digital cameras (or even a small range sensor) and can be used to get 

data from otherwise hardly accessible areas (Eisenbeiss, 2009).  

2.1.1 Photogrammetry 

Photogrammetry (Mikhail et al., 2001; Luhmann et al., 2007) is the most well-known and 
important image-based technique which allows the derivation of accurate, metric and 
semantic information from photographs (images). Photogrammetry thus turns 2D image 
data into 3D data (like digital models) rigorously establishing the geometric relationship 
between the acquired images and the scene as surveyed at the time of the imaging event. 
Photogrammetry can be done using underwater, terrestrial, aerial or satellite imaging 
sensors. Generally the term Remote Sensing is more associated to satellite imagery and their 
use for land classification and analysis or changes detection (i.e. no geometric processing). 
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The photogrammetric method generally employs minimum two images of the same static 
scene or object acquired from different points of view. Similar to human vision, if an object 
is seen in at least two images, the different relative positions of the object in the images (the 
so-called parallaxes) allow a stereoscopic view and the derivation of 3D information of the 
scene seen in the overlapping area of the images.  
  

 

Fig. 1. The collinearity principle established between the camera projection center, a point in 
the image and the corresponding point in the object space (left). The multi-image concept, 
where the 3D object can be reconstructed using multiple collinearity rays between 
corresponding image points (right). 

Photogrammetry is used in many fields, from the traditional mapping, monitoring and 3D 

city modelling to the video games industry, from industrial inspections to the movie 

production, from heritage documentation to medical field. Photogrammetry was always 

considered a manual and time consuming procedure but in the last decade many 

developments lead to a great improvement of the technique and nowadays many semi- or 

fully-automated procedures are available. When the project’s goal is the recovery of a 

complete, detailed, precise and reliable 3D model, some user interaction in the modelling 

pipeline is still mandatory, in particular for geo-referencing and quality analysis. Thus 

photogrammetry does not aim at the full automation of the image processing but it has 

always as first goal the recovery of metric and accurate results. On the other hand, for 

applications needing 3D models for simple visualization or Virtual Reality (VR) uses, fully 

automated 3D modelling procedures can also be adopted (Vergauwen & Van Gool, 2006; 

Snavely et al., 2008).  

The advantages of photogrammetry stay in the fact that (i) images contain all the 
information required for 3D modelling and accurate documentation (geometry and texture); 
(ii) photogrammetric instruments (cameras and software) are generally cheap, very portable, 
easy to use and with very high accuracy potentials; (iii) an object can be reconstructed even 
if it has disappeared or considerably changed using archived images (Gruen et al., 2004). But 
a large experience is required to derive accurate and detailed 3D models from images. This 
has limited a lot the use of photogrammetry in favour of the more powerful active 3D 
sensors, which allow easily the derivation of dense and detailed 3D point clouds with no 
user processing. 
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2.1.2 Basic principles of the photogrammetric technique  

The basic principle of the photogrammetric processing is the use of multiple images (at least 
two) and the collinearity principle (Fig. 1). Such principle establishes the relationship 
between image and object space defining a straight line between the camera perspective 
center, the image point P(x, y) and the object point P(X, Y, Z). The collinearity model is 
formulated as: 

 

r (X X ) r (Y Y ) r (Z Z )
x f x

r (X X ) r (Y Y ) r (Z Z )

r (X X ) r (Y Y ) r (Z Z )
y f y

r (X X ) r (Y Y ) r (Z Z )

    
  

    

    
  

    

11 0 21 0 31 0
0

13 0 23 0 33 0

12 0 22 0 32 0
0

13 0 23 0 33 0

 (1) 

with: 
 
f … camera constant or focal length      

interior orientation parameters 
x0, y0 … principal point 
    
X0, Y0, Z0 … position of the perspective center 

exterior orientation parameters 
r11, r 12, ... r 33 … elements of the rotation matrix 
 
x, y 

 
… 2D image coordinates  

  

X, Y, Z … 3D object coordinates    
 
All measurements performed on digital images refer to a pixel coordinate system while 
collinearity equations refer to the metric image coordinate system. The conversion from 
pixel to image coordinates is performed with an affine transformation knowing the sensor 
dimensions and pixel size. 
For each image point measured in at least two images (generally called tie points), a 

collinearity equation is written. All the equations form a system of equations and the 

solution is generally obtained with an iterative least squares method (Gauss-Markov 

model), thus requiring some good initial approximations of the unknown parameters. The 

method, called bundle adjustment, provides a simultaneous determination of all system 

parameters along with estimates of the precision and reliability of the unknowns. If the 

interior orientation parameters are also unknowns, the method is named self-calibrating 

bundle adjustment.  

The system of equations is iteratively solved with the least squares method and after the 
linearization and the introduction of an error vector e, it can be expressed as: 

 e A x l     (2) 

with: 
e = error vector; 
A = design matrix n x m (numb_observations x numb_unknonws, n>m) with the coefficients 
of the linearized collinearity equations; 
x = unknowns vector (exterior parameters, 3D object coordinates, eventually interior 
parameters); 
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l = observation vector; 
Generally a weight matrix P is added in order to weight the observations and unknown 
parameters during the estimation procedure. The estimation of x and the variance factor s is 
usually (not exclusively) attempted as unbiased, minimum variance estimation, performed 
by means of least squares and results in: 

 T Tx̂ ( A PA) A Pl 1
 (3) 

with the residual v and the standard deviation a posteriori (s0) as: 

 ˆv A x l    (4) 

 
Tv Pv

r
 0  (5) 

with r the redundancy of the system (numb_observations - numb_unknonws). 
The precision of the parameter vector x is controlled by its covariance matrix 

T
xxC ( A PA)  2 1

0 . 

For (ATPA) to be uniquely invertible, as required in (Eq. 3), the network needs to fix an 
external “datum” i.e. the seven parameters of a spatial similarity transformation between 
image and object space. This is usually achieved by introducing some ground control points 
with at least seven fixed coordinate values. Another possibility is to solve the system (Eq. 2) 
in a free-network mode providing at least a known object’s distance to retrieve the correct 
scale.  
Depending on the parameters which are considered either known or treated as unknowns, 

the collinearity equations may result in different procedures (Table 1). 

As previously mentioned, the photogrammetric reconstruction method relies on a minimum 
of two images of the same object acquired from different viewpoints. Defining B the baseline 
between two images and D the average camera-to-object distance, a reasonable B/D (base-
to-depth) ratio between the images should ensure a strong geometric configuration and 
reconstruction that is less sensitive to noise and measurement errors. 
A typical value of the B/D ratio in terrestrial photogrammetry should be around than 0.5, 

even if in practical situations it is often very difficult to fulfil this requirement. Generally, the 

larger the baseline, the better the accuracy of the computed object coordinates, although 

large baselines arise problems in finding automatically the same correspondences in the 

images, due to strong perspective effects. According to Fraser (1996), the accuracy of the 

computed 3D object coordinates (sXYZ) depends on the image measurement precision (sxy), 

image scale and geometry (e.g. the scale number S), an empirical factor q and the number of 

images k: 

 
xy

XYZ

qS

k


   (6) 

The collinearity principle and Gauss-Markov model of the least squares are valid and 
employed for all those images acquired with frame sensors (e.g. a SLR camera). In case of 
linear array sensors, other mathematical approaches should be employed. The description of 
such methods is outside the scope of this chapter.  
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The entire photogrammetric workflow used to derive metric and accurate 3D information of 
a scene from a set of images consists of (i) camera calibration and image orientation, (ii) 3D 
measurements, (iii) structuring and modelling, (iv) texture mapping and visualization. 
Compared to the active range sensors workflow, the main difference stays in the 3D point 
cloud derivation: while range sensors (e.g. laser scanners) deliver directly the 3D data, 
photogrammetry requires the mathematical processing of the image data to derive the 
required sparse or dense 3D point clouds useful to digitally reconstruct the surveyed scene. 
 

Method Observations Unknowns 

General bundle adj. tie points, evt. datum exterior param., 3D coord. 

Self-calibrating bundle adj. tie points, evt. datum interior and exterior, 3D coord 

Resection tie points, 3D coord. interior and exterior param. 

Intersection 
tie points, interior and 
exterior param. 

3D coord. 

Table 1. Photogrammetric procedures for calibration, orientation and point positioning. 

2.1.3 Other image-based techniques 

The most well-known technique similar to photogrammetry is computer vision. Even if 

accuracy is not the primary goal, computer vision approaches are retrieving interesting 

results for visualization purposes, object-based navigation, location-based services, robot 

control, shape recognition, augmented reality, annotation transfer or image browsing 

purposes. The typical computer vision pipeline for scene’s modelling is named “structure 

from motion” (Pollefeys et al., 2004; Pollefeys et al., 2008; Agarwal et al., 2009) and it is 

getting quite common in applications where metrics is not the primary aim.  

Other image-based techniques allowing the derivation of 3D information from a single 
image use object constraints (Van den Heuvel, 1998; Criminisi et al., 1999; El-Hakim, 2000) 
or estimating surface normals instead of image correspondences with methods like shape 
from shading (Horn & Brooks, 1989), shape from texture (Kender, 1978), shape from 
specularity (Healey and Binford, 1987), shape from contour (Meyers et al., 1992), shape from 
2D edge gradients (Winkelbach & Wahl, 2001). 

2.2 Triangulation-based active range sensing 

Active systems, particularly those based on laser light, make the measurement result nearly 

independent of the texture of the object being photographed, projecting references on its 

surface through a suitably coded light. Such light is characterized by an intrinsic 

information content recognizable by an electronic sensor, unlike the environmental diffuse 

light, which has no particularly identifiable elements. For example, an array of dots or a 

series of coloured bands are all forms of coded light. Thanks to such coding, active 3D 

sensors can acquire in digital form the spatial behaviour of an object surface. The output 

attainable from such a device can be seen as an image having in each pixel the spatial 

coordinates (x, y, z) expressed in millimetres, optionally enriched with colour information 

(R, G, B) or by the laser reflectance (Y). This set of 3D data, called “range image”, is 

generally a 2.5D entity (i.e. at each couple of x,y values, only one z is defined).  

At present, 3D active methods are very popular because they are the only ones capable to 
acquire the geometry of a surface in a totally automatic way. A tool employing active 3D 
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techniques is normally called range device or, referring in particular to laser-based 
equipment, 3D laser scanner. Different 3D operating principles may be chosen depending 
on the object size hence on the sensor-to-object distance. For measuring small volumes, 
indicatively below a cubic meter, scanners are based on the principle of triangulation. 
Exceptional use of these devices have been done in Cultural Heritage (CH) applications on 
large artefacts (Bernardini et al., 2002; Levoy et al. 2000).   

2.2.1 Basic principles 
The kind of light that first allowed to create a 3D scanner is the laser light. Due to its 
physical properties it allows to generate extremely focused spots at relatively long ranges 
from the light source, respect to what can be done, for example, with a halogen lamp. The 
reason of this is related to the intimate structure of light, which is made by photons, short 
packets of electromagnetic energy characterized by their own wavelength and phase. A 
laser generates a peculiar light which is monochromatic (i.e. made by photons all at the 
same wavelength), and coherent (i.e. such that all its photons are generated in different time 
instants but with the same phase). The practical consequence of the first fact (mono-
cromaticity) is that the lenses used for focusing a laser can be much more effective, being 
designed for a single wavelength rather than the wide spectrum of wavelengths typical of 
white light. In other words with a laser it is easier to concentrate energy in space. On the 
other hand the second fact (coherence) allows all the photons to generate a constructive 
wave interference whose consequence is a concentration of energy in time. Both these 
factors contribute to make the laser an effective illumination source for selecting specific 
points of a scenery with high contrast respect to the background, allowing to measure their 
spatial position as described below.  
 

 

Fig. 2. Triangulation principle: a) xz view of a triangulation based distance measurement 
through a laser beam inclined with angle  respect to the reference system, impinging on the 
surface to be measured. The light source is at a distance b from the optical centre of an 
image capturing device equipped with a lens with focal length f; b) evaluation of xA and zA. 
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Let’s imagine to have a range device made by the composition of a light source and a 
planar sensor, rigidly bounded each other. The laser source generates a thin ray 
producing a small light dot on the surface to be measured. If we put a 2D capture device 
(e.g. a digital camera) displaced respect to the light source and the surface is enough 
diffusive to reflect some light also toward the camera pupil, an image containing the light 
spot can be picked up. In this opto-geometric set-up the light source emitting aperture, the 
projection centre and the light spot on the object, form a triangle as the one shown in fig. 
2a, where the distance between image capture device and light source is indicated as 
baseline b. The lens located in front of the sensor is characterized by its focal length f (i.e. 
distance in mm from the optical centre of the lens to the focal plane). On the collected 
image, a trace of the light spot will be visible in a point displaced with respect to the 
optical centre of the system. 
Depending from the position of the imaged spot respect to the optical axis of the lens, two 

displacement components will be generated along the horizontal (x) and vertical (y) 

directions. Considering that the drawing in fig. 2a represents the horizontal plane (xz) we 

will take into account here only the horizontal component of such displacement, indicated 

in fig. 2a as p (parallax). If the system has been previously calibrated we can consider as 

known both the inclination a of the laser beam and the baseline b. From the spot position the 

distance p can be estimated, through which we can easily calculate the angle b: 

 
p

tan
f

   (7) 

As evidenced in fig. 2b, once the three parameters b,  and  are known, the 

aforementioned triangle has three known elements: the base b and two angles (90°-, 90°-

), from which all other parameters can be evaluated. Through simple trigonometry we go 

back to the distance zA between the camera and point A on the object. This range, which is 

the most critical parameter and therefore gives name to this class of instruments (range 

devices), is given by: 

 A

b
z

tan tan 



 (8) 

Multiplying this value by the tangent of , we get the horizontal coordinate xA. 
In this schematic view yA never appears. In fact, with a technique like this, the sensor can 
be reduced to a single array of photosensitive elements rather than a matrix such as those 
which are equipped with digital cameras. In this case yA can be determined in advance by 
mounting the optical measurement system on a micrometric mechanical device providing 
its position with respect to a known y origin. The Region Of Interest (ROI), namely the 
volume that can be actually measured by the range device, is defined by the depth of field 
of the overall system consisting of illumination source and optics. As well known the 
depth of field of a camera depends on a combination of lens focal length and aperture. To 
make the most of this area, it is appropriate that also the laser beam is focused at the 
camera focusing distance, with a relatively long focal range, in order to have the spot size 
nearly unchanged within the ROI. Once both these conditions are met, the ROI size can be 
further increased by tilting the sensor optics, as defined by the principle of Scheimpflug 
(Li et al, 2007). 
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2.2.2 3D laser scanner 

The principle described above can be extended by a single point of light to a set of aligned 
points forming a segment. Systems of this kind use a sheet of light generated by a laser 
reflected by a rotating mirror or a cylindrical lens. Once projected onto a flat surface such 
light plane produces a straight line which becomes a curved profile on complex surfaces. 
 

 

Fig. 3. Acquisition of coordinates along a profile generated by a sheet of laser light. In a  
3D laser scanner this profile is mechanically moved in order to probe an entire area.  

Each profile point responds to the rule already seen for the single spot system, with the 

only difference that the sensor has to be 2D, so that both horizontal and vertical parallaxes 

can be estimated for each profile point. Such parallaxes are used for estimating the 

corresponding horizontal and vertical angles, from which, together with the knowledge 

on the baseline b and the optical focal length f, the three coordinates of each profile point 

can be estimated. 

This process allows therefore to calculate an array of 3D coordinates corresponding to the 
illuminated profile for a given light-object relative positioning. 
By displacing the light plane along its normal of a small amount Dy, a different strip of 

surface can be probed, generating a new array of 3D data referred to an unknown 

geometrical region close to the first one. The 3D laser scanner is a device implementing the 

iteration of such process for a number of positions which generates a set of arrays describing 

the geometry of a whole area, strip by strip. This kind of range image (or range map), is 

indicated also as structured 3D point cloud. 

2.2.3 Pattern projection sensors 

With pattern projection sensors multiple sheets of light are simultaneously produced thanks 
to a special projector generating halogen light patterns of horizontal or vertical black and 
white stripes. An image of the area illuminated by the pattern is captured with a digital 
camera and each Black-to-White (B-W) transition is used as geometrical profile, similar to 
those produced by a sheet of laser light impinging on an unknown surface. Even if the 
triangulating principle used is exactly the same seen for the two devices mentioned above, 
the main difference is that here no moving parts are required since no actual scan action is 
performed. The range map is computed in this way just through digital post-processing of 
the acquired image. 
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Fig. 4. Acquisition of coordinates along a different profiles generated by multiple sheets of 
white light. 

The more B-W transitions will be projected on the probed surface, the finer will be its spatial 
sampling, with a consequent increase of the geometrical resolution. Therefore the finest 
pattern would seem the most suitable solution for gaining the maximum amount of data 
from a single image, but, in practical terms, this is not completely true. This depends by the 
impossibility to identify, in an image of an unknown surface with striped patterns projected 
on it, each single B-W transition, due to the possible framing of an unknown subset of the 
projected pattern (e.g. for surfaces very close to the camera), or for the presence of holes or 
occlusions generating ambiguity in the stripes order.  
In order to solve such ambiguity this category of devices uses a sequence of patterns rather 

than a single one. The most used approach is the Gray coded sequence, that employs a set of 

patterns where the number of stripes is doubled at each step, up to reaching the maximum 

number allowed by the pattern projector. Other pattern sequences have been developed and 

implemented, such as phase-shift or Moirè, with different metrological performances.  

In general the advantage of structured-light 3D scanners is speed. This makes some of these 

systems capable of scanning moving objects in real-time. 

2.3 Time Of Flight (TOF) active range sensing 

With active range sensing methods based on triangulation, the size of volumes that can be 
easily acquired ranges from a shoe box to a full size statue. For a precise sensor response the 
ratio between camera-target distance and camera-source distance (baseline), has to be 
maintained between 1 and 5. Therefore framing areas very far from the camera would 
involve a very large baseline, that above 1 m becomes difficult to be practically 
implemented. For larger objects like buildings, bridges or dams, a different working 
principle is used. It is based on optically measuring the sensor-to-target distance, having the 
a priori knowledge of angles through the controlled orientation of the range measurement 
device.  

2.3.1 Base principles 

Active TOF range sensing is logically derived from the so-called “total station”. This is made 
by a theodolite, namely an optical targeting device for aiming at a specific point in space, 
coupled with a goniometer for precisely measuring horizontal and vertical orientations, 
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integrated with an electronic distance meter. TOF, or time of flight, is referred to the method 
used for estimating the sensor-to-target distance, that is usually done by measuring the time 
needed by light for travelling from the light source to the target surface and back to the light 
detector integrated in the electronic distance meter.  
Differently from a total station, a 3D laser scanner does not need that a human operator take 
aim at a specific point in space, therefore it does not have such sophisticate crosshair. On the 
other hand it has the capability to automatically re-orient the laser on a predefined range of 
horizontal and vertical angles, in order to select a specific area in front of the instrument. 
The precise angular estimations are then returned by a set of digital encoders, while the 
laser TOF gives the distance. As exemplified in fig. 5, showing a schematic diagram of a 
system working only on the xz plane analogously to what shown for triangulation based 
systems, it is clear that if the system return the two parameter distance (r) and laser beam 
orientation (a), the Cartesian coordinates of A in the xz reference system are simply given 
by: 

 Ax sin   (9) 

 Az cos   (10) 

In case of a real 3D situation, in addition to the vertical angle an horizontal angle will be 

given, and the set of coordinate (xA, yA, zA) will be obtained by a simple conversion from 

polar to Cartesian of the three-dimensional input data. 

 

 

Fig. 5. Acquisition of coordinates of the point A through the a priori knowledge of the angle 

, and the measurement of the distance r through the Time Of Flight of a light pulse from 
the sensor to the object and back.  

Systems based on the measurement of distance are in general indicated as LiDAR (Light 

Detection And Ranging), even if in the topographic area this acronym is often used for 

indicating the specific category of airborne laser scanner. The most noticeable aspect of such 

devices is in fact the capability to work at very long distance from the actual scanning 

surface, from half meter up to few kilometres, making such devices suitable also for 3D 

acquisition from flying platforms (helicopters or airplanes) or moving vehicles (boats or 

cars).  

For ground based range sensors the angular movement can be 360° horizontally and close to 
180° vertically, allowing a huge spherical volume to be captured from a fixed position. As 
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for triangulation based range sensors the output of such devices is again a cloud of 3D 
points originated by a high resolution spatial sampling an object. The difference with 
triangulation devices is often in the data structure. In TOF devices data are collected 
sampling an angular sector of a sphere, with a step not always fixed. As a results the data set 
can be formed by scan lines not necessarily all of the same size. Therefore the device output 
may be given by a simple list of 3D coordinates not structured in a matrix. 
In term of performances, contributions to measurement errors may be given by both angular 
estimation accuracy and distance measurements. However, due to the very high speed of 
light, the TOF is very short, and this involves that the major source of uncertainty is due to 
its estimation that becomes a geometrical uncertainty once time is converted in distance. For 
this reason angle estimation devices implemented in this kind of laser scanners are similar 
each other. But different strategies for obtaining distance from light have been proposed for 
minimizing such uncertainty, all derived by approaches originally developed for radars. 
An interesting sensor fusion is given by the Range-Imaging (RIM) cameras which integrate 
distance measurements (based on the TOF principle) and imaging aspects. RIM sensors are 
not treated in this chapter as not really suitable for 3D modeling applications. 

2.3.2 PW laser scanner 

Distance estimation is here based on a short Pulsed Wave (PW) of light energy generated 
from the source toward the target. Part of it is backscattered to the sensor, collected and 
reconverted in an electric signal by a photodiode. The transmitted light driving pulse and 
the received one are used as start/stop command for a high frequency digital clock that 
allows to count a number of time units between the two events. Of course the higher is the 
temporal resolution of the counting device, the finer will be the distance estimation. 
However, frequency limitations of electronic counting does not allow to go below a few tens 
of ps in time resolution, corresponding to some millimetres. 
Considering that the speed of light is approximately c=3· 108 m/s, and that the TOF is 
related to a travel of the light pulse to the surface and back (double of the sensor-to-target 
distance), the range will be given by: 

 
TOF c

r



2

 (11) 

Therefore a small deviation in estimating TOF, for example in the order of 20 ps, will give a 
corresponding range deviation Dr=1/2· (20· 10-12)· (3· 108) m = 3 mm. 
For some recent models of laser scanner based on this principle (Riegel, 2010), the device is 
capable to detect multiple reflected pulses by a single transmitted pulse, provided by 
situations where multiple targets are present on the laser trajectory (e.g. a wall behind tree 
leaves). In this case the cloud of points is not anymore a 2.5D entity. 

2.3.3 CW laser scanner (phase shift) 

In this case distance is estimated with a laser light whose intensity is sinusoidally modulated 
at a known frequency, generating a Continuous Wave (CW) of light energy directed toward 
the target. The backscattering on the target surface returns a sinusoidal light wave delayed 
respect to the transmitted one, and therefore characterized by a phase difference with it. 
Similarly to the previous approach, the distance estimation is based on a comparison 
between the signal applied to the laser for generating the transmitted light wave: 
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 TXs cos( t) 0  (12) 

and the signal generated by re-converting in electrical form the light backscattered by the 
surface and received by the range sensor: 

 RXs cos( t )  0  (13) 

A CW laser scanner implement an electronic mixing the two signals, that corresponds to a 
multiplication of these two contributions. It can be reduced as follows: 

 cos( t) cos( t ) cos( t ) cos( )         0 0 0

1 1
2

2 2
 (14) 

The result is a contribution at double the modulating frequency, that can be cut through a 
low-pass filter, and a continuous contribution, directly proportional to phase difference f, 
that can be estimated. Since this angular value is directly proportional to the TOF, from this 
value the range can be evaluated similarly to the previous case. This indirect estimation of 
TOF allows a better performance in term of uncertainty for two main reasons: a) since the 
light sent to the target is continuous, much more energy can be transmitted respect to the 
PW case, and the consequent signal-to-noise ratio of the received signal is higher; b) the low-
passing filtering required for extracting the useful signal component involves a cut also on 
the high frequency noise, resulting in a further decrease of noise respect to signal. 
A peculiar aspect of this range measurement technique is the possibility to have an 
ambiguous information if the sensor-to-target distance is longer than the equivalent length 
of a full wave of modulated light, given by the ambiguity range ramb=pc/w0, due to the 
periodical repetition of phase. Such ambiguity involves a maximum operating distance that 
is in general smaller for CW devices rather than PW. 

2.3.4 FM-CW laser scanner (laser radar) 

In CW systems the need of a wavelength long enough for avoiding ambiguity, influence the 

range detection performance which is as better as the wavelength is short (i.e. as w0 grows). 

This leaded to CW solutions where two or three different modulation frequencies are 

employed. A low modulating frequency for a large ambiguity range (in the order of 100m), 

and shorter modulation frequencies for increasing angular (and therefore range) resolution. 

By increasing indefinitely the number of steps between a low to a high modulating frequency, 

a so-called chirp frequency modulation (FM) is generated, with a linear growing of the 

modulating frequency in the operating range. As light is generated continuously, this kind of 

instruments are indicated as FM-CW. Since this processing is normally used in radars (Skolnik, 

1990), this devices is also known as “laser radar”. The peculiar aspect of this approach is the 

capability to reduce the measurement uncertainty at levels much lower than that of PW laser 

scanners (typically 2-3 mm), and lower than that of CW laser scanners (less than 1mm on 

optically cooperative materials at the proper distance), competing with triangulation laser 

scanners, capable to reach a measurement uncertainty lower than 100 mm. Such devices have 

therefore the advantage of the spherical acquisition set-up typical of TOF laser scanners, with a 

metrological performance comparable to that of triangulation based devices, at operating 

distances from 1 to 20 meters, far larger than the typical triangulation devices operating range 

(0.5 to 2 m). For this reason such instruments have been experimented in applications where a 
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wide area and high precision are simultaneously required, like in industrial (Petrov, 2006) and 

CH (Guidi et al., 2005; Guidi et al., 2009b) applications. 

3. Digital camera calibration and image orientation 

Camera calibration and image orientation are procedures of fundamental importance, in 
particular for all those geomatics applications which rely on the extraction of accurate 3D 
geometric information from images. The early theories and formulations of orientation 
procedures were developed many years ago and today there is a great number of 
procedures and algorithms available (Gruen and Huang, 2001).  
Sensor calibration and image orientation, although conceptually equivalent, follow different 
strategies according to the employed imaging sensors. The camera calibration procedure can 
be divided in geometric and radiometric calibration but in this chapter only the geometric 
calibration of terrestrial frame cameras is reported. 

3.1 Geometric camera calibration 

The geometric calibration of a camera (Remondino & Fraser, 2006) is defined as the 

determination of deviations of the physical reality from a geometrically ideal imaging 

system based on the collinearity principle: the pinhole camera. Camera calibration continues 

to be an area of active research within the Computer Vision community, with a perhaps 

unfortunate characteristic of much of the work being that it pays too little heed to previous 

findings from photogrammetry. Part of this might well be explained in terms of a lack of 

emphasis and interest in accuracy aspects and a basic premise that nothing whatever needs 

to be known about the camera which has to be calibrated within a linear projective rather 

than Euclidean scene reconstruction. In photogrammetry, a camera is considered calibrated 

if its focal length, principal point offset and a set of Additional Parameters (APs) are known. 

The camera calibration procedure is based on the collinearity model which is extended in 

order to model the systematic image errors and reduce the physical reality of the sensor 

geometry to the perspective model. The model which has proved to be the most effective, in 

particular for close-range sensors, was developed by D. Brown (1971) and expresses the 

corrections (Dx, Dy) to the measured image coordinates (x, y) as: 

 x

x
x x f xS ya xr k xr k xr k P xy ( x r )P xyP

f
             

22 4 6 2
0 1 2 3 1 1 22 2 2  (15) 
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with: 

x x x ;

y y y ;

r x y ;
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Brown’s model is generally called “physical model” as all its components can be directly 

attributed to physical error sources. The individual parameters represent: 
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Dx0, Dy0 , Df = correction for the interior orientation elements; 

Ki = parameters of radial lens distortion; 

Pi = parameters of decentering distortion; 

Sx = scale factor in x to compensate for possible non-square pixel; 

a = shear factor for non-orthogonality and geometric deformation of the pixel. 

The three APs used to model radial distortion Δr are generally expressed via the odd-order 

polynomial Δr = K1r3 + K2r5 + K3r7, where r is the radial distance. A typical Gaussian radial 

distortion profile Δr is shown in fig. 6a, which illustrates how radial distortion can vary with 

focal length. The coefficients Ki are usually highly correlated, with most of the error signal 

generally being accounted for by the cubic term K1r3. The K2 and K3 terms are typically 

included for photogrammetric (low distortion) and wide-angle lenses, and in higher-

accuracy vision metrology applications. The commonly encountered third-order barrel 

distortion seen in consumer-grade lenses is accounted for by K1. 

 

  
 

a)                                                                        b) 

Fig. 6. Radial (a) and decentering (b) distortion profile for a digital camera set at different 
focal length. 

Decentering distortion is due to a lack of centering of lens elements along the optical axis. 

The decentering distortion parameters P1 and P2 are invariably strongly projectively coupled 

with x0 and y0. Decentering distortion is usually an order of magnitude or more less than 

radial distortion and it also varies with focus, but to a much less extent, as indicated by the 

decentering distortion profiles shown in fig. 6b. The projective coupling between P1 and P2 

and the principal point offsets (Dx0, Dy0) increases with increasing focal length and can be 

problematic for long focal length lenses. The extent of coupling can be diminished, during 

the calibration procedure, through both use of a 3D object point array and the adoption of 

higher convergence angles for the images.  

The solution of a self-calibrating bundle adjustment leads to the estimation of all the interior 

parameters and APs, starting from a set of manually or automatically measured image 

correspondences (tie points). Critical to the quality of the self-calibration is the overall 

network geometry and especially the configuration camera stations. Some good hints and 

practical rules for camera calibration can be summarized as follows: 

 acquire a set of images of a reference object, possibly constituted of coded targets which 
can be automatically and accurately measured in the images; 
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 the image network geometry should be favourable, i.e. the camera station configuration 
must comprise highly convergent images, acquired at different distances from the 
scene, with orthogonal roll angles and a large number of well distributed 3D object 
points; 

 the accuracy of the image network (and so of the calibration procedure) increases with 
increasing convergence angles for the imagery, the number of rays to a given object 
point and the number of measured points per image (although but the incremental 
improvement is small beyond a few tens of points); 

 a planar object point array can be employed for camera calibration if the images are 
acquired with orthogonal roll angles, a high degree of convergence and, desirably, 
varying object distances; 

 orthogonal roll angles must be present to break the projective coupling between IO and 
EO parameters. Although it might be possible to achieve this decoupling without 90° 
image rotations, through provision of a strongly 3D object point array, it is always 
recommended to have ‘rolled’ images in the self-calibration network. 

Nowadays self-calibration via the bundle adjustment is a fully automatic process requiring 
nothing more than images recorded in a suitable multi-station geometry, an initial guess of 
the focal length and image sensor characteristics (and it can be a guess) and some coded 
targets which form a 3D object point array. 

3.2 Image orientation 

In order to survey an object, a set of images needs to be acquired considering that a detail 

can be reconstructed in 3D if it is visible in at least 2 images. The orientation procedure is 

then performed to determine the position and attitude (angles) where the images were 

acquired. A set of tie points needs to be identified (manually or automatically) in the 

images, respecting the fact that the points are well distributed on the entire image format, 

non-coplanar nor collinear. These observations are then used to form a system of 

collinearity equations (Eq. 1), iteratively solved with the Gauss-Markov model of least 

squares (Eq. 2). 

A typical set of images, acquired for 3D reconstruction purposes, forms a network which 

is generally not suitable for a calibration procedure. Therefore it is always better to 

separate the two photogrammetric steps or to adopt a set of images suitable for both 

procedures. 

4. Characterization of 3D sensing devices 

When a range sensor has to be chosen for geometrically surveying an object shape, 

independently of its size, the first point to face regards which level of detail has to be 

recognizable in the final 3D digital model that will be built starting from the raw 3D data, 

and the acceptable tolerance between the real object and its digital counterpart. These 

matters are so important that influence all the technological and methodological choices for 

the whole 3D acquisition project.  
The main metrological parameters related to measurement are univocally defined by the 
International Vocabulary of Metrology (VIM), published by the Joint Committee for Guides 
in Metrology (JCGM) of ISO (JCGM, 2008). Such parameters are basically Resolution, 
Trueness (Accuracy) and Uncertainty (Precision).  
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Although the transposition of these concepts to the world of 3D imaging has been reported 
in the reference guide VDI/VDE 2634 by the “Association of German Engineers” for pattern 
projection cameras, a more general international standard on optical 3D measurement is still 
in preparation by commission E57 of the American Society for Testing Material (ASTM, 
2006). Also the International Standard Organization (ISO) has not yet defined a metrological 
standard for non-contact 3D measurement devices. In its ISO-10360 only the methods for 
characterizing contact based Coordinate Measuring Machines (CMM) has been defined, 
while an extension for CMMs coupled with optical measuring machines (ISO 10360-7:2011) 
is still under development. 

4.1 Resolution 

According to VIM, resolution is the "smallest change in a quantity being measured that 
causes a perceptible change in the corresponding indication”. This definition, once referred 
to non-contact 3D imaging, is intended as the minimum geometrical detail that the range 
device is capable to capture. This is influenced by the device mechanical, optical and 
electronic features. Of course such value represents the maximum resolution allowed by the 
3D sensor. For its 3D nature it can be divided in two components: the axial resolution, along 
the optical axis of the device (usually indicated as z), and the lateral resolution, on the xy 
plane (MacKinnon et al., 2008). 
For digitally capturing a shape, the 3D sensor generates a discretization of its continuous 

surface according to a predefined sampling step adjustable by the end-user even at a level 

lower than the maximum. The adjustment leads to a proper spacing between geometrical 

samples on the xy plane, giving the actual geometrical resolution level chosen by the 

operator for that specific 3D acquisition action. The corresponding value in z is a 

consequence of the opto-geometric set-up, and can’t be usually changed by the operator. 

In other words it has to be made a clear distinction between the maximum resolution 

allowed by the sensor, usually indicated as “resolution” in the sensor data sheet, and the 

actual resolution used for a 3D acquisition work, that the end-user can properly set-up 

according to the geometrical complexity of the 3D object to be surveyed, operating on the xy 

sampling step. 

The latter set-up is directly influenced by the lens focal length and the sensor-to-target 
distance for triangulation devices, using an image sensor whose size and pixel density is 
known in advance. In that case the sampling step will be attainable for example dividing the 
framed area horizontal size for the number of horizontal pixels. Since most cameras has 
square pixels, in general this value is equivalent to (vertical size)/(vertical number of 
pixels). For TOF devices the sampling can be set-up on the laser scanner control software by 
defining the angular step between two adjacent point on a scan line, and between two 
adjacent scan-lines. Of course, in order to convert the angular step in a linear step on the 
surface, such angle expressed in radians has to be multiplied for the operating distance. 
Some scanner control packages allow to set directly the former value. 
The sampling should be made according to a rule deriving directly by the Nyquist-Shannon 
sampling theorem (Shannon, 1949), developed first in communication theory. Such theorem 
states that, if a sinusoidal behaviour has a frequency defined by its period T, that in the 
geometrical domain becomes a length (the size of the minimal geometrical detail that we 
intend to digitally capture), the minimal sampling step suitable for allowing the 
reconstruction of the same behaviour from the sampled one, is equal to T/2. Of course it is 
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not generally true that the fine geometrical details of a complex shape could be considered 
as made by the extrusions of sinusoidal profiles, but at least this criteria gives a “rule of the 
thumb” for estimating a minimum geometrical sampling step below which it is sure that the 
smaller geometrical detail will be lost. 

4.2 Trueness (accuracy) 

VIM definition indicates accuracy in general as “closeness of agreement between a 
measured quantity value and a true quantity value of a measurand”. When such theoretical 
entity has to be evaluated for an actual instrument, including a 3D sensor, such value has to 
be experimentally estimated from the instrument output. For this reason VIM also define 
trueness as “closeness of agreement between the average of an infinite number of replicate 
measured quantity values and a reference quantity value”. It is a more practical parameter 
that can be numerically estimated as the difference between a 3D value assumed as true 
(because measured with a method far more accurate), and the average of a sufficiently large 
number of samples acquired through the range device to be characterized. Such parameter 
refers therefore to the systematic component of the measurement error with respect to the 
real data (fig.7), and can be minimized through an appropriate sensor calibration. For 3D 
sensors, accuracy might be evaluated both for the axial direction (z) than for a lateral one (on 
the xy plane). In general, accuracy on depth is the most important, and varies from few 
hundredths to few tenths of a millimetre for triangulation based sensors and FM-CW laser 
scanners, it is in the order of 1mm for CW laser scanners, and in the order of 5 mm for PW 
laser scanners. 
 

 

Fig. 7. Exemplification of the accuracy and precision concepts. The target has been used by 
three different shooters. The shooter A is precise but not accurate, B is more accurate than A 
but less precise (more spreading), C is both accurate and precise. 

4.3 Uncertainty (precision) 

Precision is the “closeness of agreement between indications or measured quantity values 
obtained by replicate measurements on the same or similar objects under specified 
conditions” (JCGM, 2008). A practical value for estimating such agreement is to calculate the 
dispersion of the quantity values being attributed to a measurand through the standard 
deviation of the measured values respect to their average (or a multiple of it), defined by 
VIM as uncertainty (fig.7). 
As accuracy is influenced by systematic errors, precision is mostly influenced by random 
errors, leading to a certain level of unpredictability of the measured value, due to thermal 
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noise in the sensor's detector, and, in case of laser based devices, by the typical laser speckle 
effect (Baribeau & Rioux 1991). 
For a 3D sensor such estimation can be done acquiring several times the same area and 
analysing the measured value of a specific point in space as a random variable, calculating 
its standard deviation. This would involve a very large number of 3D acquisitions to be 
repeated, namely from 10000 to one million, in order to consider the data statistically 
significant. For this reason a more practical approach (even if not as theoretically coherent 
with the definition) is to acquire the range map of a target whose shape is known in 
advance, like for example a plane, and evaluate the standard deviation of each 3D point 
respect to the ideal shape (Guidi et al., 2010). Since a range map can be easily made by 
millions of points the statistical significance is implicit. 
Precision of active 3D devices ranges from a few tens of micrometres for triangulation based 
sensors, with an increase of deviation with the square of sensor-to-target distance. It has 
similar values for FM-CW laser scanners with a much less significant change with distance. 
For CW laser scanners it has values starting from below 1mm up to a few mm as the sensor 
is farer from the target, and not less of 2 mm for PW laser scanners (Boehler et al., 2003) with 
no significant change with distance (Guidi et al., 2011). 
For modelling applications the uncertainty level of the range sensor should not exceed a 
fraction of the resolution step for avoiding topological anomalies in the final mesh (Guidi & 
Bianchini, 2007). A good rule of the thumb is to avoid a resolution level smaller than the 
range device measurement uncertainty. 

5. Photogrammetric 3D point clouds generations 

Once the camera parameters are known, the scene measurements can be performed with 
manual or automated procedures. The measured 2D image correspondences are converted 
into unique 3D object coordinates (3D point cloud) using the collinearity principle and the 
known exterior and interior parameters previously recovered. According to the surveyed 
scene and project requirements, sparse or dense point clouds are derived (fig. 8).  
Manual (interactive) measurements, performed in monocular or stereoscopic mode, derive 
sparse point clouds necessary to determine the main 3D geometries and discontinuities of 
an object. Sparse reconstructions are adequate for architectural or 3D city modelling 
applications, where the main corners and edges must be identified to reconstruct the 3D 
shapes (fig. 8a) (Gruen & X. Wang, 1998; El-Hakim, 2002). A relative accuracy in the range 
1:5,000-15,000 is generally expected for such kinds of 3D models.  
On the other hand, automated procedures (“image matching”) are employed when dense 
surface measurements and reconstructions are required, e.g. to derive a Digital Surface 
Model (DSM) to document detailed and complex objects like reliefs, statues, excavations 
areas, etc. (fig. 8b). The latest development in automated image matching (Pierrot-
Deseilligny & Paparoditis, 2006; Hirschmuller, 2008; Remondino et al., 2008; Hiep et al., 
2009; Furukawa & Ponce, 2010) are demonstrating the great potentiality of the image-based 
3D reconstruction method at different scales of work, comparable to point clouds derived 
using active range sensors and with a reasonable level of automation. Overviews on stereo 
and multi-image image matching techniques can be found in (Scharstein & Szeliski, 2002; 
Seitz et al., 2006). Recently some commercial, open-source and web-based tools were 
released to derive dense point clouds from a set of images (Photomodeler Scanner, MicMac, 
PMVS, etc.). 
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a) 

 
b) 

Fig. 8. 3D reconstruction of architectural structures with manual measurements in order to 
generate geometrical models with the main geometrical features (a). Dense point clouds 
produced using automated image matching (b). 

6. Acquisition and processing of 3D point clouds with active sensors 

Independently of the active 3D technology used, a range map is a metric representation of 

an object from a specific point of view through a set of 3D points properly spaced apart, 

according to the complexity of the imaged surface. 

In order to create a model, several views have to be taken for covering the whole object 

surface. This operation leads to a set of measured points that can be used as nodes of a mesh 

representing a 3D digital approximation of the real object. Hence, for going from the raw 

data to the final 3D model, a specific process has to be followed (Bernardini & Rushmeyer, 

2002; Vrubel et al., 2009), according to the steps described in the next sections. Many of these 

steps have been implemented in 3D point cloud processing packages, both open source, like 

Meshlab (ISTI-CNR, Italy), Scanalize (Stanford University, USA), and commercial, as 

Polyworks (Innovmetric, Canada), RapidForm (Inus Technology, South Corea), Geomagic 

Studio (Geomagic , USA), Cyclone (Leica, Switzerland), 3D Reshaper (Technodigit, France).  

6.1 Project planning 

The final scope of the digital model is the first matter to be considered for properly 
planning a 3D acquisition project. Applications of 3D models may span from a simple 
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support for multimedia presentations to a sophisticate dimensional monitoring. In the 
former case a visually convincing virtual representation of the object is enough, while in 
the latter a strict metric correspondence between the real object and its digital 
representation is absolutely mandatory. Since parameters as global model accuracy and 
geometrical resolution have a considerable cost in terms of acquired data and post-
processing overhead, a choice coherent with the project budget and final purpose, is a 
must. Once such aspects have been clearly identified, the object to be acquired has to be 
analyzed in terms of size, material and shape.  

6.2 Acquisition of individual point clouds 

Once the planning has been properly examined, the final acquisition is rather 
straightforward. In addition to basic logistics, possible issues may be related with sensor 
positioning and environmental lighting. Camera positioning for small objects can be solved 
either by moving the object or the sensor, but when the object is very large and heavy (e.g. a 
boat), or fixed into the ground (e.g. a building), the only possibility is obviously to move the 
range sensor. In that case a proper positioning should be arranged through scaffoldings or 
mobile platforms, and the related logistics should be organized. Another aspect that might 
influence a 3D acquisition is the need of working in open air rather than in a laboratory 
where lighting conditions can be controlled. In the former case it has to be considered that 
TOF laser scanners are designed for working on the field and are therefore not much 
influenced by direct sunlight. Triangulation based range sensors employ much less light 
power per surface unit and for this reason give worst or no results with high environmental 
light. In this case a possible but logistically costly solution is to prepare a set with tents or 
shields for limiting the external light on the surface to be acquired. However in that 
conditions a more practical approach for obtaining the same high resolution is dense image 
matching, that, being a passive technique, works well with strong environmental lighting 
(Guidi et al., 2009a). 

6.3 Point clouds alignment 

In general each range map acquired from a specific position is given in a coordinate system 

with the origin located into the range sensor. 

Taking range data of a scene or object from different points of view means gathering 3D 

data representing the same geometry by different reference systems whose mutual 

orientation is generally unknown. For such reason it is necessary to align all 3D data into the 

same coordinate system. The process can be achieved in three different ways. 

6.3.1 Complementary equipment 

This approach requires the measurement of the range device position and orientation with a 
complementary 3D measurement device like a CMM, giving such data in its coordinate 
system which is assumed as the global reference. These 6 pieces of information (position and 
orientation) can be used for calculating the roto-translation matrix from the range device 
coordinate system to the global one. Applying systematically such roto-translation to any 
3D point measured by the range device allows to find immediately its representation in the 
global reference system even for different device-to-target orientations. Although the 
working volume is limited by the CMM positioning range, such approach is very accurate. 
This is why it is used in equipment typically employed in high-accuracy industrial 
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applications with articulated arms (contact CMM) or laser trackers (non-contact CMM) 
coupled with triangulation based scanning heads (Pierce, 2007; Peggs et al., 2009). 
In case of long-range active range sensors (e.g. TOF laser scanners) the complementary 
device can be represented by a GNSS which is used, for every acquisition, to measure the 
position of the range sensor in a global reference system.  

6.3.2 Reference targets 

Measuring some reference points on the scene with a surveying system like for example a 
total station, allows to define a global reference system in which such targets are 
represented. During the 3D acquisition campaign the operator captures scenes containing at 
least three targets which are therefore represented in the range device reference system for 
that particular position. Being their positions known also in a global reference system, their 
coordinates can be used to compute the roto-translation matrix for re-orienting the point 
cloud from its original reference system to the global one. The operation is of course 
repeated up to the alignment of all 3D data of the scene. This approach is used more 
frequently with TOF laser scanners thanks to their large region of interest. 

6.3.3 Iterative Closest Point (ICP) 

Using as references natural 3D features in the scene is a possible alternative somehow 
similar to the previous one. The only difference is that no special target has to be fixed on 
the scene and individually measured by the operator. On the other hand for allowing a 
proper alignment, a considerable level of overlapping between adjacent range maps has to 
be arranged, resulting in a large data redundancy and long computational time.  
The algorithm for aligning this kind of 3D data sets involves the choice of a range map 

whose coordinate system is used as global reference. A second data set, partially 

overlapping with the reference one, is manually or automatically pre-aligned to the main 

one choosing at least three corresponding points on the common area of both range maps 

(fig. 9a). This step allows to start an iterative process for minimizing the average distance 

between the two datasets, initiated by a situation of approximate alignment (fig. 9b) not too 

far from the optimized one (fig. 9c), that can be reached after a number of iterations as large 

as the initial approximation is rough. For this reason this class of algorithms is called 

“Iterative Closest Point” (ICP).  

The most critical aspect is that the range maps to be aligned represent different samplings of 
the same surface, therefore there is not exact correspondence between 3D points in the two 
coordinate systems. Several solutions have been proposed by considering the minimization 
of Euclidean distances between points as much corresponding as possible, but it is highly 
time consuming due to the exhaustive search for the nearest point (Besl & McKay, 1992), or 
between a point and a planar approximation of the surface at the corresponding point on the 
other range map (Chen & Medioni, 1992). In both cases the algorithm core is a nonlinear 
minimization process, being based on a nonlinear feature such as a distance. For this reason 
the associated cost function has a behaviour characterized by several confusing local 
minima, and its minimization needs to be started by a pre-alignment close enough to the 
final solution in order to converge to the absolute minimum. 
Once the first two range maps of a set are aligned, ICP can be applied to other adjacent point 
clouds up the full coverage of the surface of interest. This progressive pair-wise alignment 
may lead to a considerable error propagation, clearly noticeable on closed surfaces when the 
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first range map has to be connected with the last one. For this reason global versions of ICP 
have been conceived, where the orientation of each range map is optimized respect to all 
neighbour range maps (Gagnon et al., 1994). 
 

  
                                      a)                                                  b)                              c) 

Fig. 9. ICP alignment process: a) selection of corresponding points on two partially 
superimposed range maps; b) rough pre-alignment; c) accurate alignment after a few 
iterations. 

Several refinements of the ICP approach have been developed in the last two decades for 

pair-wise alignment (Rusinkiewicz & Levoy, 2001), with the introduction of additional non-

geometrical parameters as colour, for solving alignment of object with rich image content 

but poor 3D structure like flat or regular texturized surfaces (Godin et al., 2001b), and for 

managing possible shape changes between different shots due to non-rigid objects (Brown & 

Rusinkiewicz, 2007). A quantitative test of different alignment algorithm has been recently 

proposed in term of metric performances and processing time (Salvi et al., 2007). For a 

widespread updated state of the art about alignment algorithms see (Deng, 2011).  

7. Polygonal model generation 

Once a point cloud from image matching or a set of aligned point clouds acquired with an 

active sensor are obtained, a polygonal model (“mesh”) is generally produced. This process 

is logically subdivided in several sub-steps that can be completed in different orders 

depending by the 3D data source (Berger et al., 2011). 

7.1 Mesh generation for structured point clouds 

The regular matrix arrangement of a structured point cloud involves an immediate 

knowledge of the neighbour potential mesh connection for each 3D point, making the mesh 

generation a rather straightforward procedure. This means that once a set of range maps is 

aligned, it can be easily meshed before starting the final merge.  

This is what is done for example by the Polyworks software package used to create the 

alignment and meshing shown in fig. 10. For carrying out the following merge, the meshes 

associated to the various range maps have to be connected with the neighbour meshes. This 

can be achieved with two different approaches: (i) the so-called zippering method (Turk & 

Levoy, 1994) which selects polygons in the overlapping areas, removes redundant triangles 

and connects meshes together (zipper) trying to maintain the best possible topology. An 
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optimized version that uses Venn diagrams for evaluating the level of redundancy on mesh 

overlaps has been proposed (Soucy & Laurendeau, 1995). Other approaches work by 

triangulating union of the point sets, like the Ball Pivoting algorithm (Bernardini et al., 

1999), which consists of rolling an imaginary ball on the point sets and creating a triangle for 

each triplet of points supporting the ball. All methods based on a choice of triangles from a 

certain mesh on the overlapping areas may get critical in case of large number of overlapped 

range maps; (ii) a volumetric algorithm which operates a subdivision in voxels of the model 

space, calculates an average position of each 3D point on the overlapping areas and re-

samples meshes along common lines of sight (Curless & Levoy, 1996). In this case areas with 

possible large number of overlapped range maps are evaluated more efficiently than with 

the zippering method, with a reduction of measurement uncertainty by averaging 

corresponding points. 

 

 
a)       b) 

Fig. 10. Mesh generation: a) set of ICP aligned range maps. Different colours indicate the 
individual range maps; b) merge of all range maps in a single polygonal mesh. 

7.2 Mesh generation for unstructured point clouds 

While meshing is a pretty straightforward step for structured point clouds, for an 

unstructured point cloud it is not so immediate. It requires a specific process like Delaunay, 

involving a projection of the 3D points on a plane or another primitive surface, a search of 

the shorter point-to-point connection with the generation of a set of potential triangles that 

are then re-projected in the 3D space and topologically verified. For this reason the mesh 

generation from unstructured clouds may consist in: a) merging the 2.5D point clouds 

reducing the amount of data in the overlapped areas and generating in this way a uniform 

resolution full 3D cloud; b) meshing with a more sophisticate procedures of a simple 

Delaunay. The possible approaches for this latter step are based on: (i) interpolating surfaces 

that build a triangulation with more elements than needed and then prune away triangles 

not coherent with the surface (Amenta & Bern, 1999); (ii) approximating surfaces where the 

output is often a triangulation of a best-fit function of the raw 3D points (Hoppe et al., 1992; 

Cazals & Giesen, 2006).  

www.intechopen.com



 
3D Modelling from Real Data 

 

93 

Dense image matching generally consist of unstructured 3D point clouds that can be 
processed with the same approach used for the above mentioned laser scanner unstructured 
point clouds. No alignment phase is needed as the photogrammetric process deliver a 
unique point cloud of the surveyed scene. 

7.3 Mesh editing and optimization 

Mesh editing allows to correct all possible topological incoherence generated after the 
polygonal surface generation. Generally some manual intervention of the operator is 
required in order to clean spikes and unwanted features and to reconstruct those parts of 
the mesh that are lacking due to previous processing stages or to an effective absence of 3D 
data collected by the sensor. 
These actions are needed at least for two purposes: (i) if the final 3D model has to be used 
for real-time virtual presentations or static renderings, the lacking of even few polygons 
gives no support to texture or material shading, creating a very bad visual impression and 
thwarting the huge modelling effort made until this stage; (ii) if the model has to be used for 
generating physical copies through rapid prototyping, the mesh has to be watertight. 
Several approaches have been proposed for creating lacking final mesh as much agreement 
as possible with the measured object, like radial basis functions (Carr et al., 2001), multi-
level partition of unity implicits (Ohtake et al., 2003) or volumetric diffusion (Davis et al., 
2002; Sagawa & Ikeuchi, 2008). 
In some cases, like for example dimensional monitoring applications, mesh editing is not 
suggested for the risk of adding not existing data to the measured model, leading to possible 
inconsistent output.  
Optimization is instead a final useful step in any applicative case, where a significant 
reduction of the mesh size can be obtained. After the mesh generation and editing stages, 
the polygonal surface has a point density generally defined by the geometrical resolution set 
by the operator during the 3D data acquisition or image matching procedure. In case of 
active range sensing as specified in sect. 4.1, the resolution is chosen for capturing the 
smaller geometrical details and can be therefore redundant for most of the model. A 
selective simplification of the model can thus reduce the number of polygons without 
changing significantly its geometry (Hoppe, 1996). As shown in fig. 11a, the point density  
 

 
a)                                                                         b) 

Fig. 11. Mesh optimization: a) mesh with polygon sizes given by the range sensor resolution 
set-up (520,000 triangles); b) mesh simplified in order to keep the difference with the 
unsimplified one, below 50mm. The polygon sizes vary dynamically according to the 
surface curvature and the mesh size drops down to 90,000 triangles. 

www.intechopen.com



 
Modeling and Simulation in Engineering 

 

94

set for the device appears to be redundant for all those surfaces whose curvature radius is 
not too small. 
A mesh simplification that progressively reduces the number of polygons eliminating some 
nodes, can be applied up to reaching a pre-defined number of polygons (useful for example 
in game applications where such limitation holds), or, as an alternative, checking the 
deviation between simplified and un-simplified mesh and stopping at a pre-assigned 
threshold. If such threshold is chosen in the order of the 3D sensor measurement 
uncertainty, this kind of simplification does not practically influence the geometric 
information attainable by the model (fig. 11b), with a strong data shrinking (nearly six time 
in the example). Mesh simplification algorithms have been extensively examined and 
compared by Cignoni et al. (1998). 

8. Texture mapping and visualization 

A polygonal 3D model can be visualized in wireframe, shaded or textured mode. A textured 

3D geometric model is probably the most desirable 3D object documentation by most since 

it gives, at the same time, a full geometric and appearance representation and allows 

unrestricted interactive visualization and manipulation at a variety of lighting conditions. 

The photo-realistic representation of a polygonal model (or even a point cloud) is achieved 

mapping a colour images onto the 3D geometric data. The 3D data can be in form of points 

or triangles (mesh), according to the applications and requirements. The texturing of 3D 

point clouds (point-based rendering techniques (Kobbelt & Botsch, 2004) allows a faster 

visualization, but for detailed and complex 3D models it is not an appropriate method. In 

case of meshed data the texture is automatically mapped if the camera parameters are 

known (e.g. if it is a photogrammetric model and the images are oriented) otherwise an 

interactive procedure is required (e.g. if the model has been generated using range sensors 

and the texture comes from a separate imaging sensor). Indeed homologue points between 

the 3D mesh and the 2D image to-be-mapped should be identified in order to find the 

alignment transformation necessary to map the colour information onto the mesh. Although 

some automated approaches were proposed in the research community (Lensch et al., 2000; 

Corsini et al., 2009), no automated commercial solution is available and this is a bottleneck 

of the entire 3D modelling pipeline. Thus, in practical cases, the 2D-3D alignment is done 

with the well-known DLT approach (Abdel-Aziz & Karara, 1971), often referred as Tsai 

method (Tsai, 1986). Corresponding points between the 3D geometry and a 2D image to-be-

mapped are sought to retrieve the interior and exterior unknown camera parameters. The 

colour information is then projected (or assigned) to the surface polygons using a colour-

vertex encoding, a mesh parameterization or an external texture.  

In Computer Graphics applications, the texturing can also be performed with techniques 

able to graphically modify the derived 3D geometry (displacement mapping) or simulating 

the surface irregularities without touching the geometry (bump mapping, normal mapping, 

parallax mapping). 

In the texture mapping phase some problems can arise due to lighting variations of the 
images, surface specularity and camera settings. Often the images are exposed with the 
illumination at imaging time but it may need to be replaced by illumination consistent with 
the rendering point of view and the reflectance properties (BRDF) of the object (Lensch et al., 
2003). High dynamic range (HDR) images might also be acquired to recover all scene details 
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and illumination (Reinhard et al., 2005) while colour discontinuities and aliasing effects 
must be removed (Debevec et al., 2004; Umeda et al., 2005). 
The photo-realistic 3D product needs finally to be visualized e.g. for communication and 
presentation purposes. In case of large and complex model the point-based rendering 
technique does not give satisfactory results and does not provide realistic visualization. The 
visualization of a 3D model is often the only product of interest for the external world, 
remaining the only possible contact with the 3D data. Therefore a realistic and accurate 
visualization is often required. Furthermore the ability to easily interact with a huge 3D 
model is a continuing and increasing problem. Indeed model sizes (both in geometry and 
texture) are increasing at faster rate than computer hardware advances and this limits the 
possibilities of interactive and real-time visualization of the 3D results. Due to the generally 
large amount of data and its complexity, the rendering of large 3D models is done with 
multi-resolution approaches displaying the large meshes with different Levels of Detail 
(LOD), simplification and optimization approaches (Dietrich et al., 2007). 

9. Conclusions 

This chapter reported an overview of the actual optical 3D measurements sensors and 
techniques used for terrestrial 3D modelling. The last 15 years of applications made clear 
that reality-based 3D models are very useful in many fields but the related processing 
pipeline is still far from being optimal, with possible improvements and open research 
issues in many steps. 
First of all automation in 3D data processing is one of the most important issues influencing 
efficiency, time and production costs. At present different research solution and commercial 
packages have turned towards semi-automated (interactive) approaches, where the human 
capacity in data interpretation is paired with the speed and precision of computer 
algorithms. Indeed the success of fully automation in image understanding or 3D point 
clouds processing depends on many factors and is still a hot topic of research. The progress 
is promising but the acceptance of fully automated procedures, judged in terms of handled 
datasets and accuracy of the final 3D results, depends on the quality specifications of the 
user and final use of the produced 3D model. A good level of automation would make also 
possible the development of new tools for non-expert users. These would be particularly 
useful since 3D capturing and modelling has been demonstrated to be an interdisciplinary 
task where non-technical end-users (archaeologists, architects, designers, art historians, etc.), 
may need to interact with sophisticate technologies through clear protocols and user-
friendly packages. 
Sensor fusion has been experimentally demonstrated to be useful for collecting as many 
features as possible, allowing the exploitation of each range sensing technology capability. 
Currently available packages allows the creation of different geometric levels of detail 
(LoD) at model level (i.e. at the end of the modelling pipeline), while this could be 
performed also at data-level with the development of novel packages capable to deal 
simultaneously with different sensors and data. Such novel feature should allow also to 
include new sensors and 3D data in the processing pipeline taking into account their 
metrological characteristics.  
For this reason also the adoption of standards for comparing 3D sensing technologies 
would help. At present even no common terminology exists for comparing sensors 
performances. 
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A smooth connection between a data base and reality-based 3D models is another issue that 
has to be faced when the model becomes a “portal” for accessing to an informative system 
associated to the modelled object. Although some experimental systems have been 
developed, no simple tools suitable for non-expert users are available yet.  
The latter open issue is connected with the problem of remotely visualize large 3D models, 
both for navigation and data access. Despite 3D navigation through the internet has been 
attempted both with local rendering of downloaded 3D models (possible large initial time 
lag and poor data security), or with remote rendering and streaming to the client of a 
sequence of rendered frames (good security but poor real-time navigation), a complete and 
reliable user oriented solution is still lacking. 
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