3,268 research outputs found

    Low-cost, high-resolution, fault-robust position and speed estimation for PMSM drives operating in safety-critical systems

    Get PDF
    In this paper it is shown how to obtain a low-cost, high-resolution and fault-robust position sensing system for permanent magnet synchronous motor drives operating in safety-critical systems, by combining high-frequency signal injection with binary Hall-effect sensors. It is shown that the position error signal obtained via high-frequency signal injection can be merged easily into the quantization-harmonic-decoupling vector tracking observer used to process the Hall-effect sensor signals. The resulting algorithm provides accurate, high-resolution estimates of speed and position throughout the entire speed range; compared to state-of-the-art drives using Hall-effect sensors alone, the low speed performance is greatly improved in healthy conditions and also following position sensor faults. It is envisaged that such a sensing system can be successfully used in applications requiring IEC 61508 SIL 3 or ISO 26262 ASIL D compliance, due to its extremely high mean time to failure and to the very fast recovery of the drive following Hall-effect sensor faults at low speeds. Extensive simulation and experimental results are provided on a 3.7 kW permanent magnet drive

    Comparative analysis of speed decoding algorithms for rotary incremental encoders

    Get PDF
    Motion control process in modern automation technology and industry requires highly accurate speed information with high bandwidth. Incremental encoders are widely used as rotary feedback position and speed sensors which convert the motor position and speed information into coded electrical pulses. An accurate speed decoding system is therefore needed to extract necessary position and speed information from encoder output, which is further required by the motion control process. The level of accuracy and bandwidth highly depend on resolution of encoder being used as well as data processing technique. In this thesis, different incremental encoders and state-of-the-art speed decoding algorithms are discussed. These algorithms are implemented in Matlab Simulink and a comparative analysis is done based on accuracy, rapid response and wide speed range application. Further, the best choice is made based on this comparison and corresponding speed decoding algorithm is implemented in Xilinx FPGA. Analytical simulation results are presented in this thesis

    Harjattoman tasavirtamoottorin arviointi opto-mekaanisessa paikkasäätösovelluksessa

    Get PDF
    This thesis evaluates the applicability of a micro-sized brushless direct current (DC) mo- tor in an opto-mechanical positioning application. Brushless DC motors are electronically commutated motors that use permanent magnets to produce the airgap magnetic field. The motor is powered through an inverter or switching power supply which produces an AC electric current to drive each phase of the motor. Optimal current waveforms are determined by the motor controller based on the desired torque, speed or position requirements. The benefits of a brushless motor over conventional brushed DC motors are a high power to weight ratio, low noise and a long operating life. The purpose of this thesis is to find out the performance potential of such motors and determine methods to achieve it. Firstly, a motor model and an exact motor classification is presented. A literature review is made to discuss state of the art control methods and hardware configurations for dynamic position control. Based on the literature review, a control scheme with field-oriented control based torque control and cascaded PI controlled speed and position loops was selected for further evaluation. Experimental positioning tests were executed for two motors with different power transmission setups. Tests were performed with both, a hardware and software implemented, motor controllers. Results show promising performance. It was shown that the required acceleration is feasible with both, geared and direct drive, transmissions. Field-oriented control was shown as a well performing method to control torque but special caution was needed to implement a reliable position sensing solution in a small size as the control algorithm is intolerant for inaccurate and noisy position data. The conventional PI based position controller was effective in cases with no feedback related harmonics or motor related torque ripple but was not capable in handling ripple caused by a non-ideal system. Quality variances were seen between motors which were originated from mechanical defects and non-idealities in the stator structure. Further research is needed to achieve a better settling performance through filtering undesired feedback harmonics, better tuning and thus minimizing undesired vibrations.Tämän diplomityön tarkoituksena on arvioida pienikokoisen harjattoman tasavirtamoottorin soveltuvuutta opto-mekaaniseen paikkasäätösovellukseen. Harjattomat tasavirtamoottorit ovat elektronisesti ohjattuja moottoreita, joissa ilmavälin magneettivuo luodaan kestomagneeteilla. Moottorille syötetään virtaa taajuusmuuttajalta, joka muodostaa halutunlaisen vaihtovirran jokaiselle moottorin vaiheelle. Syötettävää virtaa ohjataan moottorinohjaimelta määritettyjen vääntö-, nopeus- ja paikkavaatimusten perusteella. Harjattoman DC-moottorin edut verrattuna perinteiseen harjalliseen DC-moottoriin ovat hyvä teho-painosuhde, hiljainen käyntiääni ja pitkä käyttöikä. Diplomityön tavoitteena on kartoittaa kyseisen moottorityypin suorituskyky paikkasäädössä ja tutkia keinoja saavuttaa haluttu taso. Alan tutkimuksessa ja kirjallisuudessa tunnettuja suorituskykyisiä säätömenetelmiä ja laite- sekä komponenttikokoonpanoja on koostettu kirjallisuuskatsauksessa. Tämän perusteella kokeellisiin testeihin valittiin säätöarkkitehtuuri vektorisäätöön perustuvalla virransäädöllä sekä PI-pohjaisilla nopeus- ja paikkasäätimillä. Kokeellisilla paikoitustesteillä arvioitiin kahden moottorin suorituskykyä erilaisilla voimansiirtovaihtoehdoilla. Testit suoritettiin sekä ohjelmistopohjaisella että sovelluskohtaiseen mikropiiriin toteutetulla laitepohjaisella säätimellä. Tulokset osoittavat että vaaditun kiihtyvyyden saavuttaminen on mahdollista sekä vaihteellisella että suoravetoisella voimansiirrolla. Vektorisäätö osoittautui suorituskykyiseksi virransäätömenetelmäksi, mutta moottorin asentomittauksen luotettava toteutus vaati erityishuomiota, sillä vektorisäätöalgoritmi on herkkä paikkadatan tarkkuudelle. PI-säätimillä toteutettu paikkasäätö osoittautui toimivaksi, mutta herkäksi moottorin epäideaalisuuksille sekä häiriöille takaisinkytkennässä. Moottoreiden välillä havaittiin laatueroja mekaanisissa toleransseissa ja staattorin rakenteessa. Lopullisen asettumisajan saavuttaminen vaatii lisätutkimusta. Erityishuomiota on kiinnitettävä harmonisten komponenttien suodattamiseen sekä systeemin säätöön, jotta ei-toivotut värinät saadaan minimoitua

    Systems analysis for DSN microwave antenna holography

    Get PDF
    Proposed systems for Deep Space Network (DSN) microwave antenna holography are analyzed. Microwave holography, as applied to antennas, is a technique which utilizes the Fourier Transform relation between the complex far-field radiation pattern of an antenna and the complex aperture field distribution to provide a methodology for the analysis and evaluation of antenna performance. Resulting aperture phase and amplitude distribution data are used to precisely characterize various crucial performance parameters, including panel alignment, subreflector position, antenna aperture illumination, directivity at various frequencies, and gravity deformation. Microwave holographic analysis provides diagnostic capacity as well as being a powerful tool for evaluating antenna design specifications and their corresponding theoretical models

    FPGA-based implementation of the back-EMF symmetric-threshold-tracking sensorless commutation method for brushless DC-machines

    Get PDF
    The operation of brushless DC permanent-magnet machines requires information of the rotor position to steer the semiconductor switches of the power-supply module which is commonly referred to as Brushless Commutation. Different sensorless techniques have been proposed to estimate the rotor position using current and voltage measurements of the machine. Detection of the back-electromotive force (EMF) zero-crossing moments is one of the methods most used to achieve sensorless control by predicting the commutation moments. Most of the techniques based on this phenomenon have the inherit disadvantage of an indirect detection of commutation moments. This is the result of the commutation moment occurring 30 electrical degrees after the zero-crossing of the induced back-emf in the unexcited phase. Often, the time difference between the zero crossing of the back-emf and the optimal current commutation is assumed constant. This assumption can be valid for steady-state operation, however a varying time difference should be taken into account during transient operation of the BLDC machine. This uncertainty degrades the performance of the drive during transients. To overcome this problem which improves the performance while keeping the simplicity of the back-emf zero-crossing detection method an enhancement is proposed. The proposed sensorless method operates parameterless in a way it uses none of the brushless dc-machine parameters. In this paper different aspects of experimental implementation of the new method as well as various aspects of the FPGA programming are discussed. Proposed control method is implemented within a Xilinx Spartan 3E XC3S500E board

    Sensorless Control of Switched-Flux Permanent Magnet Machines

    Get PDF
    This thesis investigates the sensorless control strategies of permanent magnet synchronous machines (PMSMs), with particular reference to switched-flux permanent magnet (SFPM) machines, based on high-frequency signal injection methods for low speed and standstill and the back-EMF based methods for medium and high speeds

    The use of passive telemetry in rotor fault diagnosis

    Get PDF
    The sensors most commonly used for monitoring machine health are wired accelerometers because of their high performances and good stability. However, these transducers are usually large in size; require an external power source. Hence, there is a need for cheaper and reliable alternative for the conventional accelerometers. This thesis reports the development of a wireless accelerometer based on Micro-Electro-Mechanical System (MEMS) inertial sensor and off-the-shelf digital RF communication modules. It is small enough to be installed on the rotating shaft of a machine. In addition, it has a high enough resolution to be used to analyse the dynamic behaviour of rotating shaft. The wireless sensor is mounted with its sensitive axis in the tangential direction with respect to the centre of the rotor. This position allows the sensor to perform high resolution tangential acceleration measurements and nullifies the centripetal acceleration. To assist in the validation of the wireless sensor, a mathematical model was derived to simulate the vibration signals from the test rig. Experimental and simulated results both confirmed the effectiveness of the wireless sensor in detecting different degrees of misalignments and unbalance of a flexible rotor system. The wireless sensor has been confirmed to possess the capability of detecting small degrees of misalignment using the spectral amplitude of the peak at 2X running speed compared to other conventional sensors (wired accelerometers, laser vibrometers). In addition, the results of the experiment and simulation have also confirmed the capacity of the wireless sensor to detect different shaft unbalance grades at 1X running speed using spectral and order magnitudes. However, the wired sensors used for comparison failed to show any clear separation of the different grades of shaft unbalance. Moreover, it has been observed that the instantaneous angular speed (IAS) derived directly from the wireless sensor correlates well with that obtained from a shaft encoder and showed the capacity to detect the main features of rotor dynamics. An advanced algorithm has been developed to remove the gravity effect. The application of the algorithm has made the IAS computed from the wireless sensor more indicative to that obtained by a shaft encoder

    Motion Compensation for Near-Range Synthetic Aperture Radar Applications

    Get PDF
    The work focuses on the analysis of influences of motion errors on near-range SAR applications and design of specific motion measuring and compensation algorithms. First, a novel metric to determine the optimum antenna beamwidth is proposed. Then, a comprehensive investigation of influences of motion errors on the SAR image is provided. On this ground, new algorithms for motion measuring and compensation using low cost inertial measurement units (IMU) are developed and successfully demonstrated
    corecore