176,905 research outputs found

    A new self-organizing neural gas model based on Bregman divergences

    Get PDF
    In this paper, a new self-organizing neural gas model that we call Growing Hierarchical Bregman Neural Gas (GHBNG) has been proposed. Our proposal is based on the Growing Hierarchical Neural Gas (GHNG) in which Bregman divergences are incorporated in order to compute the winning neuron. This model has been applied to anomaly detection in video sequences together with a Faster R-CNN as an object detector module. Experimental results not only confirm the effectiveness of the GHBNG for the detection of anomalous object in video sequences but also its selforganization capabilities.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    Further insights into the interareal connectivity of a cortical network

    Full text link
    Over the past years, network science has proven invaluable as a means to better understand many of the processes taking place in the brain. Recently, interareal connectivity data of the macaque cortex was made available with great richness of detail. We explore new aspects of this dataset, such as a correlation between connection weights and cortical hierarchy. We also look at the link-community structure that emerges from the data to uncover the major communication pathways in the network, and moreover investigate its reciprocal connections, showing that they share similar properties

    A micropower centroiding vision processor

    Get PDF
    Published versio

    Resolving Structure in Human Brain Organization: Identifying Mesoscale Organization in Weighted Network Representations

    Full text link
    Human brain anatomy and function display a combination of modular and hierarchical organization, suggesting the importance of both cohesive structures and variable resolutions in the facilitation of healthy cognitive processes. However, tools to simultaneously probe these features of brain architecture require further development. We propose and apply a set of methods to extract cohesive structures in network representations of brain connectivity using multi-resolution techniques. We employ a combination of soft thresholding, windowed thresholding, and resolution in community detection, that enable us to identify and isolate structures associated with different weights. One such mesoscale structure is bipartivity, which quantifies the extent to which the brain is divided into two partitions with high connectivity between partitions and low connectivity within partitions. A second, complementary mesoscale structure is modularity, which quantifies the extent to which the brain is divided into multiple communities with strong connectivity within each community and weak connectivity between communities. Our methods lead to multi-resolution curves of these network diagnostics over a range of spatial, geometric, and structural scales. For statistical comparison, we contrast our results with those obtained for several benchmark null models. Our work demonstrates that multi-resolution diagnostic curves capture complex organizational profiles in weighted graphs. We apply these methods to the identification of resolution-specific characteristics of healthy weighted graph architecture and altered connectivity profiles in psychiatric disease.Comment: Comments welcom

    A nonuniform popularity-similarity optimization (nPSO) model to efficiently generate realistic complex networks with communities

    Get PDF
    The hidden metric space behind complex network topologies is a fervid topic in current network science and the hyperbolic space is one of the most studied, because it seems associated to the structural organization of many real complex systems. The Popularity-Similarity-Optimization (PSO) model simulates how random geometric graphs grow in the hyperbolic space, reproducing strong clustering and scale-free degree distribution, however it misses to reproduce an important feature of real complex networks, which is the community organization. The Geometrical-Preferential-Attachment (GPA) model was recently developed to confer to the PSO also a community structure, which is obtained by forcing different angular regions of the hyperbolic disk to have variable level of attractiveness. However, the number and size of the communities cannot be explicitly controlled in the GPA, which is a clear limitation for real applications. Here, we introduce the nonuniform PSO (nPSO) model that, differently from GPA, forces heterogeneous angular node attractiveness by sampling the angular coordinates from a tailored nonuniform probability distribution, for instance a mixture of Gaussians. The nPSO differs from GPA in other three aspects: it allows to explicitly fix the number and size of communities; it allows to tune their mixing property through the network temperature; it is efficient to generate networks with high clustering. After several tests we propose the nPSO as a valid and efficient model to generate networks with communities in the hyperbolic space, which can be adopted as a realistic benchmark for different tasks such as community detection and link prediction

    Communities in Networks

    Full text link
    We survey some of the concepts, methods, and applications of community detection, which has become an increasingly important area of network science. To help ease newcomers into the field, we provide a guide to available methodology and open problems, and discuss why scientists from diverse backgrounds are interested in these problems. As a running theme, we emphasize the connections of community detection to problems in statistical physics and computational optimization.Comment: survey/review article on community structure in networks; published version is available at http://people.maths.ox.ac.uk/~porterm/papers/comnotices.pd

    Connecting Dream Networks Across Cultures

    Full text link
    Many species dream, yet there remain many open research questions in the study of dreams. The symbolism of dreams and their interpretation is present in cultures throughout history. Analysis of online data sources for dream interpretation using network science leads to understanding symbolism in dreams and their associated meaning. In this study, we introduce dream interpretation networks for English, Chinese and Arabic that represent different cultures from various parts of the world. We analyze communities in these networks, finding that symbols within a community are semantically related. The central nodes in communities give insight about cultures and symbols in dreams. The community structure of different networks highlights cultural similarities and differences. Interconnections between different networks are also identified by translating symbols from different languages into English. Structural correlations across networks point out relationships between cultures. Similarities between network communities are also investigated by analysis of sentiment in symbol interpretations. We find that interpretations within a community tend to have similar sentiment. Furthermore, we cluster communities based on their sentiment, yielding three main categories of positive, negative, and neutral dream symbols.Comment: 6 pages, 3 figure
    • …
    corecore