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A Micropower Centroiding Vision Processor
Timothy G. Constandinou, Member, IEEE, and Christofer Toumazou, Fellow, IEEE

Abstract—A biologically-inspired hybrid vision chip is pre-
sented for real-time object-based processing for tasks such as
centroiding, sizing and counting of enclosed objects. This system
presents the first silicon retina capable of centroiding and sizing
multiple objects in true parallel fashion. Based on a novel dis-
tributed algorithm, this approach uses the input image to enclose a
feedback loop to realize a data-driven pulsating action. The sensor
provides a resolution of 48 48 pixels with a 85 m 85 m
pixel footprint and has been measured to consume 243 W at
1.8-V supply, achieving an equivalent computational efficiency of
724.64 MIPS/mW with a 500- s process time.

Index Terms—Centroiding, CMOS image sensor, distributed al-
gorithm, focal plane processing, micropower, object detection, par-
allel processing, silicon retina, target tracking, vision chip.

I. INTRODUCTION

MODERN advanced image processing systems use an ex-
ternal camera to stream image data to the processor exe-

cuting the software algorithm. Such a modular scheme demands
a huge communication bandwidth for the video transmission
and, therefore, heavy power requirements. Several early filtering
applications can benefit from combining the phototransduction
and processing at the pixel level. A new breed of vision chips
have recently emerged that strive to achieve precisely this. A
generic reconfigurable architecture to provide such pixel-level
processing is the cellular neural network (CNN) processor [1].
Other systems have been inspired by the unparalleled computa-
tional efficiency of living organizms in solving complex image
processing tasks. These biologically-inspired (or retinomorphic
[2]) systems have been realized to perform tasks such as image
enhancement and feature extraction.

Systems that require image recognition functionality, such as
target tracking and centroid detection are relatively demanding
to implement and require certain perceptive or high-level
behavior. Traditional image processing techniques effectively
perform low-level tasks such as conditioning and filtering but
typically output a matrix of pixels, constituting an image. For
perceptive vision applications it is paramount to cluster together
pixels in a region of interest and provide a single entity. This
task is often referred to as object segmentation. Having per-
formed this, it is useful to define the object using a coordinate
and magnitude to represent its centroid and size, respectively.
Having such information available can provide enhanced
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and added functionality to several applications. For example,
providing navigational cues for position and bearing in space
exploration (i.e., in autonomous navigation), solar centroiding
for tilt/positioning of solar panels, and image stabilization
during motion (by target tracking) are some applications that
could benefit from advances in such processing techniques. For
mobile platforms, including autonomous systems and handheld
devices, minimizing power consumption is of the upmost
importance.

Distributed vision processing provides a method to imple-
ment such computationally demanding algorithms with good
power efficiency. As already mentioned, by distributing the pro-
cessing throughout the focal plane, traditional data communica-
tion bottlenecks can be overcome. Therefore, such techniques
can be used to deliver high framerate processing at good com-
putational efficiency, for a certain area penalty.

Past work (see Table I for comparison) in this field has
focused mainly on implementing the center-of-mass (COM)
computation in distributed hardware. Typically, this technique
provides high (multiple sub-pixel) accuracy, high speed, good
robustness and compact hardware implementation. However,
systems based on this technique are inherently limited to
single object centroiding and without any capability for size
computation. Komuro et al. [3] have reported the only such
system capable of tracking multiple centroids. Here, the method
adopted uses a combination of binarization and COM computa-
tion in the focal-plane, with the multiple target capability being
implemented off-chip using a self-windowing algorithm.

In this work, we present a novel vision chip for multiple
object center and size processing of simple uniform objects.
This is the first system reported to achieve true parallel position
detection of multiple objects in a focal-plane processor. This
system performs object segmentation by local thresholding and
then size and centroid computation by object boundary reduc-
tion timing and convergence detection, respectively. The pro-
cessed centroid and size is determined within a 1 pixel ac-
curacy. The circuit implementation uses a hybrid analog and
asynchronous digital pixel core, realising a computationally ef-
ficient vision processor delivering 724.64 MIPS/mW. Further-
more, the parallel architecture results in a high computational
capacity, achieving a process time of under 500 s.

This paper is organized as follows. In Section II, the devel-
oped algorithm is described and the computation, robustness,
accuracy and feasibility for hardware implementation are dis-
cussed. Section III outlines the general system architecture and
Section IV describes the circuit-level design and implementa-
tion. In Section V, the 0.18- m CMOS prototypes are described
and the measured results are presented. Finally, in Section VI,
we discuss and summarize the performance of the centroiding
vision processor.

0018-9200/$20.00 © 2006 IEEE
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TABLE I
COMPARATIVE REVIEW OF CENTROID DETECTING VISION CHIPS

II. METHOD

The distributed algorithm presented is intended for object-
based processing including centroiding and sizing of simple ob-
jects [17]. Circular blob-like objects with uniform texture and an
intensity differing from the background level can be segmented
and their size and position (centroid) determined by means of a
distributed binary algorithm.

This uses an edge-detection technique to form the contours
and trigger the data-driven processing. On detection of an ob-
ject boundary, the initial state for the signal flow is set. By prop-
agating an inward fill, the contour can be reduced until it con-
verges to the center. The central point is detected by utilising
spatiotemporal integration. On convergence, the object is reset
and output transmitted, thus realising an inward pulsating ac-
tion. Furthermore, the frequency of pulsation can be directly
used to determine the object size.

The functionality of this algorithm is divided into two groups:
image processing operations (for feature extraction) and binary
processing operations (for detail extraction).

A. Image Processing

The overall image processing functionality for feature extrac-
tion is illustrated in Fig. 1.

1) Thresholding: Objects are defined as regions in the
image with narrow-field (2 2 pixel) local-average intensity
either below (or above) the average background intensity.
In a distributed fashion, this requires a single discrete signal
(THRESHOLD) be generated per pixel. This signal is used to
facilitate the object segmentation by defining the valid area the
signal can propagate within. As the centroid processing occurs
at the pixel corners, a local average, centerd on that node is
required to represent the intensity at that point. This is defined
in (1):

(1)

where is the intensity of pixel , , and and are the array
dimensions.

Similarly, to compute the global average, this can be extended
to cover the entire array. However, for images with varying
background intensity, it is favorable to use a wide-field local av-

Fig. 1. Front-end continuous-time image-processing functionality.

erage, covering a large enough area to extend beyond a single
object. An easily hardware-implementable scheme is to average
across the entire column and/or row, providing a “global” av-
erage unique to every pixel, as expressed in (2):

(2)
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The THRESHOLD signal is then obtained by comparing the
wide and narrow field averages. To provide some tolerance to
image noise and component mismatch, an artificial offset is ap-
plied to the comparator.

2) Edge Detection: The edges are detected by comparing all
adjacent pixel intensities in a vertical or horizontal direction and
flagging a CONTOUR if a cell has two edges leading to it, i.e.,
a continuous edge. This can be defined as a Boolean expression,
given in (3):

(3)

where , , , and are the four edge inputs and is the
threshold status.

B. Binary Processing

Having extracted two discrete signals per pixel: CONTOUR
and THRESHOLD, these are used to feed, control, and regulate
the asynchronous neuronal network.

To facilitate the pulsating action, each cell requires three
bits of static memory: STATE, RESET, and CENTRE. These
are updated asynchronously depending on a cell’s CONTOUR
and THRESHOLD inputs, its current STATE, RESET, and
CENTRE values, and those received from surrounding cells.
Therefore, the internal functionality of a binary processing
element can be described using Boolean expressions driving a
state machine.

The pulsating action is initiated by setting a cell’s state on de-
tection of a CONTOUR. The reduction is facilitated by checking
whether any neighboring cells have their STATE asserted in ad-
dition to the object criterion (THRESHOLD) being satisfied.
The rate of this contour reduction is defined by an artificial
propagation delay introduced in this event path. The set STATE

condition is defined in (4):

(4)
where is the delay time-constant that defines the propagation
rate, is the current CONTOUR status, is the cur-
rent THRESHOLD status, and , , , are the
STATE variables of the directly adjacent cells.

The reset STATE and set RESET events
occur under identical conditions, occurring either on CENTRE
being reset, or on a RESET back-propagation (from adjacent
cells) during a local reset. This condition is defined in (5):

(5)

where represents the propagation delay of the combinational
logic, is the cell’s current STATE value, is the current
CENTRE status, and , , , are the RESET
variables of the directly adjacent cells.

In parallel with the contour reduction, each pixel checks
whether it satisfies the centroid detection criteria. This is de-
fined when surrounding cells (but not directly adjacent) have
been asserted but the centroid pixel has not. This condition

flags a CENTRE signal [defined in (7)], transmitting the pixel’s
coordinate and issuing a local RESET signal. Furthermore,
lateral inhibition [eq. (6)] prevents a cell flagging a CENTRE if
any adjacent cell has its CENTRE asserted.

(6)

where to are the CENTRE status of the four di-
rectly- and four diagonally-adjacent cells.

(7)

where , , , and are the STATE values
of cells two to the left, two above, two to the right, and two
below, respectively.

This CENTRE becomes reset when the contour reduction fi-
nally reaches the center cell, defined in (8):

(8)

where , , , and are the STATE values of
the directly adjacent cells.

This RESET signal is then back-propagated outwards in a re-
cursive manner, similar to the contour reduction with the ab-
sence of the artificial delay. This delay would be undesirable
in the reverse path, to avoid flagging multiple centroids. The
RESET memory is configured to self-reset, i.e., operate as a
monostable.

An unusual but important feature of this method is the ab-
sence of any pre-defined synchronization signal, for example, a
clock. The only synchronization is obtained through the data-
driven object reset scheme, but on a local, rather than a global
basis. This in combination with the artificial delay time-constant
defines the processing time.

C. Simulation

Being an algorithm of both distributed and asynchronous
nature, it is both complex to model and computationally
demanding to simulate in its precise form. However, a
“frame-based” representation can be derived by making
some basic assumptions. Primarily, all delay elements are
assumed to be perfectly matched, therefore allowing all pixels
to be processed sequentially for each delay “period”. The full
source code for this implementation is available from [18].

1) Effective Computation: To estimate the effective com-
putation of this distributed algorithm, the frame-based equiv-
alent algorithm is evaluated. Although many of the functions
are static, there also exist dynamic functions, for example the
reset cycle being recursive. The static computation is dependant
only on the array dimensions, whereas dynamic computation is
largely dependant on input data.

For a pixel array of dimensions , with objects
of radius pixels each, the number of processor instruc-

tions per frame is determined [18]. Assuming a frame capture
and process time of s, the complete computational load is
given by

(9)
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Fig. 2. Acceptable noise margins for error-free binary edge detection (top) and
object thresholding (bottom).

D. Robustness

The robustness of the algorithm provides an indication to
its immunity to fuzzy, ill-conditioned, or noisy data. The yield
expresses the system reliability against fabrication defects and
process variations (in custom hardware). In order to analyze
and evaluate the robustness of the algorithm, the input image
data can be pre-filtered to include array nonuniformities such
as fixed-pattern noise, pixel sensitivity, and feature detection
fluctuations.

1) Noise Margin: Considering the intensity profiles and error
tolerances of the input images, the noise margin or signal-to-
noise ratio can be determined for error-free feature extraction.
Subsequently for a given image type, the optimal threshold and
edge levels can be deduced for maximum binary robustness and
furthermore the suitability of the algorithm to different image
types can be analyzed.

For edge detection to be reliable in an input image consisting
of (relatively) dark objects on a light background, the conditions
specified in (10) (for edge detection) and (11) (for no edge de-
tection) must be satisfied [see Fig. 2 (top)].

(10)

(11)

where is the contrast difference of the objects to
background level, is the minimum edge detection level,

is the maximum object (and/or background) intensity
variation, and represents the maximum tolerable level of
intensity variations (nonuniformities) in the array.

Assuming and
is increased to the maximum allowable level such that

(10) and (11) become equalities, the optimal setting for
can be determined for a given image type as described in (12):

(12)

However, the actual robustness to noise [eq. (11)] causing
erroneous edge detection is in fact increased by the CONTOUR
logic. This operates to effectively screen out any erroneous
edges within object boundaries by only detecting edges outside
object (THRESHOLD) regions. Furthermore by performing
the thresholding operation on the smoothed intensities, the
object segmentation is also robust against image noise. For the
reliability of the threshold detection to be maximized in an
input image consisting of dark objects on a light background,
the conditions specified in (13) (for thresholding) and (14) (for
no thresholding) need to be satisfied [see Fig. 2 (bottom)].

(13)

(14)

where is the margin from average intensity to
object intensity level, is the margin from back-
ground intensity to average intensity level, defines the
threshold detection offset from average intensity, is
the maximum object (and/or background) intensity variation,
and represents the maximum tolerable level of intensity
variations (nonuniformities) in the array.

Assuming and
is increased to the maximum allowable level such that

(13) and (14) become equalities, the optimum setting for
can be specified for a given image type as expressed in (15):

(15)

2) Distributed Processing Robustness: A major objective in
implementing distributed algorithms employing massive paral-
lelism and thus redundancy is to boost the robustness, defect im-
munity, and tolerance to ill-conditioned data. Subsequently, this
algorithm is shown to substantially increase its robustness be-
yond the expected analytical feature extraction limit. This can
be attributed to the parallel or distributed processing forming
multiple data flow paths coupled with data redundancy and com-
pression. In context, the data flow is initiated at the object con-
tours and an inward fill is facilitated. This has the effect of com-
pressing the amount of data being processed; for the “ring” of
cells being processed at any time reduces with this inward prop-
agation. Therefore, this shrinking ring realizes a many-to-one
mapping and thus introduces massive data redundancy.

3) Statistical Simulations: One approach to quantify this ro-
bustness is through statistical algorithmic simulations. This in-
volves experimentally testing the algorithm for various input
images against the expected sources of error. To facilitate this,
the input image is pre-filtered to include various levels of pixel-
array nonuniformities, testing the algorithm for each data set.
The procedure taken is as follows.

• Input image: Ten different input images are used of flat
object and background texture.

• Contrast ratio: Each image is adjusted to three contrast ra-
tios (object to background) of 10:1, 4:1 and 3:2.

• Noise types: The sample images are subjected to Gaussian
(fixed pattern), speckle (gain error), and salt/pepper noise
(low/high response).
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Fig. 3. Statistical simulations to demonstrate robustness to array nonuniformi-
ties. Algorithmic response to: (a) additive spacial Gaussian noise (representing
fixed pattern noise), (b) random speckle noise (representing array gain/sensi-
tivity nonuniformity), and (c) salt-and-pepper noise representing pixels with
permanent low/high response.

• Noise power: Each noise type is tested at 20 levels of noise
power to cover 50%.

• Multiple simulation: Each simulation is repeated using ten
different noise sets.

• Algorithm settings: For each image/contrast ratio a single
set of edge/threshold levels are selected based on (12) and
(15).

• Post simulation analysis: Results are averaged, normalized
to image content, and aggregated.

The analyzed results are illustrated in Fig. 3 for Gaussian,
speckle, and salt/pepper noise. The inherent robustness of this
algorithm is demonstrated, showing no point at which the al-
gorithm ceases to operate. However, the centroid or size accu-
racy becomes degraded with increased image noise. For typical
fixed pattern noise levels [19] and medium contrast selectivity, a
2%–5% inaccuracy can be observed and for images with higher
contrast ratios, higher accuracies can be expected. The algo-
rithm also proves to be robust to defective pixel outputs, as in-
dicated in the salt-and-pepper noise results.

E. Accuracy

Due to the binary nature of this centroiding/sizing algorithm,
the accuracy for regular (circular) objects is limited to single
pixel resolution. This, however, deteriorates for irregular ob-
jects. This algorithm is intended to provide a good estimate
to centroid position and size, not a mathematically accurate
center-of-mass computation.

Fig. 4. The proposed system architecture. Illustrated are the three main com-
ponents: pixel processing array, address event representation readout, and cur-
rent/supply/control distribution tree. The dotted lines represent the “stretch”
marks, i.e., how the system can be scaled to a larger size array.

III. SYSTEM ORGANIZATION

This section outlines the adopted system organization for
hardware implementation of the presented algorithm. The
implemented system architecture [17] consists of three main
sub-systems: the processing array (to execute the distributed
algorithm), the bias distribution (to provide control and tuning
to the array), and the address-event readout (to transmit the
results off-chip). This organization is illustrated in Fig. 4.

A. Array Organization

Due to the large number of in-pixel processing elements, a
current distribution scheme is required for reliable bias current
duplication and a hierarchical fanout is required for distribution
of digital control signals. For the given size of the pixel array
(48 48), the following distribution tree is proposed for both
the current and control distribution:

1) Corner (1 to 4): Four identical master bias currents are gen-
erated and used to supply the four corner headers of the
pixel array (shown in Fig. 4: sub-block A).

2) Row (1 to 24): Each master reference set is used to generate
(y/2) copies feeding every row header in its corner (shown
in Fig. 4: sub-block B).

3) Column (1 to 24): Each row header is used to generate
copies feeding every pixel in its row.

4) Pixel (1 to 4): Within each pixel the bias currents are locally
combined and duplicated further.

System Scalability: The described architecture allows for
a certain degree of scalability (up to an order of magnitude),
however, to scale to much larger arrays, the distribution hier-
archy (duplication levels) would have to be extended. The pixel
circuitry and address-event hardware are, however, both fully
scalable.
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Fig. 5. Proposed cellular architecture for object-based processing illus-
trating organization and connectivity of functional blocks within a quad-pixel
arrangement.

Current-mode Versus Voltage-Mode Current Distribution:
In a current-mode scheme, at each current-distribution chain,
the currents are copied locally using devices in close proximity
(therefore, well-matched) and then distributed via separate
metal lines. This increases both device count and metal area
utilization in comparison to a voltage-mode current distribution
scheme. Such a scheme uses voltage distribution to set device
input voltages (over a large area) used to create the bias currents.
However, here the error contribution is two-fold; systematic
in addition to increased mismatch. Using set bias voltage dis-
tribution, metal line resistance over a relatively large distance
results in a linear voltage gradient. When used to generate
bias currents, this translates in a nonlinear current gradient.
Furthermore the mismatch increases due to large proximity
device separation where process variation gradients come into
effect. For the above mentioned reasons, current-mode current
distribution is chosen for this particular application, aiming to
achieve relatively good current matching.

B. Pixel Organization

The basic pixel organization is illustrated in Fig. 5. Based on
the algorithm described previously in Section II, this architec-
ture realizes a direct implementation.

A reverse-biased parasitic p-n junction is used to generate
the photocurrent. This feeds the in-pixel analog signal pro-
cessing (ASP) core, which smooths, averages, compares, and
thresholds, as described earlier. The ASP generates two signals,
CONTOUR and THRESHOLD, which in turn are used to
feed the asynchronous binary processing (ABP) core. This
facilitates the contour reduction through asynchronous signal
propagation, flagging the centers on detection. The output

Fig. 6. Schematic diagram of the in-pixel analog signal processing (ASP) or-
ganization. Illustrated is the internal connectivity including two edge detector
blocks (for horizontal and vertical detection), one photodetection block (for log
detection, smoothing and binary thresholding) and a contour detection block
(for continuous edge determination).

neuron then negotiates the address event bus for a timing slot
for off-chip communication.

C. Address Event Representation

As the described system is both asynchronous and data-driven
in nature, it is ideally suited to an event-driven output. One such
protocol is the Address Event Representation (AER) [20], used
extensively in the vision chip arena. The principle behind this
data-transmission technique is that each pixel has a unique iden-
tifier and upon a pixel generating an event this identifier is as-
serted onto a digital bus. The data is then communicated off-chip
through means of an asynchronous handshake.

IV. CIRCUIT IMPLEMENTATION

This section describes and analyzes the circuits imple-
menting the various sub-blocks, designed for a 0.18- m CMOS
technology. The three following subsections describe the struc-
ture and make-up of the three main blocks (ASP, ABP, and
AER), the fundamental circuit theory, and the circuit operation.
The final subsection presents complete system-level results for
scaled processing arrays.

A. Analog Signal Processing

The concept of using a distributed ASP core to feature extract
is to avoid the use of analog-to-digital converters (ADCs), re-
ducing complexity and power consumption. Analog processing
is used to reduce the computations to a series of comparisons,
generating a discrete, asynchronous output. This subsection de-
scribes the distributed ASP architecture (see Fig. 6) and circuits
for extracting the required CONTOUR and THRESHOLD sig-
nals from a matrix of photocurrents.

1) Phototransduction [See Fig. 8(a)]: A parasitic n-well/p-
substrate photodiode is used as the phototransductive element
(structure and measured characteristics shown in Fig. 7). The
structure used includes multiple n-well strips on a p-substrate
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Fig. 7. Details of the n-well/p-substrate photodiode used. Shown are:
(a), (b) device structure, (c) responsivity, (d) IV characteristics, and (e) spectral
quantum efficiency.

connected in parallel within a 28 m 28 m block. This was
chosen in preference to a single well, to maximize the sidewall
to base area ratio and boost quantum efficiency; with the added
contribution of the deep lateral junctions [21]. This is to over-
come reduced quantum efficiencies in vertical junctions in deep
submicron CMOS, caused by heavy doping and therefore re-
duced junction depletion widths.

The photodiode (D1) is reverse-biased by stacking two diode-
connected PMOS devices (Q1, Q2) to . The photocurrent
range for the given device under the expected light levels is from
100 fA (dark current) to 10 nA. For this current range, devices
Q1 and Q2 operate in the weak inversion region and therefore
the applied reverse-bias is considered logarithmically propor-
tional to the photocurrent as expressed in (16):

(16)

where is the subthreshold slope factor, is the thermal
voltage, is the photocurrent, and is the pre-exponen-
tial current.

2) Narrow-Field Local Averaging [See Fig. 8(a)]: The top
end diode-connected device is used to form a current mirror
with devices Q3–Q6; providing scaled copies of the photocur-
rent for current-averaging. Devices Q3–Q5 source the adjacent
cells with these scaled currents ( ), while device
Q6 receives and sums the scaled currents from the adjacent cells
to form the four-pixel average, such that

(17)
3) Wide-Field Local Averaging [Fig. 8(a)]: The wide-field

local average is implemented using a column averaging tech-
nique. This is facilitated by summing all copied (through current
mirror Q7, Q8) narrow-field smoothed currents . Nor-
malization is then achieved by copying this current using a dis-
tributed 1:1 current mirror per cell. This has the effect of forming
an X:1 scaled mirror; with X being the number of cells attached
to the column.

4) Current-Mode Comparison [Fig. 8(a)]: The near-field
local average is then compared to the wide-field column average
by means of a basic current comparator formed by an opposing
source/sink transistor pair [22] (Q10, Q12). If the device bias
points are similar, then both devices will be in saturation and
the output voltage is given in (18):

(18)

where and are the linear channel length modulation
(early) factors for NMOS and PMOS devices, respectively.
Subsequently, if the input currents are exactly equal, then this
simplifies to

(19)

However, if the source and sink bias points (saturation cur-
rents) are different, the device with the higher bias point will be
forced out of saturation. For example, in Fig. 8(a), if

, the source device (Q12) will operate in the linear region,
and the output voltage will swing upwards toward

. This behavior is described by (20) and (21):

(20)

(21)

Although the generated threshold voltage de-
scribes the current comparison discretely for a substantial
differential current, smaller current differences cause
to remain between and . For driving CMOS static logic
such a signal is undesirable, as a nondiscrete input can give
rise to large “short-circuit” currents. Therefore, a thresholding
buffer [see Fig. 8(c)] is required to “square up” this signal to
reliable discrete levels.

5) Edge Detection [Fig. 8(b)]: Every pair of adjacent
photodiodes are connected to a discrete edge detector [23]. The
diode-connected devices [Fig. 8(a)] provide the logarithmically
compressed signals ( and ). Two diode-con-
nected devices are stacked in order to ensure the current
sourcing device remains in saturation for small photocurrents.
The differential voltage is applied to the
PMOS differential pair (Q1 and Q2), sourced by a current

. The drain currents of the differential pair are sunk via
current mirror (Q3, Q4, and Q5), which is controlled by the
sink current, . The operation is as follows.

is selected such that it generates sufficient transcon-
ductance to ensure reliable operation for the minimum response
time required (limited by response of photodiodes).

is adjusted to lie in between and and
sets the allowable tolerance before indicating an edge and flag-
ging it up. This will set up the gate-source voltages of devices
Q4 and Q5 that will determine the maximum current that can be
sunk ( and , respectively). This circuit operates in
one of two states:

• ( ): Since
then causing device Q4 to be forced into the
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Fig. 8. Front end in-pixel Analog Signal Processing (ASP) circuits for binary feature extraction. Generates the contour/threshold templates feeding the Asyn-
chronous Binary Processing (ABP) core. (a) Photodetection, narrow/wide-field averaging and comparison circuit; (b) tunable edge detector circuit; (c) thresholding
inverter.

ohmic region. This in turn will cause to sit barely
above ground and similarly Q5, and will behave
in the same way. As a result of and both
being low, will output high indicating there is no edge.

• ( ): For example, if
such that then device Q4 is in saturation and

rises to just below . However, so
device Q5 is still in the ohmic region, keeping low.
This will result in outputting low, indicating that there
is an edge.

Circuit Analysis: Assuming devices Q1 and Q2 are operating
in saturation, the following expression (22) can be derived, ex-
pressing the output current (differential):

(22)

where is the charge effect due to the substrate (also referred
to as the slope factor or subthreshold constant) and is the
thermal voltage ( mV at room temperature).
From (22), the large-signal transconductance of the differential
pair can be derived:

(23)

This can then be used to express the range of values for which
the circuit will flag an edge detected.

(24)

where is the noise margin term expressing the total
image noise and device mismatch in the differential pair as an
input referred voltage.

This expression directly links into those developed previ-
ously for algorithm-based edge detection robustness in (10)
and (11). Although (24) yields at least one discrete edge
signal for a moderate differential input voltage

, smaller variations result in graded output
levels. As a result, devices Q1–Q5 are in saturation and the edge
output voltages are described in (25). As explained previously,
thresholding inverters are also inserted in between the edge

Fig. 9. Simulation results of the edge detector circuit illustrating the tunable
sensitivity. Results are for: I = 1 nA, 500 pA � I � 1 nA,
I = 300 pA, with 1 pA � I � 10 nA. Shown (from top to
bottom) are: (a) I , (b) I , (c) V , (d) V , (e) V and (f) I .

signals ( and ) and the logic NOR gate to avoid
“short-circuit” currents.

(25)
where is the linear channel length modulation (Early)
factor for the sinking devices, assuming (for device
Q3–Q5). This expression ignores any current source nonideali-
ties (Early effect).

Simulation Results: Fig. 9 illustrates the functionality of this
edge detector. This shows the operation of the circuit for a set
bias current and photocurrent with varying bias
current , with swept over the entire range (X-axis).
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Fig. 10. Schematic diagram of the Asynchronous Binary Processing (ABP)
organization. Illustrated is the internal connectivity emphasizing the signal flow
path between the various blocks.

This demonstrates the tunability of the edge detection window
using a single current input. The corresponding current con-
sumption profile for a 1-nA bias is also given in the simulated
results [Fig. 9(f)]. This shows approximately a 3.5-nA average
current consumption, peaking to 8 nA at the onset of edge
detection.

6) Contour Discrimination: The Boolean expression given
in (3) describes the contour discrimination logic present in every
cell. This takes its (edge) inputs from the two internal (to that
cell) edge detectors (right and bottom edges), the cell to the left
(left edge) and the cell above (upper edge).

7) Thresholding [Fig. 8(c)]: To achieve efficient binary ex-
traction, thresholding inverters have been inserted between the
digital logic and outputs of the edge and intensity detection
functions. This has the task of performing the 1-bit conversion
with minimum power consumption. This is implemented using
a three-stage cascade of current-starved inverters. For a 1-nA
initial stage bias, the optimum current-limit ratio is 1:6:16.

8) Current Generation: All required bias currents ( ,
, and ) are generated using a standard proportional

to absolute temperature (PTAT) reference [24] using off-chip
resistors for versatility and scaled down to lower current values
at each stage of duplication in the current distribution scheme.

B. Asynchronous Binary Processing

This section describes the distributed architecture and com-
binational circuits for facilitating the object segmentation
and centroid extraction from a matrix of CENTROID and
THRESHOLD binary inputs. The internal architecture of the
ABP core is illustrated in Fig. 10. The ABP core consists of
three main (functional) blocks for: 1) state setting (inward
propagation); 2) state resetting (back-propagation); and 3) state
and centroid storage, in addition to some support circuitry.

1) State Set [Fig. 11(a)]: The combinational logic re-
quired to set the state generates the SET, SURROUND, and
RESET\_INHIBIT signals.

• The SET signal is asserted if any adjacent cell has its
STATE asserted in addition to its own THRESHOLD
being asserted. Alternatively, a CONTOUR signal can
assert this signal provided the SET\_INHIBIT condition
is low.

• The SURROUND signal is required for the centroid detec-
tion. This is asserted high if all received surrounding cells
have their STATES asserted.

• The RESET\_INHIBIT signal is asserted if any adjacent
cells have their STATES asserted low.

2) State Reset [Fig. 11(b)]: The combinational logic
required to reset the state generates the RESET and SET\_IN-
HIBIT signals.

• The RESET signal is asserted when the cell signals a
CENTRE (logic X3 and X5). A RESET\_INHIBIT signal
delays the assertion of the RESET signal until the inward
propagation reaches the centroid. This is to guarantee a
continuous complete back-propagation path. Alternatively
the RESET signal can be asserted if the STATE is asserted
and any adjacent cell back-propagates a RESET (logic X4
and X5). On asserting the RESET signal, a monostable
is triggered (logic X6, X8–10) to produce a long enough
RESET pulse to back-propagate reliably.

• The SET\_INHIBIT signal (active low) is asserted if any
adjacent cells are resetting. This ensures the back-propaga-
tion has reliably terminated before a forward propagation
can commence.

3) State Memory [Fig. 11(c)]: The combinational logic
required to implement the state memory completes the asyn-
chronous state machine and generates the STATE and CENTRE
signals.

• The STATE signal is latched high on assertion of a SET
input and conversely it is latched low on assertion of a
RESET input.

• The CENTRE signal is asserted when a SURROUND
signal is asserted in addition to the cells STATE being as-
serted low, providing no adjacent cells assert a CENTRE.

4) Discrete Delay [Fig. 11(d)]: An artificial delay is inserted
in the SET signal path; between the STATE SET logic and the
internal STATE MEMORY cell (Fig. 10). The delay circuit has
a binary input (IN) and output (OUT) and two current inputs
( and ). The current defines the current limit
on the thresholding inverter circuit. When the input is high, the

current is switched (by device Q1) to charge up the capac-
itor. To generate the output, this is connected to a three stage
NMOS current-starved thresholding inverter. Therefore, for a
fixed bias, the time delay is given by

(26)

where is the time delay, is the charge stored on the
capacitor, and is the threshold voltage of the inverter
cascade. For example, an of 1 nA would result in a delay
of 102 s.

C. Address Event Representation

This section outlines the specific AER architecture [25]
adopted and the accompanying blocks implemented for off-chip
communication. The specific AER architecture implemented is
given in Fig. 12, illustrated for a 4 2 array.

Each pixel in the array has a sender neuron that latches a
pixels state on an event until the data has been transmitted off-
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Fig. 11. Back end in-pixel Asynchronous Binary Processing (ABP) circuits facilitating the centroid detection from the contour/threshold binary templates.
(a) State set logic. (b) State reset logic. (c) State memory logic. (d) Discrete delay.

Fig. 12. Address-Event-Representation (AER) architecture for a 4 � 2 array.
Illustrated are all required sub-blocks for an AER sending device, excluding
pull-up and pull-down biases for shared line drivers.

chip. The sender neuron initially sends an arbitration request
to the row arbitration tree. The role of the arbitration tree is
to select a single output in case of multiply colliding events.
On selection of a particular row, the row header is latched and
subsequently the competition passes to the column arbitration
tree. A similar process then occurs from the sender neurons to
column arbitration tree and back to the column headers until a
single column has been latched. On selection of both a row and
column, the chip sends a bus request signal off-chip to the re-
ceiving device. The address is read off the bus and then a bus
acknowledge signal is relayed back to reset the row and column
latches that subsequently reset the sender neuron state. This se-
lection/arbitration process is repeated for all events waiting to
be transmitted.

1) Sender Neuron Circuit [Fig. 13(a)]: On a pixel signalling
an event, this sequentially requests row and then column arbi-
tration. The sender neuron status is reset only after successful
off-chip communication.

2) Column/Row Latch [Fig. 13(b)]: On arbitration, the row
or column latch serves to inhibit other requests passing to the
arbitration tree until successful off-chip communication.

3) Arbiter Circuit [Fig. 13(c)]: The arbitration tree has the
task of selecting one of many requests, facilitated through a bi-
nary tree hierarchy. The arbiter cell operates on a single input
pair, i.e., by selecting one of two outputs, resolving contention
by using a high gain positive feedback element.

TABLE II
COMPARISON BETWEEN EXPECTED AND SIMULATED POWER CONSUMPTION IN

CORE COMPONENTS FOR A 12 � 12 ARRAY

4) Address Encoder: The address encoder is based on a
simple wired-OR topology. As the arbitration tree can only
select one input, each output is hard-wired to assert the required
digital representation on the AER bus.

D. Distributed Simulations

Verification of the distributed architecture is achieved by sim-
ulating the individual distributed cores (ASP, ABP and AER) on
reduced size arrays.

1) Array: The ABP core is verified by simulating a 9 9
array with a static single-object image hardwired; by means of
providing the ASP outputs (contour and threshold) as a ma-
trix of distributed inputs within the ABP array. For

nA, the transient behavior is illustrated in the simulation re-
sults given in Fig. 14. These results illustrate the algorithms pul-
sating action distributed through internal (array) memory for a
preset circular object. The cellular STATE can be observed to
fill inwards [Fig. 14(a)]. On convergence to a centroid cell, the
CENTRE signal is flagged, causing a RESET back-propagation
[Fig. 14(b)].

2) Power Consumption: Through separate simulations for
ASP, ABP, AER, and bias distribution arrays, the constituent
power consumptions are summarized in Table II. The simu-
lated results are for 12 12 arrays with single object input
and typical bias current levels. These results indicate that the
static (leakage) dissipation is substantial and in fact is the main
source of power consumption within the ABP core; even at high
activities.

V. FABRICATED SYSTEM

This section includes details on the fabricated system in-
cluding the general structure, measured data, and the test
procedure.
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Fig. 13. Address Event Representation (AER) Circuits for asynchronous off-chip communication. Required are: (a) in-pixel handshake logic for event trigger,
(b) column/row header latch for array handshake and (c) arbiter cell (to form binary arbitration tree) for resolution of colliding events. The address encoder used
is not shown (a wired-OR topology is used).

Fig. 14. Transient analysis simulation results for a 9� 9 ABP core illustrating
bio-pulsating action for a single object image. Results shown are taken across the
central row (Y = 5) for: (a) state propagation and (b) reset back-propagation.

A. Overview

The complete system is assembled in a 5 mm 5 mm die fab-
ricated in a standard 0.18- m CMOS technology. A micropho-
tograph of the packaged (JLCC84) circuit is shown in Fig. 15.
The current distribution circuitry is situated on the left and right
of the processing array, with master current references along the
top edge. The address event representation hardware is located
along the bottom and right edges of the array. This array com-
prises a 48 48 matrix of cells at 85 m pitch using a tessel-
lation of nine different cell types (edge, corner and regular) for
correct termination to provide full array utilization. The regular
cell implementation (layout) is given in Fig. 16.

The pixel floorplan is arranged such that the ASP (approxi-
mately top 65% area) is separate from the ABP (approximately
bottom 35% area). The distributed data “bus” is routed in
metal layers 1 and 3 vertically along the left pixel edge and

Fig. 15. Microphotograph of the micropower centroiding vision processor.

Fig. 16. The regular cell layout (top) and floorplan (bottom). The cell size is
85 �m� 85 �m with 30 �m� 30 �m active photodiode area, giving a 12.5%
surface fill factor. Metal layers 5 and 6 have been excluded for clarity.

metal layers 2 and 4 horizontally along the bottom pixel edge.
Metal layer 5 is used for current and power supply distribution
(horizontal). Metal 6 is used as a ground plane and a light
blocking screen, to minimize photo-absorption in the substrate,
apart from at photodiode openings.
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Fig. 17. Test images used to verify system functionality, with results over-
layed indicating measured centroid position and size (dotted line representing
detected object). Included are: (a–c) regular objects, (d–f) irregular objects, and
(g–i) multiple objects.

B. System Verification

A custom testboard has been developed for verifying system
functionality. A dedicated microcontroller is used to facilitate
the address event handshake and to subsequently store the ad-
dress event data into internal memory until full, then stream out
to a PC via a standard UART (RS232) interface. The limitation
of this approach is that the test chip is only tested in short bursts
and therefore the output data (although processed in realtime),
is only readable off-line. This is due to the limited bandwidth of
the UART interface. The full source code for the address-event
handshake and sampling is available in [18]. For image acqui-
sition, a 2/3 format CCTV lens is mounted a fixed distance
above the bare silicon surface. Subsequently, a thin-film tran-
sistor (TFT) liquid crystal display (LCD) is used to produce the
image, positioned perpendicular to the focal plane of the chip.

C. General Functionality

This setup is used to confirm system functionality within
the intended design specifications. Sample images, projected
onto the chip and corresponding measurements are presented in
Fig. 17. This illustrates both single and multiple object detec-
tion, centroiding and sizing. Typically the measured centroid
and size measurements are within the actual object bound-
aries, i.e., the system tends to under rather than over estimate.
Furthermore, uneven objects are successfully detected but
with inaccurate centroid and position estimates, again within
the actual object boundaries [see Fig. 17(e), (f)]. However,

Fig. 18. Pseudo-dithering providing increased centroid position accuracy
through successive averaging.

overlapping objects are erroneously detected as a single uneven
object [Fig. 17(d)].

D. Accuracy

The accuracy, as expected, is intrinsically limited to single
pixel resolution for both centroid position and object radius. An
interesting observation has been a small random deviation ( 2
pixels) in object centroid location, resulting in a similar devia-
tion in object size. This is able to provide sub-pixel accuracy
(through successive averaging) having a pseudo-dithering ef-
fect. This is explained due to an edge effect caused by an im-
perfectly focused image or a graded object boundary. Subse-
quently, the static (spatial) fixed-pattern noise (FPN) coupled
with the (temporal) flicker noise within the edge detector blocks
provide this statistically-biased dithering effect, resulting in a
mechanism to enable processing time to be tradable with cen-
troid accuracy. This is illustrated through the trend on measured
data shown in Fig. 18.

E. Power Consumption

The measured power consumption levels are generally in line
with the previously presented simulated results. The measured
results partition the total power consumption into the following
sources:

1) Analog Consumption: Representing the ASP power
consumption including the photocurrents, local and global
averaging and threshold/edge detection circuitry. This is mea-
sured to be within 5% of the simulated results, attributed to
the fact that all the ASP circuits are biased using current mode
techniques. However, the ASP consumption is largely depen-
dant on bias currents and incident light intensity, varying over
15–50 W, as illustrated in Figs. 19 and 20.

2) Digital Consumption (Leakage): This represents the sub-
threshold “leakage” current within the digital core. This has
been measured to be a main source of power consumption within
the ABP core, being in the order of 40–60 W.

3) Digital Consumption (Static): This represents the static
current supply to the digital core. This is virtually entirely due
to “digital” short-circuit current caused by incomplete thresh-
olding. This varies depending on the configuration of the edge
detection circuitry. This dependance is clearly illustrated in
Figs. 19 and 20. ABP static consumption could be expected to
account for up to 80% of the total system power requirements in
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Fig. 19. Measured supply current levels illustrating the effect of tuning main
bias current (feeding edge detectors and discrete delays) on system power con-
sumption.

Fig. 20. Measured supply current levels illustrating the effect of illumination
level on system power consumption for various tuning bias current levels (con-
trolling the edge detecting threshold).

certain configurations. However, a significantly lower level of
static dissipation has been measured from the simulated results.
This is thought to be due to the fixed-pattern noise providing a
random offset to the edge detector inputs, therefore biasing the
differential outputs to always have an offset. As the simulations
had only considered images with uniform background intensity,
this would represent the maximum static dissipation.

4) Digital Consumption (Dynamic): This represents power
consumption directly related to the distributed binary signal
propagation and therefore proportional to the activity. In ad-
dition the address-event bus activity influences this level. For
typical activities, this has been measured to represent only
a 10%–15% portion of the total system power consumption.
Therefore, no substantial power saving can be achieved by
operating the device at a reduced duty cycle, unless the static
supply can be modulated.

F. Processing Time

Although the asynchronous nature of this distributed system
produces temporally unsynchronised events between different
objects (due to the local resetting), the algorithm can be run in a
“single-shot” mode, and a clock applied to the global reset input.
Using this technique a true high frame rate processor can be re-
alized, the limiting factor being the maximum size of detectable
object, i.e., the maximum propagation delay. This is in fact tun-
able, as the internal propagation delay is a controlled by a bias
current, illustrated in Fig. 21. For multiple object processing the
“process time” is dictated by the largest sized object.

Fig. 21. Dependance of process time on bias current, for input images with
maximum object sizes of 3, 4, 5, 6, and 8 pixel radius.

TABLE III
SYSTEM PROPERTIES AND PERFORMANCE SUMMARY

VI. DISCUSSION

A focal-plane vision processing chip has been presented for
object size and center detection of simple uniform objects. It is
the first system reporting multiple (unlimited) object centroid
processing capability. Furthermore, the developed system
demonstrates high computational efficiency, implementing a
computationally intensive algorithm with micropower con-
sumption. Although the developed system includes only a
48 48 array, with a cellular power budget of a few tens of
nanowatts, scaled to a megapixel array this would only require
a few tens of milliwatts.

The limitation to scalability would therefore be due to the rel-
atively large pixel footprint. However, this design has not been
optimized for silicon area, but for power consumption and relia-
bility. Substantial area savings could therefore be made in three
areas: photodiode size, analog device area, and digital optimiza-
tion. Furthermore, current trends in semiconductor technolo-
gies tend to suggest that the next significant advancement will
be in 3-D (stacked) CMOS substrates. For distributed systems,
this would enable layering the design in true 3-D retinomor-
phic arrangement [26], therefore achieving reduced footprints
and increased resolutions, at increased cost. This would make
such systems viable only for specific and demanding applica-
tions. For example, the presented system could be most useful
in space and military applications, where ultra-low-power and
high-speed performance are essential.
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The fabricated system has also been shown to utilize fixed
pattern noise favorably, both reducing power consumption and
increasing accuracy through successive sampling. The achieved
system specifications are summarized in Table III.
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