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Abstract
The investigation of the hiddenmetric space behind complex network topologies is a fervid topic in
current network science and the hyperbolic space is one of themost studied, because it seems
associated to the structural organization ofmany real complex systems. The popularity-similarity-
optimization (PSO)model simulates how randomgeometric graphs grow in the hyperbolic space,
generating realistic networks with clustering, small-worldness, scale-freeness and rich-clubness.
However, itmisses to reproduce an important feature of real complex networks, which is the
community organization. The geometrical-preferential-attachment (GPA)model was recently
developed in order to confer to the PSO also a soft community structure, which is obtained by forcing
different angular regions of the hyperbolic disk to have a variable level of attractiveness. However, the
number and size of the communities cannot be explicitly controlled in theGPA,which is a clear
limitation for real applications. Here, we introduce the nonuniformPSO (nPSO)model. Differently
fromGPA, the nPSOgenerates synthetic networks in the hyperbolic spacewhere heterogeneous
angular node attractiveness is forced by sampling the angular coordinates from a tailored nonuniform
probability distribution (for instance amixture of Gaussians). The nPSOdiffers fromGPA in other
three aspects: it allows one to explicitlyfix the number and size of communities; it allows one to tune
theirmixing property bymeans of the network temperature; it is efficient to generate networkswith
high clustering. Several tests on the detectability of the community structure in nPSO synthetic
networks andwide investigations on their structural properties confirm that the nPSO is a valid and
efficientmodel to generate realistic complex networkswith communities.

Introduction

In recent years the study of hidden geometrical spaces behind complex network topologies has led to several
developments and, currently, the hyperbolic space seems to be one of themost appropriate in order to explain
many of the structural features observed in real networks [1–12]. In 2012 Papadopoulos et al [5] introduced the
popularity-similarity-optimization (PSO)model in order to describe how randomgeometric graphs grow in the
hyperbolic space optimizing a trade-off between popularity and similarity. In this framework, the popularity of
the nodes is represented by the radial coordinate in the hyperbolic disk, whereas the angular coordinates
distance is the geometrical counterpart of the similarity between the nodes. Networks generated through the
PSOmodel exhibit strong clustering and a scale-free degree distribution, two among the peculiar properties that
usually characterize real-world topologies [13–15]. However, another important feature commonly observed is
the community structure [16–18], which is lacking in the PSOmodel. The reason is that the nodes are arranged
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over the angular coordinate space according to a uniformdistribution, therefore, since the connection
probability is a decreasing function of the hyperbolic distance, there are not angular regions containing a cluster
of spatially close nodes that aremore densely connected between each other thanwith the rest of the network.
This issue has been addressed in a following study by Zuev et al [19], introducing the geometric-preferential-
attachment (GPA). TheGPA couples the latent hyperbolic network geometrywith preferential attachment of
nodes to this geometry in order to generate networks with strong clustering, scale-free degree distribution and a
non-trivial community structure [19]. Themain assumption of theGPAmodel and simultaneously themain
innovationwith respect to the PSOmodel is that the angular coordinate space is not equally attractive
everywhere. Practically, theGPA is characterized by heterogeneous angular attractiveness: regions of different
attractiveness are designed according to the rationale that the higher the attractiveness of a region the higher the
probability that the nodes are placed in that angular section. Although this general idea can be implemented in
several ways, a high-level description of the procedure presented in the study of Zuev et al [19] is as follows (see
Methods for details). For each newnode entering in the network, a set of candidate positions is defined (angular
coordinate sampled uniformly at random, radial coordinatemathematically fixed) and to every candidate
position is assigned a probability depending on the number of nodes that would be ‘close’ to the entering node if
it were placed in that position. The probability is also function of a parameter of initial attractiveness, which can
be used to tune the heterogeneity of the angular coordinate distribution.However, theGPAmodel does not
allow—at least in the form inwhich it is currently proposed—to directly control in an explicit and efficientway
the number and size of the communities, a property that insteadmight be interesting, for example, while
proposing a community detection benchmark. Furthermore, theGPAmodel does not take into account the
possibility to vary the network temperature. For these reasonswe here introduce a variation of the PSOmodel,
whichwe call nonuniformPSO (nPSO)model, whose key aspects are the possibility of: (a)fixing the number and
size of communities; (b) tuning theirmixing property through the network temperature; (c) efficiently
producing also highly clustered realistic networks. Finally, althoughwe present the nPSO as a generativemodel
for non-overlapping communities, wewill discuss a strategy for taking into account also the presence of
overlapping communities.

Methods

PSOmodel
The PSOmodel [5] is a generative networkmodel recently introduced in order to describe how random
geometric graphs grow in the hyperbolic space. In thismodel the networks evolve optimizing a trade-off
between node popularity, abstracted by the radial coordinate, and similarity, represented by the angular
coordinate distance, and they exhibitmany common structural and dynamical characteristics of real networks.

Themodel hasfive input parameters:

• N 0,> number of nodes in the network;

• m 0,> equal to half of the average node degree;

• T 0, network temperature, which controls the network clustering; the network clustering ismaximized at
T 0,= it decreases almost linearly forT 0, 1= [ ) and it becomes asymptotically zero ifT 1;>

• 0, 1 ,b Î ( ] popularity fading parameter, or alternatively 2,g exponent of the power-law degree
distribution, due to the relationship 1 1 ;g b= + /

• K 0,z = - > whereK is the curvature of the hyperbolic plane. Since changing z rescales the node radial
coordinates and this does not affect the topological properties of network [5], in the rest of the article wewill
consider K 1.= -

Building a network in the hyperbolic disk requires the following steps:

(1) Initially the network is empty;

(2) At time i N1, 2, ,= ¼ a new node i appears with radial coordinate r i2 lni = ( ) and angular coordinate iq
uniformly sampled in 0, 2 ;p[ ] all the existing nodes j i< increase their radial coordinates according to
r i r r1j j ib b= + -( ) ( ) in order to simulate popularity fading;

(3) If T 0,= the new node connects to the m hyperbolically closest nodes; if T 0,> the new node picks a
randomly chosen existing node j i< and, given that it is not already connected to it, it connects to it with
probability
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repeating the procedure until it becomes connected tomnodes.
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is the current radius of the hyperbolic disk, and

h r r r rarccosh cosh cosh sinh sinh cos 3ij i j i j ijq= -( ) ( )

is the hyperbolic distance between node i and node j,where

4ij i jq p p q q= - - -∣ ∣ ∣∣ ( )

is the angle between these nodes.

(4) The growing process stopswhenN nodes have been introduced.

GPAmodel
TheGPAmodel is a variation of the original PSOmodel that couples the latent hyperbolic network geometry
with preferential attachment of nodes to this geometry in order to generate networks with strong clustering,
scale-free degree distribution and a non-trivial community structure [19].

The procedure to generate a network ofNnodes is the same described in the previous section for the PSO
model, with themain difference that the angular coordinate iq of the newnode i is assigned as follows:

(a) Sample , , i1j j¼ in 0, 2p[ ] uniformly at random. The points r ,i jj( ) for j i1= ¼ represent candidate
positions for the node.

(b) Define for each candidate position r ,i jj( ) the attractiveness Ai jj( ) equal to the number of existing nodes
that lie within hyperbolic distance ri from it.

(c) Set the angular coordinate i jq j= with probability:

A

A
, 5i j

i j

k
i

i k1

j
j

j
P =

+ L

å + L=

( )
( )

( )
( )

where 0L is a parameter representing the initial attractiveness.
Note that theGPAmodel has been presented in the related studywith only three input parameters,m, b and

,L with the additional parameters of the PSOmodel considered in the settingT 0= and K 1.= -

nPSOmodel
The nPSOmodel is a variation of the PSOmodel introduced in order to confer to the generated networks an
adequate community structure, which is lacking in the originalmodel. Since the connection probability is a
decreasing function of the hyperbolic distance, a uniformdistribution of the nodes over the hyperbolic disk does
not create agglomerates of nodes that are concentrated on angular sectors and that aremore densely connected
between each other thanwith the rest of the network. A nonuniformdistribution, instead, allows one to do it by
generating heterogeneity in the angular node arrangement. Given the parameters of the PSOmodel (N,m,T, γ)
and a nonuniformprobability distribution defined in [0, 2π[, the procedure to generate a network is the same
described in the section for the uniform case, with the only difference that the angular coordinates of the nodes
are not sampled uniformly but according to the given nonuniformprobability distribution.

In particular, without loss of generality, wewill concentrate on themixture of distributions where the
components are either Gaussian orGammadistributions (figure 1(A)), whichwe consider suitable for
describing how to build a nonuniformdistributed sample of nodes along the angular coordinates of a hyperbolic
disk, with communities that emerge in correspondence of the different components. For instance, given a
Gaussianmixture distribution the communities will emerge in correspondence of the different Gaussians. In
particular, aGaussianmixture distribution is characterized by the following parameters [20]:

• C 0,> which is the number of components, each one representative of a community;

• 0, 2 ,C1m pÎ¼ [ [ which are themeans of the components, representing the central locations of the
communities in the angular space;

3
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• 0,C1s >¼ which are the standard deviations of the components, determining howmuch the communities
are spread in the angular space; a low value leads to isolated communities, a high valuemakes the adjacent
communities to overlap;

• 1 ,C i i1 år r =¼ ( ) which are themixing proportions of the components, determining the relative sizes of the
communities.

Note that, although themeans of the components are located in [0, 2π[, the sampling of the angular
coordinate q can fall out of this range. In this case, it has to be shiftedwithin the original range using themodulo
operator: modulo , 2 .q q p= ( )

Figure 1.Nonuniformdistributions of angular coordinates. (A)Plot of three different kinds of nonuniformdistributions used for
sampling the angular coordinates of the nodes: Gaussianmixture with equal proportions (nPSO1, black line), Gaussianmixturewith
customproportions (nPSO2, red line), Gaussian andGammamixture with equal proportions (nPSO3, green line). Themixture
distributions have 4 components, placing themean of the components equidistantly over the angular space.More details on the
parameters of themixture distributions are in theMethods. (B)–(D)The same three kinds ofmixture distributions in (A) are
represented along the angular space of the hyperbolic disk, using 4 and 8 components. For each of them, a synthetic network has been
generated using the nPSOmodel with parametersN=100,m=2,T=0, γ=3 and angular coordinates sampled according to the
mixture distribution. The coordinates of the nodes are represented in the hyperbolic disk in order to provide an example of the
emerging community structure.

4
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Although the parameters of theGaussianmixture distribution allow for the investigation of disparate
scenarios, as afirst case of study (figure 1(B))we focused on themost straightforward setting. For a given number
of componentsC, we considered theirmeans equidistantly arranged over the angular space, the same standard
deviation and equalmixing proportions:

•
C

i i C
2

1 1i *m
p

= - = ¼( )

• C1 2s s s s= = ¼ = =

•
C

1
.C1 2r r r= = ¼ = =

Inparticular, inour simulationswefixed the standarddeviation to1/6of thedistancebetween twoadjacent

means ,
C

1

6

2*s = p( ) whichallowed for a reasonable isolationof the communities independently fromtheir number.

In a second scenario (figure 1(C)), we introduced asymmetries in the distribution of the nodes over the
circumference by generating communities of different sizes, implemented using diversemixing proportions for
the components. In particular, in our simulations themixing proportions have been randomly assigned.

As a last scenario (figure 1(D)), we considered amixture ofGaussian andGammadistributions, which is also
characterized by asymmetries due to the presence of theGamma components. Since this is not amixture
distribution as ordinary as theGaussian one, in supplementary information (available online at stacks.iop.org/
NJP/20/052002/mmedia)wewill provide the details about how it has been built for our simulations. In all the
scenarios, the communitymemberships are assigned considering for each node the component whosemean is
at the lowest angular distance.

Computational implementations of the generativemodel algorithm
In the PSOmodel section, at step (3) of the generative procedure, it is presented how the newnode establishes
connections tom of the existing nodes. In particular, ifT 0,> the newnode i picks a randomly chosen existing
node j i< and, given that it is not already connected to it, it connects with probability p i j, ,( ) repeating the
procedure until it becomes connected tomnodes. An example of pseudocode is:

targets=[1Ki-1]
c=0
while c<m
j=randomnode uniformly sampled from targets
rand_p=randomnumber in [0, 1]
if p(i, j)>rand_p
add link from i to j
remove j from targets
c=c+1;

end
end

At the implementation level, the basic solution inMATLAB codewould be:

targets= 1:(i-1);
c= 0;
while c<m
idx= randi(length(targets));
j= targets(idx);
rand_p= rand(1);
if p(i, j)> rand_p
x(i, j)= 1;
c= c+ 1;
targets(idx)= [];

end
end

where x is the adjacencymatrix of the network.Wewill refer to this as implementation 1.
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As itwill be commented in theResults andDiscussion, this implementation has issues of timeperformance in
specific cases. In fact, it is possible tonote fromequation (1) that the connection probability p i j,( ) decreases both
for increasing hyperbolic distance and for decreasing temperature (when h R ,ij i> which is true in themajority of
the cases as shown in supplementary table 1, in particular for increasing network size). Therefore,while generating
a networkwith low temperature andwheremanynodes are at highhyperbolic distance (for example sampling the
angular coordinates fromaGaussianmixture distributionwith 4 communities),most of the connection
probabilities to the targetswill be low.As a consequence, the if statementwill result false inmany iterations and the
while loopwill require a relevant computational timebefore thatm connections are successfully established.

In order to solve this issue, we note that at eachwhile loop iteration the connection probabilities to the target
nodes (excluded the ones already connected)do not always cover the full range [0, 1]. In particular, at each
iteration themaximumof these probabilities p p i tmax_ max ,t targets= Î ( )will be usually lower than 1. Since it
is known a priori that any random sampling p prand_ max_> will necessarily bring to a rejection of the
connection independently from the target node chosen, the sampling range of the randomprobability prand_
can be restricted to [0, pmax_ ]. In the critical conditions previouslymentioned, wheremost of the connection
probabilities are low, this adjustment can bring to a considerable speedupwithout biasing the link generation
procedure. An example of pseudocode is:

targets=[1Ki-1]
c=0
max_p=max p i, tt targetsÎ ( )
while c<m
j=randomnode uniformly sampled from targets
rand_p=randomnumber in [0,max_p]
if p(i, j)>rand_p
add link from i to j
remove j from targets
max_p=max p i, tt targetsÎ ( )
c=c+1;

end
end

In case a programming language optimized for vector operations (i.e.MATLAB) is used, since vector
operations are faster than loop-based operations, at each iterationm attempts of connection to target nodes can
be done at once, reducing the number of iterations required to successfully establishm connections. Note that,
while this adjustment is convenient only at the implementation level when using a programming language
optimized for vectorization, the restriction of the probability sampling to the range [0, pmax_ ] is valid in general.

TheMATLAB code of the implementationwould be:

targets=1:(i-1);
c=0;
max_p=max(p(i, targets));
while c<m
if length(targets)>m
idx=randsample(length(targets), m);

else
idx=1:length(targets);

end
rand_p=rand(1, length(idx)) *max_p;
idx=idx(p(i, targets(idx))>rand_p);
if∼is empty(idx)
if length(idx)>m - c
idx=randsample(idx,m - c);

end
x(i, targets(idx))=1;
targets(idx)=[];
max_p=max(p(i, targets));
c=c+length(idx);

end
end

6
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Wewill refer to this as implementation 2.
A further variant thatwe propose is to sample the target nodes according to the theoretical probabilities

p i j, .( ) This solution ensures that at every iteration new connections are successfully established, avoiding
rejections andmaking the procedure faster. An example of pseudocode is:

targets=[1Ki-1]
for c=1Km

j=randomnode t sampled from targets with probabilities
p i, t

p i, u
u targetså Î

( )
( )

add link from i to j
remove j from targets

end

Given normalized connection probabilities fromnode i toU targets, w i t, ,
p i t

p i u

,

,
u targets

=
å Î

( ) ( )
( )

the

nonuniform sampling can be performed in the followingway:

(a) Partition the interval [0, 1] inU subintervals I t( ) of sizes w i t,( )

(b) Generate a randomnumber r 0, 1Î [ ]

(c) The sampled target is the t such that r I t .Î ( )

TheMATLAB code of the implementationwould be:

targets=1:(i-1);
idx= datasample(targets,m, ’Replace’, false, ’Weights’, p(i,targets));
x(i,idx)= 1;

Wewill refer to this as implementation 3.
Note that, as for the previous implementation, the sampling ofm targets at once is an adjustment convenient

only at the implementation level when using a programming language optimized for vectorization, whereas the
idea of sampling according to the theoretical probabilities is valid in general.

The computational complexity of themodel using the three implementations is discussed in the next
section, whereas their running time aswell as the equivalence of the generated synthetic networks is discussed in
the Results andDiscussion.

Computational complexity
The generative procedure of the nPSOmodelmainly consists in a loop ofN iterations, where for each iteration i a
newnode appears and connects tom of the existing nodes.

Let usfirstly consider the degenerate case inwhich m N .» For approximately all theN iterations the
connectionsm to establish aremore than the existing nodes, therefore the newnode iwill simply connect to all
the previous i – 1 nodes, with O i( ) operations. The computational complexity is given by:

i
N N

O N
1

2
.

i

N

1

2å =
⋅ +

=
=

( ) ( )

Let us now consider themore realistic case inwhich m N . For approximately all theN iterations the
connectionsm to establish are less than the existing nodes, therefore the newnode iwill connect to onlym of
them, and the time-dominant operations to create the links change depending on the temperature (whether zero
or positive) and onwhich of the three implementations is adopted.

ForT=0, the connections are establishedwith them hyperbolically closest nodes, independently from the
implementation. For each iteration i, i – 1 hyperbolic distances have to be computed in O i( ) operations, and
then them smallest ones have to be found, which can be obtained building amin-heap in O i( ) and retrieving the
minimumm times in O m ilog .( ) Considering i O N Nlog log

i

N

1å == ( ) and E mN ,= the computational
complexity is given by:

i m i i m i O N m O N N O N E Nlog log log log .
i

N

i

N

i

N

1 1 1

2 2å å å+ = + = + ⋅ = +
= = =

( ) ( ) ( ) ( )
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ForT>0, for each iteration i them links are instead established according to the connection probabilities
p i j, .( ) Wewill now analyse the three different implementations.

Using the implementation 1, for each link to create, one target node t is uniformly sampled and the
connection is establishedwith probability p i t, ,( ) otherwise rejected. Therefore a connection attempt costs
constant time O 1 .( ) The average connection probability to the targets changes over the iterations i and over the
m links depending on the set of targets. Let us indicate with p1

˜ the average connection probability to the targets
over the entire generative procedure using implementation 1. For each iteration i, on average m

p1˜
connection

attempts of cost O 1( ) are performed and therefore atmostO m

p1
( )˜ operations are required. The computational

complexity is given by:

m

p
O N

m

p
O E

p

1
.

i

N

1 1 1 1
å = =
=

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟˜ ˜ ˜

Using the implementation 2, for each link to create, one target node t is uniformly sampled and the
connection is establishedwith probability p i t p, max_ ,( )/ otherwise rejected ( pmax_ is themaximum
probability between the targets). Computing themaximum costs O i( ) and since it has to be updated every time a
connection is successfully established, for each iteration i its overall cost is O m i .⋅( ) Analogously to
implementation 1, on average m

p2˜
connection attempts of cost O 1( ) are performed, where p2

˜ is the average

connection probability to the targets over the entire generative procedure using implementation 2. The
computational complexity is given by:

m i
m

p
O mN O N

m

p
O EN E

p
O E N

p

1 1
.

i

N

1 2

2

2 2 2
å ⋅ + = + = + = +
=

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟˜

( )
˜ ˜ ˜

Using the implementation 3, for each link to create, one target node t is nonuniformly sampledwith

probabilities w i t,
p i t

p i u

,

,u targets
=

å Î
( ) ( )

( )
and the connection is successfully established. The computation of the

normalized probabilities and the nonuniform sampling have a cost of O i ,( ) which is performed exactlym times.
The computational complexity is given by:

m i O mN O EN .
i

N

1

2å ⋅ = =
=

( ) ( )

Note that the factor
p

1

1˜
(in implementation 1) is expected to be higherwith respect to

p

1

2˜
(implementation 2)

and they bothmainly increase for low temperatures andwhen the hyperbolic distances are overall high (i.e. low
number of communities). Therefore, depending on themodel’s parameter combination, the factors

p

1

1˜
and

p

1

2˜
can have a significant impact on the computational time, whichwill be discussed in the next section.

Results and discussion

The idea behind the nPSO is quite intuitive. The sampling of the angular coordinates from a uniform
distribution—which is used by the standard PSO—can be generalized to sampling from any distributionwith a
desired shape. In particular, a nonuniform distributionwould indicate the presence of regionswith different
levels of node attractiveness. In this study, without loss of generality, wewill concentrate on themixture of
distributionswhere the components can be either Gaussian orGammadistributions, whichwe consider suitable
for describing how to build a nonuniformdistributed sample of nodes along the angular coordinates of a
hyperbolic disk, with communities that emerge in correspondence of the different distribution components.
However, wewant to stress that our nPSOmodel is general and can be implemented considering anymixture of
desired distributions fromwhich to sample the angular coordinates of the nodes.

Although the parameters of theGaussian andGammamixture distributions built on the angular coordinate
space allow for the investigation of disparate scenarios, in this workwe focused on three straightforward settings,
which are illustrated infigure 1. For a given number of communitiesC, in thefirst scenario (figure 1(B)), we
consider aGaussianmixture distribution ofC components with themeans equidistantly arranged over the
angular space, the same standard deviation and equalmixing proportions (seeMethods for details). In a second
scenario (figure 1(C)), we introduced asymmetries in the distribution of the nodes over the circumference by
generating communities of different sizes, implemented using diversemixing proportions for the components.
As a third and last scenario (figure 1(D)), we considered amixture ofGaussian andGammadistributions, which
is also characterized by asymmetries due to the presence of theGamma components. In all the scenarios, the
communitymemberships are assigned considering for each node the componentwhosemean is at the lowest
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angular distance. Figure 2 shows examples of networks in the hyperbolic space generated using the nPSOmodel
(first scenario, Gaussianmixture distributionwith equal proportions is considered) for different values of
clustering (temperature,T=[0.1, 0.5, 0.9]) and community number (C=[4, 8]), while keeping the other
parameters fixed (N=100,m=5, γ=3). The related communities are also highlighted using different node
colours. Thefigure indicates below each network also the normalizedmutual information (NMI) [21], a
measure of performance for evaluating the community detection, computed by comparing the nPSO ground-
truth communities and the ones detected by Louvain [22], which is one of the state-of-the-art community
detection algorithms [23] (see supplementarymethods for details).We notice that the communities are perfectly
detected both forC=4 andC=8 at low temperature, suggesting that ameaningful community structure is
generated by the proposedmodel. For the same number of communities, if the temperature is increased the
performance slightly decreases, becausemore inter-community links are established in the network, causing as
expected a higher rate of wrong assignments by the community detection algorithm.

The next sections will be organized as follows: atfirst wewill prove the equivalence of the three
implementations for the generativemodel algorithm andwewill discuss their computational efficiency; later—
using the fastest implementation (which is the implementation 3) to generate numerous networks over diverse
parameter combinations—wewill propose awide investigation on the detectability of the communities and on
the topological properties of the synthetic networks generated by the nPSO.

Equivalence of the three implementations for link generation
Let us consider a node i that has to establish a connectionwith one overU target nodes.

Implementation 1.One target node t is chosen uniformly at randomand a connection is establishedwith
probability p i t, .( )

Figure 2.Communities generated using the nPSOmodel. Synthetic networks have been generated using the nPSOmodel with
parametersN=100,m=5,T=[0.1, 0.5, 0.9], γ=3 and angular coordinates sampled according to aGaussianmixture
distributionwith equal proportions and componentsC=[4, 8] (communities). For each combination of parameters, 10 networks
have been generated. For each network the Louvain community detectionmethod has been executed and the communities detected
have been compared to the annotated ones computing the normalizedmutual information (NMI). The plots show for each parameter
combination a representation in the hyperbolic space of the network that obtained the highestNMI, whose value is reported. The
nodes are coloured according to the communities as generated by the nPSOmodel.
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Let us callCt the event: node i connects with target t. The probability of the event is:

P C
U

p i t
1

, .t = ⋅( ) ( )

Let us callC the event: node i connects with any of the targets. Taking into account that the eventC is the
union of the events C C C, , , U1 2 ¼ and that these events aremutually exclusive, the probability of the event is:
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In case the connection is rejected, another attempt is iterativelymade until node i connects with any of the
targets. In other words, the procedure is repeated until the eventC occurs.

Therefore, the probability to eventually recruit the target t as a neighbour is given by the conditional
probability that node i has connectedwith target t, given that eventC occurred:
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Implementation 2.One target node t is chosen uniformly at randomand a connection is establishedwith
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Following the same procedure as the implementation 1, we obtain:
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Implementation 3. one target node t is chosen nonuniformly at randomwith probability
p i t
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Note that in this procedure the connection is never rejected. Therefore we obtain:
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Since the probability P C Ct( ∣ ) to eventually recruit the target t as a neighbour is the same for the three
implementations, their equivalence is proven.

However, as a further demonstration that the generative procedure is not biased toward networkswith
different properties, in supplementary tables 2–6we report for each PSO andnPSOparameter combination
some of themain deterministic (in the sense that themeasure does not depend by the stochastic generation of
nullmodels) topologicalmeasures of the networks generated using the three different implementations:
clustering coefficient, characteristic path length, assortativity, local-community-paradigm (LCP) correlation
and power-law exponent. The results confirm that these structural properties of themodel are well preserved
and there are not noteworthy changes introduced by the adoption of the algorithmic variants.

nPSOalgorithm efficiency in generating networkswith high clustering
One of themain drawbacks to use the original algorithmic implementation to establish links adopted by the PSO
andGPAmodels also for the nPSOmodel, is the lack of efficiency in generating networks with communities
characterized by high clustering (low temperature), whenT 0.> As reported infigure 3 and supplementary
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figures 1–3, the computational time for generating PSOnetworks of sizeN=1000 is in the order of seconds,
whereas for nPSOnetworkswith low temperatureT=0.1 itmight take almost one hour (C=8) or up to
several hours (C=4), depending on the number of communities.

Themain reason is the following. AssumingT 0,> at each time step i of the generative procedure the new
node i picks a randomly chosen existing node j i< and, given that it is not already connected to it, it connects
with probability p i j, ,( ) repeating the procedure until it becomes connected tomnodes.However, it is possible
to note from equation (1) that the connection probability p i j,( ) decreases both for increasing hyperbolic
distance and for decreasing temperature (when h R ,ij i> which is true in themajority of the cases as shown in
supplementary table 1, in particular for increasing network size). Therefore, while generating a networkwith low
temperature andwheremany nodes are at high hyperbolic distance (for instance: a nPSOmodel that displays
communities presents hyperbolic distances significantly higher than a classical uniformPSO), most of the
connection probabilities to the targets will be low. As a consequence,many iterations will be required before that
m connections are successfully established.Note that, in the nPSO, the lower theC the higher the distance
between adjacent communities, thereforemore target nodes will be at high hyperbolic distance, which results in
an increased computational time, as pointed out comparingC=4 (supplementary figure 2) andC=8
(supplementary figure 3). Furthermore, infigure 3 it can be noticed that the running time increases also for
decreasingm. Although thismight result counterintuitive because less links need to be generated, the reason is
that for decreasingm the radius Ri of the hyperbolic disk (see equation (1)) decreases, as a consequence also the
connection probabilities p i j,( ) decrease and thereforemore iterationswill be required before thatm
connections are successfully established.

Here we propose two different algorithmic implementations, whose details are provided in theMethods.
Figure 3 shows that both the implementations do not present any issue for generating nPSOnetworkswith low
temperature. As highlighted in supplementary figures 4–5, the fastest is implementation 3, whose key idea is to
sample the target nodes according to the theoretical probabilities p i j, ,( ) and it only requires 5 min to generate
large-size nPSOnetworks ofN=10 000, regardless of the temperature. This is indeed expected since it is the

Figure 3.Time performance for generating PSO and nPSOnetworks. Synthetic networks have been generated using the PSO and
nPSOmodels with parametersN=1000,m=[10, 12, 14],T=[0.1, 0.3, 0.5], γ=3 and, for the nPSOmodel, angular coordinates
sampled according to aGaussianmixture distributionwith equal proportions and componentsC=[4, 8]. For each combination of
parameters, 10 networks have been generated using the 3 different implementations. The plots report for each parameter combination
themean computational time and standard error over the random repetitions. Amore detailed comparison of implementations 2 and
3 and additional plots for different network sizes are provided in supplementary information.
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only implementation inwhich the attempts of establishing new connections are never rejected, and its
computational complexity is only dependent on the number of nodes and edges, O EN .( ) On the contrary, the
time complexity of the implementations 1 and 2 has a dependency on the average connection probability to the
targets during the generative procedure, which ismainly affected by the temperature and by the extent of the
hyperbolic distances. Comparing the complexity of the three implementations and taking into account the
computational time of the numerical experiments, we can derive that:
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This resultmainly suggests that, in particular in the scenario of low temperaturewhere the time difference is
considerably high, the average number of attempts required by implementation 1 to establish one connection
has an order of complexity higher than the number of nodes in the network.

Supplementary figures 6–7 report the time performance for generatingGPAnetworks bothwith 0.1L =
and 1.L = The advantage of the implementation 3 for low temperatureT=0.1 is clearly evident and the
computational time difference with implementation 1 becomesmore significant for low initial attractiveness

0.1.L = Indeed, in this parameter configuration (T=0.1, 0.1L = ) and using implementation 1, the
generation of networks withN=500 required several hours and networks withN=1000were still not
generated after onemonth of running time, whereas implementation 3 required around 1 min forN=1000.
We let notice that a lower initial attractiveness tends to locate new coming nodes in regionswhere other nodes
are already present, generating a lower number of denser regions in the hyperbolic disk. The explanation of the
higher computational timewith respect to 1L = is therefore analogous to the one given for lowerC in the
nPSOmodel.

Detectability andmixing property of the nPSO communities
Themain novelty introduced by the nPSOmodel with respect to theGPAmodel is the possibility to generate a
tailored community structure at any given temperature different fromT= 0. Therefore this section of the paper
will lead the reader through awide investigation on the parameter combinations of the nPSOmodel for which
the emerging communities are detectable by a state-of-the-art algorithm.

Synthetic networks have been generated using the nPSOmodel with parametersN=[100, 500, 1000],
m=[5, 10, 15, 20],T=[0, 0.3, 0.6, 0.9], γ=3 and angular coordinates sampled according tomixture
distributionswith componentsC=[5, 10, 15, 20] for the three different scenarios previouslymentioned:
Gaussianmixture with equal proportions (nPSO1), Gaussianmixture with randomproportions (nPSO2),
Gaussian andGammamixture with equal proportions (nPSO3). Formore details on the parameters of the
mixture distributions please refer to theMethods.

For each network the Louvain community detection algorithm [22]has been executed and the communities
detected have been compared to the annotated ones computing theNMI [21] (see supplementarymethods for
details).We decided to use the Louvain algorithmbecause it is amodel-free and unsupervised heuristicmethod
for community detection based onmodularity optimization [22], therefore its performance is not dependent by
any assumption on the generativemodel, and its results should be robust enough regardless of the generative
model used to create the synthetic networks. In addition, the Louvain algorithmhas been regarded as one of the
most effective algorithms for community detection in previous studies acrossmany real and synthetic datasets
[23–25]. However, the fact that herewe tested the community detectability of the nPSO synthetic networks using
only the Louvain algorithm is overcome in a second studywherewe compare the performance of several state-
of-the-art algorithms for community detection across different parameters of the nPSOmodel [26].

The heatmap infigure 4 reports themeanNMI over 10 repetitions for each parameter combination. The
point thatfirstly captures the attention is the overall higher detectability of the communities in networks of
larger size with a lower number of communities (top-right area of the heatmap) in comparison to networks of
smaller size with a higher number of communities (bottom-left area of the heatmap). This result suggests that,
independently from the kind ofmixture distribution (nPSO1, nPSO2 or nPSO3), the ratio between the number
of communities (C) and the network size (N) is a factor that strongly affects the detectability of the nPSO
communities. This is indeed expected since, for afixed network size, the lower the number of communities the
higher their separation in the angular space. Since connection probabilities depend on geometrical distances, a
higher separation leads to a higher percentage of intra-community links with respect to inter-community links
(lower communitymixing). Previous studies have already demonstrated that the communities are easier to be
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Figure 4.Detectability of the nPSO communities. Synthetic networks have been generated using the nPSOmodel with parameters
N=[100, 500, 1000],m=[5, 10, 15, 20],T=[0, 0.3, 0.6, 0.9], γ=3 and angular coordinates sampled according tomixture
distributions of three different kindswith componentsC=[5, 10, 15, 20]: Gaussianmixture with equal proportions (nPSO1),
Gaussianmixture with randomproportions (nPSO2), Gaussian andGammamixture with equal proportions (nPSO3). Formore
details on the parameters of themixture distributions please refer to theMethods. For each combination of parameters, 10 networks
have been generated. For each network the Louvain community detectionmethod has been executed and the communities detected
have been compared to the annotated ones computing the normalizedmutual information (NMI). The heatmap reports for each
parameter combination themeanNMI, coloured according to a blue-to-red colormap in the range [0.4, 1].
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Figure 5.Communitymixing on nPSOnetworks. Synthetic networks have been generated using the nPSOmodel with parameters
N=[100, 500, 1000],m=[5, 10, 15, 20],T=[0, 0.3, 0.6, 0.9], γ=3 and angular coordinates sampled according tomixture
distributions of three different kindswith componentsC=[5, 10, 15, 20]: Gaussianmixture with equal proportions (nPSO1),
Gaussianmixture with randomproportions (nPSO2), Gaussian andGammamixture with equal proportions (nPSO3). Formore
details on the parameters of themixture distributions please refer to theMethods. For each combination of parameters, 10 networks
have been generated and the communitymixing has been computed. The heatmap reports for each parameter combination themean
communitymixing, coloured according to a blue-to-red colormap in the range [0, 1].
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detected for a lower communitymixing [24, 27], defined as the average proportion of links from a node to
external communities [27].

The heatmap infigure 5 reports themean communitymixing over 10 repetitions for the same parameter
combinations as in figure 4. It clearly illustrates that themixing increases with the number of communities for
fixed network size, and it decreases with the network size forfixed number of communities. As expected, the
mixing grows alsowith the temperature, since there is higher probability for a node to establish connections with
nodes located far apart from its own community. Furthermore, it increases alsowith the parameterm, in
particular for higherC, where the nodes have toomany linkswith respect to the community size and they are
forced to create edges with external communities.

Supplementary figure 8 highlights some particular parameter combinations from the heatmap infigure 4
and this helps to discuss some counterintuitive scenarios due to the parameter combinations. Supplementary
figure 8(A) focuses on small networks (N=100)with a lownumber of communities (C=5) for thefirst
scenario (nPSO1), and it shows that for increasing temperature theNMI decreases form=5whereas tends to
increase form=20. This is reasonable because, when each node creates few connections (m=5), directing
them towards external communities (higher temperature)makes the community structure less detectable
(lowerNMI). Instead, when toomany links are generated (m=20), a high temperature avoids thatmost of the
inter-communities links are directed to adjacent communities and helps tomakemore distinct the community
boundaries.

Supplementary figure 8(B) reports similar results but from a different perspective. It shows that for
increasingm theNMI decreases forT=0whereas tends to increase forT=0.9. In fact, atT=0most of the
links are internal to the community and increasingmwill only increase the links external to the community,
being its size small. On the contrary, atT=0.9many links are also directed to other communities and
increasingmwill help to have enough internal links tomake the communities better detectable. These patterns
highlighted on small networks (N=100)with few communities (C=5) aremainly preserved also for higher
number of communities, although the overall detectability decreases, as already discussed.

For networks of larger size (N=[500, 1000])with few communities (C=5) the detectability is generally
high and tends to be better formiddle temperatures. For increasingC theNMI overall decreases, and the highest
detectability occurs at lowm formiddle temperatures (see Supplementary figure 8(C)). The reason is that, due to
the larger number of nodes and communities, atT=0 there is higher probability for the nodes to link to
adjacent communities,making less distinct the boundaries, while atT=0.9 there is higher probability to lose
the preferentially of connection to nodes of the same community.Middle temperatures guarantee a good
proportion between links internal to the community and links directed to all the other communities (not only
the adjacent ones).

Supplementary figure 8(D) focuses on networks ofN=1000 nodeswith a high number of communities
(C=20) for thefirst scenario (nPSO1). It shows that for increasingm theNMI decreases forT=0whereas it is
almost not affected forT=0.9. As discussed for the smaller networks, atT=0most of the links are internal to
the community and increasingmwillmainly increase the links external to the community,making it less
detectable. AtT=0.9, differently fromwhat is shown in supplementary figure 8(B), theNMI remains almost
constant and does not increase withm, probably due to the fact that the communities are bigger and therefore
more internal links are required tomake thembetter detectable.

Finally, although there are someminor variabilities between the different scenarios (nPSO1, nPSO2 and
nPSO3), the patterns discussed aremostly consistent over all the nPSOmodel parameter combinations.

Topological properties of the nPSOnetworks
After having proposed awide investigation on the detectability of the communities generated by the nPSO, in
this sectionwe are going to highlight towhich extent the community organization affects themain structural
properties of the synthetic networks. For the same parameter combinations of the nPSOmodel as infigure 4,
and considering also synthetic networks generated using the (conventional)PSOmodel with the same
parametersN,m,T and γ, we computed several topologicalmeasures: clustering coefficient, characteristic path
length, assortativity, LCP-correlation, structural consistency, power-law exponent,modularity, small-
worldness and rich-clubness. The related heatmaps are reported infigures 6–10 and supplementary figures 9–12
andwill be nowdiscussed.

Figure 6 shows the clustering coefficient, which offers an average evaluation of the cross-interaction density
between the first neighbours of each node in the network [13]. The clustering coefficient strongly decreases for
increasing temperature, since there is higher probability to establish connections between nodes that are far
apart from each other, and therefore it is less likely to close triangles in a node neighbourhood. Increasingm
tends to increase the clustering coefficient, in fact with a higher number of links it is alsomore likely to close local
triangles, and this ismore evident on small networks, where there are less target nodes to connect. The type of
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Figure 6.Clustering coefficient of the PSO and nPSOnetworks. Synthetic networks have been generated using the nPSOmodel with
parametersN=[100, 500, 1000],m=[5, 10, 15, 20],T=[0, 0.3, 0.6, 0.9], γ=3 and angular coordinates sampled according to
mixture distributions of three different kinds with componentsC=[5, 10, 15, 20]: Gaussianmixture with equal proportions
(nPSO1), Gaussianmixture with randomproportions (nPSO2), Gaussian andGammamixture with equal proportions (nPSO3). For
more details on the parameters of themixture distributions please refer to theMethods. Furthermore, synthetic networks have been
generated also using the PSOmodel with the same parametersN,m,T and γ. For each combination of parameters, 10 networks have
been generated and the clustering coefficient has been computed. The heatmap reports for each parameter combination themean
clustering coefficient, coloured according to a blue-to-red colormap in the range [0, 1].
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Figure 7.Characteristic path length of the PSO and nPSOnetworks. Synthetic networks have been generated using the nPSOmodel
with parametersN=[100, 500, 1000],m=[5, 10, 15, 20],T=[0, 0.3, 0.6, 0.9], γ=3 and angular coordinates sampled according to
mixture distributions of three different kinds with componentsC=[5, 10, 15, 20]: Gaussianmixture with equal proportions
(nPSO1), Gaussianmixture with randomproportions (nPSO2), Gaussian andGammamixture with equal proportions (nPSO3). For
more details on the parameters of themixture distributions please refer to theMethods. Furthermore, synthetic networks have been
generated also using the PSOmodel with the same parametersN,m,T and γ. For each combination of parameters, 10 networks have
been generated and the characteristic path length has been computed. The heatmap reports for each parameter combination themean
characteristic path length, coloured according to a blue-to-red colormap in the range [1, 4].
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Figure 8.Assortativity of the PSO and nPSOnetworks. Synthetic networks have been generated using the nPSOmodel with
parametersN=[100, 500, 1000],m=[5, 10, 15, 20],T=[0, 0.3, 0.6, 0.9], γ=3 and angular coordinates sampled according to
mixture distributions of three different kinds with componentsC=[5, 10, 15, 20]: Gaussianmixture with equal proportions
(nPSO1), Gaussianmixture with randomproportions (nPSO2), Gaussian andGammamixture with equal proportions (nPSO3). For
more details on the parameters of themixture distributions please refer to theMethods. Furthermore, synthetic networks have been
generated also using the PSOmodel with the same parametersN,m,T and γ. For each combination of parameters, 10 networks have
been generated and the assortativity has been computed. The heatmap reports for each parameter combination themean assortativity,
coloured according to a blue-to-red colormap in the range [−0.3, 0.3].
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Figure 9. LCP-correlation of the PSO and nPSOnetworks. Synthetic networks have been generated using the nPSOmodel with
parametersN=[100, 500, 1000],m=[5, 10, 15, 20],T=[0, 0.3, 0.6, 0.9], γ=3 and angular coordinates sampled according to
mixture distributions of three different kinds with componentsC=[5, 10, 15, 20]: Gaussianmixture with equal proportions
(nPSO1), Gaussianmixture with randomproportions (nPSO2), Gaussian andGammamixture with equal proportions (nPSO3). For
more details on the parameters of themixture distributions please refer to theMethods. Furthermore, synthetic networks have been
generated also using the PSOmodel with the same parametersN,m,T and γ. For each combination of parameters, 10 networks have
been generated and the LCP-correlation has been computed. The heatmap reports for each parameter combination themean LCP-
correlation, coloured according to a blue-to-red colormap in the range [0.5, 1].

19

New J. Phys. 20 (2018) 052002



Figure 10. Structural consistency of the PSO and nPSOnetworks. Synthetic networks have been generated using the nPSOmodel with
parametersN=[100, 500, 1000],m=[5, 10, 15, 20],T=[0, 0.3, 0.6, 0.9], γ=3 and angular coordinates sampled according to
mixture distributions of three different kinds with componentsC=[5, 10, 15, 20]: Gaussianmixture with equal proportions
(nPSO1), Gaussianmixture with randomproportions (nPSO2), Gaussian andGammamixture with equal proportions (nPSO3). For
more details on the parameters of themixture distributions please refer to theMethods. Furthermore, synthetic networks have been
generated also using the PSOmodel with the same parametersN,m,T and γ. For each combination of parameters, 10 networks have
been generated and the structural consistency has been computed. The heatmap reports for each parameter combination themean
structural consistency, coloured according to a blue-to-red colormap in the range [0, 1].
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angular coordinate distribution (nPSO1, nPSO2 or nPSO3) and the number of communities (C) do not have a
remarkable effect formost of the parameter combinations. The few cases inwhich there is higher variability are
forN=[500, 1000] andT=0.3where, with the increase of the number of communities, the clustering
coefficient increases, becoming closer and closer to the one of the PSOmodel.

Figure 7 shows the characteristic path length, which describes the average of the shortest path lengths
between all the pairs of vertices [13]. Themeasure decreases for increasing temperature, since there is higher
probability to establish connections between nodes that are far apart from each other, acting as bridges between
different, and often far apart, regions of the network. This decrease of the characteristic path length is attenuated
when there aremany edges with respect to the network size (higherm and lowerN), because the bridges
naturally emerge due to the high network density. Increasingm, indeed, leads in general to a decrease of the
characteristic path length. The type of angular coordinate distribution (nPSO1, nPSO2 or nPSO3) and the
number of communities (C) do not have any remarkable effect.

Figure 8 reports the assortativity, which indicates the tendency of the networks to connect nodes with similar
degree [28]. Positive values suggest an assortative behaviour and negative values a disassortativemixing. The
results highlight that there are no parameter combinations forwhich the networks are strongly assortative,
whereas disassortativity is detected for networks of small size at low temperature. In the generative procedure of
the PSO and nPSOmodels, the oldest nodes have the highest node degree and, being at the centre of the
hyperbolic disk, at low temperature they tend to be the connection targets of new coming nodeswith lower
degree, leading to a disassortativemixing. At higher temperature this disassortativity gets weaker and there is
more balance between the connections established froma newnode to popular and less popular nodes, resulting
in an increase of themeasure. It can be noticed also a decrease atN=100 andT=0 for increasingm, since
more connections are created between the older higher-degree nodes and the younger lower degree nodes. The
type of angular coordinate distribution (nPSO1, nPSO2 or nPSO3) and the number of communities (C) lead
only tominor variabilities for low temperature with respect to the PSO.

Figure 9 shows the LCP-correlation, the Pearson correlation between the number of common neighbours
(which create a local community) and the number of local community links (connections among common
neighbours) that are computed for each link of the network [29]. The LCP-correlationmeasures whether the
network follows a LCP organization [29–31] and therefore whether the network is organized in local
communities (one for each link)where the number of interactions between the commonneighbours is a
function that increases with the number of commonneighbours in the local community. Complex adaptive
networkswithweak-links thatmake local processing and global delivery generally follow the LCP organization
(the LCP-correlation is generally�0.7), whereas the networks that do not follow the LCP organization (LCP-
correlation�0.3) present strong-links, they are not clustered and they are suitable for storage ormere delivery
of energy or information. It is very rare tofind networks that have a LCP-correlation between 0.3 and 0.7. For
this reasonwe expect tofind that all the nPSOnetworks are organized according to the LCP, however the level of
LCP-correlationmight change between 0.7 and 1. Indeed, as expected, the LCP-correlation obtains high values
over all the parameter combinations of the network. Since connection probabilities depend on geometrical
distances, for a given link of the network it is likely that the adjacent nodes are close in the hyperbolic space,
therefore it is likely that their commonneighbours (if any) are close, and as a consequence it is also likely that
these commonneighbours have connections among them that increase with the number of common
neighbours. Explained in a simpler form: the smaller the hyperbolic distance between two linked nodes, the
more common neighbours exist between them (since the geometrical space that separates the two linked points
is smaller, the two linked points sharemore adjacent nodes, which are in fact common neighbours), as a
consequence the smaller geometrical spacewill generate alsomore connections between these common
neighbours. Thismechanismobviously is corrupted for increasing temperature, since the connection
probabilities have aweaker dependency on the geometrical distances, and therefore the LCP-correlation
decreases for high temperatures. In particular, this temperature-dependent LCP-correlation decrease is
remarkable for lowerm and higherN, since there are less links to establish andmore possible connection targets,
which reduces the probability to create both commonneighbours and local community links (links between the
commonneighbours). The type of angular coordinate distribution (nPSO1, nPSO2 or nPSO3) and the number
of communities (C) lead only tominor variabilities forT>0.

Figure 10 reports the structural consistency, which quantifies the link predictability of the network,
characterizing the inherent difficulty to predict themissing or non-observed links regardless of the specific
algorithmused for the prediction [32]. The structural consistency strongly decreases for increasing temperature,
in particular fromT=0 toT>0. In fact, atT=0 the links are regularly establishedwith the closest target
nodes, whichmakes the structure highly consistent and easier to predict. Furthermore, creating a higher number
of connections according to this regular pattern (T= 0 and higherm) strengthens evenmore the consistency of
the structure. The link predictability becomes lower for increasing network size, since there are potentiallymore
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missing or non-observed links to predict. The type of angular coordinate distribution (nPSO1, nPSO2or
nPSO3) and the number of communities (C) lead only tominor variabilities.

Supplementary figure 9 shows the exponent γ of the power-law degree distribution, fitted using the
procedure described byClauset et al [33], in order to test whether the value provided in input to the PSO and
nPSOmodels is indeed reproduced. The results highlight that all the fitted values are very close to the desired
exponent γ=3. The variabilitymight be either due to the difficulty of themodel to reproduce perfectly the
input value or due to some defects in thefitting procedure. The diverse community organization does not
introduce a remarkable bias in the degree distribution.

Supplementary figure 10 reports themodularity, indicating the extent towhich the network can be
partitioned in segregatedmodules that tend to interact densely within themselves but sparsely between each
other [17].We let notice that in nPSOnetworks themodularity is inversely related to the communitymixing,
since the lower the communitymixing themore the network can be partitioned in distinctmodules. Indeed, the
Pearson correlation between the communitymixing and themodularity over all the parameter combinations of
the nPSOmodel is−0.91. Themain patterns observed on nPSOnetworks for the communitymixing are
therefore valid, in an inverse way, also for themodularity. For PSOnetworks themodularity is generally lower,
with an exception for larger networks, lowm and low temperature, probably due to the fact thatmany small
modules naturally emerge since for low temperatures the clustering is very high. The type of angular coordinate
distribution (nPSO1, nPSO2 or nPSO3) lead only tominor variabilities, althoughwe let notice that such
variabilitiesmight be even due to the randomness in themodularity evaluation procedure.

Supplementary figure 11 shows themeasure of small-worldnessω, which indicates whether a network
exhibits a small-world organization, characterized by a clustering coefficient (CL) as high as in an equivalent
lattice network (CLlatt) and a characteristic path length (L) as low as in an equivalent randomnetwork (Lrand)
[13, 34]: .L

L

CL

CL
rand

latt
w = - Themeasureω is expected to be close to 0 in small-world networks (L Lrand» and

CL CLlatt» ), higher than 0 for randomnetworks (L Lrand» and CL CLlatt< ) and lower than 0 for lattice
networks (L Lrand> and CL CLlatt» ). The parameter combinations closest to small-world networks are at
N=100,m=[15, 20] andT=0. Indeed, these are the synthetic networks characterized by the highest
clustering coefficient and the lowest characteristic path length. Themeasureω increases for increasing
temperature, since the clustering coefficient strongly decreases and the characteristic path length slightly
decreases, with a transition from structural properties of a regular network to the ones of a randomnetwork. At
T=0, themeasureω increases for increasingm, since the clustering coefficient is constantly high and the
characteristic path length decreases. This is not always valid atT>0, where sometimes the increase in clustering
balances the decrease of the characteristic path length. The type of angular coordinate distribution (nPSO1,
nPSO2 or nPSO3) and the number of communities (C) lead only tominor variabilities.

Supplementary figure 12 reports the p-value of the statistical test for rich-clubness, which indicates whether
the network presents a significant rich-club organizationwith respect to theCannistraci–Muscoloni nullmodel
[35]. It clearly emerges that for almost all the parameter combinations the synthetic networks are significantly
(p-value�0.05) characterized by rich-clubness. This is indeed in agreementwith the network growing
procedure explained by the PSO andnPSOmodels. In fact, the high degree nodes are the first ones to be born in
the network and they connect tom of the nodes already present [5], therefore every network has at least a fully
connected subgraph composed by them+1 oldest high degree nodes. The only p-values that are not significant
are borderline and detected for small (N=100) and sparse (m=5)networks, since there are less nodes and
links to build the rich-club, and only at higher temperature, where the connection probabilities have aweaker
dependency fromgeometrical distances and therefore the rich and popular nodes decrease their attractiveness
for new connections. The type of angular coordinate distribution (nPSO1, nPSO2 or nPSO3) and the number of
communities (C) lead only tominor variabilities among the borderline cases.

All these topologicalmeasures have been evaluated using theMATLAB code released at: https://github.
com/biomedical-cybernetics/topological_measures_wide_analysis [36].

Conclusion

Recent studies presented the hyperbolic disk as an adequate space to describe the latent geometry of real complex
networks and the PSOmodel was introduced to generate randomgeometric graphs in the hyperbolic space,
reproducing strong clustering and a scale-free degree distribution [5]. Coupling the hyperbolic spacewith the
preferential attachment of nodes to this space, theGPAmodel confers to the networks also a community
structure, introducing the idea that different angular regions of the hyperbolic disk can have a variable level of
attractiveness [19]. However, theGPAmodel does not allow to indicate in input a desired number of
communities, neither to control their size and themixing between them,which is a clear limitation for real
applications. For this reason, we here introduced the nPSOmodel, which allows one to explicitly fix the number
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of communities and their size bymeans of a tailored probability distribution on the angular coordinates, and to
tune themixing property through the network temperature.

We performed extensive tests on the detectability of the nPSO communities, considering alsomore
complicated settingswith asymmetric angular coordinate distributions over the angular space.We highlighted
that, formost of the parameter combinations representing realistic scenarios, the community organization can
be spotted by the state-of-the-art algorithmLouvain. Themain factor that reduces the detectability is the ratio
between the number of communities and the network size, in particular community detection in nPSO
networks reduces significantly for small size networks that presentmany communities. These results suggest
that realistic community structure is properly reproduced by themodel and the nPSOmight be employed in
future studies as a benchmark for testing community detection algorithms. On this regard, we propose a second
study that discusses how to leverage the nPSOmodel to test and compare the performance of different
algorithms for community detection and also link prediction [26].

We evaluated and compared several topologicalmeasures of the synthetic networks generated using the PSO
and nPSOmodels, and from this wide investigation two important results emerge. First, the parameters of the
model allow to reproduce a great variety of the structural properties observed in real-world complex networks,
and the heatmaps provided in this study can be used as a reference for the choice of parameters while generating
networkswith desired characteristics. Second, the diverse community organization has only aminor impact for
most of themain topologicalmeasures. This suggests, for example, that the temperature of a real network can be
inferred from the clustering coefficient regardless of the community structure.

From the algorithmic point of view, since the original procedure to establish links adopted by the PSO and
GPAmodels is computationally expensive for generating networkswith communities and high clustering, we
proposed other two different variants.We demonstrated that the three implementations generate equivalent
topologies and the fastest of them (implementation 3) significantly reduces the computational time, with a
complexity of O EN( ) independently from the communities and the clustering.

Although in this workwe present the nPSO as a generativemodel for realistic networks with non-
overlapping communities, its current implementationwould be able also to generate networks with overlapping
communities, for instance by increasing the standard deviations of the components in theGaussianmixture
distribution.However, a specific rule according towhich the nodes are assigned to one ormore communities
needs to be designed, depending both on the geometrical positions of the nodes (angular and radial coordinates)
and on themixture distribution parameters. This extension of the nPSOmodel will be investigated in future
studies.

To conclude, we propose the nPSOmodel as a valid framework able to efficiently generate realistic networks
with afixed number of communities according to a nonuniformnode-angular probability distribution. The
nPSOmight be adopted, among themany possibilities, as a nullmodel for the hyperbolic embedding of
networkswith community structure, or as a benchmark for testing community detection and link prediction
algorithms, as we illustrate and discuss in a second study dedicated to this topic [26].

Code availability

TheMATLAB code for generating synthetic networks using the nPSOmodel is publicly available at theGitHub
repository:

https://github.com/biomedical-cybernetics/nPSO_model
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MATLAB code has been used for all the simulations, carried out partly on aworkstation underWindows 8.1 Pro
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ZIH-Cluster Taurus of the TUDresden.
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