15 research outputs found

    Socially Assistive Robots for Older Adults and People with Autism: An Overview

    Get PDF
    Over one billion people in the world suffer from some form of disability. Nevertheless, according to the World Health Organization, people with disabilities are particularly vulnerable to deficiencies in services, such as health care, rehabilitation, support, and assistance. In this sense, recent technological developments can mitigate these deficiencies, offering less-expensive assistive systems to meet users’ needs. This paper reviews and summarizes the research efforts toward the development of these kinds of systems, focusing on two social groups: older adults and children with autism.This research was funded by the Spanish Government TIN2016-76515-R grant for the COMBAHO project, supported with Feder funds. It has also been supported by Spanish grants for PhD studies ACIF/2017/243 and FPU16/00887

    Assistive Robot with an AI-Based Application for the Reinforcement of Activities of Daily Living: Technical Validation with Users Affected by Neurodevelopmental Disorders

    Get PDF
    In this work, we propose the first study of a technical validation of an assistive robotic platform, which has been designed to assist people with neurodevelopmental disorders. The platform is called LOLA2 and it is equipped with an artificial intelligence-based application to reinforce the learning of daily life activities in people with neurodevelopmental problems. LOLA2 has been integrated with an ROS-based navigation system and a user interface for healthcare professionals and their patients to interact with it. Technically, we have been able to embed all these modules into an NVIDIA Jetson Xavier board, as well as an artificial intelligence agent for online action detection (OAD). This OAD approach provides a detailed report on the degree of performance of a set of daily life activities that are being learned or reinforced by users. All the human–robot interaction process to work with users with neurodevelopmental disorders has been designed by a multidisciplinary team. Among its main features are the ability to control the robot with a joystick, a graphical user interface application that shows video tutorials with the activities to reinforce or learn, and the ability to monitor the progress of the users as they complete tasks. The main objective of the assistive robotic platform LOLA2 is to provide a system that allows therapists to track how well the users understand and perform daily tasks. This paper focuses on the technical validation of the proposed platform and its application. To do so, we have carried out a set of tests with four users with neurodevelopmental problems and special physical conditions under the supervision of the corresponding therapeutic personnel. We present detailed results of all interventions with end users, analyzing the usability, effectiveness, and limitations of the proposed technology. During its initial technical validation with real users, LOLA2 was able to detect the actions of users with disabilities with high precision. It was able to distinguish four assigned daily actions with high accuracy, but some actions were more challenging due to the physical limitations of the users. Generally, the presence of the robot in the therapy sessions received excellent feedback from medical professionals as well as patients. Overall, this study demonstrates that our developed robot is capable of assisting and monitoring people with neurodevelopmental disorders in performing their daily living tasks.This research was funded by project AIRPLANE, with reference PID2019-104323RB-C31, of Spain’s Ministry of Science and Innovation

    Geoffrey: An Automated Schedule System on a Social Robot for the Intellectually Challenged

    Get PDF
    The accelerated growth of the percentage of elder people and persons with brain injury-related conditions and who are intellectually challenged are some of the main concerns of the developed countries. These persons often require special cares and even almost permanent overseers that help them to carry out diary tasks. With this issue in mind, we propose an automated schedule system which is deployed on a social robot. The robot keeps track of the tasks that the patient has to fulfill in a diary basis. When a task is triggered, the robot guides the patient through its completion. The system is also able to detect if the steps are being properly carried out or not, issuing alerts in that case. To do so, an ensemble of deep learning techniques is used. The schedule is customizable by the carers and authorized relatives. Our system could enhance the quality of life of the patients and improve their self-autonomy. The experimentation, which was supervised by the ADACEA foundation, validates the achievement of these goalsThe accelerated growth of the percentage of elder people and persons with brain injury-related conditions and who are intellectually challenged are some of the main concerns of the developed countries. These persons often require special cares and even almost permanent overseers that help them to carry out diary tasks. With this issue in mind, we propose an automated schedule system which is deployed on a social robot. The robot keeps track of the tasks that the patient has to fulfill in a diary basis. When a task is triggered, the robot guides the patient through its completion. The system is also able to detect if the steps are being properly carried out or not, issuing alerts in that case. To do so, an ensemble of deep learning techniques is used. The schedule is customizable by the carers and authorized relatives. Our system could enhance the quality of life of the patients and improve their self-autonomy. The experimentation, which was supervised by the ADACEA foundation, validates the achievement of these goal

    A Review on Usability and User Experience of Assistive Social Robots for Older Persons

    Get PDF
    In the advancement of human-robot interaction technology, assistive social robots have been recognized as one of potential technologies that can provide physical and cognitive supports in older persons care. However, a major challenge faced by the designers is to develop an assistive social robot with prodigious usability and user experience for older persons who were known to have physical and cognitive limitations. A considerable number of published literatures was reporting on the technological design process of assistive social robots. However, only a small amount of attention has been paid to review the usability and user experience of the robots. The objective of this paper is to provide an overview of established researches in the literatures concerning usability and user experience issues faced by the older persons when interacting with assistive social robots. The authors searched relevant articles from the academic databases such as Google Scholar, Scopus and Web of Science as well as Google search for the publication period 2000 to 2021. Several search keywords were typed such as ‘older persons’ ‘elderly’, ‘senior citizens’, ‘assistive social robots’, ‘companion robots’, ‘personal robots’, ‘usability’ and ‘user experience’. This online search found a total of 215 articles which are related to assistive social robots in elderly care. Out of which, 54 articles identified as significant references, and they were examined thoroughly to prepare the main content of this paper. This paper reveals usability issues of 28 assistive social robots, and feedbacks of user experience based on 41 units of assistive social robots. Based on the research articles scrutinized, the authors concluded that the key elements in the design and development of assistive social robots to improve acceptance of older persons were determined by three factors: functionality, usability and users’ experience. Functionality refers to ability of robots to serve the older persons. Usability is ease of use of the robots. It is an indicator on how successful of interaction between the robots and the users. To improve usability, robot designers should consider the limitations of older persons such as vision, hearing, and cognition capabilities when interacting with the robots. User experience reflects to perceptions, preferences and behaviors of users that occur before, during and after use the robots. Combination of superior functionality and usability lead to a good user experience in using the robots which in the end achieves satisfaction of older persons

    A Review on Usability and User Experience of Assistive Social Robots for Older Persons

    Get PDF
    In the advancement of human-robot interaction technology, assistive social robots have been recognized as one of potential technologies that can provide physical and cognitive supports in older persons care. However, a major challenge faced by the designers is to develop an assistive social robot with prodigious usability and user experience for older persons who were known to have physical and cognitive limitations. A considerable number of published literatures was reporting on the technological design process of assistive social robots. However, only a small amount of attention has been paid to review the usability and user experience of the robots. The objective of this paper is to provide an overview of established researches in the literatures concerning usability and user experience issues faced by the older persons when interacting with assistive social robots. The authors searched relevant articles from the academic databases such as Google Scholar, Scopus and Web of Science as well as Google search for the publication period 2000 to 2021. Several search keywords were typed such as ‘older persons’ ‘elderly’, ‘senior citizens’, ‘assistive social robots’, ‘companion robots’, ‘personal robots’, ‘usability’ and ‘user experience’. This online search found a total of 215 articles which are related to assistive social robots in elderly care. Out of which, 54 articles identified as significant references, and they were examined thoroughly to prepare the main content of this paper. This paper reveals usability issues of 28 assistive social robots, and feedbacks of user experience based on 41 units of assistive social robots. Based on the research articles scrutinized, the authors concluded that the key elements in the design and development of assistive social robots to improve acceptance of older persons were determined by three factors: functionality, usability and users’ experience. Functionality refers to ability of robots to serve the older persons. Usability is ease of use of the robots. It is an indicator on how successful of interaction between the robots and the users. To improve usability, robot designers should consider the limitations of older persons such as vision, hearing, and cognition capabilities when interacting with the robots. User experience reflects to perceptions, preferences and behaviors of users that occur before, during and after use the robots. Combination of superior functionality and usability lead to a good user experience in using the robots which in the end achieves satisfaction of older persons

    PHAROS - PHysical Assistant RObot System

    Get PDF
    The great demographic change leading to an ageing society demands technological solutions to satisfy the increasing varied elderly needs. This paper presents PHAROS, an interactive robot system that recommends and monitors physical exercises designed for the elderly. The aim of PHAROS is to be a friendly elderly companion that periodically suggests personalised physical activities, promoting healthy living and active ageing. Here, it is presented the PHAROS architecture, components and experimental results. The architecture has three main strands: a Pepper robot, that interacts with the users and records their exercises performance; the Human Exercise Recognition, that uses the Pepper recorded information to classify the exercise performed using Deep Leaning methods; and the Recommender, a smart-decision maker that schedules periodically personalised physical exercises in the users’ agenda. The experimental results show a high accuracy in terms of detecting and classifying the physical exercises (97.35%) done by 7 persons. Furthermore, we have implemented a novel procedure of rating exercises on the recommendation algorithm. It closely follows the users’ health status (poor performance may reveal health problems) and adapts the suggestions to it. The history may be used to access the physical condition of the user, revealing underlying problems that may be impossible to see otherwise.This work was partly supported by the FCT - Fundação para a Ciência e Tecnología through the Post-Doc scholarship SFRH/BPD/102696/2014 and by the Spanish Government TIN2016-76515-R and TIN2015-65515-C4-1-R Grants supported with Feder funds.info:eu-repo/semantics/publishedVersio

    Artificial Vision Algorithms for Socially Assistive Robot Applications: A Review of the Literature

    Get PDF
    Today, computer vision algorithms are very important for different fields and applications, such as closed-circuit television security, health status monitoring, and recognizing a specific person or object and robotics. Regarding this topic, the present paper deals with a recent review of the literature on computer vision algorithms (recognition and tracking of faces, bodies, and objects) oriented towards socially assistive robot applications. The performance, frames per second (FPS) processing speed, and hardware implemented to run the algorithms are highlighted by comparing the available solutions. Moreover, this paper provides general information for researchers interested in knowing which vision algorithms are available, enabling them to select the one that is most suitable to include in their robotic system applicationsBeca Conacyt Doctorado No de CVU: 64683
    corecore