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Abstract: Over one billion people in the world suffer from some form of disability. Nevertheless,
according to the World Health Organization, people with disabilities are particularly vulnerable to
deficiencies in services, such as health care, rehabilitation, support, and assistance. In this sense,
recent technological developments can mitigate these deficiencies, offering less-expensive assistive
systems to meet users’ needs. This paper reviews and summarizes the research efforts toward the
development of these kinds of systems, focusing on two social groups: older adults and children
with autism.
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1. Introduction

According to the World Health Organization (WHO) [1], one in seven people experience disability
to some extent. However, only half can afford the required healthcare services [1]. This is especially
critical when a person’s quality of life diminishes and their independence is reduced. In this context,
technological advances can play an important role, since they may enable people with disabilities to
receive the healthcare necessary to lead a fulfilling life and be independent [2].

A review of the literature reveals the enormous variety of assistive technology currently available.
Given the wide ranges of types and levels of deficiency, assistive technology can be classified depending
on its complexity. Three concentric spheres of assistive technology can be defined with the user at
their center. These are (from the inside to the outside): embodied assistive technology, assistive
environments, and assistive robots.

Embodied assistive technology includes mobility devices [3,4] (e.g., wheelchairs, prostheses,
exoskeletons, or artificial limbs); specialized aids (e.g., hearing [5], vision [6–8], cognition [9], or
communication [10]); and specific hardware, software, and peripherals that assist people with
disabilities with accessing information technologies (e.g., computers and mobile devices). Although
these systems provide valued help, they usually offer just one functionality and lack much intelligence
(intelligence being understood as the ability to receive feedback from the environment and adapt
their behavior).

Going a step further, the environment can be adapted to the user’s needs, with sensors and
actuators, such as cameras or domotic systems, such that more functionalities are covered and
more information about the user’s health status can be gathered and processed, providing this
technology with intelligence. Along those lines, we can find smart homes [11], virtual assistants [12–14]
and ambient assisted living (AAL) settings [15–17]. Nevertheless, this kind of technology fails to
support independent life when the user has chronic or degenerative limitations in motor and/or
cognitive abilities.
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As a solution, assistive robotics (AR) emerged. Its main goal is to fruitfully promote the
well-being and independence of persons with disabilities. Robots may assist people in a wide range
of tasks at home (especially in terms of activities for daily living), and so ongoing research includes
household robots [18–20] and rehabilitation robots [21,22], among others. In the case of assistive robots,
interdisciplinarity is required to achieve the final goal, integrating research areas such as artificial
intelligence, human-robot interaction, and machine learning techniques, among others.

Thus, motivated by the current societal needs of the particular risk groups (i.e., children and
older adults), this paper reviews and summarizes the promising and challenging research on assistive
robotics aimed at helping older persons and children with autism to perform their daily tasks.

2. Socially Assistive Robots

One of the main difficulties in the acceptance of assistive technology is the way in which this
technology is perceived. In this sense, the interaction between the robot and the user is a key issue.
This social interaction led to the development of socially assistive robotics (SAR). According to
Feil-Seifer and Mataric [23], SAR can be defined as the intersection of AR and socially interactive
robotics (SIR), whose main task is interaction with human individuals.

Ideally, SAR should operate autonomously and not require the manipulation of a human operator.
The interaction with the user must be intuitive and must not require extensive training. Additionally,
the robots have to adapt their behaviors to the new routines and needs of the users, which is currently
the most challenging task to be solved [24]. To meet this demand, artificial intelligence and machine
learning algorithms must be developed and deployed in these systems, since the robots cannot be
programmed in advance to react to every possible circumstance that might occur during interactions
with the users.

As mentioned above, there exists a wide variety of applications depending on the needs to be
covered and the demands of the target social group. Given that the SAR focuses on improving the
user’s life conditions, this study reviews the advances in two of the most vulnerable social groups:

• Older adults;
• People with cognitive disorders.

Section 3 reviews the latest advances in age-related health issues, while Section 4 analyzes the
most significant research on children with autism in terms of diagnosis and therapy to train their
communicative and social skills.

3. Older Adult Care

The aging population is one of today’s major health concerns. This unprecedented situation
urgently requires technological solutions to confront the constantly increasing demands of care services,
which are currently overwhelmed. In this regard, the WHO identifies two key concepts in its Global
strategy and plan of action on aging and health [25]:

• Healthy aging, understood as the process of developing and maintaining functional ability for
older people’s well-being;

• Functional ability, where technology is used to perform functions that might otherwise be difficult
or impossible.

Healthy aging has become popular topic in recent decades. In this regard, SAR develops systems
to improve older people’s health through physical activity, which has a positive cognitive impact [26].
Some research attempts have consisted of companion robots that help users with assisted therapy and
activity (see [27] for an overview). However, work is needed to promote for their acceptance among
older people, as pointed out in [28], especially in terms of social interactions.

In addition, SAR for promoting physical exercise has been developed. This is, for instance, the
case of the robotic coach proposed by Görer et al. [29]. It is essentially a technique based on a learning
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by imitation approach, which is used to learn the exercises from a human demonstrator. Then, the
reference joint angles are used to evaluate the user’s movements and to provide them with the necessary
feedback to improve their performance. Note that two different platforms are used to achieve this
goal. A NAO robot is used to describe the physical exercises, while an RGB-D camera captures the
movements of the person. This can be problematic, since the correct position of the RBG-D device is
essential to properly evaluate the user’s performance. In addition, no sitting exercises are used because
the skeleton data are insufficient to obtain the required results. Finally, the robot may confuse the user,
given that it emulates the exercise as a demonstration and performs certain movements that are not to
be carried out, such as head motions.

Another proposal is PHAROS [30,31], a socially assistive robot that monitors and evaluates the
daily physical exercise done at the user’s home (see Figure 1). For this, machine learning techniques
(i.e., a convolutional neural network (CNN) together with a recurrent neural network (RNN)) are used
to properly identify and evaluate the exercise performance. In addition, it integrates a recommender
that generates the workout every day such that the person is working on what is necessary to stay
healthy.

Figure 1. PHAROS robot in a pilot study at a residence of the elderly, Doña Rosa (Alicante).

Assisting functional ability requires more complex systems. In this sense, systems have been
evolving over time, integrating an increasing number of functionalities. This is the case of the
HOBBIT [32], a robot to help older people feel safe and continue to live in their own home. With this
aim, the robot, illustrated in Figure 2, is able to autonomously navigate around the user’s apartment,
going anywhere they request, being able to pick up objects from the ground, bring a specific object,
learn new objects to be found in the future, call in case of emergency, provide games for entertainment,
and also remind the user to take their medication.

Analogously, the EU project RAMCIP [33] has developed a robotic assistant for older adults and
those suffering from mild cognitive impairments (MCI) and dementia (see Figure 3). This robotic
assistant also integrates several functionalities that promote physical and cognitive activity, such as
detecting a fall (in which case a relative or external caregiver is informed), checking the cooker has been
turned off after preparing a meal or the lights have been turned on when walking at night, picking up
improperly left or fallen objects from the ground and moving them to safe storage, reminding users
about their mediation, bringing the corresponding medicine and monitoring its taking, and facilitating
social interactions with family and friends.
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Figure 2. Hobbit robot in a pilot study at the Doña Rosa senior care home.

Figure 3. RAMCIP robot in a pilot study at a user’s home.

Other solutions consider the possibility of integrating a robot platform into a smart home
environment such that its functionalities may be augmented. An example is the robot activity support
system (RAS) created by Washington State University [34] for adults with memory problems and other
impairments to help them to live independently. Thus, the smart home has sensors in the walls to
track the user’s movement and feeds their data into the robot’s neural network. This allows the robot
to integrate activity detection technology to provide assistance when required. However, it is still at
an early stage of development, and can only provide video instructions on how to do simple tasks,
such as assisting a person through the steps of taking a dog for a walk or guiding them to an object. In
addition, the need to install additional technology at home makes this option difficult and costly to
implement.

Alternatively, other developments aim to assist people in nursing homes and healthcare facilities.
In these kinds of systems, the key issue is the social component, with the aim being for the older adult
user to perceive the robotic platform as a social companion rather than a machine to perform predefined
tasks. This is the main focus of Rudy [35], an assistive robot created by INF Robotics in 2017. This robot
offers telemedicine capabilities, such as remote patient monitoring (RPM), medication reminders, and
medication dispensing (shown in Figure 4). In addition, it integrates a social component that, together
with its friendly appearance, engages users. In fact, the social interactions are the most appreciated
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functionality of this system, since loneliness is a major issue among the aging. Nevertheless, it costs
$5000, which is a significant amount which is not within all budgets.

Figure 4. Rudy in a pilot study.

Along similar lines, Trinity College Dublin developed Stevie in 2017, which they improved in 2019
as Stevie II (Figure 5). The aim of this socially assistive IA robot was to augment the role of caregivers
in long-term care environments, allowing them to concentrate mainly on person-centered tasks. Its
functionalities range from medication reminders to keeping residents cognitively stimulated with
quizzes and games. For this, enhanced expressive capabilities and a well-defined social component
are used.

Figure 5. Stevie II in a pilot study.

4. Training Communication and Social Interaction in Children with Autism

In recent years, the use of SAR has become popular for the treatment and diagnosis of
autism [36]. Indeed, the research in this field has presented an increase in user therapy acceptance and
improvements in their social skills [37].

Applied behavior analysis (ABA) is one of the most extended therapies for the treatment of autism.
It consists of improving specific behaviors, which are divided into simple and repetitive tasks that are
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presented sequentially and strategically while measuring and analyzing the patient’s performance
during the therapy [38].

The automation of some aspects of the therapy using technology with different devices and tools
has been widely studied (videos, virtual and augmented reality, and robotics [39]). ABA therapies
combined with SARs have exhibited substantial advantages and demonstrated their effectiveness in
obtaining positive results in patients, such as high enthusiasm, increased attention, and increased
social activity [40].

These results may be explained by the fact that children with autism feel more comfortable
interacting with robots, because their behavior and reactions are more predictable [41]. Furthermore,
the social skills of the patients could be gradually improved by increasing the complexity and
unpredictability of the robot’s behavior, making it more similar to actual human behavior [42].

These robotics systems can be used to manage therapy sessions, collect data and analyze the
interactions with the patient, and generate information from this data in the form of reports and
graphs. For this reason, they are a powerful tool for the therapist to check patient’s progress and
facilitate diagnosis.

The visual appeal of the robotics platform is a key factor to engaging the attention of children
with autism. In general, these robots tend to use bright colors, rotating mechanical parts, striking
shapes, and lights [43]. Additionally, some studies have reported that children with autism prefer to
interact with robots with less humanoid characteristics [44]. However, some anthropomorphic robots
have been succesfully used in research, especially in imitation and emotion recognition activities.
Tables 1 and 2 present different SAR robots used in experiments. Following [45], there are several
robot types depending on their location on the humanoid spectrum:

1. Android. They look like humans.
2. Mascot. They have humanoid forms but abstract or cartoonish appearances.
3. Mechanical. Humanoid forms with visibly mechanical parts.
4. Animal. Meant to look like pets.
5. Non-Humanoid. No resemblance to any living being.
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Table 1. Robots used in autism therapies.

Robot Appearance Type Description Publications

Zeno R-50 Android

Child-sized robot (height=0.64 m and
weight=6.5 kg) with a simplified expressive

face. Its face has a motor that can be
animated using software.

[46–48]

Nao Android

Humanoid (height=0.57 m and weight=5
kg). Appearance of a human toddler. 11

DOF for its lower limbs and 14 DOF for its
upper body.

[49–58]

Pepper Android

Humanoid (height=1.21 m and width=0.48
m). It has almost the same articulations
than a human, except for its mobile base
and the impossibility of moving every

finger independently. It has 4 microphones,
two loudspeakers, two RGB cameras and a

depth sensor (Asus Xtion). It has tactile
sensors in the head and the back of its

hands. It has a speech recognition engine
that is able of identifying multiple

variations in the human voice.

[59–62]

KASPAR Android

Child-sized humanoid robot with minimal
expressions. Can create body movements
and gestures using its hands, arms, torso,

head and show facial expressions.

[63–69]

Keepon Animal
Small creature-like robot (height=12 cm).

Simple, like a yellow snowman, and made
of soft materials (silicone rubber).

[70–72]

Popchilla Animal

Chinchilla-looking robot with movable
arms, ears, mouth and eyes (teleoperated)

with programmable speech output
(Interbots). Provided with a iPad app.

[73]

PABI Animal

Penguin-like small robot. 8 DOF in eyes,
head, wings and opening beak. It carries a

single board computer for autonomous
operation and wireless communication for
teleoperation. Speaker mounted behind its

beak for communication. 2 independent
video cameras in its eyes for tracking and

monitoring. It carries a tablet as an
interface with the onboard computer.

[74–76]

Pleo Animal

Dinosaur-like robot. Developed to learn
and repeat dances. 14 DOF, with movable

legs, torso, neck, eyes, tail and mouth.
Touch sensors in its whole body. Camera in

its nose for object tracking and
microphones. Capability to show emotions

by making noises.

[77–80]

Robota Android

Small robot (height=45 cm and width=14
cm) with the form of a young girl. 1 DOF of

movement in its limbs (up and down),
head rotation, 1 DOF for every arm,
coordinated motion of the two eyes,

individual blinking of the eyes and touch
sensibility. Capabilities for vision tracking

and machine learning.

[81–85]
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Table 2. Robots used in autism therapies.

Robot Appearance Type Description Publications

i-Sobot Android

Biped robot (height=16.5 cm and weight=
350 g). 17 pieces of micro servo motors for
walking and 180 different actions. 180 voice
and sound commands. Remote controller

or spoken commands.

[86–88]

Tito Mascot

Robot (height=17 cm) Coloured red, yellow
and blue with washable clothes made of

soft material. Wheels to move but with fake
feet and legs to emulate human shape.

Movable arms and head, lighting mouth for
smiling. Wireless microphone-camera

device inside one eye for tracking. Touch
sensibility. Autonomous and teleoperated

modes.

[89]

GIPY-1 Mechanical

Cylindrical mobile robot (diameter= 20 cm
and height=30 cm). Its face is the cladding
of the robot: round eyes and nose triangle,
with elliptical mouth. Can move forward,

backward and turn on its own axis.
Wireless controlled by a joystick.

[90,91]

HOAP-3 Android

Humanoid robot (height=60cm and
weight= 8.8 kg), commercialized by Fujitsu.

28 DOF for head, arms, legs and body
movement. Inbuilt camera in its eyes for

tracking and recognition. Microphones and
speaker for audio recognition and speech.

Expression LEDs to show emotions.
Autonomous operation and teleoperated

through WIFI.

[92]

Labo-1 Non-humanoid

Robotic mobile platform with form of a
flat-topped buggy. 8 infrared sensors
pointing in 4 directions for obstacle

avoidance and a singLe positional heat
sensor. Autonomous operation with an
onboard computer and two buttons for

behavior selection.

[93]

Ifbot Mascot

Humanoid robot (height= 45 cm). 2 moving
arms with 1 DOF and two wheels to move.

10 motors for facial expressions: eyes,
eyelids and neck. 104 LEDS in its head and

mouth to show emotions along with the
facial expression.

[94]

Cosmobot Mascot

Movable head, arm and mouth. Wheels to
drive the robot in 4 directions. Pressure

sensors and a built-in microphone for the
interaction with the children. Expandable

play station (Mission Control) for
interaction, with external ports for joystick,

wearable head and arm sensors.
Teleoperated and controllable from a

desktop computer software.

[95,96]

Ryan
Companionbot Android

Rear-projected humanoid. It shows 3D
avatar models with speech and facial

expressions. The animated face is projected
into a face-shaped translucent mask. The

3D models are compatible with Maya
design software.

[97–99]
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Since the therapist’s availability is limited, SARs must be developed with a certain level of
autonomy in order to carry out the treatments. This autonomy is directly correlated with a SAR’s
level of intelligence in adapting to the environment and the patient’s responses. This is where
machine learning comes in, providing solutions to the problems these systems must address, such as
eye-tracking, and face or automatic speech recognition.

Eye-tracking is the process of measuring the point of fixation of the gaze or the movement of an eye
with respect to the head. It is used to measure a patient’s attention to the robot. There exist commercial
solutions for this purpose, but they are high cost or depend on special and invasive hardware (Tobii
EyeX). However, there are many works focused on inferring the gazes of the users from images of
their faces. Traditional techniques usually rely on shape-based methods, such as [100,101], observing
geometries such as pupil centers and iris edges; and in appearance-based methods, such as [102,103],
they directly use the images of the eyes for the prediction, with handmade features along with neural
networks. In recent years, the focus has been on deep learning techniques to accomplish this task
using standard and inexpensive camera devices. This is the case of [104], which uses a convolutional
neural network to predict the gaze of the user from a color image of their face, previously trained with
a large-scale dataset of faces and correlated gazes. More recent works such as [105] predict emotions
and the patient’s mood states from eye tracking data using recurrent neural networks.

The study of the patient’s gaze is a crucial technique that helps with the diagnosis of autism and
measures the effectiveness of the interaction between the robot and the user. In [106], the researchers
carried out a study comparing the gaze attention of patients with autism when they interacted with
humans and with robots . Similar to the previous example, in [107] the authors compare the gaze
attention of people with autism while maintaining conversations with a human and a realistic android,
which could serve as a diagnostic tool. In [84,85] the authors report the effects of repeated exposure to
the humanoid robot Robota, which includes an increase in gaze attention and imitation.

Most of the experiments with these robots do not specify the kind of eye-tracking technique
they use, or even whether they use external hardware, but recent works in this topic show that deep
learning techniques outperform traditional ones without the need for invasive tools, so developments
may move in this direction in order to ensure the best experience for users.

Face recognition has been one of the most widely studied research topics in computer vision since
the beginnings of computer science, as it provides the recognition of subjects in a non-intrusive manner.
The first step involves the detection and delimitation of the region of the image containing the face.
Traditionally, detection has been conducted by searching for handcrafted features, like in [108], which
uses cascade classifiers with different resolutions, trained with the Adaboost technique, based on
Haar-like features. Subsequently, a vector of characteristics is extracted to describe the face, using
global techniques like Eigenfaces [109] or Fisherfaces [110] based on Principal Component Analysis, or
using local descriptors, like Local Binary Pattern Histograms [111], which codify the local structure of
the image by comparing every pixel with its neighbourhood. However, traditional methods suffer
when the conditions of the face are not ideal: recognition rates decrease with variations of the pose of
the face and changes in the lighting conditions. Recent works have adopted end-to-end architectures
based on deep learning that greatly outperform the traditional methods. Studies such as [112–115] use
variations of convolutional neural network architectures trained with large-scale face datasets, obtained
without pose restrictions, with good results on tests. Along with face recognition, recent studies like
[116,117], classify the user’s emotions by means of variants of convolutional neural networks, with
promising results.

These characteristics are important for socially assistive robots in order to identify the patient
and their mood and keep track of the history of the interaction. In [59], the researchers used face
and emotion recognition to make a Pepper robot adapt a story to the mood of the children. In [118],
the authors propose a technique for face recognition using a humanoid robot NAO to track the faces
of the children with autism and measure their concentration during social interaction. In [61], the
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authors propose several activities through the interaction with a Pepper robot, receiving feedback by
measuring the users’ smiles.

Finally, automatic speech recognition is considered the most important bridge to enable
human-machine communication. However, the technical difficulties of speech processing led to
the keyboard and mouse becoming the most accurate interfaces for this purpose. Traditional methods
in speech processing used statistical models, such as hidden Markov models [119,120], to process the
wave signal and recognize the words pronounced and understand the sentences. However, these
methods were very limited in vocabulary and the complexity of the sentences that human users could
use and the recognition rates were far from perfect. Today, with the advent of GPUs, as in the previous
sections, deep learning techniques are becoming the focus for researchers. End-to-end architectures,
such as that proposed in [121–123], mainly based on a combination of convolutional neural networks,
for extraction of features, and recurrent neural networks, for temporal information analysis, are taking
the lead and obtaining interesting results.

In the case of social robotics, speech recognition is an important feature, as we need an intuitive,
organic, and more natural method of communication than the old-fashioned peripherals. In [58], the
researchers propose the use of the Nao robot to maintain conversations with children with autism
and automatically extract crucial information on their interests to recommend them picture books.
In [57], the authors propose a conversational therapy using a Nao robot that encourages the child to
talk about their experiences and help them to recognize objects and imitate facial expressions. As a
different approach, in [62], the authors use a Pepper robot to teach people with typical development to
communicate with people with autism spectrum disorder.

All of these studies show that not only can patients with autism benefit from the advent of the
SAR and artificial intelligence techniques, but therapists and family members also have more tools to
help them with therapy and day-to-day living.

5. Conclusions

Socioeconomic changes and the lack of healthcare professionals to cover the unceasing demand of
services and care have led to the need for technological solutions to mitigate this situation. In addition
to intelligently interacting with the environment, the techniques developed must be successfully
adopted by users. In this sense, neuroscientific evidence shows that users, especially children, tend to
engage with robots better than traditional screens and their design must make the user feel comfortable
and increase their well-being. As a consequence, the scientific response to these issues is assistive
robotics, and more precisely, socially assistive robotics, which integrates a human-robot interaction in
a social way.

This paper presents an overview of the state-of-the-art SAR solutions for helping and assisting
older adults in their daily activities, such as activity scheduling and rehabilitation; and for helping
children with autism spectrum disorders by means of diagnosis and social therapies. These solutions
benefit from new advances in artificial intelligence, as these increase the autonomy levels of assistance
robots, allowing them to adapt to unforeseen circumstances without the direct intervention of a human.
Thus, the advent of SAR along with AI can help users with their day-to-day living, promoting their
daily functioning, well-being, and independence.

Despite the active development in (social) assistive technology, there is still work to be done.
Indeed, the current solutions do not provide ideal solutions to all needs of people with disabilities, but
the results are highly promising.
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