7,904 research outputs found

    Unattended network operations technology assessment study. Technical support for defining advanced satellite systems concepts

    Get PDF
    The results are summarized of an unattended network operations technology assessment study for the Space Exploration Initiative (SEI). The scope of the work included: (1) identified possible enhancements due to the proposed Mars communications network; (2) identified network operations on Mars; (3) performed a technology assessment of possible supporting technologies based on current and future approaches to network operations; and (4) developed a plan for the testing and development of these technologies. The most important results obtained are as follows: (1) addition of a third Mars Relay Satellite (MRS) and MRS cross link capabilities will enhance the network's fault tolerance capabilities through improved connectivity; (2) network functions can be divided into the six basic ISO network functional groups; (3) distributed artificial intelligence technologies will augment more traditional network management technologies to form the technological infrastructure of a virtually unattended network; and (4) a great effort is required to bring the current network technology levels for manned space communications up to the level needed for an automated fault tolerance Mars communications network

    Supporting a Multi-formalism Model Driven Development Process with Model Transformation, a TOPCASED implementation

    Get PDF
    International audienceThe ASSERT (Automated proof based System and Software Engineering for Real-Time Applications) European Integrated Project (IST-FP6-004033, http://www.assert-project.net/) defined and experimented a multi formalism Model Driven Engineering (MDE) process, enforcing an approach with separated specification and refinement of functional and non-functional properties.• Functional specification, design and development is based on UML profiles to support AADL concepts [2] and behavioural specification.• Real time Architecture properties are based on extensions targeting Ravenscar Computing execution Model (RCM see [6]) constraints upon component interface and ports.• Model transformation is supporting correctness preserving rules towards a Virtual Machine execution environment or a verification dedicated environment.A tool chain called IDEA (Integrated Development Environment for ASSERT) supporting the process was developed by the CS ASSERT team on top of the Eclipse/TOPCASED environment allowing:• Integrated use of several formalisms in a development life-cycle (UML, AADL, IF[4]) .• Model transformation from UML to IF, AADL to RCM and RCM to Ada• Automated code generationThe approach experimented allows combined use of best suited formalisms and features for MDE developments. The TOPCASED tool proved to be a unique integrated toolset for prototyping UML and meta models supporting tools.The main feedback gained from applying the notations and approach on small to medium case studies is that UML profiling is not scalable, and that use of several Domain Specific Languages (DSL) seems far more suitable. Semantic clashes can be limited by raising the abstraction level, and by partitioning properties for verification

    Evolution of Integration, Build, Test, and Release Engineering Into DevOps and to DevSecOps

    Get PDF
    Software engineering operations in large organizations are primarily comprised of integrating code from multiple branches, building, testing the build, and releasing it. Agile and related methodologies accelerated the software development activities. Realizing the importance of the development and operations teams working closely with each other, the set of practices that automated the engineering processes of software development evolved into DevOps, signifying the close collaboration of both development and operations teams. With the advent of cloud computing and the opening up of firewalls, the security aspects of software started moving into the applications leading to DevSecOps. This chapter traces the journey of the software engineering operations over the last two to three decades, highlighting the tools and techniques used in the process

    ERIGrid Holistic Test Description for Validating Cyber-Physical Energy Systems

    Get PDF
    Smart energy solutions aim to modify and optimise the operation of existing energy infrastructure. Such cyber-physical technology must be mature before deployment to the actual infrastructure, and competitive solutions will have to be compliant to standards still under development. Achieving this technology readiness and harmonisation requires reproducible experiments and appropriately realistic testing environments. Such testbeds for multi-domain cyber-physical experiments are complex in and of themselves. This work addresses a method for the scoping and design of experiments where both testbed and solution each require detailed expertise. This empirical work first revisited present test description approaches, developed a newdescription method for cyber-physical energy systems testing, and matured it by means of user involvement. The new Holistic Test Description (HTD) method facilitates the conception, deconstruction and reproduction of complex experimental designs in the domains of cyber-physical energy systems. This work develops the background and motivation, offers a guideline and examples to the proposed approach, and summarises experience from three years of its application.This work received funding in the European Community’s Horizon 2020 Program (H2020/2014–2020) under project “ERIGrid” (Grant Agreement No. 654113)

    From software architecture to analysis models and back: Model-driven refactoring aimed at availability improvement

    Get PDF
    Abstract Context With the ever-increasing evolution of software systems, their architecture is subject to frequent changes due to multiple reasons, such as new requirements. Appropriate architectural changes driven by non-functional requirements are particularly challenging to identify because they concern quantitative analyses that are usually carried out with specific languages and tools. A considerable number of approaches have been proposed in the last decades to derive non-functional analysis models from architectural ones. However, there is an evident lack of automation in the backward path that brings the analysis results back to the software architecture. Objective In this paper, we propose a model-driven approach to support designers in improving the availability of their software systems through refactoring actions. Method The proposed framework makes use of bidirectional model transformations to map UML models onto Generalized Stochastic Petri Nets (GSPN) analysis models and vice versa. In particular, after availability analysis, our approach enables the application of model refactoring, possibly based on well-known fault tolerance patterns, aimed at improving the availability of the architectural model. Results We validated the effectiveness of our approach on an Environmental Control System. Our results show that the approach can generate: (i) an analyzable availability model from a software architecture description, and (ii) valid software architecture models back from availability models. Finally, our results highlight that the application of fault tolerance patterns significantly improves the availability in each considered scenario. Conclusion The approach integrates bidirectional model transformation and fault tolerance techniques to support the availability-driven refactoring of architectural models. The results of our experiment showed the effectiveness of the approach in improving the software availability of the system

    D3.3 Business models report

    Get PDF
    RECIPROCITY aims to transform European cities into climate-resilient and connected, multimodal nodes for smart and clean mobility. The project's innovative four-stage replication approach is designed to showcase and disseminate best practices for sustainable urban development and mobility. As part of this project, the present business model report (D3.3) provides an overview of innovative urban mobility business models that could be tailored to cities in the RECIPROCITY replication ecosystem. The work developed was based upon the work carried-out in WP1-2-4, and aimed to collect and derive the business model patterns for urban mobility and propose a business model portfolio that encourage cross-sector collaboration and create an integrated mobility system. This report is therefore addressed to cities and local authorities that have to meet mobility challenges (i.e. high costs and low margin, broad set of partners, competing with private car) by providing new services to activate and accelerate a sustainable modal shift. It also targets other stakeholders interested in business model concepts applied to cities
    • …
    corecore