
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Faculty Research, Scholarly, and Creative Activity

2020

Evolution of Integration, Build, Test, and Release Engineering Into Evolution of Integration, Build, Test, and Release Engineering Into

DevOps and to DevSecOps DevOps and to DevSecOps

Vishnu Pendyala
San Jose State University, vishnu.pendyala@sjsu.edu

Follow this and additional works at: https://scholarworks.sjsu.edu/faculty_rsca

 Part of the Data Science Commons, OS and Networks Commons, and the Software Engineering

Commons

Recommended Citation Recommended Citation
Vishnu Pendyala. "Evolution of Integration, Build, Test, and Release Engineering Into DevOps and to
DevSecOps" Tools and Techniques for Software Development in Large Organizations: Emerging Research
and Opportunities (2020): 1-20. https://doi.org/10.4018/978-1-7998-1863-2.ch001

This Contribution to a Book is brought to you for free and open access by SJSU ScholarWorks. It has been
accepted for inclusion in Faculty Research, Scholarly, and Creative Activity by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/faculty_rsca
https://scholarworks.sjsu.edu/faculty_rsca?utm_source=scholarworks.sjsu.edu%2Ffaculty_rsca%2F569&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1429?utm_source=scholarworks.sjsu.edu%2Ffaculty_rsca%2F569&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=scholarworks.sjsu.edu%2Ffaculty_rsca%2F569&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=scholarworks.sjsu.edu%2Ffaculty_rsca%2F569&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=scholarworks.sjsu.edu%2Ffaculty_rsca%2F569&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.4018/978-1-7998-1863-2.ch001
mailto:scholarworks@sjsu.edu

Copyright © 2020, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1

1

DOI: 10.4018/978-1-7998-1863-2.ch001

ABSTRACT

Software engineering operations in large organizations are primarily comprised of
integrating code from multiple branches, building, testing the build, and releasing
it. Agile and related methodologies accelerated the software development activities.
Realizing the importance of the development and operations teams working closely
with each other, the set of practices that automated the engineering processes of
software development evolved into DevOps, signifying the close collaboration of
both development and operations teams. With the advent of cloud computing and
the opening up of firewalls, the security aspects of software started moving into the
applications leading to DevSecOps. This chapter traces the journey of the software
engineering operations over the last two to three decades, highlighting the tools
and techniques used in the process.

INTRODUCTION

Software Engineering teams have traditionally been responsible for branching
strategies, code merges, nightly and production builds, validation of the builds,
image generation and posting in addition to serving as consultants in Software
Engineering practices to the product development teams. These functions continue
to exist but have been transformed to adapt to the growing needs of the industry.

Evolution of Integration, Build,
Test, and Release Engineering
Into DevOps and to DevSecOps

Vishnu Pendyala
Cisco Systems Inc., USA

2

Evolution of Integration, Build, Test, and Release Engineering Into DevOps and to DevSecOps

Globalization has come to stay. Teams operate in different time zones, often providing
a seamless stream of development and operations activities round the clock. Software
Configuration Management (SCM) tools such as Clearcase used for version control
provided multi-site functionality to support code commits from all over the world –
an excellent application of the distributed computing paradigm (Van Der Hoek, et
al,1998). Software Engineering poses quite a few challenges when the code structure
is complex, and the product dependencies are significant. Present day requirements
of distributed teams and agile development add to these challenges.

Software Configuration Management (SCM) is key to effective product releases.
The SCM tool employed to maneuver the Software Engineering processes of an
organization should provide the necessary constructs to meet the requirements of
the various releases. Interdependencies of the code and the volume of the code
changes raise the complexity of the Software Engineering operations. With time,
needs multiplied, operations scaled drastically, causing new tools, architectures, and
patterns to be invented. From a handful of tools two decades ago, we now have a
plethora of tools to manage Software Engineering operations. XebiaLabs recently
came up with an entire periodic table of popular DevOps tools (Kaiser, 2018). The
integration, build and release engineering discipline that existed originally has far
transcended SCM related activities as its primary charter to a much broader DevSecOps
role. This chapter traces through the journey of the Software Engineering discipline
from the days of primarily performing builds, merges, releases, and tooling to the
present day DevSecOps.

RELATED WORK

The DevOps area has predominantly been a domain of the industry than that
of academia. Publishing articles is not as emphasized in the industry as it is in
academia. This is one of the reasons for working on this book, so that insights
into the tools, techniques, and processes employed in the industry, particularly,
the large organizations are captured in the literature. Nevertheless, there is quite
some literature already that captures the state-of-art in the DevOps and DevSecOps
areas. The literature uncovered several interesting aspects of DevOps. This section
captures a few of them. A framework for automated Round-Trip Engineering from
development to operations and operations to development (Jiménez et al, 2018) is
one of them. Round-Trip Engineering ensures that the Deployment and Configuration
specifications are automatically ensured to be consistent with the system, thereby
eliminating any technical debt on that count. This further confirms the need for tight
integration of development and operations and automating the coupling as much as
possible – one of the key points of this chapter.

3

Evolution of Integration, Build, Test, and Release Engineering Into DevOps and to DevSecOps

Another channel of tight coupling between the development team and operations
is through metrics. Metrics can provide an effective feedback mechanism in software
organizations, which can be a substantial challenge in large organizations due to
bureaucracy and cross-organizational environments (Cito et al., 2018). The authors
identify feedback categories and phases and point to the tools that can help with the
metrics generation. Culture plays an important role in DevOps (Sánchez-Gordón &
Colomo-Palacios, 2018). Empathy is a critical component of the DevOps culture.
Development teams and Operations teams must understand each other’s perspectives
and strive towards the overall productivity of engineers and the quality of the product.
The authors survey the literature and summarize the trends about the DevOps culture.
DevOps can be thought of like a Project Management methodology that fills in the
lacunae in Agile methodology (Banica, et al, 2017).

Intertwined with culture is the skillset that the DevOps discipline demands. In
the 26th European Conference on Information Systems, the authors (Wiedemann
& Wiesche, 2018) categorize the skills needed to work in the DevOps area. The
role of a Full-stack Engineer is gaining increasing relevance with the advent of
DevOps. Full-stack engineering is particularly relevant in the Cloud Computing
era (Li, Zhang, & Liu, 2017). Full-stack Engineers require broad skills covering
all or most aspects of the software industry. Such skills are particularly important
in fast-paced companies that produce several releases in a day. Describing such an
environment where companies like Facebook release hundreds or even thousands
of deployments into production daily, the authors (Savor et al, 2016) point out that
it is possible to scale the teams and codebase several times without impacting the
developer productivity.

Before the preceding work, excellent insights into the nature of software
development at Facebook were provided by the authors of a different article (Feitelson
et al, 2013). They point out that the differentiating characteristic of companies like
Facebook is that the software they develop need not be “shipped” to customers
as it runs on their servers. This enables rapid deployments of software updates in
production. A different kind of domain is where software that is shipped is embedded.
The complexity of embedded systems makes DevOps a formidable challenge in that
domain (Lwakatare et al, 2016). Using multiple case studies, the authors explain
why embedded systems are different when it comes to DevOps. The practice of
DevOps in general, was surveyed and recommendations were made based on the
survey (Erich et al, 2017). One such recommendation is to implement Continuous
Delivery to the point of being able to release software updates on-demand.

From a software architecture perspective, microservices facilitate rapid
deployability (Chen, 2018). Monolithic architectures, however modular they are
designed to be, cannot scale-up to the level of microservices architecture when it
comes to Continuous Deployment. Using microservices architecture, small teams

4

Evolution of Integration, Build, Test, and Release Engineering Into DevOps and to DevSecOps

can deploy their changes, without having to wait to merge changes from other teams.
Because of the limited functionality in a microservice, deploying the software
update is much faster as compared with monolithic architectures, which need to be
deployed a whole. Changing to microservices architecture and adopting DevOps
methodology requires substantial efforts. Designing a DevOps maturity model helps
in the process (Bucena & Kirikova, 2017). The maturity model helps in identifying
gaps in the current processes and goals for improvement.

DevOps brought-in a bunch of terms into the software engineering realm.
Disentangling the terms and giving them a clear definition helps in better
implementation of the DevOps practice. The authors of (Stahl, Martensson, &
Bosch, 2017) survey the literature substantially to come up with definitions of the
important terms used in the DevOps practice. One of the terms that is quite popular
with DevOps is “Infrastructure-as-Code (IasC)” It is a tactic to speed-up the DevOps
processes and is a good example of one of the many tactics that DevOps brought
into the software engineering discipline to accelerate the pipelines (Artac, 2017).
Software infrastructure typically comprises of several scripts and variable settings
for setting up the infrastructure needed for the software to run. IasC treats these
scripts and configuration files as source code as well, so that they can be versioned
and treated as any other source code.

The evolution of DevOps is currently at the stage of encompassing security into
DevOps and transitioning DevOps into DevSecOps. It has been observed that the
increased automation of the processes that DevOps entails leads to improved product
security (Rahman et al, 2016). The term, DevSecOps seems to have originated in
2012 in a blog post (Myrbakken et al, 2017) by a Gartner analyst. The key idea
behind DevSecOps is to further break the barriers in the Software organization and
make Security of the software product, everyone’s business.

THE SOFTWARE ENGINEERING JOURNEY

Software Engineering organization in large companies traditionally comprises of some
form of an Integration and Release Engineering team, a Platform Engineering team,
a Tools team, and Program Management. The Platform Engineering team is typically
responsible for porting the software across a wide variety of hardware and software
platforms and maintaining the common code components of the software product.
Porting involves making changes to the source code so that it works seamlessly across
the platforms. Tools team makes the software to ensure developer productivity is
high and processes run efficiently. Program management is responsible for managing
software development projects. Integration engineering teams are responsible
for builds, software configuration management, and sometimes, to some extent,

5

Evolution of Integration, Build, Test, and Release Engineering Into DevOps and to DevSecOps

quality assurance as well. The key component and highly visible role in Software
Engineering organizations is still most often held by the team responsible for Builds,
Release, and Integration engineering. The software development milestones have a
huge dependency on the operations of this team. Let us start our journey by taking
a closer look at this important function in its legacy form in the next subsection.

Integration Engineering

A typical large software organization has several products developed independently.
Each of these products comprises of several features. Integration Engineering
refers to the process of integrating these features and the individual changes that
go into each of these products. Integration engineering is the interface between
development and production. Interdependencies of the code and the volume of the
code changes raise the complexity of builds and configuration management. The
Integration Engineering team is responsible for branching strategies, code merges
between product modules, nightly and production builds, validation of the builds,
and image generation. Collecting metrics, creating dashboards, enabling access to
the results of the builds and validation are the other activities that form the crux of
Integration Engineering (Dyer, 1980).

A substantial portion of the source code is common to several products and
product families. It would be chaos if the developers of each of these products check-
into a single branch. Development is therefore segregated into more manageable
‘development’ or ‘dev’ branches. Developers check-in product-related changes
into these ‘dev’ branches which are periodically integrated into a ‘release’ or ‘rel’
branch. Each ‘dev’ branch contains code changes contributed by the development
team for a product or family of products. The ‘rel’ branch incorporates the changes
in all ‘dev’ branches which merge to and from it periodically.

We, therefore, have the time-synchronized handshakes between the ‘dev’ branches
and the ‘rel’ branch as shown in Figure 1. The merges to and from the ‘rel’ branch
are done against labels on the branches. Changes propagate to the ‘rel’ branch
and from the ‘rel’ branch to the ‘dev’ branches with every merge. Because of the
interdependencies of the code on different ‘dev’ branches, this is accomplished
through a physical merge, not by just updating the config_spec with the new label,
if using Clearcase for software configuration or similar means if using other tools
for the software configuration.

Handoffs to and from the release branch occur in Δt cycles where Δt is statically
determined for each release based on the rate of code changes on all branches and
their interdependencies. The time length of a cycle, Δt is inversely proportional to
the rate of code changes on all branches in Δt, which handoff to the release branch
and their interdependencies. We can mathematically model this relationship as,

6

Evolution of Integration, Build, Test, and Release Engineering Into DevOps and to DevSecOps

Δt ∝ 1/[d/dt(
n∫db=1C)]γ1 γ2 γ3 ...γn……………………….(1)	

where db = development branch, C= code changes, d/dt(
n∫db=1C) is the rate of code

changes on all ‘dev’ branches and γ1 γ2 γ3 ...γn are the correlation coefficients of the
‘dev’ branches. The formula is only a conceptual representation of the relationships.
In practice though, Δt is determined empirically, based on experience.

Each cycle comprises of 3 distinct phases on the ‘dev’ branch: development, merge
and build, which includes testing. The release engineering team, which manages the
‘rel’ branch also generates an image after consuming a handoff. As was mentioned
before development happens only on the ‘dev’ branch – merges, builds, regression
testing, and generating images are the only actions that happen on the ‘rel’ branch,
other than the handoffs. A handoff is typically a label, a snapshot of the source code,
and information about the criteria this snapshot meets, like the test pass %s, etc. The
label from a ‘dev’ team is a sparse label of the files on the ‘dev’ branch only, while
the label from release engineering is a complete label on all files. After consuming
the label from the ‘rel’ team, changes in all ‘dev’ branches will be visible in each
of the individual development views.

In all the above activities, automation is essential. Software Engineering is a
process and human-memory intensive. There are too many steps, dependencies
and other factors that make it difficult to remember and do them manually, without
the aid of scripts, checklists, and other aides. Manual processes have proven to be
error-prone and time-consuming. Automation is essentially programming human
expertise into scripts. When automation is not possible in entirety, it is a good idea
to generate checklists, messages, and other aides. The very nature of Software
Engineering makes it imperative that we automate as much as possible. Quality and
productivity demand automation.

From Waterfall to Agile

The traditional software development paradigm is referred to as the Waterfall
model because SDLC happens sequentially, in cascading stages. Requirements are

Figure 1. Branch integration

7

Evolution of Integration, Build, Test, and Release Engineering Into DevOps and to DevSecOps

collected upfront; development happens as one big project and the feedback loop
between the development teams and operations is usually long. Over time, the
software industry realized the perils of following the Waterfall model and the need
for agility in the development (Sureshchandra & Shrinivasavadhani, 2008). Long
feedback cycles result in a substantial risk. Teams operate in silos and bugs are
discovered late in the cycle. Therefore, there is a need to break the one big project
into more manageable smaller chunks. The branching model discussed in the section
on Integration Engineering also needs to change to facilitate shorter release cadence.
Code changes need to be integrated more rapidly than wait for Δt time cycle, which
typically runs into days or weeks.

In the waterfall model, testing typically starts after all development is done. It is
often too late and too expensive to fix bugs that late in the cycle. It is imperative to
“fail fast” and recover from the failure fast as well. The cycle needs to be shortened
even if it takes several cycles for completion of the project. Overheads need to be
minimized and simplified to get into this iterative, agile mode of operations. Agility
calls for flexible and highly collaborative environments and an entire rethink of the
software development activity. For instance, companies have moved away from having
many feature branches as described in the section on Integration Engineering to a
single branch model that avoids merges and the heavy processes involved in managing
numerous branches. In large organizations, thousands of developers could be working
on a single branch. The source code instead uses ‘feature toggles’ for selectively
exercising the code. Agile methodologies resulted in substantial improvements for
companies. Some form of the Agile methodology has been successfully practiced
by most large organizations.

One of the popular flavors of the Agile methodology is Scrum. Much like in the
rugby football game by that name, where players flock together into a tightly packed
team to grab the ball, in the scrum framework, teams collaborate closely with each
other to develop the product. The idea of scrum is simple to understand, but difficult
to practice. It originated in 1986, from a paper in the Harvard Business Review
and is inspired by processes in the manufacturing firms like in the automotive and
the photocopier industries. Scrum defines only three roles: Product Owner, Scrum
Master, and the Team. The Product Owner is responsible for funding the project,
setting the vision and release dates for the product. The scrum master makes sure
that the team is productive and works to remove any blockers that the team may
run into during the execution of the project. Scrum master, as the name indicates,
is a key role, crucial for creating and sustaining a high-performance team. The team
typically comprises of 5 to 9 members who do the real work of building the product.
The team does not have a hierarchy, sub-teams or titles and functions seamlessly.

The work-cycle in scrum is called the sprint, which typically lasts for two
weeks and comprises of many tasks to be accomplished in that cycle. A task is a

8

Evolution of Integration, Build, Test, and Release Engineering Into DevOps and to DevSecOps

fundamental unit of work in a sprint. The product is developed in increments. The
end of a sprint marks the completion of a useable portion of a product, which can
be released to the customers. This iterative development results in agile release
cycles and shortened time to market. The simple operating environment results
in low process overheads and quick decision making. Quality improves because
of frequent testing and feedback from the field. Teams feel empowered and work-
life balance is better achieved. Agile methodologies are big on automation, thus
enhancing productivity. During a sprint, the team meets daily for a short duration,
typically 15 minutes, standing and discuss these 3 key questions: (a) What did you
do yesterday? (b) What will you do today? (c) Are there any blockers impeding
the progress? Any blockers or issues are not resolved during the meeting – scrum
meetings are not to be used for problem-solving.

If there are blockers discovered during the meeting that cannot be resolved by
the scrum master, instead of extending the time, the scope is reduced – some of
the tasks are downsized or eliminated. It is therefore imperative that the scrum
master is an excellent problem solver and be able to unblock the team through
collaboration, coaching, and leadership. In terms of documentation, the tasks that
need to be implemented are described in form of “user stories” with the syntax,
“As a <some user>, I want <some goal>, so that <some reason>.” For instance, a
user story in a sales analysis application could be, “As a Regional Director for the
Asia Pacific, I want to be able to drill down to the sales numbers for a particular
country with a few clicks so that I can change the sales strategy for that country if
necessary.” Documentation need not be exhaustive – working software is prioritized
over comprehensive documentation.

Agile planning happens at different levels – task-level, done daily, feature level,
done for a sprint and at a strategic level for the entire release. The development
happens using timeboxed, lightweight iterations aligned with the sprint. The scrum
framework prioritizes individuals over tools or processes, making sure that there
are limits on the work in progress and feedback loops. One of the techniques often
used is pair programming, where programmers work in pairs, one of them writing
the code and the other reviewing it as it is being written. The pair keeps switching
roles and collaborate closely. A sprint retrospective is held after every sprint, also
for a short duration, where the entire team participates in reviewing what went
well and what did not. The retrospective also follows a simple process. The team
collectively decides what they should start doing for the next sprint, stop doing and
what the team should continue doing going forward.

There are simple tools that help in the process of the timeboxed, iterative
development. The tools include burndown charts which show the remaining work
plotted against the days in the sprint and sprint backlog that is updated by the scrum
master with the time required to complete the remaining tasks. Commercial software

9

Evolution of Integration, Build, Test, and Release Engineering Into DevOps and to DevSecOps

packages like Rally or Jira incorporate these tools. A key aspect of the framework
is a sense of urgency that is shared by the entire team. The scrum methodology can
be viewed as a shift in coding culture and requires buy-in from all stakeholders.
It is a different way of doing software product development and can prove to be a
major shift in the organization’s culture. It must also be noted that Agile or Scrum
frameworks are not a silver bullet and are not suited for every software product
development. Often, large organizations use some components of the agile framework
in conjunction with other methodologies as a middle-ground.

DevOps

Software Engineering Operations teams continue to strive to provide a consistent
environment for global development. They engineer the products from the hands
of the developers to the hands of the customers. Agile methodologies proved
that collaboration and people must be top priority in software development. An
extension to that idea is to break the barriers between development and operations
teams further, resulting in the concept of DevOps. In some ways, DevOps can be
thought of as extending the principles of agile software development. Silos are
further broken down and development, quality assurance, and operations teams all
act without any barriers.

One of the best practices of DevOps is Continuous Integration (CI), an idea
proposed by Grady Booch, the inventor of the famed Unified Modeling Language,
UML. The idea is to provide immediate feedback to the developer about their code
changes and almost always have a working product that can be tested and possibly
released. The code changes need to meet several criteria such as being buildable, pass
sanity tests, go through static analysis checks successfully, reviewed and approved by
peers/module owners, and so on. Most of the checks happen automatically. The code
can be integrated into the product only if all the checks pass. Thus, all integration
issues are addressed immediately, in a sharp contrast with what was described in
the section on Integration Engineering. Continuous Integration, therefore, becomes
the basis for all subsequent operations and automation.

Unlike huge changesets getting propagated across branches through the handshakes
described in integration engineering, the changesets in Continuous Integration are
small, much more manageable, and iterative. The automation around CI is crucial
for developers to remain productive. Hence the need for tools – several of them – so
many that a periodic table can be filled with them and even more. The pivotal tool is
the CI engine, which does much more than the traditional ‘cron’ on Unix machines
that typically spun off the builds in the waterfall model. There are currently many
tools that function as a CI engine today. Jenkins, Travis, and Bamboo are a few
of such CI engines. These CI engines take the code changes from the developers

10

Evolution of Integration, Build, Test, and Release Engineering Into DevOps and to DevSecOps

through a series of checks to validate the code diffs. The sequence of checks can be
envisioned as a ‘pipeline,’ quite analogous to the line of pipes that transport liquids
and gases to a production area. Just like the commercial liquid and gas pipelines
are equipped with the required control devices, the CI engine pipelines have the
necessary mechanisms to control the processes that take the code changes through
the validations.

Along with continuous integration, there is a need for continuous testing as
well, so that the developers get feedback on quality aspects, continuously. When the
product is continuously tested, it is ready for deployment in production continuously
as well, resulting in hundreds or even thousands of releases in a day. Continuous
Integration, Continuous Testing, Continuous Deployment, and Continuous Delivery
lead to continuous improvement. All these continuous processes can be implemented
using the ‘pipelines’ that the CI engines provide. As can be envisioned, the pipelines
can easily grow in complexity. The trend now is to ‘code’ the CI engine pipelines,
so that they can be maintained better and there is change history. ‘Pipeline as Code’
often resides in the same repository as the source code.

Cloud computing has come to stay. Today, most of the computing, including that
which happens in the pipeline, run in a private or public cloud. Cloud computing
and virtualization enable spinning up a ‘virtual’ machine (VM) in no time. Multiple
VMs, possibly running different operating systems can run on the same bare metal
hardware providing isolation and optimal usage. Cloud computing provides access
to the VMs seamlessly across the network, even if the bare metal machines are miles
away and are owned by a 3rd party. A lightweight model of a VM is a container,
which can run on a VM, providing an isolated environment for an application to
run. The container packages any given application along with all its dependencies
including configuration files and libraries so that the application is ready to run as
soon as the container is brought up – quite convenient for testing and deploying as
part of the pipeline. A container image is immutable so that it can be run and rerun
many times.

The container image contains everything that an application needs to run and
serves as an immutable snapshot of the application’s runtime environment. Multiple
containers share the kernel running on physical hardware and provide isolated
namespaces for the application to run. Therefore, a container includes its abstraction of
memory, devices, network ports, processes, and filesystems, shielding the underlying
kernel’s resources from direct access. The containers resources eventually use the
resources provided by the underlying kernel but do not let the applications access
them directly. Containers provide great portability suitable for instant deployment,
particularly when using a microservices architecture. As a general guideline, all builds
should be reproducible. Reproducibility is particularly important for production builds
or builds which go out to customers. Containerization can help in reproducibility

11

Evolution of Integration, Build, Test, and Release Engineering Into DevOps and to DevSecOps

of builds since a container image can effectively store the configuration needed for
a build to be reproduced.

Some of the functions that the DevOps teams perform are shown in Figure 2. As
can be seen, the DevOps teams are responsible for most of the operations in software
development, starting with setting up the repository to deploying and shipping the
releases. Each one of these functions needs to be automated and automation requires
tools. Hence the explosion of tools. For instance, the number of artifacts that are
needed for the build and produced by it has grown so much that we now have tools
like Artifactory and Nexus to handle them. Source code itself is versioned in tools
like Git and Subversion. Huge files like the binary artifacts are not usually versioned
with the source code, hence separate tools for them. For testing, we have tools like
Selenium, JUnit, and TestNG. ElectricFlow and Julu help with deployment. Metrics
and dashboards play an important role in monitoring and improving productivity.
In the DevOps world, it is said that if it is measured, it is bound to improve. Tools
like Kibana and Nagios help in creating dashboards that can show metrics.

Docker and Kubernetes are popularly used tools for containerization and their
orchestration respectively. Configuration and provisioning tools include Chef,
Puppet, and Ansible. Coverity and SonarQube are two of the tools that help in static
analysis of the source code to detect any vulnerabilities and potential bugs, without
actually running the code. Tools like Cobertura, JaCoCo, and Valgrind are used
for measuring code coverage statistics. As we saw, collaboration plays a crucial
role in software development and is one of the main driving forces for the DevOps
movement. Multiple tools like Slack, HipChat, and Webex Teams are popularly
used for instant messaging and collaboration. In addition to these open-source or
commercially available tools, most large organizations have their internal tools to
handle several software development operations. For instance, Cisco has its huge
bug tracking system called CDETS and release posting tool called IRT.

Code bloating and code obsolescence is quite common over time. As highlighted in
Figure 2, the DevOps team needs to work on reducing the code footprint and explore
other ways to reduce the build times to reduce the wait-time for the developers to get
feedback about their code changes. In some cases, particularly when the software is
embedded, there are strict limits on how much memory the software can consume
at runtime, requiring a check to be placed on the incremental size of the image
built from the code changes. This is an example of a policy that needs to be put in
place. As can be seen, software development is a disciplined activity, which needs
to be regulated by several policies. Some of the other policies could be to allow
commits only after sufficient approving reviews, mandate a double-commit to the
master branch before committing to a release branch, and so on. The DevOps team
is responsible for enforcing the policies. Instrumenting such mechanisms and the
software development environment in general requires plenty of tooling on part

12

Evolution of Integration, Build, Test, and Release Engineering Into DevOps and to DevSecOps

of the DevOps teams. It is not hard to see that DevOps is, therefore, a substantial
charter requiring strong technical and analytical skills.

DevOps to DevSecOps

Security is everyone’s business, even in the software industry. Application security
is critical, given their usage profile. That part has not changed, but the way security
is achieved has gone through substantial changes due to paradigm shifts in the
development processes. Traditionally, as shown in Figure 3a, boundaries were secured
using firewalls. Companies and applications operated in silos. Development and
Operations too operated in silos and were not well orchestrated. DevOps fixed the
broken collaboration mechanisms and provided for continuous, seamless operations.
Security continued to be ensured by protecting the organization’s borders.

The scenario is depicted in Figure 3b. However, as cloud computing gained in
adoption, borders weakened, and computing happened across borders. It was no
longer enough to protect the

corporate borders using firewalls. Security had to be built into the application,
resulting in the “Security as Code” paradigm and the birth of DevSecOps, as
depicted in Figure 3c.

Cloud computing and DevOps brought in a series of “…as a Service” and “…as
Code” paradigms, such as “Infrastructure as a Service,” “Infrastructure as Code,”
and “Pipeline as Code.” DevSecOps continued the trend with the “Security as Code”
paradigm, taking a holistic view of security. Like DevOps, DevSecOps has to do

Figure 2. Typical responsibilities of the DevOps team

13

Evolution of Integration, Build, Test, and Release Engineering Into DevOps and to DevSecOps

a lot with the corporate mindset and is a culture shift. It can be viewed as a set of
tools, techniques, and processes to build security into software. It requires buy-in
from all stakeholders and is a community-driven effort. DevSecOps is still evolving
through learning and exploration. With security moving into the application, security
infrastructure needs to be ‘cloud-aware’ and security features need to be published
via APIs. Security aspects are now built into the CI engine pipeline and automation
tooling as much as possible. Security is part of the software building process as
illustrated in Figure 4.

Development, security, and operations are the new building blocks of a software
organization.

Figure 3a. Security in legacy software systems

Figure 3b. Security with the advent of DevOps

14

Evolution of Integration, Build, Test, and Release Engineering Into DevOps and to DevSecOps

DevOps broke the silos between Development and Operations teams. DevSecOps
extends the idea and broke the silos between the Security teams and the DevOps
teams. DevSecOps orchestrates the workflows among the development, security, and
operations teams to provide an integrated, seamless infrastructure for the development
of the product. Security vulnerabilities in the code are continuously monitored and
addressed paving way for “Continuous Security.” Products are always security-ready,
in addition to being deployable with every code commit. Product security is therefore
tightly coupled with the pipeline controls. For instance, continuous testing now
requires security aspects to be tested as well as part of the code commit validations
in the pipeline. Security, which came into the picture in the later stages of software
development, now needs to “shift left,” to earlier stages of development as well,
right from the beginning. There must now be at least a few agile user stories related
to security in every sprint if agile methodologies are being used.

Figure 3c. Security in DevSecOps

Figure 4. Building blocks of a software organization

15

Evolution of Integration, Build, Test, and Release Engineering Into DevOps and to DevSecOps

Issues, Controversies, Problems

The DevSecOps area is still evolving and poses multiple challenges. It is a culture
shift and driving change across organizations continues to be a challenge. Roadshows
within the organization, identifying security champions to serve as brand ambassadors
for DevSecOps, and promoting the benefits of DevSecOps by other means are some
of the techniques that can be used to make the culture shift. Security certainly raises
the complexity of the applications. Architecture changes to accommodate security
aspects as applicable to on-premises, cloud, and container deployments must be
considered right from the beginning. A security mindset must be inculcated among
cross-functional teams.

Skilled manpower continues to be a challenge in the DevSecOps area. The author
personally interviewed scores of candidates for open positions in his team and found
that many engineers have restricted themselves to mere tool configuration and usage,
without much experience at all in writing substantial scripts and implementing tools
from scratch or understanding the underlying principles. It is also observed that some
engineers continue to work in older waterfall methodologies and tools, without much
exposure to the latest trends in the industry. Organizations, particularly the large,
well-established ones must learn to quickly adopt newer technologies and train their
personnel for the change. It is hard to drive change, but the risk of obsolescence
should be enough motivation to move with the industry.

Another major challenge is the budget allotted for DevSecOps. The higher
management may not always see the value or the complexity of the DevSecOps tasks,
resulting in understaffed DevSecOps teams and inadequate tooling infrastructure. In
such cases, it may help if the first-line managers and technical leads of DevSecOps
teams meet with the higher management to impress upon the critical value that the
DevSecOps methodologies provide and the complexities involved in them. It is also
helpful to standardize the tool and process usage across large organizations, so that
interoperability if needed, is better achieved. Legacy tools can pose challenges in
terms of scaling and adapting to growing needs. It is imperative to quickly identify
infrastructure that is not able to keep up and replace it with the industry-standard
tooling.

FUTURE RESEARCH DIRECTIONS

The Software Engineering journey will of course not stop at DevSecOps and full-
stack engineering. A hot area that is still evolving is implementing DevSecOps for
Artificial Intelligence products and using Artificial Intelligence for DevSecOps.
Machine Learning is the mortar of modernization and is becoming more and more

16

Evolution of Integration, Build, Test, and Release Engineering Into DevOps and to DevSecOps

ubiquitous. Machine Learning approaches can be used to detect security vulnerabilities
and bugs in general. Analyzing the logs from the tools using AI techniques can help
improve the quality of the tools – an area that can benefit from more research. There
is also ample scope for building tools to integrate security aspects into the pipelines.

CONCLUSION

This chapter briefly examined the evolution of the Software Engineering domain
into today’s DevSecOps, presenting important tools, techniques, and observations,
all along. Several aspects of Software Engineering have transformed drastically over
the last three decades. For instance, the simple ‘cron’ in the Unix systems has now
become a full-blown Continuous Integration engine acting as the backbone of the
DevSecOps revolution. The chapter also identified a few challenges and solutions to
address them. The domain continues to evolve further and holds plenty of promise
for the future.

ACKNOWLEDGMENT

The author gratefully acknowledges the experience gained from various software
organizations that was instrumental in writing this chapter.

REFERENCES

Artac, M., Borovssak, T., Di Nitto, E., Guerriero, M., & Tamburri, D. A. (2017, May).
DevOps: introducing infrastructure-as-code. In 2017 IEEE/ACM 39th International
Conference on Software Engineering Companion (ICSE-C) (pp. 497-498). IEEE.
10.1109/ICSE-C.2017.162

Banica, L., Radulescu, M., Rosca, D., & Hagiu, A. (2017). Is DevOps another Project
Management Methodology? Informações Econômicas, 21(3), 39–51. doi:10.12948/
issn14531305/21.3.2017.04

Bucena, I., & Kirikova, M. (2017). Simplifying the DevOps Adoption Process.
BIR Workshops.

Chen, L. (2018, April). Microservices: architecting for continuous delivery and
DevOps. In 2018 IEEE International Conference on Software Architecture (ICSA)
(pp. 39-397). IEEE. 10.1109/ICSA.2018.00013

17

Evolution of Integration, Build, Test, and Release Engineering Into DevOps and to DevSecOps

Cito, J., Wettinger, J., Lwakatare, L. E., Borg, M., & Li, F. (2018, March). Feedback
from Operations to Software Development—A DevOps Perspective on Runtime
Metrics and Logs. In International Workshop on Software Engineering Aspects
of Continuous Development and New Paradigms of Software Production and
Deployment (pp. 184-195). Springer.

Dyer, M. (1980). The management of software engineering, Part IV: Software
development practices. IBM Systems Journal, 19(4), 451–465. doi:10.1147j.194.0451

Erich, F. M. A., Amrit, C., & Daneva, M. (2017). A qualitative study of DevOps
usage in practice. Journal of Software: Evolution and Process, 29(6), e1885.

Feitelson, D. G., Frachtenberg, E., & Beck, K. L. (2013). Development and deployment
at Facebook. IEEE Internet Computing, 17(4), 8–17. doi:10.1109/MIC.2013.25

Jiménez, M., Castaneda, L., Villegas, N. M., Tamura, G., Müller, H. A., &
Wigglesworth, J. (2018, March). DevOps round-trip engineering: Traceability from
dev to ops and back again. In International Workshop on Software Engineering
Aspects of Continuous Development and New Paradigms of Software Production
and Deployment (pp. 73-88). Springer. 10.29007/gq5x

Kaiser, A. K. (2018). Introduction to DevOps. In Reinventing ITIL® in the Age
of DevOps (pp. 1–35). Berkeley, CA: Apress. doi:10.1007/978-1-4842-3976-6_1

Li, Z., Zhang, Y., & Liu, Y. (2017). Towards a full-stack DevOps environment
(platform-as-a-service) for cloud-hosted applications. Tsinghua Science and
Technology, 22(01), 1–9. doi:10.1109/TST.2017.7830891

Lwakatare, L. E., Karvonen, T., Sauvola, T., Kuvaja, P., Olsson, H. H., Bosch, J., &
Oivo, M. (2016, January). Towards DevOps in the embedded systems domain: Why
is it so hard? In 2016 49th Hawaii International Conference on System Sciences
(HICSS) (pp. 5437-5446). IEEE.

Myrbakken, H., & Colomo-Palacios, R. (2017, October). DevSecOps: a multivocal
literature review. In International Conference on Software Process Improvement
and Capability Determination (pp. 17-29). Springer. 10.1007/978-3-319-67383-7_2

Rahman, A. A. U., & Williams, L. (2016, May). Software security in DevOps:
synthesizing practitioners’ perceptions and practices. In 2016 IEEE/ACM
International Workshop on Continuous Software Evolution and Delivery (CSED)
(pp. 70-76). IEEE. 10.1145/2896941.2896946

18

Evolution of Integration, Build, Test, and Release Engineering Into DevOps and to DevSecOps

Sánchez-Gordón, M., & Colomo-Palacios, R. (2018, October). Characterizing
DevOps Culture: A Systematic Literature Review. In International Conference on
Software Process Improvement and Capability Determination (pp. 3-15). Springer.
10.1007/978-3-030-00623-5_1

Savor, T., Douglas, M., Gentili, M., Williams, L., Beck, K., & Stumm, M. (2016,
May). Continuous deployment at Facebook and OANDA. In 2016 IEEE/ACM 38th
International Conference on Software Engineering Companion (ICSE-C) (pp. 21-
30). IEEE. 10.1145/2889160.2889223

Stahl, D., Martensson, T., & Bosch, J. (2017, August). Continuous practices and
DevOps: beyond the buzz, what does it all mean? In 2017 43rd Euromicro Conference
on Software Engineering and Advanced Applications (SEAA) (pp. 440-448). IEEE.
10.1109/SEAA.2017.8114695

Sureshchandra, K., & Shrinivasavadhani, J. (2008, August). Moving from waterfall
to agile. In Agile 2008 conference (pp. 97-101). IEEE. doi:10.1109/Agile.2008.49

Van Der Hoek, A., Carzaniga, A., Heimbigner, D., & Wolf, A. L. (1998). A reusable,
distributed repository for configuration management policy programming. Univ.
Colorado, Boulder, Tech. Rep. CU-CS-864-98.

Wiedemann, A., & Wiesche, M. (2018). Are you ready for DevOps? Required skill
set for DevOps teams. Proceedings of the European Conference on Information
Systems.

ADDITIONAL READING

Allen, L., Fernandez, G., Kane, K., Leblang, D., Minard, D., & Posner, J. (1993).
ClearCase MultiSite: Supporting geographically-distributed software development.
In Software Configuration Management (pp. 194–214). Berlin, Heidelberg: Springer.

Bartusevics, A., & Novickis, L. (2015). Models for implementation of software
configuration management. Procedia Computer Science, 43, 3–10. doi:10.1016/j.
procs.2014.12.002

Dyck, A., Penners, R., & Lichter, H. (2015, May). Towards definitions for release
engineering and DevOps. In 2015 IEEE/ACM 3rd International Workshop on Release
Engineering (pp. 3-3). IEEE. 10.1109/RELENG.2015.10

19

Evolution of Integration, Build, Test, and Release Engineering Into DevOps and to DevSecOps

Mohan, V., & Othmane, L. B. (2016, August). SecDevOps: Is it a marketing
buzzword?-mapping research on security in DevOps. In 2016 11th International
Conference on Availability, Reliability and Security (ARES) (pp. 542-547). IEEE.

Rahman, A. A. U., & Williams, L. (2016, May). Software security in DevOps:
synthesizing practitioners’ perceptions and practices. In 2016 IEEE/ACM
International Workshop on Continuous Software Evolution and Delivery (CSED)
(pp. 70-76). IEEE. 10.1145/2896941.2896946

Schwägerl, F., Buchmann, T., Uhrig, S., & Westfechtel, B. (2015, February). Towards
the integration of model-driven engineering, software product line engineering,
and software configuration management. In 2015 3rd International Conference
on Model-Driven Engineering and Software Development (MODELSWARD) (pp.
1-14). IEEE.

Ur Rahman, A. A., & Williams, L. (2016, April). Security practices in DevOps. In
Proceedings of the Symposium and Bootcamp on the Science of Security (pp. 109-
111). ACM. 10.1145/2898375.2898383

Wiedemann, A., Forsgren, N., Wiesche, M., Gewald, H., & Krcmar, H. (2019). The
DevOps Phenomenon. Queue, 17(2), 40.

Williams, L. (2018, May). Continuously integrating security. In Proceedings of
the 1st International Workshop on Security Awareness from Design to Deployment
(pp. 1-2). ACM.

Yasar, H. (2017, August). Implementing Secure DevOps assessment for highly
regulated environments. In Proceedings of the 12th International Conference on
Availability, Reliability and Security (p. 70). ACM. 10.1145/3098954.3105819

KEY TERMS AND DEFINITIONS

Artificial Intelligence: An area of Computer Science that involves writing
programs that can do things that would otherwise require human intelligence.

Everything as Code: A concept that everything that is needed to implement the
software lifecycle can be treated as code, for example, pipeline as code.

Machine Learning: A branch of Artificial Intelligence which involves writing
programs that can identify patterns, learn from data, and make predictions.

Pipeline as Code: Use a programming language to specify what needs to happen
in the pipeline and version the file containing this ‘pipeline program’ along with
the source code, so that it is much more maintainable.

20

Evolution of Integration, Build, Test, and Release Engineering Into DevOps and to DevSecOps

Shift-Left: Assuming that the software lifecycle is drawn from left to right in
chronological order, move certain aspects such as testing and security, which were
previously done towards the end, to the earlier phases of the software development
lifecycle.

Source Code Branch: An artifact in a version control system such as Git that
allows parallel and independent development in the same files, unbeknownst to each
other, until the branches merge.

Workflow: A series of processes through which software code changes need to
go through from conception to product completion.

	Evolution of Integration, Build, Test, and Release Engineering Into DevOps and to DevSecOps
	Recommended Citation

	tmp.1646685004.pdf.VdCDc

