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Abstract

Context: With the ever-increasing evolution of software systems, their architecture is

subject to frequent changes due to multiple reasons, such as new requirements. Ap-

propriate architectural changes driven by non-functional requirements are particularly

challenging to identify because they concern quantitative analyses that are usually car-

ried out with specific languages and tools. A considerable number of approaches have

been proposed in the last decades to derive non-functional analysis models from archi-

tectural ones. However, there is an evident lack of automation in the backward path

that brings the analysis results back to the software architecture.

Objective: In this paper, we propose a model-driven approach to support designers in

improving the availability of their software systems through refactoring actions.

Method: The proposed framework makes use of bidirectional model transformations

to map UML models onto Generalized Stochastic Petri Nets (GSPN) analysis models

and vice versa. In particular, after availability analysis, our approach enables the ap-

plication of model refactoring, possibly based on well-known fault tolerance patterns,

aimed at improving the availability of the architectural model.

Results: We validated the effectiveness of our approach on an Environmental Control

System. Our results show that the approach can generate: (i) an analyzable availability

model from a software architecture description, and (ii) valid software architecture

models back from availability models. Finally, our results highlight that the application

of fault tolerance patterns significantly improves the availability in each considered
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scenario.

Conclusion: The approach integrates bidirectional model transformation and fault tol-

erance techniques to support the availability-driven refactoring of architectural models.

The results of our experiment showed the effectiveness of the approach in improving

the software availability of the system.

Keywords: Software architecture, Availability, Bidirectional Model Transformation,

Refactoring.

1. Introduction

In order to succeed in new market segments, organizations have constantly been in-

creasing the use of software in systems over the last decades. Nowadays, due to contin-

uous evolution, software architecture is subject to changes induced by decisions taken

along the overall software lifecycle [1]. Indeed, as the earliest artifact that evolves5

along the process, a software architecture model can support different tasks, such as

test case generation [2], traceability [3], and non-functional validation [4].

Appropriate architectural changes driven by non-functional requirements are par-

ticularly challenging to identify, mainly because non-functional analysis is based on

specific languages and tools (e.g., Petri Nets, Markov Models) that are different from10

typical software architecture notations like Architecture Description Languages (e.g.,

ACME [5]). In fact, very few ADLs embed constructs that enable the specification

of non-functional attributes (e.g., AADL [6]) and even fewer ones are equipped with

solvers leading non-functional indices out of an architecture specification (e.g., Palla-

dio [7]). Hence, even in cases where the analysis tools help to identify suitable archi-15

tectural changes that may overcome non-functional problems, these changes need to be

brought back within the architecture description language and environment. This step

may prove to be particularly complex, as it subsumes a change of notation that might

alter the semantics of identified architectural changes.

With the introduction of Model Driven Engineering (MDE) [8] techniques in the20

software lifecycle, the analysis of quality attributes has become more effective by

means of automated transformations from software artifacts to analysis models [9].
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Hence, in order to validate non-functional requirements on a software architecture, a

number of approaches, mostly based on model transformations, have been proposed

in the last decades to generate non-functional models from software architectural de-25

scriptions [10, 11]. There is instead a clear lack of automation in the backward path

that basically consists in the interpretation of the analysis results and the generation of

architectural feedback to be propagated back to the software architecture.

The goal of this paper is to introduce a model-driven approach that works on the

forward and backward path of a round-trip software process to support designers in30

improving the availability of their software architecture. In particular, we introduce

JASA (JTL-based 1 framework for Availability analysis of Software Architecture),

which makes use of bidirectional model transformations to map architectural mod-

els and availability models in both forward and backward directions. By working with

UML models, annotated with availability parameters, and Generalized Stochastic Petri35

Nets (GSPN), JASA is able both to derive an analysis model from a software architec-

ture and, after the analysis, to propagate back on the software architecture the changes

made on the analysis model. In addition, these changes can be based on well-known

fault tolerance patterns that we have preventively modeled in GSPN to be easily applied

to the model under analysis.40

The main contributions of this paper are:

• the automated transformation of a software architecture (modeled in UML) into

a GSPN analysis model,

• the refactoring of GSPN models (possibly based on well-known fault tolerance

patterns), and45

• the propagation of the changes performed on the GSPN models back to UML

models.

In a previous paper [13], we presented a bidirectional model transformation be-

tween UML State Machines (SMs), annotated with availability parameters, and GSPN.

1The transformation engine is based on JTL [12]
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Such transformation was aimed both to derive a GSPN availability model from a SM-50

based software architecture and, after the analysis, to propagate back on the UML

model the changes made on the GSPN model. This paper is an extension of our pre-

vious paper stemming from the realization that it was restricted to consider only SMs.

In fact, a deeper semantic comprehension of an UML model can be achieved if the

dynamic behavior is modeled by using the Sequence Diagrams (SDs) in addition to55

SMs [14]. In fact, SMs describe the behavior of an object (that could be the instance of

a particular component/class) depending on what state it is currently in, whereas SDs

show the execution of use cases and the behavior of involved objects in terms of their

interactions. Such modeling extension of behavioral aspects of software architectures

impacts on the accuracy of availability analysis and on the introduction of well-known60

fault-tolerance refactoring techniques (e.g. error masking). Moreover, the back propa-

gation of GSPN changes into UML models is improved by considering the interactions

among components.

Furthermore, in this paper we introduce a catalog of refactoring patterns with the

aim to drive the designers in their process. In particular, the patterns for fault toler-65

ance presented in [15] have been considered to generate the corresponding patterns

in GSPN, that will be propagated in UML through the bidirectional model transfor-

mations defined in JASA. The overall approach has been implemented as a dedicated

framework implemented within Eclipse 2.

Finally, our approach has been evaluated on an Environmental Control System ex-70

ample application in order to address these points: i) generation of analyzable avail-

ability models from software architecture models; ii) back generation of valid software

architecture models from availability models; iii) ability to improve the availability of

software architecture models.

The rest of the paper is organized as follows: Section 2 sets the background for75

this research work along with its contributions and relations with the authors’ previous

work. Section 3 describes the JASA methodology and its implementation. Section 4

illustrates the application of JASA to the Environmental Control System (ECS) exam-

2Eclipse Platform: https://projects.eclipse.org/projects/eclipse.platform
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ple application. Section 5 provides the evaluation of the results obtained by applying

JASA. Section 6 describes related approaches, and finally Section 7 concludes the pa-80

per.

2. Background

In the following, we describe the background of this research work and its contributions

in terms of non-functional analysis and refactoring process leveraged for the definition

of JASA. Also, we detail the contributions presented in this paper and put them in85

relation to the authors’ previous work.

2.1. Round-trip non-functional analysis process

In order to validate non-functional requirements on a software architecture, some ap-

proaches, mostly based on model transformations, have been proposed in the last

decades to generate non-functional models from software architectural descriptions90

[10, 11]. This generation step is also called forward path, and it is represented by the

topmost steps of Fig. 1. However, the solution of generated models does not neces-

sarily produce indices that satisfy the requirements, thus an iterative process is often

required to refactor the generated model on the basis of solution results. This process

(hopefully) ends up when satisfactory indices are produced, and it is represented by the95

rightmost step of Fig. 1.

Thereafter, changes applied to non-functional models, for the sake of requirement

satisfaction, have to be propagated back to the software architecture, and this is repre-

sented by the bottom-most step of Fig. 1, also called backward path. However, analysis

results do not straightforwardly suggest what changes have to be made on the software100

architecture, hence this propagation is often based on the ability of experts that in-

terpret the results. This clear lack of automation in the backward path represents a

heavy limitation towards the construction of a round-trip process for non-functional

validation of a software architecture. In this paper, we consider this general round-trip

non-functional analysis process in the availability analysis context.105
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Figure 1: Round-trip non-functional analysis process

2.2. Model-based availability analysis

Availability can be defined as the system readiness to provide correct service. It corre-

sponds to the probability that the system is working within its specifications at a given

instant [16]. In particular, the steady state availability can be expressed as the ratio

between the value of MTTF (Mean Time To Failure) and the sum of MTTF and MTTR110

(Mean Time To Repair) values.

Stochastic Petri Nets (SPN) are a well-established formalism for modeling systems

availability [11]. In this paper, we consider an extension of SPN, called Generalized

Stochastic Petri Nets (GSPN) [17]. Transitions defined in GSPN can be either im-

mediate, when firings take no time, or timed, when associated delays are exponentially115

distributed. Immediate transitions fire with priority over timed transitions, and different

priority levels can be defined over them. A weight is also associated to each immedi-

ate transition. When two or more immediate transitions are in conflict (e.g., because

they have the same priority), the selection of the one that fires first is made using the

associated weights. The delay associated with a timed transition is a random variable,120

distributed as a negative exponential, with a defined rate. When two or more timed

transitions are in conflict, the selection of the one that fires first is made according to

the race policy.

In this work, availability analysis is conducted on a GSPN derived from a software

architecture modeled in UML [18].125
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Since UML does not natively provide support for availability modeling, we rely on

the “Dependability Analysis and Modeling” (DAM) profile [19] to enhance UML mod-

els with availability annotations. DAM was designed on top of the standard MARTE

profile [20], which extends UML to annotate models with schedulability and perfor-

mance analysis information. Despite the ability to annotate behavioral models with130

availability properties, UML-DAM lacks the execution semantics to be formally ana-

lyzed. This is the reason why DAM-annotated UML models need to be transformed

(e.g., in GSPN) for the sake of analysis.

2.3. Fault tolerance refactoring techniques

Nowadays, software has strong influence on system availability. Since defects inher-135

ently occur in software design and coding for several reasons (e.g., software com-

plexity, changing requirements, time pressures), software fault tolerance is even more

important.

Among the well-known fault tolerance refactoring techniques that may improve

the software availability, we consider the techniques that deal with error masking [15],140

i.e.: Passive Replication, Semi-Passive Replication, Active Replication and Semi-Active

Replication.

Error masking techniques aim at isolating the subsystem in which an error is de-

tected by relying on some form of redundancy to resume the processing that the system

was performing when the error occurred. Replicas of system components and check-145

points can be employed, even in combination, to implement such techniques. Passive

Replication and Semi-Passive Replication patterns provide error masking by saving the

state of a component (checkpoint) before it receives the input, so that, if an error oc-

curs during processing, an identical replica of the component can be activated to restart

the processing from the saved checkpoint. While in the Passive Replication pattern150

the checkpoint is stored in a separate Storage component, Semi-Passive Replication

requires that the checkpoint is directly stored in the replica. On the other hand, Ac-

tive Replication and Semi-Active Replication patterns require a group of replicas to be

always active during input processing. In the Active Replication pattern, the replicas

provide the output to a Comparator component that performs a majority vote before155
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forwarding it to the rest of the system. In contrast, in the Semi-Active Replication

pattern, a replica provides the output to the system only when an error occurs in the

original component. The patterns mentioned above, as well as refactoring inspired by

them, will be presented in detail in Section 3.3.

3. The JASA Approach160

In this section we introduce JASA, a model-driven framework for supporting the round-

trip availability analysis process and software architectural refactoring. The approach

aims at supporting designers in their availability analysis process that involves the back

propagation of results as refactoring actions on the software architecture. In particular,

JASA leverages the interplay of UML and GSPN and provides automation for their165

mapping by means of a bidirectional model transformation mechanism [12]. In fact, the

bidirectional engine provides the possibility to automate round-trip process by applying

the transformation rules in both ways, from right to left domains and vice versa. In

addition, JASA provides a set of refactoring actions that can be used by the designer to

improve the availability of the system.170

In the following, we introduce the used technologies, we present the process under-

lying our approach, and we provide a catalog of availability patterns that can be applied

on GSPN models. Then, we describe the implementation of the approach based on bidi-

rectional model transformations. The complete implementation of JASA is available

online 3.175

3.1. Using model driven techniques

Model Driven Engineering (MDE) [8] leverages domain knowledge and business logic

from source code into high-level specifications enabling more accurate analyses. In

general, an application domain is consistently analyzed and engineered by means of a

metamodel, i.e., a coherent set of interrelated concepts. A model is said to conform to180

a metamodel: it is expressed by the concepts encoded in the metamodel. Constraints

are expressed at the meta-level, and model transformations are based on source and

3JASA: https://github.com/SEALABQualityGroup/JASA
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target metamodels. With the introduction of model-driven techniques in the software

lifecycle, the analysis of quality attributes has become effective by means of automated

transformations from software artifacts to analysis models [10].185

The proposed approach makes use of bidirectional model transformations [21] to

map architectural models and analysis models in both forward and backward directions.

In contrast to unidirectional languages, bidirectional approaches allow describing both

forward and backward transformations simultaneously, so that the consistency of the

transformation can be guaranteed by construction [22].190

3.2. From availability assessment to architecture improvements

The proposed approach is realized on top of JTL (Janus Transformation Language) [12,

23], that is a constraint-based model transformation framework specifically tailored to

support bidirectionality and change propagation 4. JASA has been implemented within

the Eclipse framework and mainly exploits the Eclipse Modeling Framework (EMF)5.195

As a consequence, the environment supports any language defined as a metamodel con-

forming to Ecore (i.e., the EMF metamodel). In this work, we focus on GSPN-based

analysis models, whereas, the software architecture is modeled by means of UML. In

particular, for the behavioral aspects, State Machines (SM) and Sequence Diagrams

(SD) annotated via DAM are considered, whereas for the static aspects, Component200

Diagrams (CD) are considered. In the rest of the paper, we use UMLJASA to refer to the

considered UML diagrams, that are UMLSM, UMLSD and UMLCD.

The JASA overall approach is reported in Fig. 2. As said, the Bidirectional engine

relies on JTL to enable the execution of bidirectional model transformations in both

forward and backward directions. The UMLJASA-GSPN bidirectional transformation205

maps UML models to GSPN and vice versa. In particular, in order to execute the

transformation in the forward direction, a DAM-annotated UML model is taken as

input to the engine, and the correspondent GSPN model is produced as output. The

generated GSPN model is solved in order to obtain a set of indices that have to be

4JTL: http://jtl.univaq.it/
5Eclipse Modeling Framework: https://www.eclipse.org/modeling/emf/
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Figure 2: The JASA overall approach

interpreted (see Availability analysis in the figure). Thereafter, the GSPN model is210

iteratively modified until availability requirements are satisfied (see Refactoring in the

figure). In order to propagate changes applied to the GSPN model back to the UML

model, the bidirectional transformation is executed in the backward direction. In our

case, the engine takes as input the modified GSPN model and produces as output a

DAM-annotated UML model representing the software architecture that embeds the215

changes made on the GSPN to solve arisen availability problems.

3.3. A catalog of availability patterns

In this section, we present a set of patterns that can be used to improve the availabil-

ity of a system. These patterns employ error masking techniques, based on replicas

and checkpoints, that can be applied to a system designed by means of a GSPN. For220

each pattern, we show how a GSPN can be refactored to mask errors coming from a

component without altering its original functionality.

Although, at the current stage, the refactoring activity is performed manually, the

GSPN refactoring patterns we introduce in this section are designed to support automa-

tion. In particular, each pattern is equipped with anchor points that are used to properly225

insert it on a specific point of a GSPN modeling the original behaviour of a software

component. Potentially, an automated tool can take as inputs the original GSPN, the

pattern to be inserted and the specific point where it has to be applied, and it returns

the GSPN refactored with the pattern.
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Once applied on the GSPN model, the refactoring patterns will be propagated back-230

wards through the transformation that will be presented in Section 3.4.

3.3.1. Passive Replication

In this pattern, an error is masked by saving the state of a system component (a check-

point) before it starts processing the input. If an error is detected, a backup replica

of the same component is activated and the checkpoint restored. Hence, the backup235

will restart the processing of the input from the last state in which the system was

behaving correctly. A Component Diagram of this pattern is reported in Figure 3a,

where components represent roles in the pattern and interfaces are used to depict the

actions that are required for coordination. Figure 3b shows the implementation of this

pattern in GSPN. For the sake of presentation, three vertical dots are used to visually240

compress sequences of places and transitions without branching points, whereas sur-

rounding boxes are used to highlight the roles of GSPN subnets in the pattern. Grey

boxes (e.g., Primary Behavior and Backup Behavior in the figure) are introduced to

show where the original behavior of components will fit into the pattern.

In order to implement the Passive Replication pattern, the following additional245

components should be added to the system:

• The Backup, that is identical to the original (Primary) component of which we

want to mask errors. This replica is not started during error-free executions;

• The Log, which is able to record and forward inputs to the Primary as well as

send the recorded inputs again to the Backup in case of error;250

• The Storage, that is responsible for storing checkpoints and sending them to

Backup upon request from the Manager. We assume that the Storage is not

subject to errors;

• The Manager, that has the tasks of (i) asking the Primary to save a checkpoint,

(ii) activating the backup in the presence of errors and (iii) requesting from the255

Storage to provide the last saved checkpoint.

Primary, Backup, and Manager must be deployed to different units of failure.
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(a) Component Diagram of the Passive Replication pattern

(b) GSPN of the Passive Replication pattern

Figure 3: The Passive Replication pattern

12

                  



3.3.2. Semi-Passive Replication

The Semi-Passive Replication pattern is able to mask errors in a similar way to the Pas-

sive Replication pattern, but without requiring a storage dedicated to checkpoints. The260

Component Diagram of this pattern is shown in Figure 4a. The Primary component

saves the checkpoint by sending it directly to the Backup. Log and Manager compo-

nents are still required to implement the pattern. The Log stores and forward the input

to the Primary which, before processing it, sends a checkpoint to the Backup. When an

error occurs, the Manager activates the Backup and asks the Log to forward the input265

to it. The Backup restores its state using the saved checkpoint before starting to process

the input. Primary and Backup must be deployed to different units of failure.

3.3.3. Active Replication

The Active Replication pattern is considered the most effective error masking technique

but also the most expensive. This pattern employs a group of replicas actively receiving270

and processing every input intended for the component of which we want to mask

errors. According to this pattern, we need to introduce two new components:

• The Distributor, which receives the input intended for the original component

and forward it to all the replicas in the group;

• The Comparator, that is responsible for comparing the output computed by the275

replicas and deciding (by majority voting) what will be the final output of the

system.

Figure 5a shows the Component Diagram of this pattern when the group of replicas is

composed by (i) a Primary component, representing the original component of which

we want to mask errors, and (ii) a Backup component, that is an identical replica of280

Primary. For the reason that all the replicas are continuously active, the structure of

this pattern does not contain a different path that the system will follow in case of

errors. Primary, Backup, and Comparator components must be mapped to different

units of failure.
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(a) Component Diagram of the Semi-Passive Replication pattern

(b) GSPN of the Semi-Passive Replication pattern

Figure 4: The Semi-Passive Replication pattern

14

                  



(a) Component Diagram of the Active Replication pattern

(b) GSPN of the Active Replication pattern

Figure 5: The Active Replication pattern
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(a) Component Diagram of the Semi-Active Replication pattern

(b) GSPN of the Semi-Active Replication pattern

Figure 6: The Semi-Active Replication pattern
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3.3.4. Semi-Active Replication285

Similarly to the previous pattern, the Semi-Active Replication pattern employs a group

of replicas that are always active. However, unlike the Active Replication pattern, only

one replica will deliver the output. Figure 6a reports the Component Diagram of this

pattern with the group of replicas composed by Primary and Backup. A Distributor

component is still needed to forward the input to all the replicas. In an error-free290

execution, the Primary component directly delivers the output to the environment and

then reports to the Backup that no errors occurred so that the output computed by the

Backup can be discarded. If an error occurs on the Primary, then the Backup takes over

the responsibility to deliver the output. Primary, Backup must be deployed to different

units of failure.295

3.4. The UMLJASA-GSPN bidirectional transformation

JTL adopts a textual syntax (that is inspired to QVT-R [24]) and allows a declarative

specification of relationships between MOF models. The mechanism of transformation

is rule-based. The language supports object pattern matching, and implicitly creates

trace instances to record what occurred during a transformation execution. A trans-300

formation between candidate models is specified as a set of relations that must hold

for the transformation to be successful: in particular, it is defined by two domains and

includes a pair of when and where predicates that specify the pre- and post- condi-

tions that must be satisfied by elements of the candidate models. When a bidirectional

transformation is invoked for the enforcement, it is executed in a specific direction by305

selecting one of the candidate models as the target by means of a run configuration.

The implementation relies on the Answer Set Programming (ASP) [25], which is a

form of declarative programming oriented towards difficult (primarily NP-hard) search

problems and based on the stable model (answer set) semantics of logic programming.

The JTL engine finds and generates, in a single execution, all possible models that are310

consistent with the transformation rules by a deductive process.

The implementation of the UMLJASA-GSPN bidirectional transformation includes

the definitions of the following tasks:

• Mapping UMLSM to GSPN models and vice versa (UMLSM-GSPN),

17

                  



• Composing GSPN subnets by mapping UMLSD to GSPN models and vice versa315

(UMLSD-GSPN),

• Updating the static view of the architecture (UMLCD).

We remark that the considered UML diagrams are linked together in accordance

with the UML specifications [18]. As a consequence, the coordination between execu-

tion semantics of related machines is realized by considering the relationships between320

transitions and operations. More in detail, each transition has a reference to an event

that, in turn, refers to an operation already defined in the Component diagram. For in-

stance, in the State Machine diagrams in Figure 10, the getTemperatureData transitions

in TemperatureSensor and GreenhouseController refer to the very same homonymous

operation.325

Specifically, with regard to the elements involved in the transformation, a single

State Machine is defined for each Component, and Transition elements in

the State Machine Diagram are linked to Operation elements in the Component Dia-

gram by means of the trigger.event.operation reference. The same elements

of Operation type are also linked to Message elements in Sequence Diagrams330

through the signature reference. Additionally, Sequence Diagrams are linked to

Component Diagrams through the Lifeline elements that refer to Component el-

ements by using the represents.type reference.

In the rest of this section, we present a detailed discussion of each of the above

mentioned tasks. The complete implementation of the UMLJASA-GSPN bidirectional335

transformation is available online 6.

3.4.1. UMLSM-GSPN

The first part of the transformation maps UMLSM and GSPN; it is characterized by a

one-to-pattern element mapping, meaning that a UMLSM element is mapped to a pat-

tern of GSPN elements. In particular, starting from UMLSM the corresponding patterns340

6 UMLJASA-GSPN: https://github.com/SEALABQualityGroup/JASA/blob/master/

JTL/transformations/UMLGSPN.jtl
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in GSPN are generated and vice versa. Such implementation considers the formal def-

inition of the unidirectional translation of UMLSM in GSPN provided in [26]. Starting

from the latter, the relationships between UMLSM and GSPN are deduced and then

completed in order to define the bidirectional mapping between the notations. The

complexity of the latter task is high because the unique bidirectional transformation345

has to guarantee the syntactic and semantic consistency of source and target models in

both directions.

For the sake of detailed illustration, a fragment of the UMLSM-GSPN bidirectional

transformation implemented via JTL is depicted in Listing 1. In the following listings,

three dots are used in place of repetitive sections of code.350

1 transformation UMLGSPN (uml:umlsm, pn:

ptnet) {

2 ...

3 top relation StateMachine2PetriNet {

4 name: String;355

5 enforce domain uml statemachine:umlsm

::StateMachine {

6 name=name,

7 region=r:umlsm::Region {}

8 };360

9 enforce domain pn petrinet:ptnet::

PetriNet {

10 id=name,

11 pages=p:ptnet::Page {}

12 };365

13 where {

14 State2Pattern(r, p);

15 StateActivity2Pattern(r, p);

16 Transition2Pattern(r, p);

17 }370

18 }

19

20 relation State2Pattern {

21 enforce domain uml r:umlsm::Region {

22 subvertex=s:umlsm::State {}375

23 };

24 enforce domain pn p:ptnet::Page {

25 objects=s:ptnet::Place {}

26 };

27 enforce domain pn p:ptnet::Page {380

28 objects=s1:ptnet::Transition {

29 transitionKind="immediate"

30 }

31 };

32 enforce domain pn p:ptnet::Page {385

33 objects=s2:ptnet::Arc {

34 source=s:ptnet::Place {}

35 target=s1:ptnet::Transition {}

36 }

37 };390

38 where {

39 s.doActivity.oclIsUndefined()

40 }

41 }

42395

43 relation StateActivity2Pattern {

44 enforce domain uml r:umlsm::Region {

45 subvertex=s:umlsm::State {

46 doActivity=a:umlsm::Activity {}

47 }400

48 };

49 enforce domain pn p:ptnet::Page { ...

};

50 enforce domain pn p:ptnet::Page { ...

};405

51 enforce domain pn p:ptnet::Page { ...

};

52 enforce domain pn p:ptnet::Page {

53 objects=s3:ptnet::Place {}

54 };410
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55 enforce domain pn p:ptnet::Page {

56 objects=s4:ptnet::Arc {

57 source=s1:ptnet::Transition {}

58 target=s3:ptnet::Place {}

59 }415

60 };

61 enforce domain pn p:ptnet::Page {

62 objects=s5:ptnet::Transition {

63 transitionKind="exponential"

64 }420

65 };

66 enforce domain pn p:ptnet::Page {

67 objects=s6:ptnet::Arc {

68 source=s3:ptnet::Place {}

69 target=s5:ptnet::Transition {}425

70 }

71 };

72 }

73

74 relation Transition2Pattern {430

75 enforce domain uml region:umlsm::

Region {

76 transition=t:umlsm::Transition {

77 source=s:umlsm::State {}

78 }435

79 };

80 enforce domain pn page:ptnet::Page {

81 objects=t:ptnet::Place {}

82 };

83 enforce domain pn page:ptnet::Page {440

84 objects=t1:ptnet::Transition {

85 transitionKind="immediate"

86 }

87 };

88 enforce domain pn page:ptnet::Page {445

89 objects=t2:ptnet::Arc {

90 source=t:ptnet::Place {}

91 target=t1:ptnet::Transition {}

92 }

93 };450

94 enforce domain pn page:ptnet::Page {

95 objects=t3:ptnet::Arc {

96 source=t:ptnet::Place {}

97 target=s1:ptnet::Transition {}

98 }455

99 };

100 enforce domain pn page:ptnet::Page {

101 objects=t4:ptnet::Place {}

102 };

103 enforce domain pn page:ptnet::Page {460

104 objects=t5:ptnet::Arc {

105 source=s1:ptnet::Transition {}

106 target=t4:ptnet::Place {}

107 }

108 };465

109 enforce domain pn page:ptnet::Page {

110 objects=t6:ptnet::Transition {

111 transitionKind="immediate"

112 }

113 };470

114 enforce domain pn page:ptnet::Page {

115 objects=t7:ptnet::Arc {

116 source=t4:ptnet::Place {}

117 target=t6:ptnet::Transition {}

118 }475

119 };

120 }

121

122 relation TransitionDaStep2Pattern {

123 name:String;480

124 prob:String;

125 enforce domain uml region:umlsm::

Region {

126 transition=t:umlsm::DaStep {

127 name=name,485

128 occurrenceProb=prob,

129 source=s:umlsm::State {}

130 }

131 };

132 enforce domain pn page:ptnet::Page {490

... };

133 enforce domain pn page:ptnet::Page {

134 objects=t1:ptnet::Transition {

135 id=name,

136 weight=prob495

137 transitionKind="immediate"

138 }

139 };

140 enforce domain pn page:ptnet::Page {

... };500

141 enforce domain pn page:ptnet::Page {

... };
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142 enforce domain pn page:ptnet::Page {

... };

143 enforce domain pn page:ptnet::Page {505

... };

144 enforce domain pn page:ptnet::Page {

... };

145 enforce domain pn page:ptnet::Page {

... };510

146 }

147 ...

Listing 1: A fragment of the UMLJASA-GSPN bidirectional transformation

As said, the transformation is specified by means of a set of relations among ele-

ments of the two involved domains; they represent the transformation rules that can515

be executed in both directions. The first line of the listing declares the variable uml

that matches models conforming to the UMLSM metamodel and the variable pn that

matches models conforming to the GSPN metamodel (based on the standard Petri Net

Markup Language (PNML) [27]). The main relations specified in the transformation

are described as follows:520

• StateMachine2PetriNet (lines 3-18) generates a container element of type

PetriNet with attribute id from an element of type StateMachine with at-

tribute name, and vice versa in the opposite direction. Moreover, the correspon-

dence between the reference region of type Region and the reference pages

of type Page is defined.525

• State2Pattern (lines 20-41) maps simple states to a specific pattern. Since a

single element in the UMLSM domain induces the creation of a list of elements

in the GSPN domain, the relation enforces multiple patterns. In particular, for

each UMLSM State in a Region (see the reference subvertex), the following

GSPN elements (see the references objects) are created: an element s of type530

Place, an element s1 of type Transition (of kind “immediate”, marking an

immediate GSPN transition), and an element s2 of type Arc that links s and s1.

In the opposite direction, for each occurrence of the described GSPN pattern a

correspondent State is generated;

• StateActivity2Pattern (lines 43-72) considers states that involve elements535

of type Activity and add a pattern of elements to the base pattern defined for

simple states. In particular, the following elements are added: s3 of type Place,
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s4 of type Arc that links the previously created transition s2 and the place s4,

s5 of type Transition (of kind “exponential”, marking an exponential GSPN

transition), and s6 of type Arc that links s4 and s5. In the opposite direction,540

for each occurrence of the described GSPN pattern a correspondent State is

generated;

• Transition2Pattern (lines 74-120) relates transitions to a specific pattern.

In particular, for each UMLSM Transition in a Region (see the reference

transition), the following GSPN elements (see the references objects) are545

created: an element t of type Place, an element t1 of type Transition (of

kind “immediate”), an element t2 of type Arc that links t and t1, an element

t3 of type Arc that links t and the transition s1 (created from a simple state),

an element t4 of type Place, an element t5 of type Arc that links s1 and t4,

an element t6 of type Transition (of kind “immediate”), and an element t7550

of type Arc that links t4 and t6. In the opposite direction, for each occurrence

of the described GSPN pattern a correspondent Transition is generated;

• TransitionDaStep2Pattern (lines 122-146) relates UMLSM transitions an-

notated with the stereotype DaStep from the profile DAM and GSPN transitions

(of kind “immediate”). Moreover, the value of the attribute occurrenceProb555

is mapped to attribute weight, and vice versa.

3.4.2. GSPN subnets composition

The UMLSM-GSPN transformation in the previous section generates a separate GSPN

for each UMLSM. The set of GSPNs obtained in this way does not represent the entire

system as their behavior is not properly connected. These GSPNs can be considered560

to be subnets of the final system. It is therefore necessary to compose such subnets

by connecting them, so that the resulting GSPN represents a system scenario. In this

approach, we derive the composition of GSPN subnets from messages exchanged in

UMLSD.

Specifically, we need to consider two cases: when messages represent a synchronous565

or asynchronous call. In case of a synchronous call, as depicted in Figure 7a, we need
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(a) A synchronous message in GSPN (b) An asynchronous message in GSPN

Figure 7: GSPN subnets composition

to connect the GSPN immediate transition of the state in which the caller component

is currently positioned to the GSPN place of the state in which the called component

is positioned when receiving the message. The reply message resulting from a syn-

chronous call connects the last GSPN immediate transition representing the end of the570

called component behavior to the GSPN immediate transition on which a token was

waiting for the reply message. In the asynchronous case, shown in Figure 7b, the call

is represented similarly to the synchronous case with the important distinction that no

token will wait for a reply message as none is expected.

The mapping of UMLSD to GSPN is characterized by a one-to-pattern element map-575

ping, meaning that a UMLSD element is mapped to a pattern of GSPN elements. In

particular, starting from UMLSD, the corresponding GSPN is generated and vice versa.

Such implementation considers the formal definition of the unidirectional translation

of UMLSD in GSPN provided in [28]. With respect to the latter, we only consider

instantaneous messages (non delayed).580

For the sake of detailed illustration, a fragment of the UMLSD-GSPN bidirectional

transformation implemented via JTL is depicted in Listing 2.
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1 ...

2 relation MessageSynch2Pattern {

3 enforce domain uml m:umlsm::Message {585

4 messageSort="synchCall"

5 };

6 enforce domain pn p:ptnet::Page {

7 objects=s:ptnet::Place {}

8 };590

9 enforce domain pn p:ptnet::Page {

10 objects=s1:ptnet::Transition {

11 transitionKind="immediate"

12 }

13 };595

14 enforce domain pn p:ptnet::Page {

15 objects=s2:ptnet::Arc {

16 source=s:ptnet::Place {}

17 target=s1:ptnet::Transition {}

18 }600

19 };

20 enforce domain pn p:ptnet::Page {

21 objects=s3:ptnet::Arc {

22 source=c:ptnet::Transition {}

23 target=s:ptnet::Place {}605

24 }

25 };

26 enforce domain pn p:ptnet::Page {

27 objects=s4:ptnet::Arc {

28 source=s1:ptnet::Transition {}610

29 target=r:ptnet::Place {}

30 }

31 };

32 when {

33 State2Pattern(c, c);615

34 State2Pattern(r, r);

35 }

36 }

37

38 relation MessageAsynch2Pattern {620

39 enforce domain uml m:umlsm::Message {

40 messageSort="asynchCall"

41 };

42 enforce domain pn p:ptnet::Page {

... };625

43 enforce domain pn p:ptnet::Page {

... };

44 enforce domain pn p:ptnet::Page {

... };

45 enforce domain pn p:ptnet::Page {630

... };

46 enforce domain pn p:ptnet::Page {

... };

47 when { ... }

48 }635

49

50 relation MessageReply2Pattern {

51 enforce domain uml m:umlsm::Message {

52 messageSort="reply"

53 };640

54 enforce domain pn p:ptnet::Page {

55 objects=s:ptnet::Place {}

56 };

57 enforce domain pn p:ptnet::Page {

58 objects=s1:ptnet::Arc {645

59 source=r:ptnet::Transition {}

60 target=s:ptnet::Place {}

61 }

62 };

63 enforce domain pn p:ptnet::Page {650

64 objects=s2:ptnet::Arc {

65 source=s1:ptnet::Transition {}

66 target=c:ptnet::Place {}

67 }

68 };655

69 when {

70 State2Pattern(r, r);

71 State2Pattern(c, c);

72 }

73 }660

74 ...

Listing 2: A fragment of the UMLJASA-GSPN bidirectional transformation

The main relations specified in the transformation are described as follows:

• MessageSynch2Pattern (lines 2-36) maps messages to a specific pattern. Since a
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single element in the UMLSD domain induces the creation of a list of elements in the665

GSPN domain, the relation enforces multiple patterns. In particular, for each UMLSD

Message generated with a synchronous type of communication action (messageSort

= ”synchCall”, marking a synchronous message), the following GSPN elements (see

the references objects) are created: an element s of type Place, an element s1 of

type Transition (of kind “immediate”), an element s2 of type Arc that links s and670

s1, an element s3 of type Arc that links c (that represent the caller transition) and

s, and an element s4 of type Arc that links s1 () and r (that represent the receiver

place). The elements c and r are mapped by calling the relation State2Pattern

(from Listing 1) in the when clause. In the opposite direction, for each occurrence of

the described GSPN pattern a correspondent synchronous Message is generated;675

• MessageAsynch2Pattern (lines 38-48) maps UMLSD Message generated with an

asynchronous type of communication action (messageSort = ”asynchCall”, marking

an asynchronous message) to a specific pattern, similarly to the previous relation; In

the opposite direction, for each occurrence of the described GSPN pattern a corre-

spondent asynchronous Message is generated;680

• MessageReply2Pattern (lines 50-73) considers UMLSD reply messages (mes-

sageSort = ”reply”, marking a reply message) and generate a pattern of elements

in the GSPN domain. In particular, the following elements are added: s of type

Place, s1 of type Arc that links the receiver transition r and the place s, and s2

of type Arc that links the transition s1 and the caller place c. The elements c and685

r are mapped by calling the relation State2Pattern (from Listing 1) in the when

clause. In the opposite direction, for each occurrence of the described GSPN pattern

a correspondent reply Message is generated;

3.4.3. Static view (UMLCD) update

After the refactoring and analysis steps are performed on the GSPN, the execution in690

backward direction of the transformation propagates the changes from GSPN to UML.

This back propagation also affects the static view of the system, that is represented

by a UML Component Diagram (UMLCD). For example, when a replica of a sensor is
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created in GSPN, the corresponding new component should be automatically generated

in the UMLCD. In order to achieve this, we introduce additional relations updating the695

static view of the system, as reported in the Listing 3.

1 ...

2 relation Component2Page {

3 name:String;

4 enforce domain uml c:umlsm::Component700

{

5 name=name

6 };

7 checkonly domain pn p:ptnet::Page {

8 id=name705

9 };

10 }

11

12 relation Interface2Pattern {

13 enforce domain uml i:umlsm::Interface710

{

14 ownedOperation=o:umlsm::Operation {}

15 };

16 enforce domain uml receiver:umlsm::

Component {715

17 interfaceRealization=ir:umlsm::

InterfaceRealization {

18 supplier=i:umlsm::Interface {},

19 contract=i:umlsm::Interface {}

20 }720

21 };

22 enforce domain uml caller:umlsm::

Component {

23 packagedElement=d:umlsm::Dependency

{725

24 client=caller:umlsm::Component {},

25 supplier=i:umlsm::Interface {}

26 }

27 };

28 enforce domain pn p:ptnet::Page {730

29 objects=s:ptnet::Place {}

30 };

31 enforce domain pn p:ptnet::Page {

32 objects=s1:ptnet::Transition {

33 transitionKind="immediate"735

34 }

35 };

36 enforce domain pn p:ptnet::Page {

37 objects=s2:ptnet::Arc {

38 source=s:ptnet::Place {}740

39 target=s1:ptnet::Transition {}

40 }

41 };

42 enforce domain pn p1:ptnet::Page {

43 objects=s3:ptnet::Arc {745

44 source=c:ptnet::Transition {}

45 target=s:ptnet::Place {}

46 }

47 };

48 enforce domain pn p2:ptnet::Page {750

49 objects=s4:ptnet::Arc {

50 source=s1:ptnet::Transition {}

51 target=r:ptnet::Place {}

52 }

53 };755

54 when {

55 Component2Page(caller, p1);

56 Component2Page(receiver, p3);

57 }

58 where {760

59 s3.source.containerPage.id <>

60 s3.target.containerPage.id;

61 s4.source.containerPage.id <>

62 s4.target.containerPage.id;

63 }765

64 ...

Listing 3: A fragment of the UMLJASA-GSPN bidirectional transformation

The main relations specified in the transformation are described as follows:
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• Component2Page (lines 2-10) maps a UML Component to a GSPN Page. Follow-

ing the design assumption that a State Machine is created to describe the behaviour770

of a Component, this relation creates a correspondence between a Component in

UML and a GSPN subnet enclosed in a Page that contains the behaviour defined in

a State Machine. When executed in the backward direction, this relation generates a

new Component for each new Page added by the refactoring in GSPN.

• Interface2Pattern (lines 12-63) maps a UML pattern composed of an775

Interface, its realization and usage to a GSPN pattern defining a call operation

between components. Specifically, the UML pattern is composed of an Interface,

its ownedOperation and two Components, one receiving the call (receiver) and

the other performing it (caller). On the GSPN side, the relation matches the pat-

tern corresponding to a call operation between components (the pattern matches both780

synchronous and asynchronous calls as they are differentiated only by the presence

of a reply message). The when clause is used to ensure that the matched components

have been mapped to different pages. In order to guarantee that the matched call is

happening between two components, the where clause contains two constraints re-

quiring that source and target references of the Arcs s3 and s4 point to different785

Pages.

Next section shows how the approach is applied to an example scenario.

4. JASA at work

In this section, we present the approach in practice with the aim of illustrating the

JASA process and how it can be replicated by potential researchers and practitioners790

that would like to follow the same process on their own architecture.

The experiment is conducted by applying the approach to the Environmental Control

System (ECS) system example (as described in Section 4.1). First, the system has been

modelled by means of UML annotated with the MARTE DAM profile (as described in

Section 2). Then, in order to be used in the EMF environment, the involved models795

have been specified in their Ecore format. The approach has been executed within

the JTL framework; in particular, the UMLJASA-GSPN bidirectional transformation
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has been run in the forward direction to generate the GSPN models (as described in

Section 4.2); after performing the GSPN analysis, a set of refactoring actions have

been performed on the GSPNs on the basis of the obtained results (as described in800

Section 4.3). Finally, the UMLJASA-GSPN bidirectional transformation has been run

in the backward direction to propagate the changes and generate the updated UML

architecture (as described in Section 4.4).

4.1. Environmental Control System (ECS) modeling

The approach presented in the previous sections has been applied to a software sys-805

tem for the environmental control of a botanical garden. The Environmental Control

System (ECS) is responsible for the automated management of the artificial habitat pre-

served in greenhouses. A network of sensors periodically checks air temperature, air

humidity and soil humidity inside greenhouses. When sensors detect values exceeding

the thresholds defined for a given greenhouse, the system automatically restores the810

environment conditions activating irrigation and air conditioning systems as required.

ECS consists of seven software components: GreenhouseController is responsible for

checking environment conditions; TemperatureSensor, AirHumiditySensor and Soil-

HumiditySensor respectively measure air temperature, air humidity and soil humidity;

Database is queried to retrieve the thresholds defined for each monitored condition;815

AirConditioner can raise or decrease the air temperature inside a greenhouse; Mo-

bileApp notifies the user about certain events such as conditions exceeding the defined

thresholds.

We consider three use case scenarios of ECS, for which we provide the respective

UML Sequence Diagrams: Monitoring Conditions, in Figure 9a, in which a timer pe-820

riodically activates a procedure to check environment conditions, Remote Monitoring,

in Figure 9b, in which the air humidity is continuously monitored and the Greenhouse-

Controller notifies the user when the value exceeds the corresponding threshold, and

Managing Temperature, in Figure 9c, that defines the procedure for the activation of

the air conditioner when required. We assume that the complexity of a message param-825

eters and return types, as well as the width of their ranges, do not affect the behaviour

following that message.
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Moreover, the internal behavior of each software component is described by a State

Machine that is consistent with the interactions defined in the Sequence Diagrams.

The resulting State Machine diagram is shown in Figure 8.830

UML Transition and Message elements that may fail are annotated with the DaStep

stereotype from DAM, as depicted in Figures 8 and 9, respectively. This stereotype is

used here to define system failure modes and the probabilities of failures occurring in

a scenario, as follows: attribute kind is set to failure, as a consequence, the attribute

failure can be used to set the failure probability as the occurrenceProb real value.835

The considered models, specified in UML, are available online 7.

4.2. Analysis model generation

The first operational step of our approach consists in the execution (in the forward

direction) of the transformation presented in 3.4 (UMLJASA-GSPN) within the JTL

framework. For each scenario, from a Sequence Diagram and the set of involved840

State Machines, this execution generates a GSPN. The transformation UMLSM-GSPN

in Section 3.4.1 creates a GSPN subnet for each State Machine. As an example, Fig-

ure 11 shows a fragment of the GSPN obtained for the Managing Temperature scenario

(Figure 9c). The GSPN subnets visible in the figure are generated from the Temper-

atureSensor, AirConditioner and GreenhouseController State Machines in Figure 10,845

where colours are used to outline the subnets generated from the corresponding State

Machines. Such subnets are connected on the basis of the transformation UMLSD-

GSPN in Section 3.4.2.

In general, the composition of subnets obtained from this step is based on interactions

among components, as appearing in Sequence Diagrams. In particular, synchronous850

and asynchronous messages are mapped to the corresponding patterns presented in

Section 3.4.28.

7ECS UML models: https://github.com/SEALABQualityGroup/JASA/tree/master/

UML
8The GSPNs generated for each scenario are available at https://github.com/

SEALABQualityGroup/JASA/tree/master/GSPN.
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Figure 8: UML State Machine Diagram of the ECS components
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(a) The Monitoring Conditions scenario

(b) The Remote Monitoring scenario

(c) The Managing Temperature scenario

Figure 9: UML Sequence Diagrams of the ECS scenarios
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Figure 10: UML State Machines of the TemperatureSensor, AirConditioner and GreenhouseController com-

ponents
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Figure 11: Fragment of the GSPN generated for the Managing Temperature scenario
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4.3. Analysis results and refactoring

In this section, first we play with a simple case for checking whether patterns induce

differences in the system availability. Thereafter, we apply patterns to components on855

the basis of current practices and component role, as it will be explained in detail at

the end of the section. The result of patterns application is a unique static architecture

that subsumes different SD, hence different availability results for different scenarios

(in terms of operational profile and workload).

As a first step, we consider the GSPN obtained from the execution in the forward860

direction of the transformation to perform a steady state availability analysis. Given

an initial marking of a GSPN, and provided that every place of the net is bounded,

the reachability set is the set of all the markings reachable by sequences of transition

firings from the initial one. The reachability graph associated to a GSPN is a directed

graph whose nodes are the markings in the reachability set and each arc, connecting a865

marking M to a M ′ one, represents the firing of a transition enabled in M and leading

to M ′.

In general, availability metrics of an GSPN model can be defined as reward

functions on the reachability graph [29]. Let M0 be the initial marking, and

rM = {1 if M ∈ O, 0 if M ∈ F} be a state reward function that partitions the set of870

reachable markings RS(M0) into two sets: O, the set of operational system states,

and F , the set of system failure states. The probability of the system being in mark-

ing M at time instant t can be expressed as σM (t) = Pr {X(t) =M}. Steady state

probability can be computed as σM = limt→∞σM (t), and it represents the probabil-

ity of the system being in marking M at any time instant t > 0. The steady state875

availability of the GSPN is then defined taking into account the reward function and

the steady state probabilities of individual markings introduced before, as follows:

A∞ =
∑

M∈RS(M0)
rMσM =

∑
M∈O σM . The value of A∞ is to be interpreted as

the percentage of time the system is not in a failure state after running for a sufficiently

long time.880

System failure mode needs to be defined in order to discern operational states from

failure ones, and to exclusively assign the related markings to one among the O and F

subsets of reachable markings. The system is considered to be in a failure state when
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any of the state transitions annotated by the DaStep stereotype fails during execution.

As a consequence, in the GSPN obtained from the previous step, we define as failure885

states the markings reached from firing all the transitions having the loss suffix, as

they represent the occurrence of a failure.

The GreatSPN solver [30] is used to derive the reachability graph of markings in the

net and to compute the corresponding values of σM . In the initial marking of the net, a

token appears in the StandBy place of each component subnet, so that the component890

is ready to serve incoming requests. Immediate transitions representing failures are

marked with weights derived from the failure probabilities. Since we assume that the

operations belonging to the same component fail with the same probability, we report

in Table 1 the initial failure probabilities of every component in ECS.

TemperatureSensor 0.18

HumiditySensor 0.08

SoilHumiditySensor 0.07

Database 0.04

MobileApp 0.06

AirConditioner 0.23

Table 1: Initial failure probabilities of components in ECS

The steady state availability index can be computed by considering both the aforemen-895

tioned initial marking of the GSPN and the failure probabilities. The resulting indices

for the three scenarios we considered are reported in Table 2.

Monitoring Conditions 0.985392

Remote Monitoring 0.991672

Managing Temperature 0.977984

Table 2: Steady state availability of execution scenarios

In order to establish the effectiveness of the fault tolerance patterns presented in Sec-

tion 2.3, we apply each of them on the TemperatureSensor component in the Managing

Temperature scenario. The steady state availability resulting in each case is reported in900

Table 3. The results show, as expected, that the application of the fault tolerance pat-
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terns increased the overall availability of the scenario, with the particular observation

that Active Replication and Passive Replication induce the best improvements. Note

that even a change in the second decimal digit of availability metric is already consid-

ered relevant, since high availability systems usually require to be available up to the905

99.999% of the running time (this requirement is usually referred to as five nines) [31].

Initial (no refactoring) 0.977984

Semi-Active Replication 0.985605

Active Replication 0.988511

Semi-Passive Replication 0.98026

Passive Replication 0.989855

Table 3: Steady state availability of the Managing Temperature scenario after the application of fault toler-

ance patterns on TemperatureSensor

In order to further improve the system availability, we apply the Semi-Active Replica-

tion pattern to all the sensors components in the example application, as this pattern has

proved effective in the deployment of sensors in high availability contexts [32]. Since

the Active Replication pattern is widely used in practice to deploy high availability910

databases [33], we apply it to the Database component in each scenario. The results

obtained from this refactoring are discussed in Section 5.1.3. An additional reason

for the application of the Active and Semi-Active Replication patterns over their Pas-

sive and Semi-Passive counterparts resides in the stateless nature of the functionalities

provided by the sensors and the database in the example application we are consider-915

ing. Indeed, since the Passive and Semi-Passive Replication patterns accomplish error

masking by saving the current state of a component through checkpoints, their appli-

cation to stateless operations would only increase error masking complexity and cost

without providing additional benefits over the Active and Semi-Active Replication pat-

terns.920

4.4. Change propagation

After the analysis and refactoring step, the UMLJASA-GSPN bidirectional transforma-

tion is applied in backward direction on the refactored GSPN model. In particular,
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the refactored UML Sequence and State Machine Diagrams are generated for each

scenario. These new diagrams contain the changes applied to the GSPN during the925

refactoring step and propagated back by the execution of the transformation.

Moreover, the back propagation of changes generates additional software components.

The updated Component Diagram is reported in Figure 12b. In particular:

• Monitoring Conditions: the components TS Distributor, TemperatureSensor1,

HS Distributor, AirHumiditySensor1, SHS Distributor, and SoilHumiditySen-930

sor1 have been introduced by the application of the Semi-Active Replication pat-

tern on TemperatureSensor, AirHumiditySensor, and SoilHumiditySensor, while

the components DB Distributor, DB Comparator, and Database1 have been in-

troduced by the application of the Active Replication pattern on Database;

• Remote Monitoring: the components HS Distributor, AirHumiditySensor1, have935

been introduced by the application of the Semi-Active Replication pattern on

AirHumiditySensor, while the components DB Distributor, DB Comparator,

and Database1 have been introduced by the application of the Active Replica-

tion pattern on Database;

• Managing Temperature: the components TS Distributor, TemperatureSensor1,940

have been introduced by the application of the Semi-Active Replication pattern

on TemperatureSensor, while the components DB Distributor, DB Comparator,

and Database1 have been introduced by the application of the Active Replication

pattern on Database;

As a consequence of the back propagation, nine new state machines have been gen-945

erated by enforcing the StateMachine2PetriNet relation and its triggered re-

lations. The state machines corresponding to the original components are instead re-

stored without any modification. In addition, each state machine corresponding to

replicas in the Semi-Active Replication pattern (i.e., all sensors’ replicas) includes a

new discardOutput transition that represents the case in which no failure occurs950

in the original component and, as a consequence, the data computed by the replica must

be discarded. As an example, the UML State Machines generated (TS Distributor and
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(a) Initial Component Diagram of ECS

(b) Refactored Component Diagram of ECS

Figure 12: Component Diagrams before and after the change propagation
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TemperatureSensor1) and restored (TemperatureSensor) from the Semi-Active Replica-

tion pattern on the TemperatureSensor component are included in Figure 13.

The refactored UML Sequence Diagrams for the scenarios Monitoring Conditions, Re-955

mote Monitoring, and Managing Temperature are shown in Figures 14, 15, and 16,

respectively. In such diagrams, the application of the Semi-Active Replication pattern

can be noticed by the presence of the discardOutput message that is sent from

each sensor component (e.g., TemperatureSensor, AirHumiditySensor, SoilHumidity-

Sensor) to its corresponding replica. Moreover, alternative fragments are created to960

model the two cases in which a failure may or may not occur. Lifelines for the newly

created distributor and comparator components are included as well.

Finally, the obtained model is consistent with respect to the consistency relation defined

in the transformation, and it is compliant with the source metamodel.

Figure 13: UML State Machines generated from the back propagation of the Semi-Active Replication pattern

on TemperatureSensor

5. Results evaluation965

In this section we discuss the evaluation we have performed with the aim of answering

the following research questions:

RQ1: Does the approach generate an analyzable availability model from a soft-

ware architecture model?

RQ2: Does the approach generate a valid software architecture model back from970

an availability model?
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RQ3: Does the approach help to identify the fault tolerance patterns that better

improve the system availability?

The evaluation has been conducted by applying the approach to the Environmental

Control System (ECS) example application, described in Section 4. The software de-975

sign has been modeled by means of UML diagrams; then, for each scenario the follow-

ing process has been applied:

• the UMLJASA-GSPN bidirectional transformation has been executed in forward

direction: thus, a Sequence diagram and a set of State Machine diagrams have

been given as input and the corresponding GPSN has been obtained as output;980

• the resulting GPSN has been analyzed to obtain the steady state availability in-

dex, and it has been then refactored on the basis of the fault tolerance patterns

defined in Section 2.3;

• the UMLJASA-GSPN bidirectional transformation has been executed in backward

direction: thus, the changes performed on the GPSN have been propagated to the985

UML model.

5.1. Insights on Research Questions

In order to assess the approach according to the research questions, several measure-

ments and properties have been considered for each step of our evaluation. The results

of the performed experiments are discussed in the context of each research question on990

the basis of the selected evaluation criteria.

5.1.1. RQ1: Analizability of the generated analysis models

In order to answer this research question, we have observed the results obtained by

transforming the UML models in the corresponding GPSN models, as well as by ap-

plying the refactoring actions. For evaluating if the considered GSPN models can sup-995

port our analysis, we refer to a set of basic behavioral properties (as introduced in [34])

discussed as following.

Reachability:
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In order to decide if the considered GSPN is reachable, we have to establish if any state

of the modeled system is reachable from the initial state through a finite sequence of1000

transitions. Formally, it is the problem of finding if any given marking M is contained

in the set of markings reachable from the initial marking M0. This property is required

since the availability metrics we considered are defined as reward functions on the

reachability graph associated to the GSPN, as described in 4.3.

We verified the reachability of our GSPN models by using the GreatSPN tool, that is1005

able to compute reachability graphs where every marking in the net is reachable from

M0. In our experiment, we can observe that all the reachability graphs have been suc-

cessfully created. In Table 4, we report the cardinality of the reachability set RS(M0)

for each scenario. In particular, the Initial values refer to the GPSN models obtained

by applying the UMLJASA-GSPN bidirectional transformation, whereas the Refactored1010

values refer to the GSPN models after the refactoring described in Section 4.3. The

new elements introduced by the refactoring of the GSPN caused an increase in the car-

dinality of the reachability sets because they originated new markings. Since we were

able to compute finite reachability sets, we can assert that the application of the trans-

formation in forward direction and of the refactoring patterns have generated reachable1015

GSPN models.

Initial Refactored

Monitoring Conditions 73 152

Remote Monitoring 66 105

Managing Temperature 77 116

Table 4: The cardinality of the reachability set of the GSPNs

Boundedness:

A GSPN model is said to be bounded or safe if the number of tokens in each place does

not exceed a fixed number for any marking reachable from the initial marking M0.

This property is required for the steady state availability analysis as bounded GSPNs1020

are isomorphic to finite Markov Chains [35].

By considering that (i) a GSPN is bounded if and only if its reachability graph is fi-

nite [36], and (ii) we showed in Table 4 that finite reachability sets can be computed
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before and after the refactoring, we can assert that all the GSPNs (i.e., initial and refac-

tored ones) are bounded.1025

More generally, our transformation is designed so that the generated GSPNs cannot

contain transitions without input places. This property is a necessary condition for

boundedness. Moreover, none of the proposed refactorings introduces this type of

transitions.

Liveness:1030

This property is closely related to the complete absence of deadlocks. A GSPN is said

to be live if, for any reachable marking, it is possible to ultimately fire any transition of

the net through some further firing sequence.

Figure 17: GSPN subnet of the Temperature Sensor

In our experiment, we can observe that all the GSPNs (both initial and refactored)

are live, because from any reachable state it is possible to enable any transition by a1035

firing sequence. In particular, the transitions modeling failures are L1-live, as they

can be fired at least once in some firing sequence starting from the initial mark-

ing M0. As an example, the transition TS t getTemperatureData loss in Figure 17

is a L1-live one, as it can potentially fire only once, when at least one token is

in the place TS getTemperatureData e. All the other transitions in the GSPN are1040
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L3-live, since they can fire infinitely, as well as all transitions in Figure 17 except

TS t getTemperatureData loss. In general, liveness of obtained GSPNs can be checked

by the GreatSPN solver that we have adopted.

5.1.2. RQ2: Validity of the refactored architecture

In order to answer this research question, we have observed the results obtained by1045

transforming the refactored GSPN back to the UML software architecture. To evaluate

if the refactored architectural model is a still valid software architecture, we considered

a set of properties that are commonly used in the analysis of software architectures [37].

Correctness:

It is an external property of an architectural model and ensures that it fully realizes1050

the system specification. In order to evaluate the correctness of a refactored UML

model resulting from the application of the approach, we need to consider the following

aspects:

• We assume that the initial software architectural model is correct (i.e., it realizes

the system specification).1055

• The refactoring applied on the GSPN model obtained from the forward applica-

tion of the implemented UMLJASA-GSPN bidirectional transformation does not

break the conformance to the system requirements. In fact, the adopted fault

tolerance patterns make use of replicas and checkpoints techniques to provide

error masking, thus without altering the original functionalities of the refactored1060

component (as detailed in Section 3.3).

• The UMLJASA-GSPN bidirectional transformation is able to generate consistent

solutions with respect to the relations specified in the transformation itself. In

other words, the backward application of the transformation propagates changes

by correctly mapping the refactoring patterns on GPSN in refactoring patterns1065

in UML (i.e., without altering the original functionalities of the system). For

instance, when a replica is introduced in the GSPN (e.g., Semi-Active and Active

Replication pattern in Section 4), an additional state machine that contains the
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same states and transitions of the original component is introduced in the UML

model, as well as additional messages from/to the replicated component.1070

• Finally, this aspect is strictly related to the correctness of bidirectional trans-

formations. Formally, a bidirectional transformation T between two classes

of models, M and N , is characterized by two unidirectional transformations:
−→
T : M × N → N and

←−
T : M × N → M . T is said to be correct if for any

pair of models m ∈ M and n ∈ N , T (m,
−→
T (m,n)) and T (

←−
T (m,n), n) [38].1075

The capability of the JTL framework to correctly execute the transformation is

discussed in [12, 23]. As a proof of concept, by running our transformation on

forward and backward directions without any change on the example application,

the transformation generated the same pair of models.

Completeness:1080

This property is verified whether all necessary architectural elements are defined and

whether all design decisions are made. In order to evaluate the completeness of the

refactored UML model, let us to consider the following aspects:

• We assume that the initial software architectural model is complete.

• The refactoring applied on the obtained GSPN model operates only on compo-1085

nents with probability of failure, without eliminating or modifying other archi-

tectural elements, where changes performed on those components are limited

to the error handling. For example, in the Semi-Active Replication pattern de-

scribed in Section 3.3, the primary component is enriched exclusively with ele-

ments that allow sending messages to the backup component in order to signal1090

that no errors occurred and the output can be discarded.

• The UMLJASA-GSPN bidirectional transformation is able to preserve the com-

pleteness of the solution with respect to the relations specified in the transforma-

tion itself. The changes defined in the refactoring patterns are mapped in changes

involving only the corresponding components without eliminating or modifying1095

other architectural elements. For instance, the modification described above is
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translated in UML by means of adding a message in the corresponding Sequence

Diagram and a transition in the corresponding State Machine.

• Finally, this property is related to another property of bidirectional transforma-

tions, namely the hippocraticness [38]. A transformation T is said to be hip-1100

pocratic if for any model m ∈ M and n ∈ N , T (m,n) implies
−→
T (m,n) and

T (m,n) implies
←−
T (m,n). In our context, it means that the backward execution

of the UMLJASA-GSPN transformation does not modify any part of the UML

initial model that still complies, along the specified relation, with the refactored

GSPN. In other words, the transformation only modifies the portions of the UML1105

model where refactoring patterns have been applied in the related GSPN model

portions. The capability of the JTL framework to guarantee hippocraticness is

discussed in [12, 23].

Consistency:

It is an internal property of an architectural model ensuring that the defined architecture1110

does not contain contradicting information. In order to evaluate the consistency of the

refactored UML model, let us consider the following aspects:

• We assumed that the initial software architectural model is consistent.

• Examples of inconsistencies are inconsistent names, interfaces, and refinements

of architectural elements. The UMLJASA-GSPN bidirectional transformation1115

specifies the mapping between UML and GSPN elements by preserving the con-

sistency of names and structure (e.g., in the GPSN models the same names are

used for the corresponding elements). On our example application, indeed, we

observed that the generated architecture does not contain information that con-

tradicts the initial one.1120

• Finally, the JTL framework helps in guaranteeing this property. In fact, the in-

vertibility of a transformation can be severely affected in case of partial trans-

formations that do not cover all the concepts. The consequent information loss

may give place to unwanted behavior when the transformation is reversed. The
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traceability engine of JTL is able to preserve the missing information and restore1125

it, thus avoiding loss of information [39].

5.1.3. RQ3: Pattern selection for availability improvements

It is obvious that the application of any fault-tolerance pattern should improve the sys-

tem availability, as it will be shown and discussed in Table 5. It is, instead, less obvious

to identify the patterns that more effectively improve the system availability when ap-1130

plied to specific components within defined scenarios.

This research question aims at addressing such issue, by showing the effects on the

system availability of the application of fault tolerance patterns to different components

in different scenarios.

We define the following notation for the remaining of this section. We denote by: A01135

an initial architectural model; rftp(C) a single refactoring action, which consists in ap-

plying a single fault tolerance pattern ftp to a specific component C; R a refactoring

strategy, that is the joint application of multiple rftp actions to specific components

(R = {rftp(C)}). A refactoring application obviously leads to a refactored architec-

ture A′, namely: R(A0)→ A′.1140

The system availability will be denoted by Avail, and it is intended to be computed

on a specific architecture A, in the context of a specific execution scenario denoted by

ESx (where x is the scenario name, e.g., MT stands for Managing Temperature in our

example application), while varying the failure probability (FP y
I ) of the architectural

component y within the range I .1145

We start by investigating how changes in failure probabilities affect the improvements

introduced by the application of the fault tolerance patterns in a specific execution sce-

nario. Figure 18 shows how the steady state availability of the Managing Temperature

scenario (ESMT ) is altered when varying the failure probability of the Temperature-

Sensor component (FPTS) in the interval [0.01, 0.5].1150

The figure shows the availability Avail(Ai, ESMT , FPTS
[0.01,0.5]) computed for five al-

ternative architectures:

i) the initial architecture A0, in red, on which no refactoring action is applied;
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ii) the architecture A1, in heavy green, on which the refactoring action rSAR (i.e.,

Semi-Active Replication pattern) is applied on the TemperatureSensor compo-1155

nent (i.e., R(A0)→ A1, where R = {rSAR(TS)});

iii) the architecture A2, in light green, on which the refactoring action rAR (i.e.,

Active Replication pattern) is applied on the TemperatureSensor component (i.e.,

R(A0)→ A2, where R = {rAR(TS)});

iv) the architecture A3, in heavy blue, on which the refactoring action rSPR (i.e.,1160

Semi-Passive Replication pattern) is applied on the TemperatureSensor compo-

nent (i.e., R(A0)→ A3, where R = {rSPR(TS)});

v) the architecture A4, in light blue, on which the refactoring action rPR (i.e., Pas-

sive Replication pattern) is applied on the TemperatureSensor component (i.e.,

R(A0)→ A4, where R = {rPR(TS)}).1165

The results show that, while the Active Replication and Semi-Active Replication pat-

terns perform better with small failure probabilities values, the Passive Replication and

Semi-Passive Replication patterns are more robust to an increase in the failure prob-

ability of the components they are applied on. This figure shows how our approach

can support the designer decisions to identify the best refactoring actions with respect1170

to the variation of system parameters. More specifically, in this case the Semi-Active

Replication pattern appears to be the best choice when the failure probability value of

TemperatureSensor is within the range [0.01, 0.115], whereas, for higher values, Pas-

sive Replication pattern should be preferred.

In order to move from single refactoring actions to combined ones, for each consid-1175

ered scenario, we have first measured the availability on the GPSN model before and

after applying the refactoring changes mentioned at the end of Section 4.3, namely

R(A0) → A′, where R = {rSAR(TS), rSAR(HS), rSAR(SHS), rAR(DB)}. The

observed steady state availability indexes resulting from the analysis are reported in

Table 5. The availability is computed on the Monitoring Conditions (ESMC), Remote1180

Monitoring (ESRM ), and Managing Temperature (ESMT ) scenarios by considering

the specific failure probabilities reported in Table 1. The measures highlight that the
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Figure 18: Availability of Managing Temperature scenario vs. TemperatureSensor failure probability under

single refactoring actions

application of the fault tolerance patterns has improved, as expected, the availability in

each considered scenario.

A0 A′

Monitoring Conditions 0.985392 0.990771

Remote Monitoring 0.991672 0.994207

Managing Temperature 0.977984 0.993316

Table 5: Steady state availability computed on the initial (A0) and refactored (A′) architecture

The Managing Temperature scenario had an improvement of 15.332 × 10−3 after the1185

application of the Semi-Active Replication pattern on TemperatureSensor, and the Ac-

tive Replication pattern on the Database component. The Monitoring Conditions sce-

nario had an improvement of 5.379 × 10−3 after the application of the Semi-Active

Replication pattern on TemperatureSensor, HumiditySensor and SoilHumiditySensor,

and the Active Replication pattern on the Database component. Finally, the Remote1190

Monitoring scenario had an improvement of 2.535 × 10−3 after the application of the
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Semi-Active Replication pattern on HumiditySensor, and the Active Replication pattern

on the Database component.

Then, we performed a sensitivity analysis of availability, for each considered scenario,

by varying in the interval [0.01, 0.5] the failure probability of each refactored compo-1195

nent involved in the scenarios.

In what follows, we show how some changes in the failure probabilities of components

affect both the initial architecture A0 and the refactored architecture A′ obtained by ap-

plyingR defined above to A0. In particular, Figures 19, 20, and 21 report the results for

the Monitoring Conditions, Remote Monitoring, and Managing Temperature scenarios,1200

respectively.

The curve notation is the same as for Figure 18. For example, in Figure 19 we depict

Avail(A0, ES
MT , FPTS

[0.01,0.5]) and Avail(A0, ES
MT , FPDB

[0.01,0.5]) as solid curves,

whereasAvail(A′, ESMT , FPTS
[0.01,0.5]) andAvail(A′, ESMT , FPDB

[0.01,0.5]) as dashed

curves, respectively. For the other two figures, of course, the scenario and the related1205

involved components are different. For the sake of clarity, in the legend of each fig-

ure we indicate, beside the architecture name, the involved component whose failure

probability varies to obtain that specific curve.

The graphs clearly show improvements of the availability in all scenarios. Moreover,

by comparing the effects of refactored components with those of original ones, we can1210

see that, while the failure probability increases, the availability decreases more slowly

after the refactoring. In other words, we can observe that the architecture A’ can better

withstand an increase in failure probabilities than A0 does.

Finally, we remark that this analysis provides further support to designers, by distin-

guishing the robustness of a refactoring strategy vs. failure probability variations of1215

different components. For example, Figure 19 shows thatR is more effective on the ar-

chitecture A′ when the TemperatureSensor failure probability increases with respect to

when the Database one increases. Indeed, this effect is emphasized by the increasing

distance between solid and dashed red curves, whereas the distance between orange

curves remains more or less the same all across the Database probability failure range.1220
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Figure 19: Availability of Managing Temperature scenario on the initial (A0) and refactored (A′) architecture

vs. failure probabilities under combined refactoring actions
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Figure 20: Availability of Monitoring Conditions scenario on the initial (A0) and refactored (A′) architecture

vs. failure probabilities under combined refactoring actions
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Figure 21: Availability of Remote Monitoring scenario on the initial (A0) and refactored (A′) architecture

vs. failure probabilities under combined refactoring actions

5.2. Threats to validity

In this section, potential threats to validity associated with the experimental evaluation

are discussed, by distinguishing internal, external, construct and conclusion validity.

Internal validity concerns any extraneous factor that could influence our results. In

general, the implementation of the approach could be defective, as well as the results1225

of the analysis could be inaccurate. We mitigated these threats: i) by specifying our

transformation on the base of already existing mapping from Sequence Diagrams and

Statecharts to GSPNs [28]; ii) by considering already existing fault tolerance patterns

[15]; iii) by considering well-established methods for stochastic availability assessment

[29]; iv) by delegating the availability analysis to an external solver [30]. Obviously,1230

all the above actions mitigate the possibility of introducing faults in the model transfor-

mation, because it is based on solid specifications. We recall here that, by construction,

the transformation only produces, as output, models conforming to both metamodels,

although we have not performed any formal proof on the semantic correctness of the
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results.1235

External validity refers to the generalizability of the obtained results. With reference

to the model transformation, we have adopted standard metamodels, thus the approach

can be applied to any other conforming model. The analysis can be generalized to other

models, even though the considered fault tolerance patterns obviously change their

effectiveness depending on the specific software system. However, our approach can be1240

extended to apply additional patterns at the cost of specifying them in GSPN. Finally,

the size of the example application considered here is not very large, but complex

enough to demonstrate the effectiveness of the approach. Nothing can be asserted about

the scalability of the approach on large size architectures, which remains one of our

future objectives. However, we remark that our approach is intended to be used within1245

a decisional process that usually is not constrained by hard real-time requirements,

like it could have been the assessment of availability at runtime. Hence, even several

hours of processing time could represent a reasonable cost to be afforded in practice

for exploring a solution space difficult to inspect without automation.

Construct validity concerns the validity of our results with respect to the evaluation1250

criteria. As said, we considered well-know methodologies and methods existing in

literature both for the transformation specification and the availability analysis. This

mitigates the presence of factors that can compromise the validity of the experiment

and of the results.

Conclusion validity concerns the reliability of the measures that, in this case, refers to1255

the reproducibility of the results. In order to ensure that our results are reproducible, we

repeated each measurement three times and made sure that there were no differences

between the measured values with an approximation of 10−5. The artifacts considered

in this experiment are supplied via a GitHub repository 9, and the experiment can be

reproduced locally within the JTL framework.1260

9https://github.com/SEALABQualityGroup/JASA
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6. Related Work

Several approaches have been introduced in the last few years to derive analysis mod-

els from annotated software models. Bondavalli et al. [40] represents one of the first

attempts at enriching a UML design to specify dependability aspects. The authors de-

fine UML extensions to generate Stochastic Petri Net models for dependability analysis1265

automatically. High-level SPN models are derived from UML structural diagrams and

later refined using UML behavioral specifications. The transformation relies upon an

intermediate model, and no standard UML profiles are employed since none were avail-

able at the time of publication. In [41], Huszer et al. propose a transformation of UML

statechart diagrams into Stochastic Reward Nets (SRN) to conduct a performance and1270

dependability analysis. The transformation is defined as a set of SRN patterns, and the

dependability analysis is performed under erroneous state and faulty behavior assump-

tions. Mustafiz et al. [42] also present a mapping between a probabilistic extension

of statecharts and a Markov chain model for quantitative assessment of safety and re-

liability. Bernardi et al. [26] propose a transformation of UML sequence, statechart1275

and deployment diagrams into a GSPN model for performability analysis. Software

models are annotated using the former standard UML SPT profile. Our bidirectional

transformation is based on the mechanisms related to statechart transformation as for-

mally specified in [26], which we have implemented in JTL. By taking advantage of

bidirectional transformations, the designer can automatically propagate the refactoring1280

performed on the analysis model back to the UML model.

On top of automated derivation of analysis models from software models, several ap-

proaches have been built for multi-objective software architecture optimization driven

by non-functional attributes. None of these approaches explicitly consider availabil-

ity as a target, even though some of them consider failure probabilities of components1285

and/or platform devices.

In particular, in [43] an evolutionary algorithm is introduced for optimizing perfor-

mance, reliability and cost. Failure probabilities are associated to hardware connectors

only, and a discrete-time Markov chain is generated to calculate the probability for the

whole system to be in a failure state. Hence, this approach considers different model1290
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elements to be subject to failures, as well as a different non-functional target property

with respect to our work. Moreover, the architecture refactoring actions in [43] are

not specifically targeted to fault tolerance as in our case, but rather generic refactoring

actions, such as component replication. These differences about target properties and

non-specific fault tolerant actions remain in other similar works that have appeared in1295

the context of architecture optimization, such as [44].

In the context of bidirectional model transformations, a round-trip engineering process

between models representing different views of the same system is formally defined in

[45]. In the performance analysis domain, in a previous paper [9], we have introduced a

similar approach to the one presented in this paper. In particular, we have defined a bidi-1300

rectional model transformation between UML software models and Queueing Network

(QN) performance models. The forward transformation path generates the performance

model from the initial software model, whereas the backward one is used to generate,

after the analysis, a new software model from the modified version of the performance

model. In [46] two methods to tackle the problem of deriving architectural changes1305

from model-based performance analysis results have been compared: (i) to perform

refactoring on the software side by detecting and solving performance antipatterns, or

(ii) to modify the analysis model using bidirectional model transformations to induce

architectural changes. This represents an interesting study for reasoning on the pros

and cons of modifying a non-functional model as opposite to applying modifications1310

to a software architectural model.

In [47], the authors propose principles to use fUML (Foundational Semantics for Ex-

ecutable UML Models) and Alf (Action Language for fUML) as a simulation envi-

ronment. However, this approach provides only the structural modeling constructs of

UML, whereas the ability to model behavior is limited to UML activities. Hence, in1315

order to exploit the simulation environment, availability parameters (such as the failure

probabilities) should be defined within the modeling language and the simulation en-

gine could require to be extended to process them. As opposite, the use of languages as

DAM that natively supports the definition of dependability parameters, coupled with

transformations towards analysis models like GSPNs, does not require to extend the1320

modeling language and the solution/simulation engine. Finally, this process would be
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subject to scalability problems, as pointed in [48, 49].

To the best of our knowledge, this is the first paper proposing an automated propagation

of changes performed on an availability model back to an architectural model. Even

though the scope of this paper is limited to the modeling notation context considered1325

here (i.e., UML-DAM and GSPNs), our approach represents a first step towards the

usage of bidirectional transformations for closing a round-trip process for software

availability modeling and analysis.

7. Conclusion

In this paper, we proposed JASA, a model-driven framework that supports a round-1330

trip availability analysis process based on software architectural refactoring. We used

bidirectional model transformations to map software architectures represented by UML

models to GSPN analysis models and vice versa. In fact, after the analysis, the obtained

GSPN is modified according to a proposed catalog of refactoring based on well-known

fault tolerance patterns. Finally, the changes are back propagated to the software ar-1335

chitecture with the aim of improving the software availability. The effectiveness of

our approach has been demonstrated on an Environmental Control System, in terms of

ability to generate analyzable availability models from software architectures and valid

software architectures from availability models. Also, we showed how to select more

effective fault-tolerance patterns in different execution scenarios.1340

Although we considered a set of well-known fault tolerance refactoring techniques, the

approach can be extended to support further user-defined refactoring actions and to au-

tomate the application of such actions on GSPN models completely. In this respect,

the bidirectional model transformation needs to be modified in order to cope with a

larger set of relationships. As a possible consequence of this modification, the change1345

propagation from analysis to architectural models may result in the generation of mul-

tiple architectural alternatives, because a single refactoring action in a GSPN can be

mapped in more than one refactored architectural model. This is our main future work

direction, where we can still exploit the JTL transformation engine that is able to sup-

port non-bijective mappings by generating all the alternative solutions according to the1350
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specification. In the same direction, a further challenge for the future is to introduce a

human-assisted process for choosing among multiple suggested alternatives.

Finally, another line of future investigation encompasses the extension of the proposed

methodology to further non-functional requirements such as reliability and safety.
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