90 research outputs found

    Structure integrity analysis on nickel-diamond blade in dicing of hard-brittle ceramic die

    Get PDF
    Dicing operation in cutting hard-brittle ceramic die using nickel-diamond blade causes cracked or chipped die, accelerated tool wear and, ultimately, shortage of blade lifetime. This study aims to analyse the structural integrity of dicing blade in terms of tool wear, surface roughness, microstructure and elements during dicing. The measurements of wear blade on the blade are made by confocal microscope, whereas surface and elemental analyses are carried out with EDX SEM. Results show that the volumetric wear rate of blade is 20%, similar to roughness. The microstructure of the blade changes with occurrence of Aluminium owing to abrasive wear mechanism during cutting

    Numerical Simulation of Laser Processing Materials: An Engineering Approach

    Get PDF
    The following chapter aims at giving an overview of the use of numerical simulation in the field of laser processing. Indeed, the past two decades saw an increasing demand for lasers in various areas such as healthcare, microelectronics, cartography, optoelectronics, aeronautics, etc. Thus, the comprehension of the laser-material interaction and the removal mechanism became primordial to predict and improve the efficiency of a process. After a nonexhaustive literature review, two simulation approaches (Finite Element and Design Of Experiment, DOE) will be presented to demonstrate the importance of numerical simulation in laser applications

    Fiabilité de l’underfill et estimation de la durée de vie d’assemblages microélectroniques

    Get PDF
    Abstract : In order to protect the interconnections in flip-chip packages, an underfill material layer is used to fill the volumes and provide mechanical support between the silicon chip and the substrate. Due to the chip corner geometry and the mismatch of coefficient of thermal expansion (CTE), the underfill suffers from a stress concentration at the chip corners when the temperature is lower than the curing temperature. This stress concentration leads to subsequent mechanical failures in flip-chip packages, such as chip-underfill interfacial delamination and underfill cracking. Local stresses and strains are the most important parameters for understanding the mechanism of underfill failures. As a result, the industry currently relies on the finite element method (FEM) to calculate the stress components, but the FEM may not be accurate enough compared to the actual stresses in underfill. FEM simulations require a careful consideration of important geometrical details and material properties. This thesis proposes a modeling approach that can accurately estimate the underfill delamination areas and crack trajectories, with the following three objectives. The first objective was to develop an experimental technique capable of measuring underfill deformations around the chip corner region. This technique combined confocal microscopy and the digital image correlation (DIC) method to enable tri-dimensional strain measurements at different temperatures, and was named the confocal-DIC technique. This techique was first validated by a theoretical analysis on thermal strains. In a test component similar to a flip-chip package, the strain distribution obtained by the FEM model was in good agreement with the results measured by the confocal-DIC technique, with relative errors less than 20% at chip corners. Then, the second objective was to measure the strain near a crack in underfills. Artificial cracks with lengths of 160 μm and 640 μm were fabricated from the chip corner along the 45° diagonal direction. The confocal-DIC-measured maximum hoop strains and first principal strains were located at the crack front area for both the 160 μm and 640 μm cracks. A crack model was developed using the extended finite element method (XFEM), and the strain distribution in the simulation had the same trend as the experimental results. The distribution of hoop strains were in good agreement with the measured values, when the model element size was smaller than 22 μm to capture the strong strain gradient near the crack tip. The third objective was to propose a modeling approach for underfill delamination and cracking with the effects of manufacturing variables. A deep thermal cycling test was performed on 13 test cells to obtain the reference chip-underfill delamination areas and crack profiles. An artificial neural network (ANN) was trained to relate the effects of manufacturing variables and the number of cycles to first delamination of each cell. The predicted numbers of cycles for all 6 cells in the test dataset were located in the intervals of experimental observations. The growth of delamination was carried out on FEM by evaluating the strain energy amplitude at the interface elements between the chip and underfill. For 5 out of 6 cells in validation, the delamination growth model was consistent with the experimental observations. The cracks in bulk underfill were modelled by XFEM without predefined paths. The directions of edge cracks were in good agreement with the experimental observations, with an error of less than 2.5°. This approach met the goal of the thesis of estimating the underfill initial delamination, areas of delamination and crack paths in actual industrial flip-chip assemblies.Afin de protéger les interconnexions dans les assemblages, une couche de matériau d’underfill est utilisée pour remplir le volume et fournir un support mécanique entre la puce de silicium et le substrat. En raison de la géométrie du coin de puce et de l’écart du coefficient de dilatation thermique (CTE), l’underfill souffre d’une concentration de contraintes dans les coins lorsque la température est inférieure à la température de cuisson. Cette concentration de contraintes conduit à des défaillances mécaniques dans les encapsulations de flip-chip, telles que la délamination interfaciale puce-underfill et la fissuration d’underfill. Les contraintes et déformations locales sont les paramètres les plus importants pour comprendre le mécanisme des ruptures de l’underfill. En conséquent, l’industrie utilise actuellement la méthode des éléments finis (EF) pour calculer les composantes de la contrainte, qui ne sont pas assez précises par rapport aux contraintes actuelles dans l’underfill. Ces simulations nécessitent un examen minutieux de détails géométriques importants et des propriétés des matériaux. Cette thèse vise à proposer une approche de modélisation permettant d’estimer avec précision les zones de délamination et les trajectoires des fissures dans l’underfill, avec les trois objectifs suivants. Le premier objectif est de mettre au point une technique expérimentale capable de mesurer la déformation de l’underfill dans la région du coin de puce. Cette technique, combine la microscopie confocale et la méthode de corrélation des images numériques (DIC) pour permettre des mesures tridimensionnelles des déformations à différentes températures, et a été nommée le technique confocale-DIC. Cette technique a d’abord été validée par une analyse théorique en déformation thermique. Dans un échantillon similaire à un flip-chip, la distribution de la déformation obtenues par le modèle EF était en bon accord avec les résultats de la technique confocal-DIC, avec des erreurs relatives inférieures à 20% au coin de puce. Ensuite, le second objectif est de mesurer la déformation autour d’une fissure dans l’underfill. Des fissures artificielles d’une longueuer de 160 μm et 640 μm ont été fabriquées dans l’underfill vers la direction diagonale de 45°. Les déformations circonférentielles maximales et principale maximale étaient situées aux pointes des fissures correspondantes. Un modèle de fissure a été développé en utilisant la méthode des éléments finis étendue (XFEM), et la distribution des contraintes dans la simuation a montré la même tendance que les résultats expérimentaux. La distribution des déformations circonférentielles maximales était en bon accord avec les valeurs mesurées lorsque la taille des éléments était plus petite que 22 μm, assez petit pour capturer le grand gradient de déformation près de la pointe de fissure. Le troisième objectif était d’apporter une approche de modélisation de la délamination et de la fissuration de l’underfill avec les effets des variables de fabrication. Un test de cyclage thermique a d’abord été effectué sur 13 cellules pour obtenir les zones délaminées entre la puce et l’underfill, et les profils de fissures dans l’underfill, comme référence. Un réseau neuronal artificiel (ANN) a été formé pour établir une liaison entre les effets des variables de fabrication et le nombre de cycles à la délamination pour chaque cellule. Les nombres de cycles prédits pour les 6 cellules de l’ensemble de test étaient situés dans les intervalles d’observations expérimentaux. La croissance de la délamination a été réalisée par l’EF en évaluant l’énergie de la déformation au niveau des éléments interfaciaux entre la puce et l’underfill. Pour 5 des 6 cellules de la validation, le modèle de croissance du délaminage était conforme aux observations expérimentales. Les fissures dans l’underfill ont été modélisées par XFEM sans chemins prédéfinis. Les directions des fissures de bord étaient en bon accord avec les observations expérimentales, avec une erreur inférieure à 2,5°. Cette approche a répondu à la problématique qui consiste à estimer l’initiation des délamination, les zones de délamination et les trajectoires de fissures dans l’underfill pour des flip-chips industriels

    Wireless Nano and Molecular Scale Neural Interfacing

    Get PDF
    Nanoscale circuits and sensors built from silicon nanowires, carbon nanotubes and other devices will require methods for unobtrusive interconnection with the macroscopic world to fully realise their potential; the size of conventional wires precludes their integration into dense, miniature systems. The same wiring problem presents an obstacle in our attempts to understand the brain by means of massively deployed nanodevices, for multiplexed recording and stimulation in vivo. We report on a nanoelectromechanical system that ameliorates wiring constraints, enabling highly integrated sensors to be read in parallel through a single output. Its basis is an effect in piezoelectric nanomechanical resonators that allows sensitive, linear and real-time transduction of electrical potentials. We interface multiple signals through a mechanical Fourier transform using tuneable resonators of different frequency and extract the signals from the system optically. With this method we demonstrate the direct transduction of neuronal action potentials from an extracellular microelectrode. We further extend this approach to incorporate nanophotonics for an all-optical system, coupled via a single optical fibre. Here, the mechanical resonators are both driven and probed optically, but modulated locally by the voltage sensors via the piezoelectric effect. Such piezophotonic nanoelectromechanical systems may be integrated with nanophotonic resonators, allowing concordant multiplexing in both the radiofrequency and optical bandwidths. In principle, this would allow billions of sensor channels to be multiplexed on an optical fibre. With view to eventually integrating such technology into a neural probe, we develop fabrication methods for crafting wired silicon neural probes via photolithography and electron beam lithography. Finally, to complement recording, we propose novel ideas for wireless, multiplexed neural stimulation through the use of radiofrequency-sensitive molecular scale resonators

    Doctor of Philosophy

    Get PDF
    dissertationToday, we are implanting electrodes into many different parts of the peripheral and central nervous systems for the purpose of restoring function to people with nerve injury or disease. As technology and manufacturing continue to become more advanced, ne

    Nanochips and medical applications

    Get PDF
    Ο όρος «νανοτσιπ» αναφέρεται σε ένα ολοκληρωμένο κύκλωμα (τσιπ) με νανοϋλικά και δομές στη νανοκλίμακα (1-100nm). Ένα ολοκληρωμένο κύκλωμα είναι μια συλλογή ηλεκτρονικών εξαρτημάτων, όπως τρανζίστορ, δίοδοι, πυκνωτές και αντιστάσεις. Τα σημερινά τρανζίστορ είναι στη νανοκλίμακα, αλλά μπορούν να τροποποιηθούν με νανοδομές για την κατασκευή βιοαισθητήρων που μπορούν να πραγματοποιούν ανίχνευση βιομορίων, όπως ιόντα, μόρια DNA, αντισώματα και αντιγόνα με μεγάλη ευαισθησία. Υλικά και Μέθοδοι: Πραγματοποιήθηκε συστηματική αναζήτηση βιβλιογραφίας με χρήση των ηλεκτρονικών βάσεων δεδομένων PubMed, Google Scholar και Scopus για την ανάπτυξη και χρήση νανοτσίπ σε ιατρικές εφαρμογές. Για τον προσδιορισμό των σχετικών εργασιών, τα κριτήρια συμπερίληψης αναφέρονται σε άρθρα στην αγγλική γλώσσα, άρθρα βιβλιογραφικού περιεχομένου ή/και έρευνών. Τα κριτήρια αποκλεισμού ήταν άρθρα εφημερίδων, περιλήψεις συνεδρίων και επιστολές. Αποτελέσματα: Τεχνικές in-vivo και in-vitro έχουν χρησιμοποιηθεί για την ανίχνευση μορίων DNA, ιόντων, αντισωμάτων, σημαντικών πρωτεϊνών και καρκινικών δεικτών, όχι μόνο από δείγματα αίματος αλλά και από ιδρώτα, σάλιο και άλλα βιολογικά υγρά. Διαγνωστική εφαρμογή των νανοτσίπ αποτελεί και η ανίχνευση πτητικών οργανικών ενώσεων μέσω τεστ εκπνεόμενης αναπνοής. Υπάρχουν και αρκετές θεραπευτικές εφαρμογές αυτών των συσκευών ημιαγωγών όπως τσιπ διασύνδεσης εγκεφάλου-υπολογιστή για παραλυτικές ή επιληπτικές καταστάσεις, κατασκευή «βιονικών» οργάνων όπως τεχνητός αμφιβληστροειδής, τεχνητό δέρμα και ρομποτικά προθετικά άκρα για ακρωτηριασμένους ή ρομποτική χειρουργική. Συμπέρασμα: Η χρήση των νανοτσίπ στην ιατρική είναι ένας αναδυόμενος τομέας με αρκετές θεραπευτικές εφαρμογές όπως η διάγνωση, η παρακολούθηση της υγείας και της φυσικής κατάστασης και η κατασκευή «βιονικών» οργάνων.Background: The term “nanochip” pertains to an integrated circuit (chip) with nanomaterials and components in the nano-dimension (1-100nm). An integrated circuit is essentially a collection of electronic components, like transistors, diodes, capacitors, and resistors. Current transistors are in the nanoscale but can also be modified with nanostructures like nanoribbons and nanowires to manufacture biosensors that can perform label-free, ultrasensitive detection of biomolecules like ions, DNA molecules, antibodies and antigens. Materials and Methods: A systematic literature search was conducted using the electronic databases PubMed, Google Scholar and Scopus for the development and use of nanochips in medical applications. For the identification of relevant papers, the inclusion criteria referred to articles in the English language, review and/or research articles. The exclusion criteria were newspaper articles, conference abstracts and letters. Results: In-vivo and In-vitro techniques have been used for detection of DNA molecules, ions, antibodies, important proteins, and tumor markers, not only from blood samples but also from sweat, saliva and other biological fluids. Another diagnostic application of nanochips is detection of volatile organic compounds via a breath test. There are also several therapeutic applications of these semiconductor devices like brain-computer interface chips for paralytic or epileptic conditions, manufacture of “bionic” organs like artificial retinas, artificial skin and robotic prostheses for amputees or robotic surgery. Conclusion: The use of nanochips in medicine is an emerging field with several therapeutic applications like diagnostics, health and fitness monitoring, and manufacture of “bionic” organs

    Yuki shiran jiko soshikika tanbunshimaku no kiso bussei oyobi oyo ni kansuru kenkyu

    Get PDF
    制度:新 ; 報告番号:甲2813号 ; 学位の種類:博士(工学) ; 授与年月日:2009/3/15 ; 早大学位記番号:新503

    Fine Grained Robotics

    Get PDF
    Fine grained robotics is the idea of solving problems utilizing multitudes of very simple machines in place of one large complex entity. Organized in the proper way, simple machines and simple behaviors can lead to emergent solutions. Just as ants and termites perform useful work and build communal structures, gnat robots can solve problems in new ways. This notion of collective intelligence, married with technologies for mass-producing small robots very cheaply will blaze new avenues in all aspects of everyday life. Building gnat robots involves not only inventing the components from which to put together systems but also developing the technologies to produce the components. This paper analyzes prototype microrobotic systems, specifically calculating torque and power requirements for three locomotion alternatives (flying, walking and swimming) for small robots. With target specifications for motors for these systems, we then review technology options and bottlenecks and sort through the tree of possibilities to pick and appropriate path along which we plan to proceed.MIT Artificial Intelligence Laborator

    New Approaches in Automation and Robotics

    Get PDF
    The book New Approaches in Automation and Robotics offers in 22 chapters a collection of recent developments in automation, robotics as well as control theory. It is dedicated to researchers in science and industry, students, and practicing engineers, who wish to update and enhance their knowledge on modern methods and innovative applications. The authors and editor of this book wish to motivate people, especially under-graduate students, to get involved with the interesting field of robotics and mechatronics. We hope that the ideas and concepts presented in this book are useful for your own work and could contribute to problem solving in similar applications as well. It is clear, however, that the wide area of automation and robotics can only be highlighted at several spots but not completely covered by a single book
    corecore