4,616 research outputs found

    An architecture for ethical robots inspired by the simulation theory of cognition

    Get PDF
    The expanding ability of robots to take unsupervised decisions renders it imperative that mechanisms are in place to guarantee the safety of their behaviour. Moreover, intelligent autonomous robots should be more than safe; arguably they should also be explicitly ethical. In this paper, we put forward a method for implementing ethical behaviour in robots inspired by the simulation theory of cognition. In contrast to existing frameworks for robot ethics, our approach does not rely on the verification of logic statements. Rather, it utilises internal simulations which allow the robot to simulate actions and predict their consequences. Therefore, our method is a form of robotic imagery. To demonstrate the proposed architecture, we implement a version of this architecture on a humanoid NAO robot so that it behaves according to Asimov's laws of robotics. In a series of four experiments, using a second NAO robot as a proxy for the human, we demonstrate that the Ethical Layer enables the robot to prevent the human from coming to harm in simple test scenarios

    Higher-level Knowledge, Rational and Social Levels Constraints of the Common Model of the Mind

    Get PDF
    In his famous 1982 paper, Allen Newell [22, 23] introduced the notion of knowledge level to indicate a level of analysis, and prediction, of the rational behavior of a cognitive articial agent. This analysis concerns the investigation about the availability of the agent knowledge, in order to pursue its own goals, and is based on the so-called Rationality Principle (an assumption according to which "an agent will use the knowledge it has of its environment to achieve its goals" [22, p. 17]. By using the Newell's own words: "To treat a system at the knowledge level is to treat it as having some knowledge, some goals, and believing it will do whatever is within its power to attain its goals, in so far as its knowledge indicates" [22, p. 13]. In the last decades, the importance of the knowledge level has been historically and system- atically downsized by the research area in cognitive architectures (CAs), whose interests have been mainly focused on the analysis and the development of mechanisms and the processes governing human and (articial) cognition. The knowledge level in CAs, however, represents a crucial level of analysis for the development of such articial general systems and therefore deserves greater research attention [17]. In the following, we will discuss areas of broad agree- ment and outline the main problematic aspects that should be faced within a Common Model of Cognition [12]. Such aspects, departing from an analysis at the knowledge level, also clearly impact both lower (e.g. representational) and higher (e.g. social) levels

    Experiments in artificial theory of mind: From safety to story-telling

    Get PDF
    © 2018 Winfield. Theory of mind is the term given by philosophers and psychologists for the ability to form a predictive model of self and others. In this paper we focus on synthetic models of theory of mind. We contend firstly that such models-especially when tested experimentally-can provide useful insights into cognition, and secondly that artificial theory of mind can provide intelligent robots with powerful new capabilities, in particular social intelligence for human-robot interaction. This paper advances the hypothesis that simulation-based internal models offer a powerful and realisable, theory-driven basis for artificial theory of mind. Proposed as a computational model of the simulation theory of mind, our simulation-based internal model equips a robot with an internal model of itself and its environment, including other dynamic actors, which can test (i.e., simulate) the robot's next possible actions and hence anticipate the likely consequences of those actions both for itself and others. Although it falls far short of a full artificial theory of mind, our model does allow us to test several interesting scenarios: in some of these a robot equipped with the internal model interacts with other robots without an internal model, but acting as proxy humans; in others two robots each with a simulation-based internal model interact with each other. We outline a series of experiments which each demonstrate some aspect of artificial theory of mind

    A Universal Knowledge Model and Cognitive Architecture for Prototyping AGI

    Full text link
    The article identified 42 cognitive architectures for creating general artificial intelligence (AGI) and proposed a set of interrelated functional blocks that an agent approaching AGI in its capabilities should possess. Since the required set of blocks is not found in any of the existing architectures, the article proposes a new cognitive architecture for intelligent systems approaching AGI in their capabilities. As one of the key solutions within the framework of the architecture, a universal method of knowledge representation is proposed, which allows combining various non-formalized, partially and fully formalized methods of knowledge representation in a single knowledge base, such as texts in natural languages, images, audio and video recordings, graphs, algorithms, databases, neural networks, knowledge graphs, ontologies, frames, essence-property-relation models, production systems, predicate calculus models, conceptual models, and others. To combine and structure various fragments of knowledge, archigraph models are used, constructed as a development of annotated metagraphs. As components, the cognitive architecture being developed includes machine consciousness, machine subconsciousness, blocks of interaction with the external environment, a goal management block, an emotional control system, a block of social interaction, a block of reflection, an ethics block and a worldview block, a learning block, a monitoring block, blocks of statement and solving problems, self-organization and meta learning block
    corecore