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Theory of mind is the term given by philosophers and psychologists for the ability to form a

predictivemodel of self and others. In this paper we focus on syntheticmodels of theory of

mind. We contend firstly that such models—especially when tested experimentally—can

provide useful insights into cognition, and secondly that artificial theory of mind can

provide intelligent robots with powerful new capabilities, in particular social intelligence

for human-robot interaction. This paper advances the hypothesis that simulation-based

internal models offer a powerful and realisable, theory-driven basis for artificial theory

of mind. Proposed as a computational model of the simulation theory of mind, our

simulation-based internal model equips a robot with an internal model of itself and its

environment, including other dynamic actors, which can test (i.e., simulate) the robot’s

next possible actions and hence anticipate the likely consequences of those actions both

for itself and others. Although it falls far short of a full artificial theory of mind, our model

does allow us to test several interesting scenarios: in some of these a robot equipped

with the internal model interacts with other robots without an internal model, but acting as

proxy humans; in others two robots each with a simulation-based internal model interact

with each other. We outline a series of experiments which each demonstrate some aspect

of artificial theory of mind.

Keywords: anticipation, simulation-based internal models, theory-of-mind, cognitive robotics, multi-robot

systems, human-robot interaction, social intelligence, machine consciousness

1. INTRODUCTION

Theory of mind is the term given by philosophers and psychologists for the ability to predict the
actions of self and others (Carruthers and Smith, 1996). With theory of mind, it is supposed, we
are able to anticipate how others might behave in particular circumstances. However, the idea of
theory of mind is empirically weak—we have only a poor understanding of the neurological or
cognitive processes that give rise to theory of mind. Artificial Intelligence (AI), and its embodied
counterpart—robotics, provides a powerful synthetic approach to theory of mind because it allows
us to ask the question “how would we build artificial theory of mind in a robot?” and opens the
possibility that we could test theories of theory of mind.

The role of theory of mind in consciousness (or, indeed of consciousness in theory of mind)
is both unclear and controversial (Carruthers, 2009; Sebastian, 2016). In this paper we avoid this
difficult question by focusing instead on synthetic models of theory of mind. We contend firstly
that such models—especially when tested experimentally—can provide valuable insights into both
natural and artificial cognition, and secondly that artificial theory of mind can provide intelligent
robots with powerful new capabilities, in particular social intelligence for human-robot interaction.
Artificial theory of mind has been recently highlighted as one of the Grand Challenges of Science
Robotics: “The threemost significant challenges that stem from building robots that interact socially
with people are modeling social dynamics, learning social and moral norms, and building a robotic
theory of mind” (Yang et al., 2018).
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The aim of this paper is to advance the hypothesis that
simulation-based internal models offer a powerful and realizable,
theory-driven basis for artificial theory of mind. Proposed
as a computational model of the simulation theory of mind
(Goldman, 2006), our simulation-based internal model equips
a robot with an internal model of itself and its environment,
including other dynamic actors, which can test (i.e., simulate)
the robot’s next possible actions and hence anticipate the
likely consequences of those actions both for itself and others;
importantly our simulation-based internal model is a practical
proposition with current technology. Although it falls far short
of a full artificial theory of mind, our model allows us to test
several interesting scenarios: in some of these a robot equipped
with the internal model interacts with other robots, without an
internal model but acting as proxy humans; in others two robots
each with a simulation-based internal model interact with each
other.We are able to predict second and third order interactions1

and, in some cases, observe interesting and unexpected emergent
behaviors.

This paper proceeds as follows. First in section 2 we adopt
a working definition of theory of mind and outline theories of
theory of mind. Choosing the simulation theory of mind (ST) we
then outline the conceptual basis for simulation-based internal
models, together with prior work which uses such models, before
proposing a generic computational model of ST. Section 3 then
introduces a series of experiments in (simple) artificial theory of
mind: in the first the aim is improved safety; in the second it
is simple ethical behaviors—including a scenario in which the
ethical robot faces a dilemma; in the third one robot aims to
infer the goals of another to rationally imitate it. The fourth and
final exemplar is a thought experiment which outlines a proposal
for an embodied computational model of storytelling, using
robots. It is important to note that none of these experiments
were conceived as a solution to the problem of artificial theory
of mind. It was only post-hoc that we recognized that—since
each experiment involves one or more robots which predict the
behavior of others—taken together they offer some insight into
practical artificial theory of mind. Take ethical robots as a case
in point. Although a robot may not need theory of mind to
behave ethically it is easy to see that the ability to predict the
intentions of others would greatly facilitate and likely extend the
scope of its ethical responses2. Section 4 concludes the paper with
a discussion which both draws high-level conclusions from the
experimental work outlined in section 3 and makes the case that
this work does demonstrate a number of components of theory of
mind and can therefore reasonably be described as “experiments
in artificial theory of mind.”

2. FROM SIMULATION THEORY TO A
SIMULATION-BASED INTERNAL MODEL

2.1. Theories of Theory of Mind
One difficulty of this paper is that there is no single definition
of theory of mind and its attributes. Definitions vary according

1Second order interactions are between robot and environment and third order

are robot-robot interactions.
2While noting that having a theory of mind does not make an agent ethical

to the context so, in animal cognition, for instance, Roberts
(2001) writes “The term theory of mind refers to the fact that
people know about minds ... the inferences you make about
others minds may often guide your behavior,” whereas Breed
and Moore (2012) write “An animal with a theory of mind can
form hypotheses about the thoughts of surrounding animals.”
In child development theory of mind refers to “childrens
understanding of people as mental beings, who have beliefs,
desires, emotions, and intentions” (Astington and Dack, 2008),
with mental representation and false belief regarded as key
components. And in Birch et al. (2017) “Perspective taking, or
theory of mind, involves reasoning about the mental states of
others (e.g., their intentions, desires, knowledge, beliefs) and is
called upon in virtually every aspect of human interaction.” In
this paper we resolve this difficulty by settling on “to explain
and predict the actions, both of oneself, and of other intelligent
agents” as our working definition of theory of mind (Carruthers
and Smith, 1996).

There are a number of theories of theory of mind (Carruthers
and Smith, 1996); and such theories are generally grouped
into two broad categories, known as theory theory (TT) and
simulation theory (ST)3. For a good outline comparison of TT
and ST see Michlmayr (2002). Theory theories hold that one
intelligent agent’s understanding of another’s mind is based on
innate or learned rules, sometimes known as folk psychology.
In TT these hidden rules constitute a “theory” because they
can be used to both explain and make predictions about others’
intentions. In contrast “simulation theory suggests that we do not
understand others through the use of a folk psychological theory.
Rather, we use our own mental apparatus to form predictions
and explanations of someone by putting ourselves in the shoes
of another person and simulating them” (Michlmayr, 2002).
Goldman (2006) introduces the idea of mental simulation: “the
simulation of one mental process by another mental process,”
and makes the important distinction between intra personal and
interpersonal mental simulation; the former is simulation of self,
and the latter the simulation of other. Goldman (2006) alsomarks
the distinction between computational modeling simulation and
replication simulation, noting that only the latter is of interest
to theory of mind; we would contend that the former is of great
interest to artificial theory of mind.

In this paper we adopt ST as both the inspiration and
theoretical basis for our hypothesis that simulation-based
internal models offer a powerful approach to building artificial
theory of mind, not because we have a principled theoretical
preference for ST over TT, but because simulation-based internal
models provide a realizable computational model for ST.

Also relevant here is the simulation theory of cognition
(Hesslow, 2002; Wilson, 2002). This theory hypothesizes that
cognitive introspection utilizes the same processes as interaction
with the external environment. During introspection (thinking),
actions are covert and are assumed to generate, via associative
brain mechanisms, the sensory inputs that elicit further actions
(Hesslow, 2012). In this view, cognition requires a grounded

3There are also a number of hybrid theories which combine elements of TT and

ST.
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representation of the world that is not composed of abstract
symbols; a simulation provides just such a model.

2.2. Simulation-Based Internal Modeling
A simulation-based internal model is a mechanism for internally
representing both the system and its current environment. If we
embed a simulation of a robot, including its currently perceived
environment, inside that robot then the robot has a “mechanism
for generating and testing what-if hypotheses; i.e.,

1. what if I carry out action x..? and, ...
2. of several possible next actions xi, which should I choose?"

(Winfield, 2014)

Holland writes: an Internal Model allows a system to look
ahead to the future consequences of current actions, without
actually committing itself to those actions (Holland, 1992, p. 25).
This leads to the idea of “an internal model as a consequence
engine—a mechanism for predicting and hence anticipating the
consequences of actions” (Winfield and Hafner, 2018).

The idea of embedding a simulator of a robot within that
robot is not new, but implementation is technically challenging,
and there have been relatively few examples described in the
literature. One notable example is within the emerging field of
machine consciousness (Holland, 2003; Holland and Goodman,
2003). Marques and Holland (2009) define a “functional
imagination” as “a mechanism that allows an embodied agent
to simulate its own actions and their sensory consequences
internally, and to extract behavioral benefits from doing so”;
a embedded simulation-based internal model provides such a
mechanism.

Bongard et al. (2006) describe a 4-legged starfish like robot
that makes use of explicit internal simulation, both to enable the
robot to learn it’s own bodymorphology and control, and notably
allow the robot to recover from physical damage by learning
the new morphology following the damage. The internal model
of Bongard et al. models only the robot, not its environment.
See also Zagal and Lipson (2009). In contrast Vaughan and
Zuluaga (2006) demonstrate self-simulation of both a robot and
its environment in order to allow a robot to plan navigation tasks
with incomplete self-knowledge; their approach significantly
provides perhaps the first experimental proof-of-concept of a
robot using self-modeling to anticipate and hence avoid unsafe
actions. Zagal et al. (2009) describe self-modeling using internal
simulation in humanoid soccer robots; in what they call a ‘back-
to-reality’ algorithm, behaviors adapted and tested in simulation
are transferred to the real robot.

In robotics advanced physics and sensor-based simulation
tools are routinely used to model, develop or evolve robot
control algorithms prior to real-robot tests. Well-known robot
simulators include Webots (Michel, 2004), Gazebo (Koenig and
Howard, 2004), Player-Stage (Vaughan and Gerkey, 2007), and
V-REP (Rohmer et al., 2013). Simulation technology is now
sufficiently mature to provide a practical route to implementation
of an embedded simulation-based internal model. Furthermore
Stepney (2018) sets out a principled approach to simulation
which treats a simulator as a scientific instrument.

2.3. A Computational Model of Simulation
Theory of Mind
We have recently proposed an architecture for a robot with
a simulation-based internal model which is used to test and
evaluate the consequences of that robot’s next possible actions.
Shown in Figure 1 “the machinery for modeling next actions
is relatively independent of the robot’s controller; the robot
is capable of working normally without that machinery, albeit
without the ability to generate and test what-if hypotheses. The
what-if processes are not in the robot’s main control loop, but
instead run in parallel to moderate the Robot Controller’s normal
action selection process, acting in effect as a kind of governor”
(Blum et al., 2018). This governance might be to rule out certain
actions because they are modeled as unsafe for the robot, or
to recommend new robot actions to, for instance, prevent an
accident.

“At the heart of the architecture is the Consequence Engine.
The CE is initialized from the Object Tracker-Localizer, and
loops through all possible next actions; these next actions are
generated within the Robot Controller (RC) and transferred to
the mirror RC within the CE (for clarity this data flow is omitted
from Figure 1). For each candidate action the CE simulates the
robot executing that action, and generates a set of model outputs
ready for evaluation by the Action Evaluator. The Consequence
Evaluator loops through each possible next action; this is the
Generate-and-Test loop. Only when the complete set of next
possible actions has been tested does the Consequence Evaluator
send, to the Robot Controller, its recommendations” (Winfield
et al., 2014). These processes are explained in detail in Blum et al.
(2018).

We argue that the architecture outlined here represents a
computation model of artificial theory of mind. First, the model
clearly provides a robot with the ability to self-model and hence
predict the consequences of its own actions. Second the model
can be used to predict another dynamic agent’s actions and—
if they interact—the consequences of this robot’s actions to
that other agent. This predictive modeling of others can be
implemented in two ways depending on the way we model those
other agents.

1. In the first, which we can call the ST-self plus TT-other
(ST+TT) model, the other dynamic agents (i.e., robots) are
modeled within the World Model of this robot using simple
theory, for example a ballistic model for moving agents. Since
this variant combines elements of ST and TT it models a
hybrid theory of mind.

2. In the second, which we can call ST-self plus ST-other
(ST+ST), the whole of the consequence engine can be
initialized for the other agent and run introspectively, recalling
the simulation theory of cognition (Hesslow, 2012). Here the
robot models each other agent exactly as it models itself, i.e.,
as a conspecific. This variant models pure ST4.

The experiments outlined in the next section illustrate both
ST+TT and ST+ST variants.

4Noting that even our computational model of ST is not completely theory free,

since the world model models the physics of collisions, etc.
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FIGURE 1 | The Consequence Engine: an architecture for robot anticipation using a simulation-based internal model. Figure from Blum et al. (2018).

3. EXPERIMENTS IN ARTIFICIAL THEORY
OF MIND

3.1. Safety: The Corridor Experiment
We have implemented and tested the simulation-based internal

model architecture outlined above in an experimental scenario,
which we call the corridor experiment (Blum et al., 2018).

Inspired by the problem of how mobile robots could move

quickly and safely through crowds of moving humans, the aim of
this experiment is to compare the performance of our simulation-
based internal model with a purely reactive approach. In other
words: can a robot’s safety be improved with simple artificial
theory of mind?

In this experiment one mobile robot (the CE-robot) is
equipped with the consequence engine of Figure 1, while 5 other
mobile robots have only simple obstacle avoidance behaviors.
The setup is shown in Figure 2 (left); here the smart CE-robot
is shown in blue at its starting position. The CE-robot’s goal is to
reach the end of the corridor on the right while maintaining its
own safety by avoiding—while also maintaining a safe distance—
the five proxy-human robots shown in red. Figure 2 (right)
shows the trajectories of all six robots during a simulated run

of the experiment, with the CE-robot reaching the end of the
corridor. Figure 3 shows the real-robot experimental setup.

In this experiment the CE robot models each of the proxy-
human robots as a ballistic agent with obstacle avoidance—in
other words as agents that will continue to move in their current
direction and speed unless confronted with an obstacle, which
may be another agent or the corridor wall. The CE runs in real-
time and is updated every 0.5 s with the actual position and
direction of the proxy-humans within the CE robot’s attention
radius. This is not an unreasonable model when considering
how you might behave when avoiding another person who is
not paying attention to where they are going—peering at their
smartphone perhaps.

Results of the corridor experiment (detailed in Blum et al.,
2018) show that for a relatively small cost in additional distance
covered, the likelihood that a proxy-human robot comes within
the CE-robot’s safety radius falls to zero. Clearly there is a
computational cost. This is entirely to be expected: anticipatory
modeling of other agents clearly incurs a computational
overhead.

In the corridor experiment there is an asymmetry: the CE-
robot has a model for the proxy-human robots whereas they
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FIGURE 2 | The corridor experiment goal (left), with 5 (red) robots moving randomly and one intelligent (CE) robot (blue) with a simulation-based internal model.

(Right) shows (simulated) trajectories of all six robots by the time blue has reaching the end of the corridor. Figure from Blum et al. (2018).

FIGURE 3 | The corridor experiment, using e-puck robots (Mondada et al.,

2009) fitted with Linux extension boards (Liu and Winfield, 2011). This image

shows the initial condition with the CE (intelligent) robot on the left and the five

proxy-human robots positioned at randomly selected locations in the corridor.

The arena markings have no significance here. Figure from Blum et al. (2018).

have no model for the CE-robot. In an extension to the corridor
experiment whichwe call the pedestrian experiment two robots—
each equipped with the same CE—approach each other. As
with the corridor experiment each models the other as a simple
ballistic agent but here we have symmetry with each agent paying
full attention to the other, trying to anticipate how it might
behave and planning its own actions accordingly. Is it possible
that our “pedestrian” robots might, from time to time, engage in
the kind of “dance” that human pedestrians do when one steps
to their left and the other to their right only to compound the
problem of avoiding a collision with a stranger?

Results show that we do indeed observe this interesting
emergent behavior. In five experimental runs four resulted in the
two pedestrian robots passing each other by both turning either
to the left or to the right—Figure 4 (left) shows one example of
this behavior. However, in one run, shown in Figure 4 (right) we
observe a brief dance caused when both robots decide, at the same
time, to turn toward each other—each predicting wrongly that
the other robot would continue its currently trajectory—before
the two robots resolve the impasse and pass each other safely.

3.2. Toward Ethical Robots
We have conducted exploratory work—based on the same
simulation-based internal model architecture outlined in section

2—to explore the possibility of robots capable of making
decisions based on ethical rules. These robots implement simple
consequentialist ethics with rules based on Asimov’s famous
laws of robotics. Following Asimov’s first law: “a robot may
not harm a human or, through inaction, allow a human to
come to harm,” our ethical robot will act proactively when it
anticipates (a) that a proxy-human robot is in danger of coming
to harm and (b) the ethical robot can itself intervene. We have
experimentally tested such a minimally ethical robot initially
with e-puck robots (Winfield et al., 2014) and subsequently with
NAO humanoid robots (Vanderelst and Winfield, 2018). As in
the corridor experiment the ethical robot’s CE models the proxy-
human(s) as simple ballistic agents. In some experiments we
have extended those TT models so that the ethical robot can, for
instance, call out “danger!” and if the human robot then responds
with “ok, understood” the ethical robot will change its model
for that human from “irresponsible” to “responsible” and not
intervene as it heads toward the danger zone. In this way the
ethical robot is able to modify its belief about the proxy-human.

Figure 5 shows results from one trial with two NAO
humanoid robots, one (blue) equipped with a CE and ethical
logic layer, and the other (red) programmed only with short range
obstacle avoidance behavior to act as a proxy-human. Figure 5
shows that the ethical robot does indeed reliably intervene,
diverting from its own path, and when red halts to avoid a
collision with blue, blue then continues toward its own goal.

We have tested the same ethical robot (running identical
code) in a scenario with two proxy-humans both heading toward
danger at the same time. These trials, first with e-puck robots
(Winfield et al., 2014) and more recently with NAO robots, are
believed to be the first experimental tests of a robot facing an
ethical dilemma. We did not provide the ethical robot with a
rule or heuristic for choosing which proxy-human to “rescue”
first, so that the ethical robot faces a balanced dilemma. Figure 6
(left) shows the experimental arena with the ethical robot (blue)
initially equidistant from the two (red) proxy-human robots.
The trajectory plots in Figure 6 (right) interestingly show that
in three of the five trials blue initially chose to move toward
the red robot heading toward danger (B), but then appeared to
‘change its mind’ to “rescue” the other red robot. Exactly the
same “dithering” emergent behavior was observed with the e-
puck robots inWinfield et al. (2014), and can be explained in part
by the fact that the ethical robot’s CE is running continuously,
re-evaluating the consequences of its own and the other robots’
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FIGURE 4 | The pedestrian experiment—two trials showing robot trajectories. Two robots, blue and green, are each equipped with a CE. Blue starts from the right,

with a goal position on the left, while at the same time green starts from the left with a goal position on the right. (Left) We see the typical behavior in which the two

robots pass each other without difficulty, normally because one robot—anticipating a collision—changes direction first, in this case green. (Right) Here both robots

make a decision to turn at the same time, green to its left and blue to its right; a “dance” then ensues before the impasse is resolved.

FIGURE 5 | An ethical humanoid robot (blue) anticipates that proxy-human robot (red) is heading toward danger (location A at the top right). It diverts from its path

toward goal position B (bottom right) to intersect red’s path. Red then stops and blue resumes its path toward its goal. (A) Shows the trajectories of Blue and Red for

trial 1. (B) Shows all 5 experimental trials. Figure from Vanderelst and Winfield (2018).

behaviors and perhaps choosing a new action once per second5.
This makes our ethical robot pathologically indecisive.

3.3. The Imitation of Goals
The imitation of goals is a very important form of social learning
in humans. This importance is reflected in the early emergence
of imitation in human infants; from the age of two, humans
can imitate both actions and their intended goals (Gariépy et al.,
2014) and this has been termed rational imitation.

Imitation has long been regarded as a compelling method
for (social) learning in robots. However, robot imitation faces
a number of challenges (Breazeal and Scassellati, 2002). One
of the most fundamental issues is determining what to imitate

5In practice the ethical NAO robot would also favor the slower of the two

proxy-humans, as a side-effect of its action-selection logic.

(Carpenter et al., 2005). Although not trivial it is relatively
straightforward to imitate actions, but inferring goals from
observed actions and thus determining which parts of a
demonstrated sequence of actions are relevant, i.e., rational
imitation, is a difficult research problem.

The approach we explore in Vanderelst and Winfield (2017),
is to equip the imitating robot with a simulation-based internal
model that allows the robot to explore alternative sequences
of actions required to attain the demonstrator robot’s potential
goals (i.e., goals that are possible explanations for the observed
actions). Comparing these actions with those observed in the
demonstrator robot enables the imitating robot to infer the goals
underlying the observed actions.

Figure 7 shows one of several experiments from Vanderelst
and Winfield (2017). Here the red robot imitates the goals of the
blue robot. In condition 1 blue moves directly to its goal position
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FIGURE 6 | An ethical dilemma. Left: The ethical robot is initially positioned midway between and slightly to the front of two danger zones A and B. Right: The ethical

robot’s trajectories are shown here plotted with squares. Two proxy-human robots start from the left, both heading toward danger—trajectories plotted with triangles.

Results of 5 trials are shown here.

(Figures 7A,B). Blue infers the goal is to move to red’s goal
and does so directly in Figure 7C. In condition 2 blue deviates
around an obstacle even though it has a direct path to its goal
(Figures 7D,E). In this case red infers that the deviation must be
a sub-goal of blue—since blue is able to go directly to its goal
but chooses not to—so in Figure 7F red creates a trajectory via
blue’s sub-goal. In other words red has inferred blue’s intentions
to imitate its goals. In condition 3 blue’s path to its goal is blocked
so it has no choice but to divert (Figures 7G,H). In this case red
infers that blue has no sub-goals and moves directly to the goal
position (Figure 7I).

3.4. An Embodied Computational Model of
Storytelling
Consider the idea that some of the what-if sequences tested with
a robot’s consequence engine are constructed fictions, i.e., “if I
had turned left I would have collided with a wall.” While others—
the ones actually enacted—could be historical narratives, i.e., “I
turned right and reached my goal.”

Assume that we have two robots, each equipped with the
same simulation-based internal model of Figure 1. Let us also
assume that the robots are of a similar type, in other words they
are conspecifics. Let us now extend the robots’ capabilities in
the following way. Instead of simply discarding (“forgetting”) an
action that has been modeled, the robot may transmit that action
and its predicted or actual consequences to another robot.

Figure 8 illustrates robot A “imagining” a what-if sequence,
then narrativizing that sequence. It literally signals that sequence
using some transmission medium. Since we are building a model
and it would be very convenient if it is easy for human observers
to interpret the model, let us code the what-if sequence verbally
and transmit it as a spoken language sequence. Technically
this would be straightforward to arrange since we would use
a standard speech synthesis process. Although it is a trivial
narrative robot A is now able to both “imagine” and then literally

tell a story. If that story is of something that has not happened it
is a fictional narrative, otherwise it is a historical narrative.

Robot B is equipped with a microphone and speech
recognition process it is thus able to “listen” to robot As story,
as shown in Figure 9. Let us assume it is programmed, so that
a word used by A signifies the same part of the what-if action
sequence to both A and B. Providing the story has been heard
correctly then robot B will interpret robot A’s story as a what-if
sequence. Now, because robot B has the same internal modeling
machinery as A- they are conspecifics- it is capable of running
the story it has just heard within its own internal model. In order
that this can happen we need to modify the robots programming
so that the what-if sequence it has heard and interpreted is
substituted for an internally generated what-if sequence. This
would be easy to do. But, once that substitution is made, robot
B is able to run A’s what-if sequence (its story) in exactly the same
way it runs its own internally generated next possible actions,
simulating and evaluating the consequences. Robot B is therefore
able to “imagine robot A’s story6.

In this model we have, in effect, co-opted the cognitive
machinery for testing possible next actions for “imagining,”
or introspectively experiencing, heard stories. By adding the
machinery for signaling and signifying internally generated
sequences (narratives)—the machinery of semiotics—we have
constructed an embodied computational model of storytelling.

A major problem with human-robot interaction is the serious
asymmetry of theory of mind (Winfield, 2010). Consider an
elderly person and her care robot. It is likely that a reasonably
sophisticated near-future care robot will have a built-in (TT)
model of an elderly human (or even of a particular human). This
places the robot at an advantage because the elderly person has
no theory of mind at all for the robot, whereas the robot has
a (likely limited) theory of mind for her. Actually the situation

6Where is the meaning? It could be argued that when the listener replays the story

in its internal model (functional imagination) that ismeaning.
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FIGURE 7 | Rational imitation. (A,D,G) Show the setup with blue as the demonstrating robot and red the observing (then imitating) robot. In condition 1 (A,B,C) blue

moves directly to its goal position. In condition 2 (D–F) blue diverts around an obstacle even though it could move directly to its goal position. And in condition 3 (G–I)

blue’s path is blocked so it cannot go directly to its goal. (B,E,H) Show trajectories of 3 runs of the demonstrator robot blue, and (C,F,I) Show trajectories of 3 runs of

the imitating robot red. Note that red starts from the position it observes from. Figures from Vanderelst and Winfield (2017).

may be worse than this, since our elderly person may have a
completely incorrect theory of mind for the robot, perhaps based
on preconceptions ormisunderstandings of how the robot should
behave and why. Thus, when the robot actually behaves in a way
that doesn’t make sense to the elderly person, her trust in the
robot will be damaged and its effectiveness diminished (Stafford
et al., 2014).

The storytelling model proposed here provides us with a
powerful mechanism for the robot to be able to generate
explanations for its actual or possible actions. Especially
important is that the robot’s user should be able to ask (or press
a button to ask) the robot to explain “why did you just do that?”
Or, pre-emptively, to ask the robot questions such as “what would
you do if I fell down?” Assuming that the care robot is equipped
with an autobiographical memory7, the first of these questions
would require it to re-run and narrate the most recent action

7It would be relatively easy for a robot to build a memory of everything

that has happened to it, but of much greater interest here is to integrate the

sequence to be able to explain why it acted as it did, i.e., “I turned
left because I didn’t want to bump into you.” The second kind of
pre-emptive query requires the robot to interpret the question in
such a way it can first initialize its internal model to match the
situation described, run that model, then narrate the actions it
predicts it would take in that situation. In this case the robot acts
first as the listener in Figure 9, then as the narrator in Figure 8.
In this way the robot would actively assist its human user to build
a theory-of-mind for the robot.

4. DISCUSSION

4.1. Related Work
One of the most influential works to date on proposing and
implementing artificial theory of mind is Scassellati’s 2002 paper
Theory of Mind for a Humanoid Robot (Scassellati, 2002). Based

autobiographical memory into the internal model, perhaps leading to what

Conway (2005) describes as a self-memory system (SMS).
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FIGURE 8 | Robot A, the storyteller, “narrativizes” one of the “what-if” sequences generated by its generate-and-test machinery. First an action is tested in the robot’s

internal model (left), second, that action—which may or may not be executed for real—is converted into speech and spoken by the robot. From Winfield (2018).

FIGURE 9 | Robot B, the listener, uses the same “what-if” cognitive machinery to “imagine” robot A’s story. Here the robot hears A’s spoken sequence, then converts

it into an action which is tested in B’s internal model. From Winfield (2018).

on aspects of theory of mind present in young (4 month old)
infant humans the author describes an implementation of visual
attention, finding faces and the recognition and tracking of eyes,
and discrimination between animate and inanimate, on the MIT
Cog robot (Brooks et al., 1999). In contrast with the present work
Scassellati (2002) is based on theory theories of mind (TT). Other
works have also explored the important role of shared attention
in social interaction and development, for instance Deák et al.
(2001) and Kaplan and Hafner (2006).

Kim and Lipson (2009) describe an approach in which one
robot uses an ANN to learn another’s intentions based on its
behavior. A very recent paper Machine Theory of Mind also
describes a machine learning approach in which one agent
observes another’s behaviors and learns a predictive model of that

agent (Rabinowitz et al., 2018); the simulated agents of this work
learn the rules underlying the behavior of the observed agent,
hence this is also a TT approach.

Several authors have proposed artificial theory of mind as
a mechanism for improved human-robot interaction. Devin
and Alami (2016), for instance, describe an implementation in
which a robot estimates the status of the goals of a human
with which it is interacting (i.e., “in progress,” “done,” “aborted”
or “unknown”). Görür et al. (2017) also propose a mechanism
for estimating a human’s beliefs about possible actions in a
shared human-robot task; they propose a stochastic approach in
which a Hidden Markov Model estimates action states in the set
(“not ready,” “ready,” “in progress,” “help needed,” “done,” and
“aborted”).
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A number of authors focus on the role of deception as an
indicator of theory of mind. Terada and Ito (2010) outline an
experiment to deceive a human about the intentions of a robot,
noting that the experimental result indicated that unexpected
change of a robot behavior gave rise to an impression of being
deceived by the robot. Wagner and Arkin (2011) describe an
experiment in which two robots play a game of hide and seek in
which one, the hider, attempts to deceive the seeker by sending
false information.

A small number of works have also proposed “like-me”
or “self-as” simulation approaches, including Kennedy et al.
(2009) and Gray and Breazeal (2014). Kennedy et al. (2009)
promote like-me simulation as “a powerful mechanism because
for any “individual” strategy the agent has, it can reason about
another agent having that strategy and, further, by creating
hypothetical situations ... it can predict the actions it would take
under hypothetical conditions;” the paper describes a like-me
simulation based on the ACT-R/E (Adaptive Control of Thought-
Rational/Embodied) architecture, with two robots in which one
acts as a proxy human. Gray and Breazeal (2014) describe a
very elegant experiment in which a robot simulates both its
own possible actions and a human’s likely perception of those
actions in order to choose actions that manipulate the human’s
beliefs about what the robot is doing — and thereby deceive
the human. These two works model the simulation theory of
mind (ST) and are therefore of particular relevance to the present
paper.

4.2. Discussion and Conclusions
To what extent do any of the experiments outlined in this paper
demonstrate (artificial) theory of mind, as variously defined
in section 2.1? We can certainly be clear about which aspects
of theory of mind we cannot emulate. Our robots do not
“know about minds” (Roberts, 2001) (arguably they do not
know about anything), but we would also suspect that while
animals have minds they too do not know about them. Nor do
our robots either have, or model, affective states. And we can
be quite sure that none of the robots described in this paper
would pass Premack and Woodruff (1978)’s famous tests which
controversially demonstrated that chimpanzee have theory of
mind.

Many accounts of theory of mind are couched in terms of
modeling or predicting the “mental states” of others (Astington
and Dack, 2008; Birch et al., 2017), but there are two problems
with the use of this term. The first is that there is no clear
understanding or agreement over what mental states are in
animals and humans; it seems that the term is used as a proxy for
several things including beliefs, desires, emotions and intentions.
Secondly, robots are not generality regarded as having mental
states. They certainly do not have emotions, but they arguably
can have a machine analog of simple beliefs (i.e., that the path
to the left is safe, whereas the path to the right is unsafe, or a
belief that another agent is moving toward danger and that by
inference its mental state is “unaware of danger”), simple desires
(i.e., to maintain its energy level by returning to a recharging
station whenever its battery charge drops below a certain level)
and intentions (i.e., goals, such as “navigate safely to position x”).
Although we have not used the term mental states in this paper

nor do the experiments of this paper explicitly label such states
they can be properly described as predicting and/or inferring the
beliefs, desires and intentions of both themselves and others.

If we accept simulation of self and other as an artificial analog
of mental representation, then our robots do demonstrate this
attribute. The experiments of sections 3.1 and 3.2 show that
a robot with a simulation-based internal model is capable of
predicting the consequences of its actions for both itself and one
or more robots acting as proxy humans, and choosing actions
on the basis of either safety or ethical considerations. They can
therefore “reason about,” i.e., model, the intentions of others,
even though those models are very simple ballistic TT models
and, in the case of the ethical robot experiments in section 3.2,
also modeled by default as irresponsibly unaware of danger. Of
course our robots have a much better model of themselves than
others—but is that not also true of human theory of mind? For
sure we have detailed models for those close to us—family and
close friends—but our models of strangers, when walking on a
sidewalk for example, can be very simple (Helbing and Molnar,
1995).

Although it is an unsophisticated example, arguably the
pedestrian experiment in section 3.1 demonstrates false beliefs
when eachmodels the other as continuing in a straight line when,
in fact, they each turn into the other’s path (Figure 4, right).
In fact we have also shown that it is surprisingly easy to turn
an ethical robot into a mendacious (deceptive) robot, so that
it behaves either competitively or aggressively toward a proxy
human robot (Vanderelst and Winfield, 2016).

We have also demonstrated, in section 3.3, that a robot
with a simulation-based internal model can infer the goals of
another robot, therefore learning the other robot’s intentions.
Imitation is a powerful form of social learning and we argue that
the inferential learning of section 3.3 demonstrates another key
component of theory of mind.

The model of storytelling proposed in section 3.4 gets, we
contend, to the heart of theory of mind. Theory of mind
works best between conspecifics: in general you can much better
understand your partner’s beliefs and intentions than your cat’s.
The two robots in our thought experiment of section 3.4 would in
principle be able to learn each other’s beliefs and intentions in a
very natural (to humans) way, through explanation. This is, after
all, one of the key mechanisms by which infant humans learn
theory of mind; one only has to think of a child asking “Mummy
why are you angry with me?” (Ruffman et al., 2002).

The robots of this paper all have the cognitive machinery to
predict their own behavior. But we must not assume that because
a robot can predict its own behavior it can predict the behavior
of any other agent. Of course when those others are conspecifics
then predicting the behavior of others ‘like me’ becomes a
(conceptually) straightforward matter of co-opting your own
internal model to model others’. In all of the experiments of
this paper we make use of homogeneous robots, which clearly
share the same architecture (although in some cases those robots
are programmed to behave differently, as proxy humans for
instance). In a heterogeneous multi-robot system a robot might
need to model the beliefs or intentions of a robot quite unlike
itself, and the same is clearly true for a robot that might need to
model the mental states of a human. But as Gray and Breazeal
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TABLE 1 | Table summarizing the contribution of each of the experiments of section 3 together with their respective theory modes (as defined in section 2.3).

Experiment Figures Theory mode (section 2.3) Notes

Corridor experiment 2 ST+TT One robot with ST model of self and ballistic TT model of five other robots,

demonstrates predictive modeling of self and reasoning about the intentions of

others, and attention radius.

Pedestrian experiment 4 ST+TT Two robots, each with ST model of self and ballistic TT model of other,

demonstrates false beliefs.

Ethical robot experiments 5 & 6 ST+TT One robot with ST model of self and ballistic TT model of one or two other

robots. Demonstrates predictive modeling of self and reasoning about the

intentions of others. Ballistic TT model extended so that the ethical robot can

test and modify its belief about the proxy-human.

Imitation of goals 7 ST+ST Imitating robot uses ST to model both itself and the demonstrator robot, in order

to infer the demonstrator’s goals.

Story-telling robots 8 & 9 ST+ST Storytelling robot narrates what-if episode from its ST model; listener robot uses

its ST model to introspectively ‘imagine’ that story. Potential to explain the past

and possible future actions of self.

(2014) assert “Humans and robots, while vastly different, share
a common problem of being embodied agents with sensory
motor loops based on affecting and observing the physical world
around them. Bymodeling a humans connection betweenmental
states and the world as similar to its own, and reusing those
mechanisms to help evaluate mental state consequences” a robot
can at the basic level of actions and their consequences—model a
human. The same is clearly also true for a robotmodeling another
robot of a different kind, providing that both observably sense
and act in the physical world.

In the context of human-robot interaction we must consider
the important problem of how a human builds a theory of mind
for a robot; this could be especially important if that robot has
the function of companion or elder-care (assisted living) robot.
In the thought experiment of section 3.4 we outline how a robot’s
self-model can allow the robot to explain itself and hence assist
a human to acquire an understanding of how and why the robot
behaves in different circumstances.

The main contributions of this paper have been to (1) advance
the hypothesis that simulation-based internal models represent
a computational model of the simulation theory of mind (ST)
and (2) to show that such a computational model provides
us with a powerful and realizable basis for artificial theory of
mind. We have shown that experiments with simulation-based
internal models demonstrate the ability to predictively model
the actions of both self and other agents. As summarized in
Table 1 the experiments of section 3 have demonstrated both
ST+TT (hybrid) and ST+ST modes for self + other, as defined
in section 2.3.

In summary, we contend that the experimental work outlined
in this paper does demonstrate a number of components of

theory of mind and can reasonably be described as “experiments
in artificial theory of mind.” The main hypothesis of this paper,
that simulation-based internal modeling can form the basis for
artificial theory of mind has, we argue, been demonstrated.
Whilst far from a complete solution, we propose simulation-
based internal modeling as a powerful and interesting starting
point in the development of artificial theory of mind.
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