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Chapter 1

Constrained Incrementalist Moral Decision Making for a Biologically

Inspired Cognitive Architecture

Tamas Madl, Stan Franklin

Introduction

The field of machine ethics has emerged in response to the development of

autonomous artificial agents with the ability to interact with human beings, or to

produce changes in the environment which can affect humans (Allen, Varner, &

Zinser, 2000). Such agents, whether physical (robots) or virtual (software agents)

need a mechanism for moral decision making in order to ensure that their actions

are always beneficial, that they ‘do the morally right thing’.

There has been considerable debate on what doing the right thing means, and

on how moral decision making should be implemented (Anderson & Anderson,

2011; Lin, Abney, & Bekey, 2011; Wallach & Allen, 2008) in order to create

so-called Artificial Moral Agents (AMAs) (Allen et al., 2000). Apart from the

problem that no consensus on ethics exists, it has also proven to be exceedingly

difficult to computationally implement the often vague and under-constrained
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ethical frameworks invented for humans. To the authors’ knowledge, no current

AMA implementation comes even close to passing a full Moral Turing Test 1.

However, robots are getting increasingly autonomous, and are becoming

increasingly prevalent. According to the International Federation of Robotics,

about three million service robots were sold in 2012, 20% more than in the year

before (IFR, 2013) (the IFR defines a service robot as ‘a robot that performs useful

tasks for humans or equipment excluding industrial automation application’).

Examples for service robots available on the market include Care-O-Bot (Graf,

Hans, & Schraft, 2004) and the REEM service robot (Tellez et al., 2008), which

can aid elderly or handicapped people, with functions such as carrying requested

objects to users, entertainment, or telepresence / tele-assistance via

videoconferencing. Recent research in autonomous transport could lead to

driverless vehicles available on the market within the next decade - Google’s fleet

of self-driving cars have already driven 800,000 km on public roads (Burns, 2013)

(see (Ciupe & Maniu, 2014; Alonso, 2011) for further examples of service robots).

The increasing autonomy of such robots - their ability to perform intended

tasks based on their current state and sensory input, without human intervention -

makes it very difficult to anticipate and control the actions they perform in

advance. At the same time, their actions are morally relevant if it is possible that

humans could be made worse off by them. Thus, autonomous robots need some

kind of moral decision making mechanism if they can affect humans or their

1Just like the original Turing test, in the Moral Turing Test proposed by (Allen et al., 2000), a

‘blind’ observer is asked to compare the behavior of a machine to humans. Passing it requires that

the machine should not be judged less moral than the humans on average.
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environment, in order to constrain them to actions beneficial to humans, and to

prevent them from doing harm in unforeseen circumstances (Powers, 2011).

Despite the vast unsolved technical, ethical and social challenges associated

with developing such a mechanism, short-term solutions are needed for systems

that could cause harm. The emerging field of robot ethics is concerned with the

ethical implications and consequences of robotic technology (Scheutz, 2013; Lin

et al., 2011; Anderson & Anderson, 2011). The field includes the ethics of how

humans act through or with robots, and the ethical relationships between humans

and robots, as well as the ethics of how to design and program robots to act

ethically (Asaro, 2006). This chapter is concerned with the latter focus of robot

ethics, taking a biologically inspired cognitive modeling approach.

Instead of trying to directly address the implementation of a full ethical

framework, which would be very difficult with current technologies even if a

universally accepted framework existed, we propose a simplification of this

problem, following the advice ‘make things as simple as possible, but not simpler’

(commonly attributed to Einstein). We will outline a moral decision making

mechanism that is

constrained to the domain and functionalities for which the agent is designed

(instead of the full range of human actions, responsibilities, or ‘virtues’)

based on a biologically inspired cognitive architecture (LIDA), and making

use of existing cognitive mechanisms (such as routine decision making

procedures, and theory of mind)
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a combination of top-down (based on explicit rules) and bottom-up (based

on implicit, heuristic strategies) processing

adaptive incrementalist (instead of assuming full knowledge and

understanding of an ethical system and an appropriate computational

mechanism)

We will also introduce a way of testing a specific AMA, inspired by test-driven

development, that we believe will facilitate the incremental development of a

robust moral decision making mechanism, reduce the number of ‘bugs’ or

unintended malfunctions, and simplify the comparison of different AMAs

operating in the same domain.

In order to illustrate these ideas, we will use the example of a Care-O-Bot type

robot (Graf et al., 2004), controlled by the LIDA (Learning Intelligent Distribution

Agent) cognitive architecture (Franklin, Madl, DMello, & Snaider, 2013; Baars &

Franklin, 2009). Care-O-Bot is equipped with a manipulator arm, adjustable

walking supporters and a hand-held control panel (additionally, it has two cameras

and a laser scanner). It has been demonstrated to perform fetch and carry tasks, but

could in principle also provide mobility aid (support for standing up, guidance to a

target), execute everyday jobs (setting a table, simple cleaning tasks, control

electronic infrastructure), or facilitate communication (initiate calls to a physician

or to family, supervise vital signs, and call emergency numbers if needed) (Graf et

al., 2004).
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A Simplified Moral Decision Making Mechanism

Constrained to specific domain and functionalities

The difficulty of designing a moral decision making mechanism increases with the

size of the space of possible actions. The problem of implementing a full ethical

framework which would account for the entire vast space of possible human action

can be simplified by constraining an AMAs actions. This is possible on different

levels. We will use Sloman’s proposed three levels of cognitive processes, the

reactive, deliberative, and metacognitive (Sloman, 1999), as well as an additional

non-cognitive level.

On the non-cognitive level, the agent can be mechanically limited in terms

of power and mobility. This decreases the scope of possibly harmful actions

and thus simplifies the required ethics implementation. For example, in their

proposed design for an ‘intrinsically safe personal robot’, (Wyrobek, Berger,

Van der Loos, & Salisbury, 2008) have significantly limited their robots

maximum force output, range of motion, and speed in order to prevent it

from physically causing harm, while still facilitating a wide range of

functions.

On the reactive level (which has stimulus-action mappings but no explicit

representation and evaluation of alternative actions), actions can be

constrained in advance by designers or at runtime by bottom-up

mechanisms. Designers might restrict the parametrized action space that the

AMA can select from, avoiding unnecessary actions and parametrizations.

For example, on the lowest level, the action moving the Care-O-Bots
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manipulator arm might not permit a full swing of the arm, restricting one

action to a small movement. On the other hand, harmful actions can also be

avoided on the lowest level during runtime by a bottom-up emotional

mechanism, which would inhibit the selection of the action if there is a

negative emotional response. Emotional responses can implement values

and contribute to bottom-up moral decision making (see next subsection).

These would have to be designed for the specific domain of application,

requiring only a subset of a full affective model.

On the deliberative level (which includes planning, scheduling, problem

solving), a top-down, rule based process could constrain decisions during

run-time. Rules could be stored in declarative memory, be re-called if they

apply in the current situation or when value conflicts arise, and influence the

action selection process. As for the emotional reactions, the rules would also

have to be designed specifically for the domain of the agent (a much easier

problem than capturing all rules of any ethical theory). For complex

situations such as moral dilemmas, multiple scenarios can be simulated

internally to select the one most conforming to all rules (see next subsection

for a description of how this would work in the LIDA cognitive

architecture).

On the metacognitive level (‘thinking about thinking’, includes monitoring

deliberative processes, allocating resources, regulating cognitive strategies),

it would be in principle possible to implement ethical meta-rules such as

Kant’s categorical imperative, since metacognitive processes might verify

the validity of rules by simulating and monitoring their application in
6



different scenarios. However, such approaches are intractable with current

limitations on available processing power, and the detail of available

cognitive models (see next subsection).

Using mechanisms of a cognitive architecture

A moral decision making mechanism based on the LIDA cognitive architecture

would not have to be built from scratch. It could make use of some of LIDA’s

relevant cognitive mechanisms (all of which have been designed conceptually and

some of which have implementations). Within the conceptual LIDA model, these

include volitional decision making (Franklin, 2000; Franklin et al., 2013) and

non-routine problem solving mechanisms (Negatu, Franklin, & McCauley, 2006)

and a theory of mind (Friedlander & Franklin, 2008). Although the partially

implemented architecture is currently only capable of controlling software agents,

work is underway to embody LIDA on a Willow Garage PR2 robot by interfacing

it to the Robot Operating System.

The LIDA cognitive architecture is based on prevalent cognitive science and

neuroscience theories (e.g. Global Workspace Theory, situated cognition,

perceptual symbol systems, ... (Franklin et al., 2013)), and is one of the few

cognitive models which are neuroscientifically plausible and to provide a plausible

account for functional consciousness 2 (Baars & Franklin, 2009; Baars, 2005),

2The LIDA model talks of functional consciousness as described in Global Workspace Theory (re-

ferring to information that is ‘broadcast’ in the Global Workspace and made available to cognitive

processes such as action selection, as opposed to only locally available, non-conscious information).

It makes no commitment to phenomenal (subjective) consciousness.
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attention, feelings and emotions; and has been partially implemented (Franklin et

al., 2013; Baars & Franklin, 2009; Franklin & Patterson Jr, 2006).

Cognition in LIDA functions by means of continual iteration of similar,

flexible and potentially cascading - partially simultaneous - cognitive cycles.

These cycles can be split into three phases, the understanding phase (concerned

with recognizing features, objects, events, etc., and building an internal

representation), the attending phase (deciding what part of the representation is

most salient, and broadcasting it consciously), and the action selection phase

(choosing an appropriate action in response).

The major modules of the LIDA model implementing various stages of these

cycles are displayed in Figure 1.1 below. We will describe the processes these

modules implement starting from the top left and traversing the diagram roughly

clockwise.

1. Perception. The agent senses its environment continually. Sensory stimuli

are received and stored in a sensory buffer in the Sensory Memory. Feature

detectors sample the sensory buffers frequently, and activate nodes in the

Perceptual Associative Memory (PAM) which represent percepts, emotions,

concepts, categories, events, etc. (McCall, Franklin, Friedlander, & D’Mello,

2010). PAM nodes are based on perceptual symbols (Barsalou, 1999); their

activations reflect recognition confidence as well as bottom-up salience. The

most recent implementation of LIDA’s perceptual recognition mechanism is

inspired by predictive coding and perception as statistical inference (McCall

& Franklin, 2013) (a simpler approach integrating SURF-based feature

detection with LIDA also exists, see (Madl & Franklin, 2012)).
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Figure 1.1: LIDA’s Cognitive Cycle. From (Franklin et al., 2013)

2. Percept to preconscious buffer. Recognized percepts are stored in the

preconscious buffers of LIDA’s long-term working memory (Workspace),

where a model of the agents current situation (current situation model) is

assembled by structure building codelets 3. The Workspace also contains

salient or recent previous percepts that have not yet decayed away. Along

3In the computational LIDA model, the term codelet refers generally to any small, special purpose

processor or running piece of software code. Codelets correspond to processors in Global Workspace

Theory (Baars & Franklin, 2009)
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with perceptual representations, the Workspace can also contain PAM nodes

representing feelings or emotions, which can be activated either by low-level

feature detectors, or by appraisal codelets reacting to the relevance,

implications, and significance of the current situation, and the agent’s coping

potential (Franklin et al., 2013).

3. Local associations. Percepts and other Workspace contents serve to cue and

retrieve local associations from the Transient Episodic (recording the what,

where and when of unique personal experiences) and Declarative Memories

(containing autobiographical long term episodic information as well as

factual information separated from the place and time of their acquisition).

These memory systems are extended instances of a content-associative

Sparse Distributed Memory (SDM) (Snaider & Franklin, 2012; Kanerva,

1988). An additional Spatial Memory module is currently being developed

(Madl, Franklin, Chen, & Trappl, 2013).

4. Competition for consciousness. Attention codelets look out for their sought

content in working memory, create structures called coalitions with them,

and compete to bring them to consciousness. The coalition containing the

most salient (important, urgent, insistent, novel, threatening, promising,

arousing, unexpected) perceptual structures wins the competition.

5. Conscious broadcast. The coalition of codelets winning the competition

(typically an attention codelet and its content of PAM nodes, local

associations and other structures) gains access to the Global Workspace (a

fleeting memory enabling access between brain functions that are otherwise
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separate) and has its content broadcast consciously (in the sense of the

Global Workspace Theory). The contents of this conscious broadcast are

available globally, but their main recipient is the Procedural Memory

module, and their main purpose is to provide important information to

facilitate action selection (as well as modulating learning).

6. Recruitment of resources. The most relevant behavioral schemes in

Procedural Memory respond to the contents of the conscious broadcast. The

implementation of these schemes is based on Dreschers schema mechanism

(Drescher, 1991) and includes a model of constructivist learning (Franklin &

Patterson Jr, 2006).

7. Activation of schemes in the Procedural Memory. Multiple applicable

behavioral schemes are instantiated in the Action Selection module, and

receive activation, based on the conscious contents.

8. Action chosen. The Action Selection module chooses a single scheme from

the newly instantiated schemes and remaining previously active schemes.

The action selection mechanism in LIDA is based on Maes’ bottom-up

behavior selection mechanism (Maes, 1989). If an action can be selected and

executed in a single cognitive cycle, this could be called consciously

mediated action selection, since the information upon which the action was

selected was acquired consciously (it was moved to the Global Workspace,

and broadcast globally), but the choice itself was made unconsciously.
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9. Action taken. The execution of the action of a scheme results in external

(e.g. the movement of a manipulator) or internal consequences (e.g.

changing an internal representation).

Some decisions might require multiple cognitive cycles, and weighing the

consequences of multiple possible actions. Volitional Decision Making is a

higher-level cognitive process for action selection, and is performed consciously -

unlike consciously mediated action selection, automatized action selection, or

alarms (Franklin et al., 2013). In humans, consciously planning a novel route is an

example of deliberative, volitional decision making.

LIDA’s deliberative volitional decision making mechanism is based on Global

Workspace Theory and James’ ideomotor theory of volition (Baars & Franklin,

2009; Franklin, 2000). An idea or potential decision, represented as a structure of

nodes in PAM (which can represent objects, actions, events etc. - see (McCall et

al., 2010)), can reach the Global Workspace if selected by an attention codelet, and

if judged relevant / important enough, be broadcast consciously and acted upon by

recruiting a behavior scheme in Procedural Memory. Such schemes can initiate

internal or external action.

Before the execution of an external action, multiple internal actions might be

required to build internal structures upon which a final decision can be made, in

multiple cognitive cycles. LIDA’s Workspace includes a ‘virtual window’, in

which temporary structures can be constructed with which to try out possible

actions and their consequences without actually executing them. Multiple such

structures can be selected by attention codelets, moved to the Global Workspace,
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and compete with each other (here, attention codelets perform the role of James’

‘proposers’ and ‘objectors’) (Franklin, 2000; Franklin et al., 2013).

For a more detailed description of LIDA’s modules and their functions in the

cognitive cycle, see (Franklin et al., 2013; Baars & Franklin, 2009). We will

introduce a concrete example of how LIDA’s modules and processes might aid

moral decision making in Section 3.

Combination of top-down and bottom-up processing

(Wallach, Allen, & Smit, 2008) describes ‘top-down’ approaches to mean both the

engineering sense, i.e. the decomposition of a task into simpler sub-tasks, and the

ethical sense, i.e. the derivation of consequences from an overarching ethical

theory or system of rules.

In contrast, ‘bottom-up’ approaches can be specified atheoretically, and treat

normative values as being implicit in the activity of agents (Wallach et al., 2008).

The LIDA model of cognition integrates both of these approaches (Wallach,

Franklin, & Allen, 2010). ‘Bottom-up’ propensities are embodied in

emotional/affective responses to actions and their outcomes in the LIDA model

(Wallach et al., 2010). Feelings are represented in LIDA as nodes in PAM. Each

feeling node constitutes its own identity. Each feeling node has its own valence,

always positive or always negative, with varying degrees of arousal. The current

activation of the node measures the momentary arousal of the valence, that is, how

positive or how negative. The arousal of feelings can arise from feature detectors,
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or it can be influenced by the appraisal that gave rise to the emotion 4, by

spreading activation from other nodes representing an event (Franklin et al., 2013).

Thus, ‘bottom-up’ propensities can be engineered in a LIDA-based AMA by

carefully specifying feature detectors and weights in PAM, in order to give rise to

the right arousal levels of the right feeling nodes; as well as the specification of

appropriate behaviours in procedural memory. For example, there could be a ‘fall’

feature detector watching out for quick, uncontrolled downward movement, and

passing activation to a ‘concern’ feeling node. Another feature detector could

recognize cries for help and also pass activation to the same node. Upon reaching a

high enough activation, the ‘concern’ feeling node would be broadcast consciously

and influence action selection, leading to the execution of the ‘call emergency’

behaviour. ‘Bottom-up’ influences on action selection can occur in a single

cognitive cycle, as a result of consciously mediated action selection.

On the other hand, ‘top-down’ moral decision making can be implemented in

LIDA by designing and storing an ethical rule system in the declarative memory.

Such rules consist of PAM nodes, the common representation in the LIDA model;

and specify internal or external actions in response to some perceptual features of

a situation. LIDA’s declarative memory is a content-associative Sparse Distributed

Memory (SDM) (Snaider & Franklin, 2012; Kanerva, 1988). Moral rules are

automatically recalled from declarative memory by either the current situation in

working memory resembling the context of the rule, or alternatively by

proposal/objector codelets (which implement volitional decision making and allow

LIDA to compare options) (Wallach et al., 2008).

4The LIDA model speaks of emotions as feelings with cognitive content
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More complex moral rules in which decisions are not directly based on

perceptual representations, such as utilitarianism, would require additional

implementation of the decision metric. In the case of utilitarianism, this would

involve assembling representations of the positive feelings of humans involved in

each action in simulations, and weighing them against each other. These

representations could be created by internal actions in LIDA’s ‘virtual window’, a

space in working memory reserved for simulations, in a multi-cyclic process

(Franklin et al., 2013). The amount of positive feeling could be determined using

LIDA’s proposed theory of mind mechanism (Friedlander & Franklin, 2008).

However, there are inherent computational limitations to rules requiring

simulations, especially if multiple humans might be affected by an action. In order

to make the computation tractable, a limit would have to be imposed on the

number of affected humans simulated, and on the time. ‘Bottom-up’ values would

have to take over when that limit is exceeded by a difficult dilemma.

Adaptive incrementalist and moral test-driven development

Incrementalism proposes to progress toward a goal in a stepwise fashion, instead

of starting out with a final theory or plan. Adaptive incrementalism in machine

ethics (AIME) as proposed by (Powers, 2011) allows starting out with a small

initial set of constraints or rules, testing the system, and then adding new

constraints or rules if necessary. Constraints, rules, and functionalities of the

system can be adapted or removed at a later date if it turns out that there is a more

precise or effective way to constrain the system. This strategy of development

allows starting without a complete theory or ethical framework, initially specifying
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only basic behaviors with well-understood consequences, and subsequently

extending the system in a stepwise fashion.

This model of a stepwise refinement of moral decision making is in accordance

with current software development approaches (Larman & Basili, 2003). It also

lends itself to Test-Driven Development (TDD). TDD, in its original form, is a

development strategy which proposes to write the test cases for each feature first,

and develop the feature functionality afterwards, so that it can be tested and

verified immediately or later when it is changed. With each change or addition in

the system, the entire test battery can be run to verify that the changes or additions

do not impair existing functionality. TDD has been reported to lead to higher

quality code, fewer malfunctions or defects, higher reliability, and reduction of

testing effort (Müller & Padberg, 2003; Williams, Maximilien, & Vouk, 2003).

The idea of TDD can be extended to an adaptively developed moral decision

making mechanism. For each function of the robot, a number of simple moral tests

can be written, simulating a specific situation in which the function would be

applicable and defining acceptable and unacceptable outcomes. For example, in a

situation where a Care-O-Bot would detect a person falling, acceptable outcomes

would be immediately calling for help, checking for vital signs and injuries, and

calling an ambulance if necessary. Subsequent additions of functionality would

include their own moral tests, but each time the system is changed, every other

moral test would have to be passed as well. This reduces the risk of altering

previously acceptable behaviour. For example, if action is added for the robot to go

re-charge when the battery levels fall below a specific level, and this action would

be selected in the moral test involving the falling person instead of calling for help,
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the failed test would alert developers that the new action needs to be modified and

constrained.

A final advantage to a battery of moral tests is that once developed it can

perform run-time testing on the AMA. A dead man’s switch type mechanism could

immediately turn off the AMA if any of the tests fail at any point, due to any

malfunctions or to newly learned behaviors that might interfere with the specified

moral rules.

How could we obtain a large set of tests which minimize the probability of

unethical or harmful actions in an efficient and practical fashion? Asaro (2006)

suggests the existing legal system as a practical starting point for thinking about

robot ethics, pointing out that legal requirements are most likely to provide the

initial constraints of robotic systems, and that the legal system is capable of

providing a practical system for understanding agency and responsibility (thus

avoiding the need to wait for a consensual and well-established moral framework).

Extending this idea, legal cases might be a basis from which to derive tests for

moral decision making mechanisms. Among other freely available sources,

UNESCO’s 5 bioethics curriculum provides a number of real-world case studies

on relevant topics such as ‘human dignity and human rights’ (UNESCO, 2011b) or

‘benefit and harm’ (UNESCO, 2011a).

5The United Nations Educational, Scientific and Cultural Organization. http://www.unesco.org
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A LIDA-based CareBot

Overview

This section describes CareBot, a partially implemented mobile assistive robot

operating in a simple simulated environment, as an example constrained decision

making mechanism based on the LIDA cognitive architecture.

Assistive robotics aims to provide aids for supporting autonomous living of

persons who have limitations in motor and/or cognitive abilities e.g. the elderly or

the severely disabled. This support can take different forms, for example (Pollack,

2005):

1. Providing assurance that the elder is safe and otherwise alerting caregivers

(assurance systems)

2. Helping the person perform daily activities, compensating for their

disabilities (compensation systems)

3. Assessing the person’s cognitive status or health (assessment systems)

The CareBot simulation can perform some tasks in the first two categories,

such as fetch and carry tasks (fetch food, drinks, or medicine for elderly or

disabled individuals), and recognizing the absence of vital signs (and alerting

caregivers if this occurs).

CareBot operates in, and is structurally coupled to, a simple simulated 2D

environment consisting of patients (elderly or disabled), essential facilities such as

a kitchen and a power outlet, items such as food, drinks and medication, and, of

course, the CareBot (see Figure 1.2). The CareBot agent’s main goal is to ensure
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the patients’ continued health and assist them in performing daily activities, while

ensuring its own continued survival (recharging whenever necessary and avoiding

bumping into obstacles).

Figure 1.2: The LIDA-based CareBot simulation environment. Top left: the en-

vironment representation (the reddish gradient arount the patient calling out rep-

resents the auditory information that the agent can receive). Top right: diagnostic

panels; shown here: the perceptual buffer (contents of the current situation model.

Red circles represent PAM nodes). Bottom: Logging panel.

It achieves these goals using multimodal sensors (a simple visual and auditory

sensor) and effectors enabling it to move around in the environment. The agent

performs action selection using ‘cognitive cycles’, analogously to
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action-perception cycles in the brain (Freeman, 2002; Fuster, 2002) after

perceiving various objects, building a model of the current situation, and selecting

important objects to attend to, these objects can compete for and enter functional

(access) consciousness (Franklin et al., 2013) , after which the most appropriate

action to deal with the current situation can be selected.

CareBot is constrained at the non-cognitive level (its speed is limited, and it is

only allowed to carry light objects and to communicate with humans), and at the

reactive level (its perceptual and procedural memories have been designed to

respond appropriately to the demands of its limited domain). It might also be

constrained at the deliberative level, e.g. by adding top-down rules to its declarative

memory and allowing it to simulate consequences; however, this mechanism has

not been implemented yet. Finally, constraints at the metacognitive level are

beyond the supported mechanisms of the current LIDA computational framework.

A Simple Decision Making Example

Here we will describe what happens in each of the modules of the LIDA cognitive

cycle outlined in the previous section, specifically:

1. Sensory Memory

2. Perceptual Associative Memory (PAM)

(the modules above are part of the Perception phase)

3. Workspace

4. Transient Episodic and Declarative Memory

5. Attention Codelets
20



6. Global Workspace

(the modules above are part of the Understanding phase)

7. Procedural Memory

8. Action Selection

9. Sensory-Motor Memory

(the modules above are part of the ActionSelection phase)

In this simple simulated environment, no advanced visual and auditory

processing was necessary (although there are two preliminary approaches for

perceptual recognition in LIDA, a recent cortical learning algorithm inspired by

predictive coding and perception as statistical inference (McCall & Franklin,

2013), and a simpler approach integrating SURF-based feature detection with

LIDA (Madl & Franklin, 2012)).

An environment class is inspected periodically by the Sensory Memory

module, and information is copied to visual and auditory buffers. Simple feature

detectors monitor these buffers, and pass activation to their corresponding nodes in

the Perceptual Associative Memory in a way similar to activation passing in an

artificial neural network (although the modeling is done on a higher level) see

(McCall et al., 2010). PAM nodes represent semantic knowledge about concepts or

objects in the environment; the CareBot agent is initialized with knowledge

required for its domain, such as e.g. PAM nodes representing the patients, their

locations, the facilities and their locations (kitchen, medicine cabinet, toilet,

powerplug), and internal state nodes representing the CareBots location and its

power status.

21



After this perception phase, the identified percept (PAM nodes identified

reliably, i.e. exceeding a specific activation threshold) is copied into the

Workspace, constituting a preconscious working memory. If the

content-associative long-term memories (Transient Episodic and Declarative

Memory) contain memories relevant to the current percepts (such as e.g. the types

of medication a specific patient might require), these memories are also copied into

the Workspace as local associations. In the example in Figure 1.2, the Workspace

contains current external percepts (patient 2, the auditory call of patient 3, the food

being carried) and internal percepts (full battery status) as well as secondary

concepts which are not directly perceptual (a goal representation, spatial relations).

Attention Codelets look out for perceptual representations of their own specific

concern in the Workspace, form coalitions with them, and copy these coalitions to

the Global Workspace, the short-term memory capacity that facilitates contents

becoming functionally conscious. These coalitions subsequently compete for

being broadcast consciously the one with the highest activation wins the

competition, enters functional consciousness, and can be acted upon. The agent is

consciously aware of an object, entity, or event, the moment the nodes representing

these become part of the conscious broadcast after winning the competition. In the

example in Figure 1.2, presumably there would be at least two coalitions in the

Global Workspace competing for consciousness:

1. Since patient 2 is adjacent to the CareBot, and it is CareBot’s goal to reach

patient 2 and give him/her the food it is carrying, there would be a coalition

with high activation containing these perceptual structures (patient 2, the

adjacency relation, and the goal).
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2. CareBot has also perceived a potentially important auditory call; therefore

there would also be another high-activation coalition containing the

perceptual representation of the call and the source associated with it

(patient3).

In this example, coalition 1 would presumably win the competition, enter

consciousness, and lead to an action. (Note that this outcome would be different if

the call by patient 3 is a medical emergency. In this case, the representation of the

call would have a much higher activation - determined by an appropriate

emergency feature detector -, win the competition for consciousness, and lead to

CareBot attending to patient 3).

After this understanding phase, the contents of the conscious broadcast are

transmitted to the Procedural Memory module, which leads to the selection of

relevant behavioral schemes (Drescher, 1991; Franklin et al., 2013), i.e. all

schemes the context (precondition) of which is satisfied by the current conscious

context will receive activation (depending on how well the context is matched).

Schemes also receive top-down activation through goals or drives that match their

result state. From all the possible schemes and actions, it is the task of the Action

Selection module to select a single relevant action that the agent can execute.

In the example in Figure 1.2, this action would presumably be to give the food

held by CareBot to patient 2 (unless the call of patient 3 is an emergency, as

mentioned above). This selected action is now transmitted to the Sensory-Motor

Memory for parameterization (highly important in robotics, but not needed in this

simple simulation), and executed.
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Figure 1.3: The three phases of CareBot’s cognitive cycle in the described ex-

ample.

Figure 1.3 illustrates the phases of CareBot in the example described above.

This example illustrates single-cycle (consciously mediated) decision making,

which has been implemented in LIDA agents.

When could the prevention of harmful actions become relevant in this

scenario? Let us extend the above example by making the additional assumption

that patient 2 is a diabetic, and that the food carried by CareBot is a dessert
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containing a very high amount of sugar. Thus, it could be very dangerous for the

patient to eat this food; nevertheless, he or she asked the robot to fetch it.

If CareBot were to provide fetch and carry tasks also for diabetic patients, this

would require additional pre-programmed knowledge to ensure their safety. This

could be ensured either using a top-down, or a bottom-up approach (as described

in the previous section). The simpler alternative would be a bottom-up solution

that constrains actions which might endanger the patient - ‘concern’ emotion PAM

nodes activated by foods with high sugar content (detected by appropriate feature

detectors in PAM passing activation to this node). Furthermore, additional

behavior schemes in procedural memory would have to be defined to deal with

situations raising concern, such as contacting a human to ask for help.

Instead of the action to give patient 2 the high-sugar food, the ‘concern’ node

would lead to the selection of a behavior scheme alerting a human caregiver or

doctor (who might explain to the patient why he or she should not eat this food, or

suggest an alternative), thus preventing harm and preserving the patient’s health.

Finally, if - for whatever reason - the robot could not reach a human to ask for

help, a volitional, deliberative decision making process as outlined in Section 2

could be used to weigh the main options against each other (respect the patient’s

autonomy and give him the food, vs. ensure the patient’s continued health and ask

him to wait until a human arrives to make a final decision). This would require

performing internal actions in the ‘virtual window’ of LIDA’s Workspace, as well

as knowledge about the effects of sugar on diabetic patients in long-term

declarative memory, for evaluating the consequences of those actions. Volitional

decision making is not implemented in LIDA as of yet (although it was
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implemented in IDA (Franklin, 2000), its predecessor); and the internal actions

and ‘virtual window’ (Franklin et al., 2013; McCall et al., 2010) of the

computational architecture are not developed well enough to implement such a

comparison process at this time.

Conclusion

Full ethical frameworks are difficult to implement with current methods, but

simplified, constrained moral decision making problems might be tractable. In this

paper, we have suggested four ways to constrain robot ethics implementations, and

argued that biologically inspired cognitive architectures might be good starting

points for an implementation (since some of the mechanisms they provide are also

needed for moral decision making; and they are designed to be human-like, and

can be used in limited domains to approximate human-like decisions). We have

described an approach to use test cases to help ensure that extensions of ethical

systems and autonomous learning preserve correct behavior and do not lead to

harmful actions. We have also outlined a possible moral decision making

mechanism based on the LIDA cognitive architecture, and described a partial

implementation.

Although most cognitive architectures in general, and LIDA in particular, are

still in early stages of development, and still far from being adequate bases for

implementations of human-like ethics, we think that they can contribute to both

the understanding, design, and implementation of constrained ethical systems for

robots, and hope that the ideas outlined here might provide a starting point for

future research.
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