507 research outputs found

    A Survey on the Contributions of Software-Defined Networking to Traffic Engineering

    Get PDF
    Since the appearance of OpenFlow back in 2008, software-defined networking (SDN) has gained momentum. Although there are some discrepancies between the standards developing organizations working with SDN about what SDN is and how it is defined, they all outline traffic engineering (TE) as a key application. One of the most common objectives of TE is the congestion minimization, where techniques such as traffic splitting among multiple paths or advanced reservation systems are used. In such a scenario, this manuscript surveys the role of a comprehensive list of SDN protocols in TE solutions, in order to assess how these protocols can benefit TE. The SDN protocols have been categorized using the SDN architecture proposed by the open networking foundation, which differentiates among data-controller plane interfaces, application-controller plane interfaces, and management interfaces, in order to state how the interface type in which they operate influences TE. In addition, the impact of the SDN protocols on TE has been evaluated by comparing them with the path computation element (PCE)-based architecture. The PCE-based architecture has been selected to measure the impact of SDN on TE because it is the most novel TE architecture until the date, and because it already defines a set of metrics to measure the performance of TE solutions. We conclude that using the three types of interfaces simultaneously will result in more powerful and enhanced TE solutions, since they benefit TE in complementary ways.European Commission through the Horizon 2020 Research and Innovation Programme (GN4) under Grant 691567 Spanish Ministry of Economy and Competitiveness under the Secure Deployment of Services Over SDN and NFV-based Networks Project S&NSEC under Grant TEC2013-47960-C4-3-

    A traffic engineering system for DiffServ/MPLS networks

    Get PDF
    This thesis presents an approach to traffic engineering that uses DiffServ and MPLS technologies to provide QoS guarantees over an IP network. The specific problem described here is how best to route traffic within the network such that the demands can be carried with the requisite QoS while balancing the load on the network. A traffic engineering algorithm that determines QoS guaranteed label-switched paths (LSPs) between specified ingress-egress pairs is proposed and a system that uses such an algorithm is outlined. The algorithm generates a solution for the QoS routing problem of finding a path with a number of constraints (delay, jitter, loss) while trying to make best of resource utilisation. The key component of the system is a central resource manager responsible for monitoring and managing resources within the network and making all decisions to route traffic according to QoS requirements. The algorithm for determining QoS-constrained routes is based on the notion of effective bandwidth and cost functions for load balancing. The network simulation of the proposed system is presented here and simulation results are discussed

    Auto-bandwidth control in dynamically reconfigured hybrid-SDN MPLS networks

    Get PDF
    The proposition of this work is based on the steady evolution of bandwidth demanding technology, which currently and more so in future, requires operators to use expensive infrastructure capability smartly to maximise its use in a very competitive environment. In this thesis, a traffic engineering control loop is proposed that dynamically adjusts the bandwidth and route of flows of Multi-Protocol Label Switching (MPLS) tunnels in response to changes in traffic demand. Available bandwidth is shifted to where the demand is, and where the demand requirement has dropped, unused allocated bandwidth is returned to the network. An MPLS network enhanced with Software-defined Networking (SDN) features is implemented. The technology known as hybrid SDN combines the programmability features of SDN with the robust MPLS label switched path features along with traffic engineering enhancements introduced by routing protocols such as Border Gateway Patrol-Traffic Engineering (BGP-TE) and Open Shortest Path First-Traffic Engineering (OSPF-TE). The implemented mixed-integer linear programming formulation using the minimisation of maximum link utilisation and minimum link cost objective functions, combined with the programmability of the hybrid SDN network allows for source to destination demand fluctuations. A key driver to this research is the programmability of the MPLS network, enhanced by the contributions that the SDN controller technology introduced. The centralised view of the network provides the network state information needed to drive the mathematical modelling of the network. The path computation element further enables control of the label switched path's bandwidths, which is adjusted based on current demand and optimisation method used. The hose model is used to specify a range of traffic conditions. The most important benefit of the hose model is the flexibility that is allowed in how the traffic matrix can change if the aggregate traffic demand does not exceed the hose maximum bandwidth specification. To this end, reserved hose bandwidth can now be released to the core network to service demands from other sites

    A scalable heuristic for hybrid IGP/MPLS traffic engineering - Case study on an operational network

    Full text link
    peer reviewedIn current IP networks, a classical way to achieve traffic engineering is to optimise the link metrics. This operation cannot be done too often and can affect the route of a lot of traffic. Multiprotocol Label Switching (MPLS) opens new possibilities to address the limitations of IP systems concerning traffic engineering thanks to explicit label-switched paths (LSPs). This paper proposes a new method based on simulated annealing meta-heuristic to compute a set of LSPs that optimise a given operational objective. The hybrid IGP/MPLS approach takes advantage of both IP and MPLS technologies and provides a flexible method to traffic engineer a network on a day to day basis. We illustrate the capabilities of our method with some simulations and a comparison with other techniques on an existing operational network. The results obtained by setting up a small number of LSPs are nearly optimal and better than by engineering the IGP weights. Moreover, although it could be combined with a static setting of the latter, SAMTE alone gives already the same results as this combination in much less CPU time, which thus allows an administrator to keep its initial and meaningful IGP metrics in his network.DGTRE TOTE

    Traffic engineering in ambient networks: challenges and approaches

    Get PDF
    The focus of this paper is on traffic engineering in ambient networks. We describe and categorize different alternatives for making the routing more adaptive to the current traffic situation and discuss the challenges that ambient networks pose on traffic engineering methods. One of the main objectives of traffic engineering is to avoid congestion by controlling and optimising the routing function, or in short, to put the traffic where the capacity is. The main challenge for traffic engineering in ambient networks is to cope with the dynamics of both topology and traffic demands. Mechanisms are needed that can handle traffic load dynamics in scenarios with sudden changes in traffic demand and dynamically distribute traffic to benefit from available resources. Trade-offs between optimality, stability and signaling overhead that are important for traffic engineering methods in the fixed Internet becomes even more critical in a dynamic ambient environment

    Traffic matrix estimation on a large IP backbone: a comparison on real data

    Get PDF
    This paper considers the problem of estimating the point-to-point traffic matrix in an operational IP backbone. Contrary to previous studies, that have used a partial traffic matrix or demands estimated from aggregated Netflow traces, we use a unique data set of complete traffic matrices from a global IP network measured over five-minute intervals. This allows us to do an accurate data analysis on the time-scale of typical link-load measurements and enables us to make a balanced evaluation of different traffic matrix estimation techniques. We describe the data collection infrastructure, present spatial and temporal demand distributions, investigate the stability of fan-out factors, and analyze the mean-variance relationships between demands. We perform a critical evaluation of existing and novel methods for traffic matrix estimation, including recursive fanout estimation, worst-case bounds, regularized estimation techniques, and methods that rely on mean-variance relationships. We discuss the weaknesses and strengths of the various methods, and highlight differences in the results for the European and American subnetworks

    Optimizing capacity assignment in multiservice MPLS net-works

    Get PDF
    Abstract: The general Multiprotocol Label Switch (MPLS) topology optimisation problem is complex and concerns the optimum selection of links, the assignment of capacities to these links and the routing requirements on these links. Ideally, all these are jointly optimised, leading to a minimum cost network which continually meets given objectives on network delay and throughput. In practice, these problems are often dealt with separately and a solution iterated. In this paper, we propose an algorithm that computes the shortest routes, assigns optimal flows to these routes and simultaneously determines optimal link capacities. We take into account the dynamic adaptation of optimal link capacities by considering the same Quality of Service (QoS) measure used in the flow assignment problem in combination with a blocking model for describing call admission controls (CAC) in multiservice broadband telecommunication networks. The main goal is to achieve statistical multiplexing advantages with multiple traffic and QoS classes of connections that share a common trunk present. We offer a mathematical programming model of the problem and proficient solutions which are founded on a Lagrangean relaxation of the problem. Experimental findings on 2-class and 6-class models are reported

    Towards cognitive in-operation network planning

    Get PDF
    Next-generation internet services such as live TV and video on demand require high bandwidth and ultra-low latency. The ever-increasing volume, dynamicity and stringent requirements of these services’ demands are generating new challenges to nowadays telecom networks. To decrease expenses, service-layer content providers are delivering their content near the end users, thus allowing a low latency and tailored content delivery. As a consequence of this, unseen metro and even core traffic dynamicity is arising with changes in the volume and direction of the traffic along the day. A tremendous effort to efficiently manage networks is currently ongoing towards the realisation of 5G networks. This translates in looking for network architectures supporting dynamic resource allocation, fulfilling strict service requirements and minimising the total cost of ownership (TCO). In this regard, in-operation network planning was recently proven to successfully support various network reconfiguration use cases in prospective scenarios. Nevertheless, additional research to extend in-operation planning capabilities from typical reactive optimization schemes to proactive and predictive schemes based on the analysis of network monitoring data is required. A hot topic raising increasing attention is cognitive networking, where an elevated knowledge about the network could be obtained as a result of introducing data analytics in the telecom operator’s infrastructure. By using predictive knowledge about the network traffic, in-operation network planning mechanisms could be enhanced to efficiently adapt the network by means of future traffic prediction, thus achieving cognitive in-operation network planning. In this thesis, we focus on studying mechanisms to enable cognitive in-operation network planning in core networks. In particular, we focus on dynamically reconfiguring virtual network topologies (VNT) at the MPLS layer, covering a number of detailed objectives. First, we start studying mechanisms to allow network traffic flow modelling, from monitoring and data transformation to the estimation of predictive traffic model based on this data. By means of these traffic models, then we tackle a cognitive approach to periodically adapt the core VNT to current and future traffic, using predicted traffic matrices based on origin-destination (OD) predictive models. This optimization approach, named VENTURE, is efficiently solved using dedicated heuristic algorithms and its feasibility is demonstrated in an experimental in-operation network planning environment. Finally, we extend VENTURE to consider core flows dynamicity as a result of metro flows re-routing, which represents a meaningful dynamic traffic scenario. This extension, which entails enhancements to coordinate metro and core network controllers with the aim of allowing fast adaption of core OD traffic models, is evaluated and validated in terms of traffic models accuracy and experimental feasibility.Els serveis d’internet de nova generaciĂł tals com la televisiĂł en viu o el vĂ­deo sota demanda requereixen d’un gran ample de banda i d’ultra-baixa latĂšncia. L’increment continu del volum, dinamicitat i requeriments d’aquests serveis estĂ  generant nous reptes pels teleoperadors de xarxa. Per reduir costs, els proveĂŻdors de contingut estan disposant aquests mĂ©s a prop dels usuaris finals, aconseguint aixĂ­ una entrega de contingut feta a mida. ConseqĂŒentment, estem presenciant una dinamicitat mai vista en el trĂ fic de xarxes de metro amb canvis en la direcciĂł i el volum del trĂ fic al llarg del dia. Actualment, s’estĂ  duent a terme un gran esforç cap a la realitzaciĂł de xarxes 5G. Aquest esforç es tradueix en cercar noves arquitectures de xarxa que suportin l’assignaciĂł dinĂ mica de recursos, complint requeriments de servei estrictes i minimitzant el cost total de la propietat. En aquest sentit, recentment s’ha demostrat com l’aplicaciĂł de “in-operation network planning” permet exitosament suportar diversos casos d’Ășs de reconfiguraciĂł de xarxa en escenaris prospectius. No obstant, Ă©s necessari dur a terme mĂ©s recerca per tal d’estendre “in-operation network planning” des d’un esquema reactiu d’optimitzaciĂł cap a un nou esquema proactiu basat en l’analĂ­tica de dades provinents del monitoritzat de la xarxa. El concepte de xarxes cognitives es tambĂ© troba al centre d’atenciĂł, on un elevat coneixement de la xarxa s’obtindria com a resultat d’introduir analĂ­tica de dades en la infraestructura del teleoperador. Mitjançant un coneixement predictiu sobre el trĂ fic de xarxa, els mecanismes de in-operation network planning es podrien millorar per adaptar la xarxa eficientment basant-se en predicciĂł de trĂ fic, assolint aixĂ­ el que anomenem com a “cognitive in-operation network Planning”. En aquesta tesi ens centrem en l’estudi de mecanismes que permetin establir “el cognitive in-operation network Planning” en xarxes de core. En particular, ens centrem en reconfigurar dinĂ micament topologies de xarxa virtual (VNT) a la capa MPLS, cobrint una sĂšrie d’objectius detallats. Primer comencem estudiant mecanismes pel modelat de fluxos de trĂ fic de xarxa, des del seu monitoritzat i transformaciĂł fins a l’estimaciĂł de models predictius de trĂ fic. Posteriorment, i mitjançant aquests models predictius, tractem un esquema cognitiu per adaptar periĂČdicament la VNT utilitzant matrius de trĂ fic basades en predicciĂł de parells origen-destĂ­ (OD). Aquesta optimitzaciĂł, anomenada VENTURE, Ă©s resolta eficientment fent servir heurĂ­stiques dedicades i Ă©s posteriorment avaluada sota escenaris de trĂ fic de xarxa dinĂ mics. A continuaciĂł, estenem VENTURE considerant la dinamicitat dels fluxos de trĂ fic de xarxes de metro, el qual representa un escenari rellevant de dinamicitat de trĂ fic. Aquesta extensiĂł involucra millores per coordinar els operadors de metro i core amb l’objectiu d’aconseguir una rĂ pida adaptaciĂł de models de trĂ fic OD. Finalment, proposem dues arquitectures de xarxa necessĂ ries per aplicar els mecanismes anteriors en entorns experimentals, emprant protocols estat-de-l’art com sĂłn OpenFlow i IPFIX. La metodologia emprada per avaluar el treball anterior consisteix en una primera avaluaciĂł numĂšrica fent servir un simulador de xarxes Ă­ntegrament dissenyat i desenvolupat per a aquesta tesi. DesprĂ©s d’aquesta validaciĂł basada en simulaciĂł, la factibilitat experimental de les arquitectures de xarxa proposades Ă©s avaluada en un entorn de proves distribuĂŻt

    Towards cognitive in-operation network planning

    Get PDF
    Next-generation internet services such as live TV and video on demand require high bandwidth and ultra-low latency. The ever-increasing volume, dynamicity and stringent requirements of these services’ demands are generating new challenges to nowadays telecom networks. To decrease expenses, service-layer content providers are delivering their content near the end users, thus allowing a low latency and tailored content delivery. As a consequence of this, unseen metro and even core traffic dynamicity is arising with changes in the volume and direction of the traffic along the day. A tremendous effort to efficiently manage networks is currently ongoing towards the realisation of 5G networks. This translates in looking for network architectures supporting dynamic resource allocation, fulfilling strict service requirements and minimising the total cost of ownership (TCO). In this regard, in-operation network planning was recently proven to successfully support various network reconfiguration use cases in prospective scenarios. Nevertheless, additional research to extend in-operation planning capabilities from typical reactive optimization schemes to proactive and predictive schemes based on the analysis of network monitoring data is required. A hot topic raising increasing attention is cognitive networking, where an elevated knowledge about the network could be obtained as a result of introducing data analytics in the telecom operator’s infrastructure. By using predictive knowledge about the network traffic, in-operation network planning mechanisms could be enhanced to efficiently adapt the network by means of future traffic prediction, thus achieving cognitive in-operation network planning. In this thesis, we focus on studying mechanisms to enable cognitive in-operation network planning in core networks. In particular, we focus on dynamically reconfiguring virtual network topologies (VNT) at the MPLS layer, covering a number of detailed objectives. First, we start studying mechanisms to allow network traffic flow modelling, from monitoring and data transformation to the estimation of predictive traffic model based on this data. By means of these traffic models, then we tackle a cognitive approach to periodically adapt the core VNT to current and future traffic, using predicted traffic matrices based on origin-destination (OD) predictive models. This optimization approach, named VENTURE, is efficiently solved using dedicated heuristic algorithms and its feasibility is demonstrated in an experimental in-operation network planning environment. Finally, we extend VENTURE to consider core flows dynamicity as a result of metro flows re-routing, which represents a meaningful dynamic traffic scenario. This extension, which entails enhancements to coordinate metro and core network controllers with the aim of allowing fast adaption of core OD traffic models, is evaluated and validated in terms of traffic models accuracy and experimental feasibility.Els serveis d’internet de nova generaciĂł tals com la televisiĂł en viu o el vĂ­deo sota demanda requereixen d’un gran ample de banda i d’ultra-baixa latĂšncia. L’increment continu del volum, dinamicitat i requeriments d’aquests serveis estĂ  generant nous reptes pels teleoperadors de xarxa. Per reduir costs, els proveĂŻdors de contingut estan disposant aquests mĂ©s a prop dels usuaris finals, aconseguint aixĂ­ una entrega de contingut feta a mida. ConseqĂŒentment, estem presenciant una dinamicitat mai vista en el trĂ fic de xarxes de metro amb canvis en la direcciĂł i el volum del trĂ fic al llarg del dia. Actualment, s’estĂ  duent a terme un gran esforç cap a la realitzaciĂł de xarxes 5G. Aquest esforç es tradueix en cercar noves arquitectures de xarxa que suportin l’assignaciĂł dinĂ mica de recursos, complint requeriments de servei estrictes i minimitzant el cost total de la propietat. En aquest sentit, recentment s’ha demostrat com l’aplicaciĂł de “in-operation network planning” permet exitosament suportar diversos casos d’Ășs de reconfiguraciĂł de xarxa en escenaris prospectius. No obstant, Ă©s necessari dur a terme mĂ©s recerca per tal d’estendre “in-operation network planning” des d’un esquema reactiu d’optimitzaciĂł cap a un nou esquema proactiu basat en l’analĂ­tica de dades provinents del monitoritzat de la xarxa. El concepte de xarxes cognitives es tambĂ© troba al centre d’atenciĂł, on un elevat coneixement de la xarxa s’obtindria com a resultat d’introduir analĂ­tica de dades en la infraestructura del teleoperador. Mitjançant un coneixement predictiu sobre el trĂ fic de xarxa, els mecanismes de in-operation network planning es podrien millorar per adaptar la xarxa eficientment basant-se en predicciĂł de trĂ fic, assolint aixĂ­ el que anomenem com a “cognitive in-operation network Planning”. En aquesta tesi ens centrem en l’estudi de mecanismes que permetin establir “el cognitive in-operation network Planning” en xarxes de core. En particular, ens centrem en reconfigurar dinĂ micament topologies de xarxa virtual (VNT) a la capa MPLS, cobrint una sĂšrie d’objectius detallats. Primer comencem estudiant mecanismes pel modelat de fluxos de trĂ fic de xarxa, des del seu monitoritzat i transformaciĂł fins a l’estimaciĂł de models predictius de trĂ fic. Posteriorment, i mitjançant aquests models predictius, tractem un esquema cognitiu per adaptar periĂČdicament la VNT utilitzant matrius de trĂ fic basades en predicciĂł de parells origen-destĂ­ (OD). Aquesta optimitzaciĂł, anomenada VENTURE, Ă©s resolta eficientment fent servir heurĂ­stiques dedicades i Ă©s posteriorment avaluada sota escenaris de trĂ fic de xarxa dinĂ mics. A continuaciĂł, estenem VENTURE considerant la dinamicitat dels fluxos de trĂ fic de xarxes de metro, el qual representa un escenari rellevant de dinamicitat de trĂ fic. Aquesta extensiĂł involucra millores per coordinar els operadors de metro i core amb l’objectiu d’aconseguir una rĂ pida adaptaciĂł de models de trĂ fic OD. Finalment, proposem dues arquitectures de xarxa necessĂ ries per aplicar els mecanismes anteriors en entorns experimentals, emprant protocols estat-de-l’art com sĂłn OpenFlow i IPFIX. La metodologia emprada per avaluar el treball anterior consisteix en una primera avaluaciĂł numĂšrica fent servir un simulador de xarxes Ă­ntegrament dissenyat i desenvolupat per a aquesta tesi. DesprĂ©s d’aquesta validaciĂł basada en simulaciĂł, la factibilitat experimental de les arquitectures de xarxa proposades Ă©s avaluada en un entorn de proves distribuĂŻt.Postprint (published version
    • 

    corecore