96,232 research outputs found

    Nanoinformatics: developing new computing applications for nanomedicine

    Get PDF
    Nanoinformatics has recently emerged to address the need of computing applications at the nano level. In this regard, the authors have participated in various initiatives to identify its concepts, foundations and challenges. While nanomaterials open up the possibility for developing new devices in many industrial and scientific areas, they also offer breakthrough perspectives for the prevention, diagnosis and treatment of diseases. In this paper, we analyze the different aspects of nanoinformatics and suggest five research topics to help catalyze new research and development in the area, particularly focused on nanomedicine. We also encompass the use of informatics to further the biological and clinical applications of basic research in nanoscience and nanotechnology, and the related concept of an extended ?nanotype? to coalesce information related to nanoparticles. We suggest how nanoinformatics could accelerate developments in nanomedicine, similarly to what happened with the Human Genome and other -omics projects, on issues like exchanging modeling and simulation methods and tools, linking toxicity information to clinical and personal databases or developing new approaches for scientific ontologies, among many others

    How to use analogies for breakthrough innovations

    Get PDF
    Analogies can trigger breakthrough ideas in new product development. Numerous examples demonstrate that substantial innovations often result from transferring problem solutions from one industry or domain to another. For instance, the designers of the new running shoe generation of Nike, Nike SHOX, use the same suspension concept like the technologies applied for Formula 1 racing cars, or the biological Lotus-effect led to the development of various self-cleaning surfaces. Academic research on analogical thinking has been so far heavily influenced by general theoretical work from cognitive psychology or systematic inventing. Only a small number of studies have investigated the application of analogies in the specific context of breakthrough innovation projects. This paper focuses on the question how analogies can be systematically used in the early innovation phases of new product development and which factors influence the successful use of analogical thinking in innovating companies. Special attention is paid to organizational facilitators and the requests on people involved in this process. --

    User-centered visual analysis using a hybrid reasoning architecture for intensive care units

    Get PDF
    One problem pertaining to Intensive Care Unit information systems is that, in some cases, a very dense display of data can result. To ensure the overview and readability of the increasing volumes of data, some special features are required (e.g., data prioritization, clustering, and selection mechanisms) with the application of analytical methods (e.g., temporal data abstraction, principal component analysis, and detection of events). This paper addresses the problem of improving the integration of the visual and analytical methods applied to medical monitoring systems. We present a knowledge- and machine learning-based approach to support the knowledge discovery process with appropriate analytical and visual methods. Its potential benefit to the development of user interfaces for intelligent monitors that can assist with the detection and explanation of new, potentially threatening medical events. The proposed hybrid reasoning architecture provides an interactive graphical user interface to adjust the parameters of the analytical methods based on the users' task at hand. The action sequences performed on the graphical user interface by the user are consolidated in a dynamic knowledge base with specific hybrid reasoning that integrates symbolic and connectionist approaches. These sequences of expert knowledge acquisition can be very efficient for making easier knowledge emergence during a similar experience and positively impact the monitoring of critical situations. The provided graphical user interface incorporating a user-centered visual analysis is exploited to facilitate the natural and effective representation of clinical information for patient care

    The Semantic Grid: A future e-Science infrastructure

    No full text
    e-Science offers a promising vision of how computer and communication technology can support and enhance the scientific process. It does this by enabling scientists to generate, analyse, share and discuss their insights, experiments and results in an effective manner. The underlying computer infrastructure that provides these facilities is commonly referred to as the Grid. At this time, there are a number of grid applications being developed and there is a whole raft of computer technologies that provide fragments of the necessary functionality. However there is currently a major gap between these endeavours and the vision of e-Science in which there is a high degree of easy-to-use and seamless automation and in which there are flexible collaborations and computations on a global scale. To bridge this practice–aspiration divide, this paper presents a research agenda whose aim is to move from the current state of the art in e-Science infrastructure, to the future infrastructure that is needed to support the full richness of the e-Science vision. Here the future e-Science research infrastructure is termed the Semantic Grid (Semantic Grid to Grid is meant to connote a similar relationship to the one that exists between the Semantic Web and the Web). In particular, we present a conceptual architecture for the Semantic Grid. This architecture adopts a service-oriented perspective in which distinct stakeholders in the scientific process, represented as software agents, provide services to one another, under various service level agreements, in various forms of marketplace. We then focus predominantly on the issues concerned with the way that knowledge is acquired and used in such environments since we believe this is the key differentiator between current grid endeavours and those envisioned for the Semantic Grid

    Librarians as Members of Integrated Institutional Information Programs: Management and Organizational Issues

    Get PDF
    published or submitted for publicatio

    TOWARDS INSTITUTIONAL INFRASTRUCTURES FOR E-SCIENCE: The Scope of the Challenge

    Get PDF
    The three-fold purpose of this Report to the Joint Information Systems Committee (JISC) of the Research Councils (UK) is to: • articulate the nature and significance of the non-technological issues that will bear on the practical effectiveness of the hardware and software infrastructures that are being created to enable collaborations in e- Science; • characterise succinctly the fundamental sources of the organisational and institutional challenges that need to be addressed in regard to defining terms, rights and responsibilities of the collaborating parties, and to illustrate these by reference to the limited experience gained to date in regard to intellectual property, liability, privacy, and security and competition policy issues affecting scientific research organisations; and • propose approaches for arriving at institutional mechanisms whose establishment would generate workable, specific arrangements facilitating collaboration in e-Science; and, that also might serve to meet similar needs in other spheres such as e- Learning, e-Government, e-Commerce, e-Healthcare. In carrying out these tasks, the report examines developments in enhanced computer-mediated telecommunication networks and digital information technologies, and recent advances in technologies of collaboration. It considers the economic and legal aspects of scientific collaboration, with attention to interactions between formal contracting and 'private ordering' arrangements that rest upon research community norms. It offers definitions of e-Science, virtual laboratories, collaboratories, and develops a taxonomy of collaborative e-Science activities which is implemented to classify British e-Science pilot projects and contrast these with US collaboratory projects funded during the 1990s. The approach to facilitating inter-organizational participation in collaborative projects rests upon the development of a modular structure of contractual clauses that permit flexibility and experience-based learning.

    Best practice in undertaking and reporting health technology assessments : Working Group 4 report

    Get PDF
    [Executive Summary] The aim of Working Group 4 has been to develop and disseminate best practice in undertaking and reporting assessments, and to identify needs for methodologic development. Health technology assessment (HTA) is a multidisciplinary activity that systematically examines the technical performance, safety, clinical efficacy, and effectiveness, cost, costeffectiveness, organizational implications, social consequences, legal, and ethical considerations of the application of a health technology (18). HTA activity has been continuously increasing over the last few years. Numerous HTA agencies and other institutions (termed in this report “HTA doers”) across Europe are producing an important and growing amount of HTA information. The objectives of HTA vary considerably between HTA agencies and other actors, from a strictly political decision making–oriented approach regarding advice on market licensure, coverage in benefits catalogue, or investment planning to information directed to providers or to the public. Although there seems to be broad agreement on the general elements that belong to the HTA process, and although HTA doers in Europe use similar principles (41), this is often difficult to see because of differences in language and terminology. In addition, the reporting of the findings from the assessments differs considerably. This reduces comparability and makes it difficult for those undertaking HTA assessments to integrate previous findings from other HTA doers in a subsequent evaluation of the same technology. Transparent and clear reporting is an important step toward disseminating the findings of a HTA; thus, standards that ensure high quality reporting may contribute to a wider dissemination of results. The EUR-ASSESS methodologic subgroup already proposed a framework for conducting and reporting HTA (18), which served as the basis for the current working group. New developments in the last 5 years necessitate revisiting that framework and providing a solid structure for future updates. Giving due attention to these methodologic developments, this report describes the current “best practice” in both undertaking and reporting HTA and identifies the needs for methodologic development. It concludes with specific recommendations and tools for implementing them, e.g., by providing the structure for English-language scientific summary reports and a checklist to assess the methodologic and reporting quality of HTA reports

    Designing Institutional Infrastructure for E-Science

    Get PDF
    A new generation of information and communication infrastructures, including advanced Internet computing and Grid technologies, promises more direct and shared access to more widely distributed computing resources than was previously possible. Scientific and technological collaboration, consequently, is more and more dependent upon access to, and sharing of digital research data. Thus, the U.S. NSF Directorate committed in 2005 to a major research funding initiative, “Cyberinfrastructure Vision for 21st Century Discovery”. These investments are aimed at enhancement of computer and network technologies, and the training of researchers. Animated by much the same view, the UK e-Science Core Programme has preceded the NSF effort in funding development of an array of open standard middleware platforms, intended to support Grid enabled science and engineering research. This proceeds from the sceptical view that engineering breakthroughs alone will not be enough to achieve the outcomes envisaged. Success in realizing the potential of e-Science—through the collaborative activities supported by the "cyberinfrastructure," if it is to be achieved, will be the result of a nexus of interrelated social, legal, and technical transformations.e-science, cyberinfrastructure, information sharing, research
    corecore