33 research outputs found

    Stability and performance in MPC using a finite-tail cost

    Full text link
    In this paper, we provide a stability and performance analysis of model predictive control (MPC) schemes based on finite-tail costs. We study the MPC formulation originally proposed by Magni et al. (2001) wherein the standard terminal penalty is replaced by a finite-horizon cost of some stabilizing control law. In order to analyse the closed loop, we leverage the more recent technical machinery developed for MPC without terminal ingredients. For a specified set of initial conditions, we obtain sufficient conditions for stability and a performance bound in dependence of the prediction horizon and the extended horizon used for the terminal penalty. The main practical benefit of the considered finite-tail cost MPC formulation is the simpler offline design in combination with typically significantly less restrictive bounds on the prediction horizon to ensure stability. We demonstrate the benefits of the considered MPC formulation using the classical example of a four tank system

    Certification of a class of industrial predictive controllers without terminal conditions

    Get PDF
    Three decades have passed encompassing a flurry of research and commercial activities in model predictive control (MPC). However, the massive strides made by the academic community in guaranteeing stability through a state- space framework have not always been directly applicable in an industrial setting. This paper is concerned with a priori and/or a posteriori certification of persistent feasibility, boundedness of industrial MPC controllers (i) based on input-output formu- lation (ii) using shorter control than prediction horizon (iii) and without terminal conditions.This work has been supported by FDOC, UGent

    Persistently Exciting Tube MPC

    Get PDF
    This paper presents a new approach to deal with the dual problem of system identification and regulation. The main feature consists of breaking the control input to the system into a regulator part and a persistently exciting part. The former is used to regulate the plant using a robust MPC formulation, in which the latter is treated as a bounded additive disturbance. The identification process is executed by a simple recursive least squares algorithm. In order to guarantee sufficient excitation for the identification, an additional non-convex constraint is enforced over the persistently exciting part

    Persistently Exciting Tube MPC

    Get PDF
    This paper presents a new approach to deal with the dual problem of system identification and regulation. The main feature consists of breaking the control input to the system into a regulator part and a persistently exciting part. The former is used to regulate the plant using a robust MPC formulation, in which the latter is treated as a bounded additive disturbance. The identification process is executed by a simple recursive least squares algorithm. In order to guarantee sufficient excitation for the identification, an additional non-convex constraint is enforced over the persistently exciting part

    Analysis and design of model predictive control frameworks for dynamic operation -- An overview

    Full text link
    This article provides an overview of model predictive control (MPC) frameworks for dynamic operation of nonlinear constrained systems. Dynamic operation is often an integral part of the control objective, ranging from tracking of reference signals to the general economic operation of a plant under online changing time-varying operating conditions. We focus on the particular challenges that arise when dealing with such more general control goals and present methods that have emerged in the literature to address these issues. The goal of this article is to present an overview of the state-of-the-art techniques, providing a diverse toolkit to apply and further develop MPC formulations that can handle the challenges intrinsic to dynamic operation. We also critically assess the applicability of the different research directions, discussing limitations and opportunities for further researc

    Inherently Robust, Adaptive Model Predictive Control: An Opportunity for Gas Turbines

    Get PDF
    corecore