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Summary
The terminal cost and terminal set method for guaranteeing stability of nonlinear model predic-
tive control (MPC) closed–loop systems is theoretically appealing but often impractical. This is
due to the difficulty of computing invariant sets and control Lyapunov functions for general non-
linear systems. In this thesis a novel method is proposed for computing time–varying terminal
costs and sets by means of first order or second order Taylor approximations of the nonlinear
system dynamics. The method first solves a set of linear matrix inequalities to compute the
terminal ingredients for the approximated dynamics. Then, a small scale global nonlinear op-
timization problem is solved to check the validity of the terminal ingredients for the nonlinear
dynamics. The proposed method also allows for time–varying linear or nonlinear terminal control
laws. Nonlinear reachable ellipsoidal sets have been researched to better approximate the non-
linear system’s behaviour, allowing for less constrictive sets. The developed method can result in
significant enlargements of the domain of attraction of the nonlinear MPC closed–loop system,
as demonstrated by academic examples.
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1 Introduction
In this thesis current methods are considered for construction of terminal ingredients (i.e., ter-
minal cost and set) for guaranteeing stability of nonlinear model predictive control (NMPC),
while proposing two novel methods. The addition of terminal ingredients in model predictive
control remains the main approach to guaranteeing recursive feasibility and stability, as origi-
nally proven in [1] for the continuous–time NMPC setting. The overview [2] describes the various
implementations of the terminal cost and set approach as well as alternative approaches that do
not require terminal ingredients, [3] and [4], for the discrete–time NMPC setting. A recent useful
review and comparison of discrete–time nonlinear MPC schemes with guaranteed stability was
provided in [5], along with implementation details for specific types of ingredients (e.g., polytopic
or ellipsoidal sets, and quadratic or infinity norm based costs).

The generally adopted methodology for computing terminal costs and sets in NMPC linearizes
the nonlinear system around the zero equilibrium and computes the terminal cost as a local
Lyapunov function for a locally stabilizing linear state feedback controller, typically taken as
the linear quadratic regulator (LQR). Then a suitable terminal set is computed as the maximal
admissible invariant set for the linearized dynamics in closed–loop with the LQR controller or, as
an admissible sublevel set of the terminal cost. This method was successfully applied to nonlinear
dynamics by correcting for the remaining linearization error in [1], [6] and [7] for continuous–
time NMPC. Later on, a corresponding method with correction for the linearization error was
worked out for discrete–time NMPC in [8] and [9]. These works consider linear (e.g., first order
Taylor) approximations of the nonlinear dynamics, linear local control laws, quadratic terminal
costs and bound the nonlinear remainder of the approximation using worst case norm bounds or
global nonlinear optimization over the candidate terminal set. The nice feature of this approach
is its simplicity, but the resulting terminal sets can be quite conservative. In comparison, other
approaches as the ones in [10] and [5] use additionally polytopic linear difference inclusions
(pLDIs) over–approximations instead of compensating for the linearization error. pLDIs over–
approximations can be less conservative but they are somewhat difficult to construct for general
nonlinear systems, especially when the state–space dimension increases.

To alleviate conservativeness, efforts have been made to improve the design and/or computa-
tion of terminal ingredients for nonlinear systems in a number of works, as for example: by the
use of interval arithmetics in [11], by the use of difference of convex functions in [12], by the use
of extended (actually, periodic) invariance in [13], or by using polytopic sets in [14]. Whenever
relying on polytopic objects as terminal sets, however, these methods would lack tractability for
higher order systems. The LQR local control was extended to a nonlinear state feedback control
law in [15]. A notable recent effort to obtain a systematically applicable method for general
continuous–time nonlinear MPC was made in [16] by using higher order Taylor series expansions
and sum–of–squares techniques. This framework is able to yield tight approximations of the non-
linear dynamics, but it can become computationally troublesome for higher order approximations
and/or state–space dimension.

At the core, the difficulty of computing stabilizing terminal ingredients for nonlinear MPC
lies within the difficulty of computing invariant sets and control Lyapunov functions for nonlinear
systems. A new design that circumvents this difficulty was proposed in [17] which uses a sequence
of terminal sets and local control laws in the off–line design and a single terminal set and terminal
cost on–line, in combination with a cyclic time–varying prediction horizon. By resorting to finite–
step (non–monotone) control Lyapunov functions and invariant sets, a new design of terminal
ingredients for nonlinear MPC was proposed in [18], which does not necessarily require a cyclic
horizon. Therein, it was shown that stability of nonlinear MPC can be guaranteed by using
a periodically time–varying terminal set and a time–invariant terminal cost and local control
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law, while using a standard horizon. The cyclic horizon implementation allows using a single
time–invariant terminal set for the MPC scheme in [18] as well (see Section 3.1 therein), which
is consistent with the idea originally proposed in [17].

In this thesis a systematic framework is aimed to be attained for setting up and computing
terminal costs and terminal sets for discrete–time nonlinear MPC schemes that achieves a good
trade–off between conservatism of the resulting terminal sets (which is important for enlarging
the domain of attraction of the MPC closed–loop system), general applicability to any nonlinear
dynamics, and ease of implementation. To this end periodically time–varying terminal costs,
terminal sets and terminal control laws, are proposed which reduce conservatism. Approximated
nonlinear reachable sets with coupled time–varying terminal cost to construct time–varying ter-
minal sets are researched. A new method is proposed, where first order or quasi–second order
Taylor approximations of the nonlinear dynamics are employed in combination with quadratic
terminal costs and linear local control laws to attain scalable linear matrix inequalities (LMIs)
formulations. An extension to nonlinear local control laws as proposed in [15] is allowed. Finally,
solving a global nonlinear optimization problem to correct for the approximation error is still
required; since this optimization problem is of small scale and it is performed over an ellipsoidal
set, effective nonlinear solvers are available (e.g., Ipopt [19], Knitro [20], Baron [21], or a se-
quential quadratic programming (SQP) solver with line search). The result is a finite collection
of quadratic terminal costs and ellipsoidal terminal sets. The developed method can be easily
automated and implemented in Matlab. Results on academic examples from the nonlinear MPC
literature are encouraging.

The thesis is structured as follows, in Section 2 the nonlinear system and MPC problem are
defined, terminal ingredients introduced and a proposal for theoretic design is given. In Section 3
a method of computation of terminal ingredients for nonlinear systems and the Matlab implemen-
tation is presented. The construction of terminal sets via reachable sets is researched in Section
4. Section 5 presents examples and Section 6 concludes the thesis including recommendations.
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2 MPC problem set–up and terminal ingredients design
The discrete–time dynamical nonlinear systems are considered

x(k + 1) = φ(x(k), u(k)), k ∈ N, (1)

where φ : Rn×Rm → Rn is the system dynamics, x(k) is the state and u(k) the input at discrete–
time instant k. Assuming that φ(0, 0) = 0. A model predictive control (MPC) optimization
problem is defined in (2) for a prediction horizon N . The prediction model in the MPC problem
(2b), is a copy of the system dynamics, i.e.,

xi+1|k = φ(xi|k, ui|k), i ∈ {0, . . . , N − 1}, k ∈ N.

By defining the sequence of predicted inputs as Uk = {u0|k, . . . , uN−1|k} yields:

min
Uk

J(x0|k, Uk) = min
Uk

{
F (xN |k, k) +

N−1∑
i=0

l(xi|k, ui|k)
}

(2a)

subject to:
xi+1|k = φ(xi|k, ui|k), i ∈ {0, . . . , N − 1} (2b)

xi|k ∈ X ⊆ Rn, i ∈ {0, . . . , N − 1} (2c)
ui|k ∈ U ⊆ Rm, i ∈ {0, . . . , N − 1} (2d)
xN |k ∈ XT (k) ⊆ Rn (2e)

where x0|k = x(k), u0|k = u(k), F : Rn × N → R+ is the terminal cost, XT is the terminal set
and l : Rn × Rm → R+ the stage cost. Note that the terminal cost and set are allowed to be
time–varying. Also, the stage cost l(·, ·) is assumed l(0, 0) = 0 and l(x, ·) ≥ α3(||x||) ∀x ∈ X
where α3 is a K∞ class function.

2.1 Terminal ingredients design
For any M ∈ N≥1, let {(Fj(·),Sj , hj(·))}j=0,...,M−1 denote a set of terminal ingredients, where
Fj : Rn → R+ with Fj(0) = 0 are terminal costs, Sj are terminal sets and hj : Rn → Rm with
hj(0) = 0 are terminal control laws for all j = 0, . . . ,M − 1. Define Φj(x) := φ(x, hj(x)) and for
a subset S of Rn define Φj(S) := {Φj(x) : x ∈ S}.

Assumption 2.1 Terminal ingredients properties.

• (i) Terminal sets:

Φj(Sj) ⊆ Sj+1, j = 0, . . . ,M − 2 (3a)
ΦM−1(SM−1) ⊆ S0, (3b)

hj(Sj) ⊆ U, j = 0, . . . ,M − 1, (3c)
Bε(0) ⊂ Sj ⊆ X, j = 0, . . . ,M − 1. (3d)

• (ii) Terminal costs:

Fj+1(Φj(x))− Fj(x) + l(x, hj(x)) ≤ 0, ∀x ∈ Sj , j = 0, . . . ,M − 2, (4a)
F0(ΦM−1(x))− FM−1(x) + l(x, hM−1(x)) ≤ 0, ∀x ∈ SM−1. (4b)
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Above Bε(0) denotes an ε radius ball in Rn centered at zero. Observe that if M = 1 the
standard assumptions of the terminal set and terminal cost for discrete–time nonlinear MPC [2]
are obtained. Observe also that when Sj := {x : Fj(x) ≤ α} is chosen for some common α > 0
and all j = 0, . . . ,M − 1, Assumption 2.1-(ii) already implies (3a) and (3b), while (3c) and (3d)
can be met by suitably scaling α > 0. Indeed, for example, (4a) yields:

Fj+1(Φj(x)) ≤ Fj(x) ≤ α, ∀x ∈ Sj .

Hence, Φj(x) ∈ Sj+1 = {x : Fj+1(x) ≤ α} for all x ∈ Sj and (3a) holds.
To make use of the multiple terminal costs and sets in the MPC problem (2) the approach

of [18] is followed and the time–varying terminal cost and set are defined, where mod is the
standard modulo operator, as follows.

If k = 0 & XT (0) = Sj , ∀j = 0, . . . ,M − 1

⇒ XT (k) := S(j+k)modM , (5a)
⇒ F (x, 0) = Fj(x) & F (x, k) = F(j+k)modM (x). (5b)

As indicated above, it is possible to assign any set Sj as the terminal set at time k = 0, which
triggers the corresponding terminal cost, and then as time varies, the terminal sets and costs are
varying periodically accordingly.

Remark 2.2 In comparison, [18] used the same time–varying terminal set conditions, but a
different time–invariant terminal cost construction, while [17] used the set S0 as terminal set,
a time–invariant common terminal cost and a time–varying cycling prediction horizon. The
approach of [18] allows to use ∪j=0,...,M−1Sj as a standard, time–invariant terminal set at the
cost of adding a mixed–integer terminal constraint, due to the specific time–invariant terminal
cost constructed therein.

Theorem 2.3 Let {(Fj(·),Sj , hj(·))}j=0,...,M−1 for any M ∈ N≥1 satisfy Assumption 2.1. Sup-
pose that the MPC problem (2) with the terminal set and terminal cost assigned as in (5) is
feasible for all x(0) ∈ Xf (N) ⊆ X. Then the MPC problem (2) remains feasible for all k ∈ N
and corresponding x(k) ∈ X and the closed–loop system (1) with u(k) = u∗

0|k
1 for all k ∈ N is

asymptotically stable for all x(0) ∈ Xf (N).

Proof The proof of recursive feasibility follows as in the proof of Theorem 5-(i) in [18] by
replacing the terminal control law h(x) with an appropriate time–varying correspondent, i.e.,
h(x, k) := hj(x)(j+k)modM , since the conditions on the terminal sets therein are the same as the
ones in Assumption 2.1-(i). For any k ∈ N and x(k) ∈ Xf (N) there exists a p ∈ {0, 1, . . . ,M−1}
such that p = (j+k)modM . Following the usual steps [2] in proving stability of MPC and keeping

1u∗
0|k is the first element of the optimum U∗

k of problem (2) at time k ∈ N.
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in mind that uk+1 = {u∗
1|k, . . . , u

∗
N−1|k, h(x

∗
N |k, k)} is suboptimal but feasible, yields:

V (x(k + 1))− V (x(k))

:= J(x(k + 1),u∗
k+1)− J(x(k),u∗

k)

≤ J(x(k + 1),uk+1)− J(x(k),u∗
k)

= Fp+1(xN |k+1) +

N−1∑
i=0

l(xi|k+1, ui|k+1)

− Fp(x
∗
N |k)−

N−1∑
i=0

l(x∗
i|k, u

∗
i|k)

≤ Fp+1(Φp(x
∗
N |k))− Fp(x

∗
N |k)

+ l(x∗
N |k, hp(x

∗
N |k))− l(x∗

0|k, u
∗
0|k).

Then directly obtained from (4) and the usual class K∞ lower bound of the stage cost:

V (x(k + 1))− V (x(k))

≤ Fp+1(Φp(x
∗
N |k))− Fp(x

∗
N |k)

+ l(x∗
N |k, hp(x

∗
N |k))− l(x∗

0|k, u
∗
0|k)

≤ −α3(‖x(k)‖).

Above is used that ui|k+1 = u∗
i+1|k for i ∈ {0, . . . , N − 2}, xi|k+1 = x∗

i+1|k for i ∈ {0, . . . , N − 1}
and Fp+1 = F0 for p = M − 1. The statement then follows from the standard discrete–time
Lyapunov stability theorem for MPC [2]. �

This concludes the proposal of theoretical design for terminal sets and terminal costs, which
gives possibility of using periodic terminal ingredients and terminal control laws while keeping
the standard terminal ingredient design as a particular case where M = 1. The following section
presents a method of computation of terminal sets and terminal costs that satisfy Assumption 2.1
for nonlinear systems.
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3 Computation of terminal costs and terminal sets
In order to arrive at systematic computational algorithms for any nonlinear dynamics φ(·, ·) and
obtain scalable algorithms (this rules out polytopic terminal sets for higher order systems) the
following choices are made.

Set l(x, u) := xTQx+ uTRu with Q > 0, R > 0. For all j = 0, . . . ,M − 1 set Fj(x) := xTPjx
with Pj > 0, set Sj := {x : Fj(x) ≤ α} with α > 0 and set hj(x) = Kjx. Further more, for all
j = 0, . . . ,M − 1 define

rj(x) := φ(x,Kjx)− (A+BKj)x = Φj(x)− (A+BKj)x

as the approximation error between φ(x, hj(x)) and its first order Taylor linearization (A,B)
around the origin. Defining AKj

:= A+BKj , obtained from (4):

(AKj
+ rj(x))

TPj+1(AKj
+ rj(x))− xTPjx+ xT (Q+KT

j RKj)x ≤ 0,

or, equivalently,

xT
(
AT

Kj
Pj+1AKj

− Pj +Q+KT
j RKj

)
x+ rj(x)

TPj+1rj(x) + 2xTAT
kj
Pj+1rj(x) ≤ 0.

For any 0 < κj < 1 the above inequality can be split into a matrix inequality:

AT
Kj

Pj+1AKj − (1− κj)Pj +Q+KT
j RKj ≤ 0 (6)

and a nonlinear inequality:

Rj(x) := rj(x)
TPj+1rj(x) + 2xTAT

kj
Pj+1rj(x)− κjx

TPjx ≤ 0.

Note that the above inequalities only have to hold for all x ∈ Sj . Hence, to find a solution to
the original terminal cost inequalities (4) it suffices to find a solution to (6) and to check that
maxx∈Sj

Rj(x) ≤ 0. Using Schur’s complement (6) can be written as (3).
(1− κj)Pj (A+BKj)

T In KT
j

(A+BKj) P−1
j+1 0 0

In 0 Q−1 0
Kj 0 0 R−1

 ≥ 0

By applying pre- and post multiplication with[
P−1
j 0

0 I2n+m

]
and the substitution of variables Oj = P−1

j , Yj = KjP
−1
j , j = 0, . . . ,M − 1, Pj > 0 and

PM := P0, the matrix inequalities (6) corresponding to all inequalities in (3) for j = 0, . . . ,M−1
can be written as a linear matrix inequality (LMI):

(1− κj)Oj (AOj +BYj)
T Oj Y T

j

AOj +BYj Oj+1 0 0
Oj 0 Q−1 0
Yj 0 0 R−1

 ≥ 0. (7)

To check that maxx∈Sj
Rj(x) ≤ 0, several global optimization solvers can be used, including

Ipopt, Knitro, Baron and SQP with line search. Whenever the check fails, one needs to appro-
priately scale α > 0 until the check holds. The volume of the terminal sets can be optimized by

9



maximizing over log det(Oj) and by introducing α in the LMI (7). I.e., set Sj := {x : Fj(x) ≤ 1},
let ᾱ := 1

α and set Fj(x) =
1
αx

TPjx, Oj = P−1
j and replace Q−1, R−1 by ᾱQ−1, ᾱR−1 in (7).

(1− κj)Oj (AOj +BYj)
T Oj Y T

j

AOj +BYj Oj+1 0 0
Oj 0 ᾱQ−1 0
Yj 0 0 ᾱR−1

 ≥ 0 (8)

Indeed, solving (8) while minimizing over ᾱ corresponds to maximizing α and enlarging Sj .
Conservatism can be further reduced, while maintaining the same computational complexity

and problem structure as above, by using a quasi–second order Taylor approximation of φ(·, ·)
around the origin. In this case define:

rj(x) := Φj(x)− (Ā(x) + B̄(x)Kj)x, (9)

where

Ā(x) := A+

x
TG1

xx
...

xTGn
xx

 , B̄(x) := B +

x
TG1

xu
...

xTGn
xu

 ,

and Gi
xx and Gi

xu are corresponding elements of appropriate dimension of the Hessian of φi(·, ·)
(i.e., φ(·, ·) = [φ1(·, ·), . . . , φn(·, ·)]T ). Observing that Ā(x) and B̄(x) are affine functions of x, by
constraining the sets Sj to lie within a bounding polytope P ⊆ X with set of vertices Pv, the
LMI corresponding to (7) becomes:

(1− κj)Oj (Ā(v)Oj + B̄(v)Yj)
T Oj Y T

j

Ā(v)Oj + B̄(v)Yj Oj+1 0 0
Oj 0 Q−1 0
Yj 0 0 R−1

 ≥ 0, ∀v ∈ Pv. (10)

By evaluation of the LMIs on the vertices v of Pv, the LMIs hold for all x ∈ Pv by convex
combination. The check maxx∈Sj

Rj(x) ≤ 0 remains the same for the Rj(x) corresponding to
rj(x) as defined in (9).

If one increases the order of the Taylor approximation further, as proposed in [16] for
continuous–time nonlinear MPC, computation of the terminal cost and set could still be brought
down to linear matrix inequalities by using sum–of–squares (SOS) techniques, but it becomes
much harder to automate the computational procedure and SOS methods are not as numerically
stable or scalable as the LMIs (10). Using the proposed quasi–second order Taylor approximation
already gives quite good results. Also it provides an exact approximation for bilinear systems.

Next, inspired by the approach of [15], the local control laws are extended to a nonlinear
feedback law. The method therein, based on the more general H–infinity Riccati inequality for
robust NMPC, is presented for disturbance free nonlinear systems as a stabilization method.
This is possible if φ(x, u) = f(x) + g(x)u for appropriate functions f(·) and g(·). Then define:

hj(x) := −(gT (x)Pjg(x) +R)−1gT (x)Pjf(x). (11)

Similarly as done above the approximation error can then be redefined:

rj(x) = Φj(x)− (Ā(x) + B̄(x)Kj)x, (12)

where rj(x) = r1,j(x) + g(x)r2,j(x) is decomposed for

r1,j(x) = f(x) + g(x)Kjx− (Ā(x) + B̄(x)Kj)x

10



and r2,j(x) = hj(x) − Kjx. Then the terminal cost inequalities (4) can be verified using the
LMIs (10) and the check maxx∈Sj Rj(x) ≤ 0 for the Rj(x) corresponding to rj(x) defined in
(12). Clearly, the nonlinear control law can also be used in combination with the first order
Taylor approximation.

In summary, the key tuning knobs of the proposed computational method are the number
M of terminal costs, terminal sets, and local control laws, the approximation of the nonlinear
dynamics (first or quasi–second order Taylor approximation), and linear or nonlinear control laws.
Additionally, the parameters κj and the level α can also be optimized, along with the volume of
the sets Sj . Polytopic constraints on states and inputs can be added as additional LMIs to (10),
as shown next. Whenever the quasi–second order approximation and the pLDI provided by the
vertices of P is an over–approximation of the nonlinear dynamics (in the sense of the solution
set), then the nonlinear optimization check can be dropped. Therefore, compared to most of the
methods cited in the Introduction, the proposed method shares the same computational features
while adding additional design parameters for reducing conservatism.

3.1 Algorithmic Implementation
Implementation is done using Matlab, YALMIP [22], SDPT3 [23] and Knitro [20]. By convex
optimisation the LMIs (7) or (10) can be solved while maximising the volume of the terminal sets.
In order to also guarantee properties (3c) and (3d), the following LMIs can be used if the state
and input constraints are polytopes according to [24]. I.e., the state constraints are described
by X = {x : Hxx ≤ 1} and the input constraints are described by U = {u : Huu ≤ 1} for
appropriate matrices Hx and Hu. Letting [Hx]p: denote the p-th line of nx size Hx, the LMIs

[Hx]p:Oj [Hx]
T
p: ≤ 1 ∀p : 1, . . . , nx, ∀j ∈ {0, . . . ,M − 1}, (13)

ensure that (3d) holds for Sj = {x : Fj(x) ≤ 1}. Similarly, the NLMIs

[Hu]p:KjOjK
T
j [Hu]

T
p: ≤ 1

can, by application of Schur’s complement, be written as[
1 [Hu]p:Kj

KT
j [Hu]

T
p: O−1

j

]
≥ 0

and by pre- and post multiplication of [
1 0
0 Oj

]
the equation is written as the LMIs (14) for [Hu]p: denoting the p-th line of nu size Hu.[

1 [Hu]p:Yj

Y T
j [Hu]

T
p: Oj

]
≥ 0 ∀p : 1, . . . , nu, ∀j ∈ {0, . . . ,M − 1}, (14)

The LMIs ensure that (3c) holds for Sj = {x : Fj(x) ≤ 1}.
For the case of using a quasi–second order approximation, define Pv := ηX = {x : HPx ≤ 1}

for 0 < η ≤ 1 and [HP ]p: denote the p-th line of nP size HP . The LMIs

[HP ]p:Oj [HP ]
T
p: ≤ 1 ∀p : 1, . . . , nP , ∀j ∈ {0, . . . ,M − 1} (15)
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ensure that Sj ⊂ P. Consider next the LMIs:
(1− κj)Oj (Ā(v)Oj + B̄(v)Yj)

T Oj Y T
j

Ā(v)Oj + B̄(v)Yj Oj+1 0 0
Oj 0 ᾱQ−1 0
Yj 0 0 ᾱR−1

 ≥ 0, ∀j ∈ {0, . . . ,M − 1},∀v ∈ Pv,

(16)

where ᾱ is used to obtain the largest possible terminal sets and improve numerical aspects, while
maximizing over the log(det(Oj)), where j = max(1, bM

2 c) gives best results. Notice that when
computing periodic control Lyapunov functions, a valid solution is for all functions to become
equal. Forcing variance can be done by inclusion of the following constraint:

Yj+1 ≥ ρYj , ∀j ∈ {0, . . . ,M − 2}, (17)

where ρ > 1 is a scaling factor. The second phase of the computation is the verification of
maxx∈Sj

Rj(x) using Knitro Multistart. When the validation fails the sequence is scaled [0, ᾱ),
the scaling is optimized via bisection. The algorithms implementing the two phases described
above are summarized next.

Alg. 1
Input M ∈ N≥1, Q > 0, R > 0, Pv

Output {Fj(·),Sj , hj(·)}j=0,...,M−1, ᾱ
Begin – min{− log(det(Oj)) + ᾱ} over (13)–(17)

IF feasible
– END
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Alg. 2
Input {Fj(·),Sj , hj(·), rj}j=0,...,M−1, Ā, B̄, ᾱ, TOL

Output α
Begin αupper = ᾱ, αlower = 0

• FOR{j ∈ {0, . . . ,M − 1}}
{ – R∗

j = maxx∈Sj
Rj(x) where Sj = {x|xTPjx ≤ αupper}

IF R∗
j > 0

{
– α = 0.5(αupper − αlower)

WHILE (αupper − αlower) > TOL

{
∗ R∗

j = maxx∈Sj Rj(x) where Sj = {x|xTPjx ≤ α}
IF R∗

j > 0

· αupper = α

· α = 0.5(αupper − αlower)

· return
IF R∗

j ≤ 0

· αlower = α

· α = 0.5(αupper − αlower)

· return
}

}
}
• return α
• END

13



4 Reachability problem
While the LMI construction is a valid method of computing terminal sets based on the level
set of terminal cost functions, it is based on the linearization of the nonlinear system. For
an increase in accuracy of the dynamics of the system, nonlinear reachability is explored by
multiple approximation techniques, keeping tractability in mind. A (possibly invariant) reachable
ellipsoidal set Ej := {x : xTPjx ≤ α} is defined for nonlinear systems as in (18):

{φ(x, u) : x ∈ Ej} ⊆ Ej+1. (18)

In Section 3 terminal sets are constructed as level sets of the terminal cost functions. Using
reachable sets it is possible to construct terminal sets directly from an initial input admissible
set S0 without associated terminal cost.

A sequence S is calculated to have SM ⊆ S0 while keeping all sets in the sequence input
admissible as in [18] using a single state feedback controller u = Kx, creating periodic invariance
of the sets. Therefore the size of the sequence M is not known in advance. The set S0, constructed
by LQR based LMIs and a level set of S0 := {x : F0(x) ≤ α}, is scaled using bisection, when
the sequence fails the input admissible bounds, followed by a recalculation of the sequence.

4.1 Lagrange remainder
This construction of the nonlinear reachable set is based on linearization and a method of lin-
earization error bounding. The reachability problem for linear systems and ellipsoidal sets is
described in [25]. In [26] the Intlab toolbox is used to overapproximate the Lagrange remain-
der. By application of a first order Taylor approximation on the nonlinear system, an error is
introduced. The linearization error is described by the Lagrange remainder (19) ∀s ∈ [1, n], the
extended state ξ =

[
xT uT

]T and the approximation point ξ̄.

Li(ξ̄, z) =
1

2
(ξ − ξ̄)T

∂2φs(ξ[1:n], ξ[n+1:n+m])

∂2ξ

∣∣∣∣
ξ=z

(ξ − ξ̄) (19)

The value of z in (19) lies within within the interval bound and the approximation point as in
(20).

z ∈ {αξ + (1− α)ξ̄|α ∈ [0, 1]} (20)

The Lagrange remainder can be described by an ellipsoidal set and is combined with the linear
reachable set by Minkowski addition to create the nonlinear reachable set as described in the
following Section.

4.1.1 Algorithmic implementation

A linearization is made at the (x, u) = (0, 0) point to create the matrices A,B. Using LMIs to
describe the LQR based Lyapunov inequality, a stabilizing linear state feedback controller u = Kx
and the quadratic Lyapunov function V (x) = xTPx are synthesized. The maximum input
admissible level set of the Lyapunov function is used as S0. The ellipsoidal toolbox (ET) [27] uses
ellipsoids to calculate reachability for linear systems with convex constraints as described by [25].
ET is used to calculate the reachable set for the closed loop linear system x(k+1) = (A+BK)x(k).
The current ellipsoidal set Sj is overapproximated using intervals, creating a (hyper)box of the
extended state bξe = [bSjeT , bUjeT ]T , where the input space bUje = KbXje. ξ̄ is considered the
center of the ellipsoidal sets, hence ξ̄ =

[
0 0

]T .
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The (hyper)box is constructed using the extreme values of ellipsoidal matrices. The extreme
values are calculated using the diagonal terms of the shape matrix

√
diag(P−1

j ).
Since ξ, z are interval objects, the remainder (19) results in an interval object Lbox. The sec-

ond derivative in (19) is calculated for the points within the (hyper)box bξe using the hessianinit
function in intlab evaluated for function f(ξ[1:n], ξ[n+1:n+m]). This remainder box Lbox is over-
approximated by an ellipsoid SLj this is done using the method described in [24]. Constructing
the linear reachable set SLj as an ellipsoid and the nonlinear error set SLj as an ellipsoid, it is
possible to apply Minkowski addition Sj = SLj

⊕
SLj using ET.

4.1.2 Intlab affine arithmetic

Since the error set SLj is constructed using two overapproximations, the reach set for the non-
linear system Sj = SLj

⊕
SLj is constructed very conservatively. An improvement is to use

affine interval arithmetic, which is included in intlab. The affari implementation is an alter-
native method of describing intervals carrying some “memory” causing it to possibly produce
better inclusions. Using the affari approximation the eigenvalues

√
eig(P−1

j ) are used to create
a (hyper)box which is rotated using the singular value decomposition (SVD) afterwards. Since
the input set for the calculation of the Lagrange remainder is approximated more closely, the
linearization error is less conservatively computed.

4.2 Random evaluation
Another method of reachable set construction is a random evaluation. By evaluating the sys-
tem for random points an ellipsoidal overapproximation is made. This method is correct for
the number of evaluations T → ∞. To have a tractable implementation of this method of
reachability, T should be small enough, hence a compromise is made. To have a minimal T ,
while keeping confidence in the result further research has to be done. The points can be
found by uniformly distributed random generation over the interval [−

√
diag(P−1

j ),
√
diag(P−1

j )]

to create a n × T matrix. Each column of points vTt ∀t ∈ [1, T ], is validated to be in-
side of Sj . A system evaluation is applied on these points, the result stored in polyhedron
PT = Co{φ(vT1,KvT1), . . . , φ(vT T̄ ,KvT T̄ )}. The polyhedron is used to find the smallest ellip-
soid Enl as described in [24] using the Schur’s complement of (21)

vTt̄ Q
−1vt̄ ≤ 1, ∀t̄ = 1, . . . , T̄ (21)

to find (22) for Q = P−1
nl > 0 [

1 vTt̄
vt̄ Q

]
≥ 0, ∀t̄ = 1, . . . , T̄ (22)

such that PT ⊆ Enl.

4.3 Terminal cost verification
Since the terminal set sequence S is calculated using the nonlinear reachable set construction,
the original LQR based quadratic Lyapunov function is not guaranteed to hold as the terminal
cost function.

A proposed method of terminal cost verification is to include the linearization in the calcu-
lation of the reachable sets. First the nonlinear set Enl := {x : xTPnlx ≤ α} is calculated,

15



either by Lagrange remainder or random evaluation, then this set is overapproximated by a set
corresponding to the LQR inequality. The LMIs

Oj (AOj +BYj)
T Oj Y T

j

AOj +BYj Oj+1 0 0
Oj 0 ᾱQ−1 0
Yj 0 0 ᾱR−1

 ≥ 0,

(13), with the added constraint
Oj+1 ≥ Onl (23)

are used to minimize the trace(Oj+1). Here Oj = P−1
j , which is the cost function of the current

set. Then Pj+1 = O−1
j+1 verifies the LQR for the smallest ellipsoidal level set Sj+1 := {x :

xTPj+1x ≤ α} containing the nonlinear set.

Terminal feasibility While the reachable sets are calculated without associated terminal cost
function, a subsequent verification is applied. This however does not necessarily give feasible
results, since the reachable sets are based on approximations.
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Table 1: Volume comparison of terminal sets for undamped oscillator.
Set Volume

Linear M = 10,Smax 3.836848414601913
Linear M = 10,S0 2.985386253003532

pLDI M = 10,Smax 4.084069235906584
pLDI M = 10,S0 3.712899763995698

pLDI M = 1,S0 4.381223423896796

[8] 1.035606448654549

Sp 1.858045336306206

Random eval. M = 33,Smax 5.242066229019890

5 Illustrative examples
In this section the application of the new method and the reachable construction are applied to
examples presented in academic papers. All systems have a bound on the ᾱ < 1000. In every
provided picture, in light blue (magenta) a plot of closed–loop NMPC trajectories for the initial
conditions where the NMPC problem was feasible for the same prediction horizon (N = 5) and
in red circles the initial conditions where the NMPC problem was not feasible. The terminal
sets are shown as green ellipsoids, with the starting set S0 being black and the last set SM−1

is blue. The trajectories are calculated using ACADO toolkit [28]. With ACADO it is possible
to create M mex files for each terminal set and associated cost. The mex files use the optional
acado.MexInput, which is used to define the initial state. For each initial state, the closest set is
found and this set is used to initialize the position j within the sequence. At each time instant
k, the (j + k)modM ACADO mex file is used over a N horizon. Initialization of the optimal
control problem can be done by ACADO or by use of the associated terminal controller.

Undamped Oscillator The following system is taken from [5] and it describes an undamped
oscillator:

φ1(x, u) = x1 + 0.1x2 + 0.09u+ 0.01x1u, (24a)
φ2(x, u) = x2 + 0.1x1 + 0.09u− 0.04x2u. (24b)

The stage cost is defined using Q = 1
20I2, R = 0.1. The terminal set obtained in [5] (named Sp)

is compared with the sequence of terminal sets obtained for M = 10 and M = 1 in Table 1, using
κj = κ = 0.05 for all j = 0, . . . ,M − 1, η = 0.75 and ρ = 1.05. The terminal set obtained via the
standard linearization method with error correction from [8] is included in the comparison.
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Figure 1: M = 10 for the undamped oscillator, first order Taylor approximation, nonlinear
terminal control law (11).
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Figure 2: M = 10 for the undamped oscillator, quasi–second order Taylor approximation with
pLDI bounding, nonlinear terminal control law (11).
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Figure 3: Method of [8] for the undamped oscillator.

The results are better in this case when using a quasi–second order Taylor approximation
with pLDI and M = 1 because the approximation is exact for bilinear dynamics. The developed
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method yields larger terminal sets than the tested existing methods. The proposed method
results in a larger domain of attraction in general. Increasing κj can be beneficial for the size
of standard method set, however influencing the terminal cost and terminal controller for an
increased control input.
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Figure 4: Intlab approximated sequence construction of size M = 96.

Figure 4 shows a stabilizing sequence constructed using intlab approximation, in figure 5 the
affari approximation is used. Both implementations give a sequence of high M , while the volume
compared to the standard [8] method decreases. Therefor the ACADO simulation is omitted.
Comparing figure 5 to figure 4, the size is increased, however still smaller than the standard
method therefore both intlab and affari are not very suitable for terminal set application.
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Figure 5: Affari approximated sequence construction of size M = 113.

19



−4 −2 0 2 4
−4

−2

0

2

4

Figure 6: Intval approximation undamped oscillator. A comparison of random evaluation (x),
linear reachable set (purple) and the intlab approximation (red).

−4 −2 0 2 4
−4

−2

0

2

4

Figure 7: Affari approximation undamped oscillator. A comparison of random evaluation (x),
linear reachable set (purple) and the affari approximation (red).

The figures 6 and 7 are used to show the conservativeness of the Lagrange remainder method.
The figures show the set Sj(green) and the approximation bSje together with the random evalu-
ation points (x), the linear reachable set (purple), the Lagrange remainder (cyan) and the twice
overapproximated Minkowski addition (red). The implementation of the Lagrange remainder
shows the inherent problem with this method, the goal of a large set creates a large linearization
error and therefore the twice overapproximated ellipsoidal set (purple

⊕
cyan = red) is very

conservative. The increase in size causes the sequence to leave the input admissible space quickly,
therefore the sequence is scaled close to zero, making it less suitable for application in terminal
set construction.
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Figure 8: Undamped oscillator random evaluation with T = 750 of size M = 33.

Since the sequence S is constructed using random evaluation for T = 750 points the computa-
tion becomes less tractable as the size of the sequence increases. The shape of the sets, however,
show that the sequence is less constricted by the behaviour of the linearization and therefore
increase in size as shown in table 1. Since the construction is done by T < ∞, the sets are not
guaranteed to be reachable sets, therefore the sets are not guaranteed to have feasible solutions.
This is noticable in figure 8, where some initial conditions can give infeasible solutions.

Inverted Pendulum The system of [29] is used with a constant Cm = 14, mgL = 2 and
parameters Q = 1

20In, R = 0.1, Ts = 0.2, |x| ≤ 10, |u| ≤ 2 describes an inverted pendulum:

φ1(x, u) = x1 + TsmgL sin(x2) + CmTsu, (25a)
φ2(x, u) = x2 + Tsx1. (25b)

Figure 9 shows a benefit of M > 1, as the ellipsoids cover more input admissible space than only
one set could, while the use of the nonlinear control law (11) increases the size significantly. This
result is for κj = 0.05 while using a first order Taylor approximation.
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Figure 9: M = 10 for the inverted pendulum, first order Taylor approximation, nonlinear terminal
control law (11).
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Table 2: Volume comparison of terminal sets for inverted pendulum.
Set Volume

Linear M = 10,Smax 89.405147602400604
Linear M = 10,S0 81.675380231847839

[8] 0.840519749009968

Random eval. M = 70,Smax 20.324971273919424
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Figure 10: Method of [8] for the inverted pendulum.

In figure 11 the reachable set is calculated by random evaluation with T = 750 random points.
The sequence shows more movement in the state space and improves the size of the set in terms
of [8]. Comparing the result to the method in figure 9, the reachable set construction could
possibly gain from an implementation of multiple state feedback controllers.
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Figure 11: Inverted Pendulum random evaluation with T = 750 points and M = 70.
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Nonlinear spring The example in [15] describes a connected cart system with a nonlinear
spring k = k0e

−x1 :

φ1(x, u) = x1 + Tsx2, (26a)

φ2(x, u) = x2 − Ts
k0
Mc

e−x1x1 + Ts
hd

Mc
x2 + Ts

u

Mc
. (26b)

The parameters are chosen k0 = 0.33,Mc = 1, hd = 1.1 and Ts = 0.4 and stage cost Q =
0.01In, R = 10Im and |x1| ≤ 2.65, |x2| ≤ 5, |u| ≤ 4.5. The value of κj = 0.4 and ρ = 1.05
and µ = 1. This system shows again a benefit of the new method using quasi–second order
approximation and nonlinear control law (11), as the sets increase and by movement cover more
of the state space.
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Figure 12: Nonlinear spring cart system, quasi-second order approximation using nonlinear con-
trol law (11).
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Figure 13: Nonlinear spring cart system, standard [8] method.
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Table 3: Volume comparison of terminal sets for nonlinear spring.
Set Volume

pLDI M = 10,Smax 5.002556880598027
pLDI M = 10,S0 4.360821197278540

pLDI, linear control law M = 10,Smax 2.321923276054616
pLDI, linear control law M = 10,S0 2.024063390452235

[8] 1.926296923378072

−2 −1 0 1 2

−4

−2

0

2

4

Figure 14: Nonlinear spring cart system, quasi-second order approximation using linear control
law.

The figures for this system do not show an immediate increase of the domain of attraction,
which can be caused by the coarse selection of initial conditions.

2DOF robotic manipulator The system is [30] describes a robotic manipulator system of
order 4:

φ1(x, u) = x1 + Tsx3, (27a)
φ2(x, u) = x2 + Tsx4, (27b)[

φ3(x, u)
φ4(x, u)

]
=

[
x3

x4

]
− Ts

[
M−1(c+ g)

]
+ Ts

[
u1

u2

]
, (27c)

with

M =

[
b1 + b3 cos (x1 − x2) b2 + b3 cos (x1 − x2)
b3 cos (x1 − x2)− b8 b7

]
, (28a)

c =

[
−b3 sin (x1 − x2) x3

2 + b6 x3 + b3 sin (x1 − x2) x4
2

−b9 (x3 − x4)− b3 x3
2 sin (x1 − x2)

]
, (28b)

g =

[
−b4 sin (x2)− b5 sin (x1)

−b4 sin (x2)

]
, (28c)

and b1 = 0.0715, b2 = 0.0058, b3 = 0.0114, b4 = 0.3264, b5 = 0.3957, b6 = 0.6254, b7 = 0.0749, b8 =
0.0705 and b9 = 1.1261 The system is discretized using a Euler discretization for Ts = 0.01. The
stage cost is defined using Q = diag(1, 1, 0.01, 0.01), R = 0.001Im. The input constraints |u| ≤ 10

and state constraints |x| ≤
[
90π/180 90π/180 10 10

]T . A M = 20 set sequence is created
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using κj = 0.1. Figure 15 and 16 show projections on the respective states of the terminal set
sequence for visualisation. The largest gain in this example is how the set sequence in figures 15
and 16 increases the coverage of the state space compared to the standard method in figures 17
and 18.
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Figure 15: Robotic manipulator, State 1,2
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Figure 16: Robotic manipulator, State 3,4
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Figure 17: Robotic manipulator, State 1,2
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Figure 18: Robotic manipulator, State 3,4
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6 Conclusions
In this thesis a new method for designing and computing time–varying terminal costs and ter-
minal sets has been developed for discrete–time nonlinear MPC algorithms with guaranteed
stability. First, a first or quasi–second order Taylor approximation of the nonlinear dynamics is
employed and LMIs are solved to find a set of periodic quadratic control Lyapunov functions and
corresponding ellipsoidal terminal sets. Then a global nonlinear convex optimisation problem is
solved over each terminal set to correct for the approximation error and validate the terminal
costs and sets for the original nonlinear dynamics. The method was tested on benchmark exam-
ples from the NMPC literature with encouraging results. Nonlinear reachable sets with coupled
time–varying terminal cost to construct time–varying terminal sets were also researched. Sets
constructed using Lagrange remainder remain small and are therefore less suited as terminal
sets. The construction using random evaluation shows promising results, however some research
should be done to the compromise between scalability and confidence of validity. The reachable
set construction could possibly gain from implementation of nonlinear terminal controller(s),
where the region of stability should be researched. Future work will deal with further improving
the computational aspects of the algorithms, developing an automated software implementation
and testing it on more complex examples.

Acknowledgements
I would like to thank my supervisor Dr. M. Lazar for guidance, help and encouragement, but
especially for sacrificing part of not one but two holidays to finalize work within strict deadlines.
Part of the results in this thesis were reported in a conference paper accepted at the 6th IFAC
Conference on Nonlinear Model Predictive Control, Madison, USA, August 2018.

27



References
[1] H. Michalska and D. Mayne, “Robust receding horizon control of constrained nonlinear

systems,” IEEE Transactions on Automatic Control, vol. 38, no. 11, pp. 1623–1633, 1993.

[2] D. Mayne, “An apologia for stabilising terminal conditions in model predictive control,”
International Journal of Control, vol. 86, no. 11, pp. 2090–2095, nov 2013.

[3] L. Grüne, J. Pannek, L. Grüne, and J. Pannek, Nonlinear Model Predictive Control.
Springer London, 2011.

[4] D. Limon, T. Alamo, F. Salas, and E. Camacho, “On the stability of constrained MPC
without terminal constraint,” IEEE Transactions on Automatic Control, vol. 51, no. 5, pp.
832–836, may 2006.

[5] M. S. Darup and M. Cannon, “A missing link between nonlinear MPC schemes with guar-
anteed stability,” in 2015 54th IEEE Conference on Decision and Control (CDC). IEEE,
dec 2015.

[6] H. Chen and F. Allgöwer, “A quasi-infinite horizon nonlinear model predictive control
scheme with guaranteed stability,” Automatica, vol. 34, no. 10, pp. 1205–1217, oct 1998.

[7] W.-H. Chen, J. O’Reilly, and D. J. Ballance, “On the terminal region of model predic-
tive control for non-linear systems with input/state constraints,” International Journal of
Adaptive Control and Signal Processing, vol. 17, no. 3, pp. 195–207, 2003.

[8] S. H. H. Wook Hyun Kwon, Receding Horizon Control: Model Predictive Control for State
Models. SPRINGER VERLAG GMBH, 2005.

[9] S. Yu, C. Hou, T. Qu, and H. Chen, “A revisit to MPC of discrete-time nonlinear systems,”
in 2015 IEEE International Conference on Cyber Technology in Automation, Control, and
Intelligent Systems (CYBER). IEEE, jun 2015.

[10] X. B. Hu and W. H. Chen, “Model predictive control for non-linear missiles,” Proceedings of
the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering,
vol. 221, no. 8, pp. 1077–1089, nov 2007.

[11] J. Bravo, D. Limon, T. Alamo, and E. Camacho, “On the computation of invariant sets
for constrained nonlinear systems: An interval arithmetic approach,” Automatica, vol. 41,
no. 9, pp. 1583–1589, sep 2005.

[12] M. Fiacchini, T. Alamo, and E. Camacho, “On the computation of convex robust control
invariant sets for nonlinear systems,” Automatica, vol. 46, no. 8, pp. 1334–1338, aug 2010.

[13] Y. Lee, M. Cannon, and B. Kouvaritakis, “Extended invariance and its use in model pre-
dictive control,” Automatica, vol. 41, no. 12, pp. 2163–2169, dec 2005.

[14] M. Cannon, B. Kouvaritakis, and V. Deshmukh, “Enlargement of polytopic terminal region
in NMPC by interpolation and partial invariance,” Automatica, vol. 40, no. 2, pp. 311–317,
feb 2004.

[15] D. M. Raimondo, “Nonlinear model predictive control: Stability, robustness and applica-
tions,” Master’s thesis, UNIVERSITÀ DEGLI STUDI DI PAVIA, 2009.

28



[16] S. Lucia, P. Rumschinski, A. J. Krener, and R. Findeisen, “Improved design of nonlinear
model predictive controllers,” IFAC-PapersOnLine, vol. 48, no. 23, pp. 254–259, 2015.

[17] M. Kögel and R. Findeisen, “Stability of NMPC with cyclic horizons,” IFAC Proceedings
Volumes, vol. 46, no. 23, pp. 809–814, 2013.

[18] M. Lazar and V. Spinu, “Finite-step terminal ingredients for stabilizing model predictive
control,” IFAC-PapersOnLine, vol. 48, no. 23, pp. 9–15, 2015.

[19] A. Wächter and L. T. Biegler, “On the implementation of an interior-point filter line-search
algorithm for large-scale nonlinear programming,” Mathematical Programming, vol. 106,
no. 1, pp. 25–57, apr 2005.

[20] R. H. Byrd, J. Nocedal, and R. A. Waltz, “KNITRO: An integrated package for nonlinear
optimization,” In G. di Pillo and M. Roma, editors, Large-Scale Nonlinear Optimization,
vol. Springer, pp. 35–59, 2006.

[21] M. Tawarmalani and N. V. Sahinidis, “A polyhedral branch-and-cut approach to global
optimization,” Mathematical Programming, vol. 103, no. 2, pp. 225–249, may 2005.

[22] J. Löfberg, “Yalmip : A toolbox for modeling and optimization in matlab,” in In Proceedings
of the CACSD Conference, Taipei, Taiwan, 2004.

[23] R. H. Tütüncü, K. C. Toh, and M. J. Todd, “Solving semidefinite-quadratic-linear programs
using SDPT3,” Mathematical Programming Series B, vol. 95, pp. 189–217, 2003.

[24] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System
and Control Theory. Society for Industrial and Applied Mathematics, jan 1994.

[25] A. A. Kurzhanskiy and P. Varaiya, “Ellipsoidal techniques for reachability analysis of
discrete-time linear systems,” IEEE Transactions on Automatic Control, vol. 52, no. 1,
pp. 26–38, jan 2007.

[26] L. Asselborn, D. Groß, and O. Stursberg, “Control of uncertain nonlinear systems using
ellipsoidal reachability calculus,” IFAC Proceedings Volumes, vol. 46, no. 23, pp. 50–55,
2013.

[27] A. A. Kurzhanskiy and P. Varaiya, “Ellipsoidal toolbox,” EECS Department, University of
California, Berkeley, Tech. Rep. UCB/EECS-2006-46, May 2006.

[28] B. Houska, H. Ferreau, and M. Diehl, “ACADO Toolkit – An Open Source Framework for
Automatic Control and Dynamic Optimization,” Optimal Control Applications and Methods,
vol. 32, no. 3, pp. 298–312, 2011.

[29] S. Iles, M. Lazar, and J. Matusko, “Stabilizing model predictive control based on flexible
set-membership constraints,” in 2015 European Control Conference (ECC). IEEE, jul 2015.

[30] P. G. Cisneros and H. Werner, “Fast nonlinear MPC for reference tracking subject to non-
linear constraints via quasi-LPV representations,” IFAC-PapersOnLine, vol. 50, no. 1, pp.
11 601–11 606, jul 2017.

29


	Introduction
	MPC problem set–up and terminal ingredients design
	Terminal ingredients design

	Computation of terminal costs and terminal sets
	Algorithmic Implementation

	Reachability problem
	Lagrange remainder
	Algorithmic implementation
	Intlab affine arithmetic

	Random evaluation
	Terminal cost verification

	Illustrative examples
	Conclusions

