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Abstract

Civil-aero gas turbines are becoming increasingly more complex. A-priori model-
ling of engine dynamics through first-principles physics and experimental data
collection are mandraulic tasks that are mandatory for certifying engine control.
There is tremendous economic incentive for developing controllers that are robust,
optimal and fast, with known performance guarantees despite the presence of na-
tural engine degradation. Moreover, increasing engine intelligence by utilising
coupling between novel control effectors has been identified as a route to increa-
sing capability and efficiency of future civil aero-engine concepts. In this thesis,
automatic control for regulation of engine thrust, in a multivariable engine archi-
tecture that exhibits degradation, is used as a case-study for developing a novel
adaptive control algorithm.

The thesis reviews, critiques and provides a comprehensive summary of con-
temporary control strategies in the field of aero-propulsion. The result of this
review is the selection of model predictive control (MPC) as a candidate control al-
gorithm, for tackling the multivariable and constrained thrust regulation problem.
The fundamental theoretical properties of nominal linear quadratic (LQ)-MPC and
its limitations motivate the theoretical contribution of this research.

The academic contribution is a chapter-by-chapter derivation of an inherently
robust adaptive MPC control law. The dual-control problem of simultaneously re-
gulating a plant and identifying its dynamics is addressed in a linear and constrai-
ned MPC framework. The technical chapters describe how robustness properties
of the nominal LQ-MPC formulation can be used to overcome the shortcomings of
closed-loop identification for learning degraded engine dynamics; without using
explicitly robust MPC methods that are known to induce conservatism. Under
technical assumptions, the proposed scheme is used to show how the prediction
model can be safely updated to provide self-tuning capability.

The efficacy of the inherently robust adaptive MPC is finally demonstrated
using experimentally validated linear models of a real desktop sized turboprop
engine. Regulation of the engine’s shaft speeds, to those at cruise, is used to
emulate a typical acceleration command. Despite model mismatch and presence
of constraints, the inherently robust adaptive MPC controller is able to learn the
true dynamics of the gas turbine whilst regulating the states to the desired cruise
operating point. Adapting the controller’s parameters to the ones associated with
the true dynamics can therefore allow for more economical and safer exploitation
of aero-engines in the presence of natural degradation.
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Definitions

The following list defines numerous fundamental concepts and notation that are
referred to throughout the body of this thesis.

Linear Algebra

• Positive (Semi-)Definiteness : M(�) � 0 denotes positive (semi-)definiteness
of the matrix M.

• Convex Function : A function f over some domain D is convex if for all pairs
x1, x2 ∈ D the following condition holds: f (αx1 + (1− α)x2) ≤ α f (x1) + (1−
α) f (x2), where 0 ≤ α ≤ 1.

• Vector Norm : The operator ||.||p satisfies the properties of a vector norm

for 1 ≤ p ≤ ∞ and is defined for x ∈ Rn as ||x||p = ∑n
i=1

(
|xi|p

) 1
p
. If the

subscript is omitted for brevity, ||.|| denotes the euclidean norm i.e., p = 2.

• Weighted 2-norm The operator ||.||2,Q satisfies the properties of a vector norm

and is defined for x ∈ Rn as ||x||2,Q = ∑n
i=1

(
αi|xi|2

) 1
2

and diagonal weig-

hting matrix Q with diag(Q) = [α1, . . . , αN ]
>.

• Frobenius Matrix Norm : The operator ||A|| applied to a matrix A ∈ Rn×m is
defined as

||A|| =

√√√√ m

∑
i=1

n

∑
j=1
|aij|2.

• Linear Mapping : For the set X ⊂ Rn, AX denotes the mapping {Ax : x ∈
Rn}.

• Matrix Inverse : For a square matrix A ∈ Rn×n, the inverse A−1 satisfies
A−1A , I and holds for the commutation.

xv



xvi NOMENCLATURE

• Minimum Eigenvalue : For a square matrix A ∈ Rn×n, the minimum eigen-
value is λ(A) , min(Λ) where Λ = {λ1, . . . , λn} is the set of eigenvalues
(possibly non-unique) and V = {v1, . . . , vn} are the corresponding eigen-
vectors that satisfy Avi = λivi for i = 1, . . . , n.

Set Methods

• Polyhedra : A polyhedron is a convex intersection of closed half-spaces, and
a polytope is a bounded polyhedron denoted S = {x ∈ Rn : Ax ≤ b}.

• Positive Invariance : A set X ⊂ Rn is positive invariant (PI) for the system
x+ = f (x) (where f : Rn 7→ Rn) if f (x) ∈ X for all x ∈ X.

• Level Set : The level set of a function V : Rn → R≥0 over a domain X ⊆ Rn

is defined as Ωa , {x : V(x) ≤ a, x ∈ X} for some level constant a ∈ R≥0.

• Set Intersection and Union : For two sets A and B the set intersection and
union is denoted A ∩ B and A ∪ B respectively.

• Minkowski Addition : The Minkowski sum of two sets A ⊆ Rn and B ⊆ Rn is
defined as A⊕ B , {a + b : a ∈ A, b ∈ B}.

• Pontryagin Difference : The Pontryagin difference of two sets A ⊆ Rn and
B ⊆ Rn is defined as A	 B , {a : a + b ∈ A, ∀b ∈ B}.

• Cartesian Set Product : The Cartesian set product between two sets A ⊆ Rn

and B ⊆ Rm is denoted A× B and is defined in the lifted space Rn+m.

• Element-wise Multiplication : The element-wise multiplication of N elements
ai ∈ A for i = 1, . . . , N by a compatible matrix M is defined M � A =

{Ma1, Ma2, . . . , MaN}.

Stability

• Radially Unbounded Function : A function f : Rn → Rn is radially unbounded
if ||x|| → ∞ implies f (x)→ ∞.

• Local Stability of the Origin : The origin is locally stable for the autonomous
system x+ = f (x) if for all ε > 0, there exists a δ > 0 such that ||x(0)|| ≤ δ

implies that ||x(k)|| ≤ ε for all k ∈ Z≥0.



NOMENCLATURE xvii

• Attractivity of the Origin : The origin is asymptotically attractive for the sy-
stem x+ = f (x) with a domain of attraction X and 0 ∈ X , if for all x(0) ∈ X ,
k→ ∞ implies ||x(k)|| → 0.

• Asymptotic Stability of the Origin : The origin is asymptotically stable for the
autonomous system x+ = f (x) with region of attraction X (0 ∈ X ), if the
origin is both locally stable and asymptotically attractive.

• Exponential Stability of the Origin : The origin is exponentially stable for the
autonomous system x+ = f (x) with region of attraction X , if there exist
two constants γ ∈ (0, 1) and c > 1 such that for all x(0) ∈ X , ||x(k)|| ≤
cγk||x(0)|| ∀k ∈ Z≥0.

• Class K, K∞ and KL Functions : A function α : R≥0 → R≥0 is classified as K
function if it is continuous, zero-at-zero and strictly increasing. A function
α : R≥0 → R≥0 is classified as K∞ if it is a K function and also radially
unbounded. A function β : R≥0 ×Z≥0 → R≥0 is classified as KL if β(., t) ∈
K∞ for every t ∈ Z≥0 and β(r, .) is monotonically decreasing for each r ∈
R≥0.

• Lyapunov Function : A function V : Rn → R is said to be a Lyapunov
function for the autonomous system x+ = f (x) if there exist functions
α1(.), α2(.), α3(.) ∈ K∞ such that for all x ∈ Rn, the following two condi-
tions are satisfied:

α1(||x||) ≤ V(x) ≤ α2(.),

V
(

f (x)
)
≤ −α3(||x||).

• Input-to-state Stability : The system x+ = f (x, w) is input-to-state (ISS) stable
if there exist functions β ∈ KL and ρ ∈ K such that for each input w ∈ Rm

and each initial state ξ ∈ Rn

||x(k; ξ)|| ≤ β(||ξ||, k) + ρ(||w||).

• Input-to-state Lyapunov Function : A function V : Rn → R is said to be an
ISS Lyapunov function for the system x+ = f (x) if there exist functions
α1(.), α2(.), α3(.) ∈ K∞ and σ ∈ K such that for all x ∈ Rn, the following two
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conditions are satisfied:

α1(||x||) ≤ V(x) ≤ α2(.),

V
(

f (x, w)
)
≤ −α3(||x||) + σ(||w||).

Miscellaneous Notation

• Predecessor Value : Superscript ‘−’ denotes a predecessor value for a time
dependent variable e.g. x− = xk−1 = x(k− 1).
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Chapter 1

Motivation and Background

1.1 Motivation

All technological advancement in aero-propulsion has been driven by three sim-
ple considerations: performance, economics and safety. Commercial competition,
compliance to certification regulations and environmental legislation all generate
tremendous cost driven incentive for reducing gas turbine (GT) fuel consumption,
emissions and unnecessary maintenance. Consequently, increasing engine intelli-
gence and autonomy through novel sensing, computing and decision making have
been identified as major technological advancements where untapped cost savings
can be made [14, 31]. This observation demonstrates the biggest paradigm shift
from traditional GT research which has focused on mechanical innovations. These
innovations relied on a brute-force rationale which would reduce weight or per-
mit higher thermodynamic efficiencies by increasing engine pressure ratios and
turbine inlet temperatures; in the same-old Brayton cycle [24].

Engine intelligence and autonomy will not only improve the efficiency of ex-
isting designs, but may also enable commercial validity of new GT architectures,
thermodynamic cycles and even future engine concepts; previously deemed too
complex [103]. With the advent of unprecedented reliable and low cost processing
power, this research attempts to capitalize on intelligent decision making for thrust
control; in the context of civil GTs with access to many control degrees of freedom.
Prior art utilising only the coupling between fuel-flow and nozzle area in a tur-
bojet engine boasts up to 1% specific fuel consumption (SFC) saving at the cruise
condition [86]. The additional complexities of a large civil turbofan case study are
therefore used to motivate a complete set of desirable characteristics for a novel
multivariable and holistic control algorithm.

1
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1.1.1 Engine Degradation

The GT’s underlying non-linear dynamics, caused by highly varied operating con-
ditions, provide a considerable challenge for designing its control and monitoring
systems [109]. Traditionally, engine control and health monitoring have been mu-
tually isolated concepts. Target tracking would be performed using fixed control
laws based on analytical and experimental results conducted during the engine
design phase. These control laws would prove to be reliable, but not necessarily
optimal, due to conservative design; uncertainty in working line excursions and
surge margins being primary sources of conservatism (engine transients accoun-
ting for up to 20% of the margin stack-up [63]). On the other hand, when consi-
dering the health monitoring system, sensed engine parameters would have been
stored for manual on-the-ground health analysis. This information would give
insight into the engine’s health but would only be used to at most, re-schedule
maintenance or to replace a faulty component.

Figure 1.1: A conceptual diagram of a degrading gas turbine operating space,
parametrised by a health parameter w(t). CRZ denotes the steady-state operating
point for cruise thrust (not to scale).

A natural progression is to integrate GT control with health monitoring by
developing algorithms that allow the engine to automatically adapt to its own
health condition for improved performance, economy and safety; creating an en-
gine which could be crudely described as self-tuning and perhaps “self-aware”.
As GTs become more complex, complete a-priori modelling of through-life engine
dynamics and health cannot be achieved through sole application of first princi-
ples physics. It is clear that for such a demanding task, a degree of supervised
autonomy will have to be exercised. Before such a system is designed, let alone
certified, rigorous theory and deterministic algorithms have to be developed.
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1.1.2 The Theoretical Gap

Fortunately, the intersection of control theory and system identification already
provides some rigorous tools for integrating control and health monitoring; adap-
tive control will be the focus of this thesis [7]. Despite the existing rigour, the
aero-propulsion industry still finds it difficult to certify advanced controllers [109].
The shortcoming of existing self-tuning regulators is the lack of explicit constraint
handling [6]. Therefore, the contribution of this work will be to provide additional
theory to show that, given mild technical conditions are met during control synt-
hesis, the proposed adaptive controller will lead to deterministic and guaranteed
performance whilst satisfying ubiquitous GT constraints.

A key observation from literature is the significant interest in the use of MPC
due to its explicit and rigorous handling of system constraints. Stability, robust-
ness and recursive feasibility are gold standards when it comes to MPC, yet most
real implementations of MPC may only have one, if any, of these mentioned pro-
perties. The main cause of this is the hesitance to use hard state constraints, in
an attempt to avoid infeasibility of the optimisation problem that has to be solved
online. Soft constraints seem to work in practice, however, formulations with gua-
ranteed stability require additional and system-specific technical conditions [139].
Hard state constraints (specifically, positively invariant terminal constraint sets)
are the academically well-known and accepted necessities for showing all three
theoretical properties [93, 95].

Motivated by the observations from the GT control problem and the reviewed
literature, this research proposes extensions of nominal model predictive control;
the simplest form of MPC which provides the discussed gold standards for time-
invariant systems [107]. The work avoids explicit robust formulations to treat the
true time-varying dynamics for two reasons. Firstly, computational complexity in
computing robust positive invariant sets, which to this date, are difficult to obtain
for high dimensional systems. Even the simpler positive invariant sets (used in
this work) are computationally challenging, with only recent research showing
potential for easy computation [97]. Secondly, robust designs reduce performance
depending on the designer’s chosen degree of conservatism. Instead, the analysis
conducted in this thesis is motivated by the following questions: given the initial
uncertainty in the controller’s plant description, how robust can the controller be
without explicitly accounting for potential disturbance? Hence, can the controller
be tuned to give a margin of nominal robustness that permits self-tuning? The
contribution of this thesis: inherently robust adaptive model predictive control;
provides an answer to this question in a gas turbine setting.



4 1.2. Thesis Overview

1.2 Thesis Overview

This section outlines the structure of the thesis. The first two chapters form the
non-technical review of prior art which underpins the technical contributions of
chapters 3, 4 and 5.

Chapter 1 - Motivation and Background

The remaining part of Chapter 1 completes the motivation with an in-depth survey
of contemporary gas turbine control techniques. The survey’s qualitative compa-
rison, with respect to the desirable considerations specified later in this chapter, is
used to support the choice of studying adaptive model predictive control.

Chapter 2 - Adaptive Model Predictive Control

Chapter 2 focuses the literature review on adaptive model predictive control,
which forms the basis of the technical contributions in chapters 3, 4 and 5.

Chapter 3 - Learning Model Predictive Control

Chapter 3 describes the technical details of the basic learning model predictive
control algorithm.

Chapter 4 - Preview Information and Inherent Robustness

Chapter 4 describes the extension of the learning MPC framework, which incor-
porates the benefits of utilising preview disturbance information.

Chapter 5 - Adaptation in MPC under GT Degradation

Chapter 5 completes the technical contribution of this thesis by proposing condi-
tions under which the learning model predictive control algorithm can perform
robust and safe adaptation. A case-study gas turbine is used to demonstrate the
algorithm in simulation.

Chapter 6 - Conclusion and Future Work

Chapter 6 concludes the work with a discussion of the achieved result: the com-
plete description of an inherently robust adaptive model predictive control frame-
work. Performance improvements of the algorithm are proposed as future topics
of research.
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• K. Grzędziński, P. R. Baldivieso Monasterios, & P. Trodden. Learning MPC:
enlarging the region of attraction using preview perturbation information.
Peer-reviewed abstract and poster presented at Control 2018 (UKACC). sep
2018.



6 1.4. Background: Desirables for Controller Comparison

1.4 Background: Desirables for Controller Comparison

In terms of desirable algorithm properties, the previously discussed design consi-
derations (performance, economics and safety) can be further narrowed down to
three sub-categories: performance and optimality; robustness and reconfigurabi-
lity and finally, the resultant design and implementation. These categories have
been defined in the following paragraphs such that the proposed control methods
can be compared using common themes.

1.4.1 Performance and Optimality

Optimality is concerned with the maximal obtainable performance and efficiency
of the gas turbine. The ideal engine controller should make sure that the engine
produces the demanded thrust, using the minimal amount of fuel, whilst minimi-
sing engine degradation and respecting engine design constraints. Even though
GTs are predominantly designed to operate at several distinct operating points
such as cruise, hot day take-off and top of climb conditions, control during and
between these operating points should be optimal with respect to a chosen metric.

Multivariable Control

With an increase in control variables on newer engine designs, utilising multiva-
riable dynamics can be used to improve performance [118]. Historically, fuel flow
into the combustion chamber was the only controllable input of the GT, with shaft
speed or engine pressure ratio (EPR) being a proxy for the output engine thrust,
which is not a directly measurable quantity. Fuel flow retains the position of do-
minant control variable as it dictates the energy content within the GT’s gas path.
The remaining control parameters determine how much energy can be extracted
from the constrained aero-thermodynamic environment produced by the engine
geometry and thermodynamic state of the incoming flow; to produce the desired
thrust. Hence, it can be presumed that there is some optimal combination of all
control variables, for a given operating condition, such that the energy extracted
from the fuel is maximised. These complex interactions can only be captured in a
multivariable framework.

1.4.2 Robustness and Reconfigurability

Uncertainty from environmental disturbances, sensor noise and even human error
is omnipresent; it must be acknowledged when designing the GT controller. As
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a safety critical component, the controller must prove its robustness by demon-
strating the ability to handle operating conditions associated with the airframe’s
mission profile. This requires certification via means of mathematical proof, simu-
lation and physical experiments demonstrating performance within the expected
flight envelope, whilst complying with legislation under civil aviation authority
codes. These same guarantees must also be ensured for all reconfigured instances
of the controlled system.

1.4.3 Design and Implementation

The control algorithm must be implementable and certifiable, with straight-forward
tuning rules that can be easily understood by industrialists that do not need de-
tailed understanding of the underlying mathematical theory. This requires simple,
tractable and repeatable control algorithms that guarantee performance margins,
when implemented on hardware with modern processing capability.

1.5 Background: Gas Turbine Control Frameworks Survey

1.5.1 Introduction

The aim of this section is to outline the main control frameworks that are in active
use and under research for GTs. Underlying theory and related applications will
be briefly discussed to reveal some application specific subtleties that are relevant
to GT control. The section will therefore highlight the advantages and disadvanta-
ges of each respective control algorithm, leading to an informed decision to further
study MPC.

1.5.2 Classical Control

Proportional-integral-derivative (PID) controllers are employed on multivariable
systems using two methods. Firstly, multivariable system dynamics can be decou-
pled to produce multiple single-input single-output (SISO) systems that can be
handled directly with traditional loop shaping techniques. However, the designer
must be aware that this may introduce right-half plane zeros into the model which
limits the allowable controller gains for system stability [8]. On GTs, these SISO
controllers have been historically designed for bandwidths up to 10 Hz which ac-
counted for the slower inertia and pressure dynamics of the GT [63]. Secondly, a
cascaded series of control loops have been proposed for use with a supervisory
multivariable controller; [74] implemented a supervisory model predictive con-
troller to generate output set-points as references to the low-level actuator PID
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controllers. This preserves existing system architectures whilst introducing co-
ordination between control loops. However, the low-level controllers still require
additional tuning to avoid saturation.

Whilst PID control can be applied to non-linear systems, classical design techni-
ques used to compute gains cannot be directly applied to non-linear systems, the-
refore, generating a controller based on a linearisation of the system becomes a
necessity. PID gain-scheduling can be used for a set of linearised system dyn-
amics at pre-defined equilibrium points where the sequence in which controller
gains are activated depends on a scheduled parameter (chosen by the designer).
The scheduled parameter is used to describe the current state of the system and
its associated linear neighbourhood. As soon as a threshold on the scheduling
parameter is exceeded, the controller associated with the newly entered valid line-
arisation region is activated [75]. An applied example of this type of control is the
Rolls-Royce inverse model (RRIM) controller and is currently used on the Trent
1000 engine series [88].

The RRIM controller splits the engine’s non-linear dynamics into steady-state
and transient dynamics; look-up tables generated from high-fidelity propriety en-
gine models are used to model speed and acceleration demands to fuel flow (as
opposed to modelling fuel flow to speed/acceleration) [33]. Proportional gain is
scheduled on the rotational speed of the high pressure shaft. RRIM control shows
that it is able to provide equivalent transient performance and robustness as the
classical PI engine controller, but with a significant reduction of tuning parame-
ters; a reduction from a previous 54 to 5 [89]. This was achieved by using the
inverse model and by using non-dimensional thermodynamic parameters, remo-
ving the control loop’s dependence on flight altitude. However, no remarks have
been made as to how RRIM can be integrated with an active health monitoring
system. There is clear limitation on the use of stored look-up tables; engine pa-
rameters will change over time, which will degrade the controller performance if
the models are not updated.

It is important to note that the main reason why this method has been used
in industry is that it is based on well-understood classical control theory that is
readily certifiable. PID control retains its popularity in the aerospace industry
due to its mature analysis tools for performance and stability. However, this body
of literature primarily focuses on the SISO applications, which contradicts its use
for inherently multivariable GT architectures; the decoupling required to apply
the SISO techniques may cause performance loss as it may be difficult to fully
diagonalize the plant at all frequencies [118].

Additionally, PID control is prone to controller saturation which leads to the
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phenomenon of integrator wind-up. A range of anti-wind-up schemes have been
developed as an ad-hoc treatment of the issue [125], including more sophisticated
methods using linear matrix inequalities and optimisation [122].

System safety constraints have been handled using minimum-maximum se-
lection logic [110]. In this technique, there are regulators associated with system
output limits. These regulators produce allowable control signals which are then
compared against each other using min-max logic. A selection of the most appro-
priate control signal is made which prohibits a violation of the nearest to violation
limit. Whilst this technique is shown to work in GTs, there is little academic proof
that guarantees stability between limit switches [8]. Similarly to the treatment of
integrator wind-up, min-max selection logic is an ad-hoc addition for a classical
controller that is unaware of the system’s inherent constraints.
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Figure 1.2: The min-max limiting logic used for constraint handling in contempo-
rary gas turbine control. The compensators Ki(s) are used to regulate set-points
ri for the chosen measured outputs yi, including controlled and limited outputs.
The blue block denotes the main compensator used for thrust control.

Fault tolerant control of an industrial GT has been suggested within the frame-
work of classical PI control [115]. The suggested formulation incorporates open-
loop control of variable guide vanes (VGVs); these are only used during transient
demands to prevent surge. This implementation attempts to predict a set of pos-
sible faults that can occur in a GT; an appropriate family of PID controllers was
designed using frequency response analysis [66]. The method suggests that a



10 1.5. Background: Gas Turbine Control Frameworks Survey

measured off-line identified frequency response can be used to design a three-
parameter PID low-order controller. However, the paper itself concludes that the
design method is sensitive to the system identification method used, as some of
the results showed that the identified plants were not PID stabilizable. Numeri-
cal round-off errors had an effect on predicting the poles of the identified system
which raises certification issues of the proposed identification scheme.

The work described in [115] showed that the number of controllers did not
have to equal the number of faulty plants. Some controllers were stabilising for
multiple fault scenarios, which would reduce the storage requirements on-board
a GT. The drawback of this method is that it is still fundamentally SISO and
it assumes a priori knowledge of possible faults; this leaves the control method
vulnerable to faults that cannot be predicted.

An unusual method of GT control system design been proposed using multiple
objective genetic algorithms (MOGA) [27]. This design strategy involves a meta-
heuristic process of selecting Pareto-optimal controller parameters to converge on
an optimal design. In essence, instead of using a traditional compensator design
and tuning methods, a selection of initially randomly generated compensator pa-
rameters is selected, mated and tested; a "survival of the fittest" approach is used
to converge on an optimal controller which conforms to pre-defined performance
requirements. In this approach, the GT architecture was also pre-defined and
the controller was based on classical phase lead and lag compensator principles.
Whilst the paper claims that MOGA is a superior multi-objective optimisation
method to others mentioned in the paper, no comparison of the resultant MOGA
controller was made with another control framework to show whether it actually
gives better performance. Controller robustness and reconfigurability were not
explicitly stated within the paper. Due to computational burden of the MOGA,
on-line re-tuning of compensators by re-computing the MOGA could be deemed
impractical even on modern hardware.

1.5.3 Dynamic Controllers

A multivariable gain-scheduled approach with dynamic linear controllers has
been proposed with online stability verification [101]. This method was shown
to work on a laboratory twin-spool turboprop with variable pitch angle blading.
The GT dynamics were linearised at a chosen number of points along the equili-
brium manifold. At each linearisation point, a dynamic controller was designed
with appropriate gains. A stability preserving interpolation algorithm was used
to move between the controllers at each one of equilibrium points. The schedu-
ling parameter was unusually chosen to be the euclidean norm of the two spool
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speeds, rather than the typical choice of fan/prop shaft speed or engine pressure
ratio [109].

Rather than attempting to compute the eigenvalues of each instance of the clo-
sed loop system, proving stability was posed as an optimisation problem to show
the existence of positive definite matrix which satisfies the Lyapunov equation.
The optimisation was used to approximate the dynamics matrices as a linear com-
bination of all linearised closed-loop dynamics in the operating envelope. Hence,
a single positive definite matrix was computed to show stability of the entire en-
velope.

1.5.4 H-infinity

The H-infinity approach takes into account the worst case modelling uncertainty,
disturbance and noise from the onset of controller synthesis. The general aim
is therefore to minimise the infinity norm of the closed loop transfer function
of a system, subject to constraints posed by the right half plane zero content of
the original open loop plant. Minimising the H-infinity norm is equivalent to
finding the approximate inverse of the plant, but through the use of feedback
[51]. This control technique can be implemented in both transfer function and
state-space formulations and it has been recommended that state-space is used for
multivariable systems.

A scheduled multi-input multi-output (MIMO) approach has been described
using a reduced state linear GT model [114]. However, only the surge margin
of the low pressure compressor was considered as a constraint; high pressure
compressor surge margin and turbine temperatures were ignored. The paper dis-
cusses appropriate input/output pairings based on eliminating right half plane
zero content of each transfer function. Additionally, a relative gain array (RGA)
matrix is constructed to identify the magnitude of cross-coupling between each
input/output pairing. Whilst the paper describes a standard application of an
H-infinity loop-shaping algorithm, emphasis is made on the selection of the best
input/output pairings that leads to simplified controller design.

Engine control has been proposed using a combination of a set-point gover-
nor and a H-infinity controller [71]. The focus of this paper was on disturbances
caused by variable inlet flow conditions and ice build up on the low-temperature
sections of the GT. These were interpreted as linear interpolations between a nomi-
nal engine and an engine with 20% flow blockage using the C-MAPSS40k software
model [46]. Numerical evidence showed that sensitivity to disturbances was de-
pendent on the choice of output variable, which had disparate effects on the surge
margins (SMs) of the low pressure (LP) and high pressure (HP) compressors. EPR,
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as opposed to shaft speeds, was chosen as the measured output since it had mo-
derate sensitivity on both LP and HP compressor SMs; surge must be avoided
regardless of the component location in the engine. The paper also highlighted
that at a particular steady-state condition, regulating EPR using fuel flow at the
worst case disturbance, violated the surge margin. The paper suggests that either
changing the EPR set-point or concurrent use variable bleed valves (VBVs) and
VGVs would alleviate the detriment of the disturbances on the SMs; reinforcing
the need for using MIMO control. The resulting 17th order H-infinity controller
was simplified down to a 4th order controller with satisfactory performance, to
reduce computational complexity. The set-point governor was used to pre-filter
thrust such that SMs were not violated from large thrust demands. Trade-off bet-
ween closed-loop bandwidth and surge margin was identified as a design choice.

Additionally, multivariable and fault tolerant control was developed for mi-
litary twin-spool turbofans using the H-infinity framework [112]. The control
design procedure used standard plant linearisation at several operating points.
However, the novelty was introduced through design of four H-infinity control-
lers for each operating point, allowing for redundancy during sensor failure. Each
controller was designed to handle pairs of measurable parameters, namely the
shaft speeds, turbine exit pressure and temperature. The authors claimed that
the proposed control method was computationally feasible on the full authority
digital engine controller (FADEC) installed on the case study engine at the time.
Additionally, the problem of constraint handling was dealt with in a traditional
manner using saturation functions and anti-wind-up. However, bump-less transi-
tions between controllers was not guaranteed.

1.5.5 Non-linear Control

A linear control law design, which utilises a non-linear approximation of the gas
turbine, is proposed in [128]. The state-space model used for control design is:

ẋ = Ax + G(x) + Bu (1.1)

with the function G(x) assumed to satisfy Lebesgue integrability conditions. It is
claimed, without proof or validation against real data, that the gas turbine’s dyn-
amics can be modelled in such a way. The method permits the design of a simple
feedback u = Kx, providing that the initial states are bounded to a subset of the
engine’s operating space, using the Gronwall-Bellman lemma. This result allows
the use of any standard linear control technique to choose the feedback gain e.g.
linear quadratic regulator (LQR) or H-infinity etc. However, it is not obvious how
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the choice of feedback gain can be utilised to maximise the controller’s domain of
attraction with the Gronwall-Bellman inequality. The performance of this regime
is compared against the open-loop response of the non-linear case-study engine
model, which given any K that provides more aggressive eigenvalues, it is obvious
that the trajectories will converge quicker. Moreover, it is unclear how an increased
number of input variables may complicate the tuning of such a controller.

The same research group also proposed a generalised minimum variance con-
trol (GMV) control which relies on the minimisation of the error and input covari-
ance in a stochastic optimisation framework [129]. Under causality assumptions,
the solution of a Diophantine equation leads to a non-linear compensator that does
not require the use of an explicit model of the plant’s non-linear dynamics; only
linear disturbance and reference governor models are required. Moreover, the
characterization of the non-linear controller requires an initial PID design, which
is iterated upon, to obtain the non-linear compensator. However, the non-linear
open-loop plant must be assumed stable for this control method to work. Such
an implementation has been simulated on a gas turbine in [129] but the details
are difficult to access due to the language barrier. Whilst this method does not
explicitly consider constraints in the formulation, it is suggested that constraints
could be included as barrier functions within the unknown non-linear term of the
plant dynamics.

1.5.6 Sliding Mode Control

sliding mode control (SMC) involves the concept of states which “slide” across a
hyperplane defined in the system’s state-space. This hyperplane is used to denote
the desired state-trajectory. The control input polarity is dependent on which side
of the hyperplane the system states are in as it progresses through time. Further
details on SMC can be found in the following survey [2].

Engine control has been proposed using a combination of SMC and H-infinity
control [110]. Whilst SMC does support MIMO control, this controller explicitly
assumes a SISO system with fuel flow and fan shaft speed being the input and
output respectively. This implementation of SMC describes a stability proof, the
first for SMC in gas turbine control. Faulty engine conditions were only modelled
as additional exogenous inputs but modelling uncertainties were not discussed.

An inherent problem with SMC is known as chattering (noise in the state tra-
jectory) which is caused by the mismatch between its discrete time implementation
and the continuous nature of physical systems [73]. Significant theoretical efforts
have been made to suppress this problem in control design. The paper by [110]
does not explicitly state how this issue was mitigated even though the simulations
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show smooth trajectories.
An application of SMC was applied with a novel modelling method where the

rotational energy content of the shafts are the regulated parameters, rather than
the typical fan shaft speed approach [130]. The paper suggests that overshoot free
response can be guaranteed, something that until now, has been omitted from
controller design. The paper presents a theoretical guarantee of this approach,
but only in the case of fuel flow as the single input. However, the energy mo-
delling grossly oversimplifies the gas dynamics at each stage of the GT by simply
using the steady flow energy equation; normally these stages are considered using
component maps.

1.5.7 LQR and LQG

The linear quadratic regulator (LQR) utilises a mathematical optimisation over
a future horizon (typically infinite), which generates an analytically derived feed-
back control law [118]. The linear quadratic Gaussian (LQG) paradigm is an exten-
sion of LQR but with the addition of a state estimator that provides an estimated
full state vector from measurable outputs. This is especially useful in turbofan
control as some parameters cannot be directly measured within the engine; for
example thrust, turbine inlet temperature and the compressor surge margins. The
Kalman filter estimator includes Gaussian probabilities of noise and disturbances
entering the states and outputs; this type of observer based control was shown to
have no stability margins as opposed it its pure LQR counterpart [38].

LQG control has been applied to a 2-spool turbofan engine with 9 control para-
meters, including fuel flow, various guide vanes and variable duct geometries [34].
Singular value decomposition was used to reduce the linearised engine model to a
3 input 3 output system; only the influence of one set of guide vanes was assumed
to be scheduled independently from the LQG controller. The paper claims a 20%
reduction in settling time compared to gain-scheduled controller designed for the
same engine but makes no remarks as to how close the controller is approaching
the physical constraints of the turbofan.

Adaptive LQG was proposed using loop transfer recovery tuning (LTR) [119].
An RLS parameter estimator was used to correctly identify the gas turbine’s linear
model after switching occurred (unknown to the controller) between two diffe-
rent operating modes. After convergence of the RLS algorithm, the parameters
of the newly identified dynamics were used to design an updated LQG controller
with LTR. Whilst the intuition of this approach is straightforward, there are clear
shortcomings; the convergence of the RLS to the true dynamics must be guaran-
teed. This can be ensured with an exponential forgetting factor [16]. The proposed
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controller only considers switching between two neighbouring operating points;
switching may induce instability if more than two, and perhaps non-adjacent, mo-
des are entered if dwell-time arguments are not accounted for. Additionally, the
excitation for this self-tuning regime is solely obtained through the switch of the
operating mode. Whilst this is attractive in terms of an efficiency argument (be-
cause no additional energy is added to perturb the system inputs), only certain
mode switches may guarantee frequency rich data for convergent RLS estimates.

1.5.8 Model Predictive Control

MPC originated as an industrial control technique from the chemical process in-
dustry, with its theoretical roots in optimal control theory [87]. MPC derivatives
are composed of both transfer function and state-space representations, however,
multivariable systems are more naturally handled in the latter form. The plant’s
model is used to predict its trajectories over a finite time prediction horizon. An
optimisation problem is solved over this prediction horizon, using a chosen cost
function with representative system constraints. This produces a sequence of op-
timal control inputs for regulating the system to a desired set-point. In basic
formulations, only the first input of this sequence is ever delivered to the plant
whilst the remainder of the sequence is discarded.

The process of prediction and optimisation is repeated over the same horizon
length, at each sampling instant, yielding its alternate name of receding horizon
control. The difference between MPC and other control frameworks that minimise
a chosen cost function (LQR and H-infinity control) is that MPC incorporates the
system’s physical constraints within the resultant control law; constraint handling
is by far the most powerful feature of MPC. Predictive control results in a non-
linear control law when input and state constraints are active. This prohibits the
use of standard linear stability theory for closed-loop stability analysis with MPC.
Instead, more mathematically rigorous Lyapunov stability must be used [18].

The transfer function form of MPC, known as generalised predictive control
(GPC), has been proposed for controlling the HP shaft speed with fuel-flow [98].
The prediction models for this controller were obtained by performing open-loop
identification of a neural-network that was subsequently linearised across the en-
gine’s operating space. GPC controllers with the non-linear neural network (NN)
model and linearised prediction models were compared against a gain-scheduled
PID controller designed with the Ziegler-Nichols tuning criterion. The controllers
were implemented on a Non-linear Auto-Regressive Moving Average with eXoge-
nous input (NARMAX) representation of the gas turbine, obtained from real-data
of a Spey engine test. Both GPC controller showed superior transient performance
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compared to gain-scheduled controller, however, only the GPC with linear pre-
diction models showed potential for real-time performance. However, there are
no guarantees that the models identified from initial test-bed experiments will
ever be representative of a real engine after degradation.

As observed in [98] and in many other time critical applications, MPC is a
computationally demanding control method. In the so-called implicit formula-
tion, MPC control requires optimisations to be solved on-line and faster than
the chosen sampling interval. The optimisation problem must be carefully con-
structed for it to produce desired control performance; minimising an arbitrary
cost function will produce a mathematically optimal input, but in reality, the re-
sult may not be physically meaningful. Common practise is to use a quadratic
function (as an analogue of system energy), which can be conveniently used as a
Lyapunov function for guaranteeing theoretical stability [68]. In other instances,
the 1-norm cost function has been used in spacecraft orbit MPC to penalise ab-
solute values of actuation effort [54]; this provides superior propellant saving but
lacks the attractive properties of continuity that are essential for proving closed-
loop Lyapunov stability.

Under a quadratic cost, an alternative formulation of the online optimisation
problem has been proposed to ten-fold reduce the computational complexity as-
sociated with solving a quadratic program [72]. The paper proposes an alterna-
tive (but equivalent) to the standard linear quadratic online MPC optimisation.
By optimising over perturbations to a known feedback law (obtained by solving
infinite horizon LQ problem) the computational complexity of an online quadra-
tic program is avoided. These perturbations are only used to handle constraints
i.e. enforce feasibility of the control law u = Kx that would otherwise violate
constraints, had there been no perturbation of the control law (e.g near system
constraints). The constraint imposed on this “closed-loop” paradigm ensures that
membership of a terminal set is invoked at the consecutive time-step, rather than
the terminal state in the prediction horizon. The inherent conservativeness of this
approach is relaxed by solving an additional optimisation, online, to compute a
sufficiently scaled-down version of the perturbations which still guarantees fe-
asibility, but is less detrimental to the optimality of the approach. The simple
approach of scaling the perturbation leads to solving a quadratic and a set of li-
near equations in one variable. A Monte Carlo study shows the comparison of
standard LQ-MPC against the proposed extended Newton-Raphson (ENR) MPC
showing marginal (if any, depending on system parameters) cost differences to the
standard MPC. However, the conservativeness resulting from the use of ellipsoidal
sets is not fully disclosed; the regions of attraction of the LQ-MPC and ENR-MPC
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are not investigated. Moreover, the cost similarity between the LQ-MPC and ENR
was observed to occur for systems where the invariant ellipsoids were “better fits”
to the maximal positive invariant sets.

A major drawback of MPC is that the optimisations can become infeasible in
the presence of large uncertainty. This translates to an MPC controller which either
does not produce a new input or produces an input which violates constraints.
Obviously, both cases can lead to undesirable if not catastrophic system perfor-
mance. One suggested solution is to use "soft" constraints; these are constraints
which can be varied in time to force optimisation feasibility [106]. However, sof-
tening constraints will always be limited by the maximum that is physically pos-
sible by the plant. Other suggestions include explicitly accounting for bounded
disturbances, which adds conservatism by tightening original plant constraints
by a factor related to the maximal expected disturbances [94] [42]. In this case,
the occurrence of a worst case disturbance will still lead to satisfying the plant’s
constraints. Ensuring recursive feasibility for a nominal MPC controller has been
thoroughly demonstrated in MPC literature [95], however model-mismatch and
disturbances can lead a nominal MPC controller out of its feasible operating re-
gions. An attempt at creating "feasibility certificates" was proposed by using an
algorithm which can test initial states for whether the MPC controller will lead to
infeasibility [81]. Unfortunately, the algorithm lacks practicality as it requires the
solution of an additional mixed-integer optimisation which only leads to further
computational demand.

Despite the computational demand, there has been a growth in interest for
applying MPC to GT engines due to continual computational improvements in
hardware. Whilst it can be speculated as to when the first MPC controller was in-
troduced on a GT, due to the attractiveness for military GT applications, MPC was
experimentally shown to work on an industrial GT in real-time with a sampling
interval of 1.5 seconds in the late 90s [40]. However, some constraint violation
issues were reported during aggressive control demands. Additionally, this im-
plementation of MPC only handled a small portion of the GT architecture; VGVs
were scheduled independently.

A non-linear MPC formulation was simulated on a low by-pass turbofan with a
sampling interval of 10 miliseconds, state dimension of 8 and only two control in-
put variable: the fuel flow rate and the exhaust nozzle geometry [23]. Constraints
on surge, temperature, shaft speed and acceleration were all shown to be satisfied.
However, the authors highlighted that their simulation times were not possible in
real-time and that "the average execution time for this algorithm running in MAT-
LAB and Simulink in an uncompiled state on a Pentium 3 500 MHz with 512 MB
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of RAM was 700 ms". Considering this work was conducted over a decade ago,
it is reasonable that MPC should soon become computationally feasible even on
systems with fast dynamics.

A method for combining MPC with fault tolerant control was first described
by [69]. Furthermore, a theoretical example has been described for aircraft lon-
gitudinal control with unanticipated multiple actuator failures [136]. The paper
suggests that Gaussian processes can be used as a framework to detect a fault
from which the model, constraints or even cost function can be changed appropri-
ately to account for the physical change to the system. Even though MPC supports
reconfigurability for fault tolerant control, it may not always be obvious as to how
the system formulation should be changed to account for a fault. Moreover, it can
be difficult to show a-priori that an added fault constraint will still admit a feasible
solution to the online optimisation. The main issue from a certification standpoint
is that there is no academic proof that such a system will work in practise; the
author argues that the problem is inherently dealing with an event that cannot be
reasonably expected and would be the last line of defence to prevent a catastrophic
failure. Whilst it was shown that the example used was not possible to execute
in real-time, the fault tolerant MPC was able to adapt to a faulty actuator and
consequently track a set-point after 25 seconds of simulated data, sampled at 0.2
seconds. Hence, the practicality of this method is still limited by computational
requirements.

Active FTC using MPC on the C-MAPSS40k engine model, which was previ-
ously described in this literature review with H-infinity control, has been simu-
lated showing superior performance to the traditional gain-scheduling approach
[113]. This model allows MIMO control using fuel flow, VBVs and VGVs however,
the MPC controller implemented only regulated fan shaft speed using fuel flow
rate. A sampling interval of 15 ms with control and prediction horizons of 1 and 50
respectively was used with linearised models. This is computationally significant
when compared with the work by [40], which used 1.5 seconds sampling interval
and horizons of 13 time-steps. Consequently, a 60 second simulation took 143 se-
conds to compute using a constrained quadratic cost function, as opposed to the
classical gain-scheduled controller which only took 3.3 seconds. This paper shows
the first instance of MPC being directly compared against a PID gain-scheduled
controller using the same engine model and fault scenarios. The paper presents
simulations with improved performance, in terms of response time and fuel con-
sumption reduction compared to the gain-scheduled engine controller after the
fault occurred. However no tuning methodology was presented. The MPC for-
mulation presented is limited in formal proofs of recursive feasibility for changing
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fault scenarios. The simulated results showed that even without re-tuning the
MPC controller, desired thrust demands were still met under faulty conditions,
unlike with the gain-scheduled approach.

Explicit MPC on GTs has been discussed as a potential route for reducing com-
putational on-line burden [121]. This method partitions the optimisation parame-
ter space into several regions in which a dynamic programming solution of the
constrained optimisation problem is computed off-line. The optimal control law is
selected based on the portion of the state-space that the GT is operating in, leading
to a simple look-up table. This method was shown to provide a significant time
advantage over a conventional approach of solving a quadratic program on-line.
The drawback of depending on off-line computed controls is that the off-line con-
trol laws are computed based on an offline model; the effects of degradation will
not be accounted over time as the explicit MPC control laws are not re-computed.

The state-of-the-art application of non-linear MPC on a gas turbine can be seen
in a recent paper by [133]. The paper demonstrates a fully functioning laboratory
based GT air compressor which works in real-time to regulate compressor exit
pressure whilst providing demand bleed air mass flow, in a complete multiva-
riable fashion (all inputs used by MPC controller). Even though this is not an
aero-engine application, to the author’s knowledge, this is the highest technology
readiness level (TRL) example of functioning MPC on a GT in the public domain.
Fuel flow and bleed valve position are the control inputs. The paper emphasi-
zes that real-time operation was achieved by formulating a non-dimensionalized
high fidelity model which was subsequently order reduced through singular per-
turbation theory [62]. Whilst this reduced computational burden, an implication
on the controller design can be observed. The non-dimensionalization requires,
a-priori, constants that are obtained through system identification. This required
some form of experimental data of the GT prior to the MPC control which may be
costly to generate if scaled up to a full turbofan.

Learning-based Model Predictive Control (LBMPC) has been proposed as a
method of reducing conservativeness of robust formulations of MPC [10]. Tube-
MPC was chosen as the underlying robust framework of LBMPC [106]. Tube-MPC
sacrifices optimality by assuming that control policies † are linear, to control the
spread of trajectories during predictions over the horizon, caused by the unme-
asured disturbances. A consequence of this is that tube-MPC enforces tighter
constraint sets compared to the nominal formulation, which is the source of con-
servatism. LBMPC alleviates this conservatism by re-identifying more accurate

†A control policy is a sequence of control laws {µ0(x), µ1(x), µ2(x), ...} where µ = Kx + v is
assumed in tube-MPC. In standard MPC, a sequence of inputs {u0(x), u1(x), u2(x), ...} is just a
degenerate example of a control policy, where the control laws are constants.
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linear models that are intended to converge to the true dynamics of the system. A
major benefit of such a controller on a turbofan is that the controller could learn
the dynamics caused by the use of secondary control inputs such as the VGVs
and VBVs; these dynamics cannot be accurately determined a-priori without com-
plex engine simulations. Furthermore, the dynamics will change over time with
common degradation modes such as fouling, erosion and corrosion. An example
of this learning behaviour was claimed by the same authors but on a quadcop-
ter experimental flight; LBMPC was able to overcome the ground effect through
the controller’s learning process [9]. One of the drawbacks of this method is that
full-state measurements have been assumed to be available; this is not typically
the case on a turbofan. However, the authors speculate that LBMPC is possible
without full-state information through set theoretic estimation methods. This will
ultimately lead to further computational demand, which is already high in nomi-
nal MPC formulations.

Table 1.1: Table showing historical computational performance of MPC.

Year Description GT Type Sampling Horizons Real-time?
Citation Period (s) (Nc,Np)
1997 [40] Exp - MPC Industrial 1.5 13,13 Yes
2002 [23] Sim - NMPC Turbofan 0.01 ? No (0.7s)
2008 [111] Sim - MMPC Turbofan ? 20,20 No (0.015s)
2012 [113] Sim - MPC Turbofan 0.015 1,50 No (0.036s)
2015 [133] Exp - NMPC Industrial 0.2 2,2 Yes

The problem of simultaneously controlling and identifying a system has been
coined the dual-control problem, which is what [9] tries to tackle. A persistently
exciting tube-MPC method has been suggested, which partitions the control in-
put into a regulatory and exciting part; the former is the signal that is trying to
regulate the system to the origin whilst the latter is used to excite the system to
identify it [59]. This persistently exciting disturbance is treated as an additional
disturbance in the tube-MPC framework. The key research question is to identify
the sufficient level of excitation which makes a trade-off between exciting the sy-
stem enough to get a valuable model and avoiding perturbing in too much from
its desired control tracking trajectory. In this paper, a non-convex constraint was
enforced to ensure sufficient excitation of the system which leads to a non-convex
optimisation to be solved, which is undesirable for performance, especially if a
sub-optimal local optimum is found. From a practical point of view, such persis-
tent excitation would require additional control inputs which could imply using
more fuel. The fuel savings generated from obtaining a more accurate model for
the controller would have to be more than the fuel used to identify it, to be of any
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practical use. Additionally, with some insight into the system, it may be possible
to understand for how long and how often such a persistently exciting controller
should be turned on.

State-of-the-art research that is pushing computational feasibility utilises field
programmable gate arrays (FPGAs) as the hardware platform [55]. Contrary to
standard sequential micro-processors, FPGAs permit parallel-processing which
can potentially reduce computation time of optimisations. A drawback of FP-
GAs is that they cannot handle floating point representations of words. However,
[55] argue that most MPC formulations do not require such high levels of word
accuracy provided that the optimisation problem is constructed in a numerically
stable manner.

Time delay and quantization effects can become more prominent in MPC with
a distributed architecture [45]. Up until this point in the literature review, strictly
centralised controllers were considered. Distributed controllers are used to break
down an overall control problem into a set of local control problems handled by
physically separate controllers. Therefore it is critical for each controller to receive
immediate information from the network of controllers as otherwise, instability
may occur. A recent survey on the use of predictive control in highly complicated
networks has suggested that MPC contains the necessary framework to consider
these issues. Not only the constraints of the individual subsystems can be handled,
but techniques for acknowledging data transmission delays and loss have been
demonstrated whilst guaranteeing robust performance [85].

1.6 Conclusion

1.6.1 Summary of Control Frameworks

A range of control methodologies have been discussed to identify suitable candi-
date algorithms for an advanced GT controller. The summary will briefly discuss
the findings of the literature survey with respect to the themes defined at the
beginning of this thesis.

Performance and Optimality

MPC, MOGA, LQG and H-infinity use mathematical optimisation to compute the
control law. However, MPC is the only framework which takes into account con-
straints when computing the control law. All the other methods require additional
limiting logic operations, pre-filtering or tuning to avoid reaching critical design
limitations, potentially reducing performance.
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Robustness and Reconfigurability

Reconfigurability is supported on all control frameworks, to respectively varying
degrees; by updating the transfer functions or state-space matrices with appropri-
ate representations of the fault. However, not all faults can be treated in this way
as fundamental requirements on stabilizability and detectability must be maintai-
ned. Representing the fault with a new exogenous input has also been suggested.
Distinctively to MPC, reconfigurability can be explicitly handled by changing the
prediction model, constraints or cost function to represent the fault; but it may be
unclear as to how these must be changed.

Design and Implementation

Gain-scheduled controllers retain their dominance in the field of GT control due to
their proven and certified behaviour over many years of operation. The remaining
control methods are yet to be widely implemented on GTs due to fairly recent
proofs of concept. More work has to be done to demonstrate stability under chan-
ging fault scenarios. Implicit MPC has the problem of requiring an optimisation
to be solved on-line which requires a sensibly constructed optimisation problem
that must be reliably solved in finite time, by the available computational power
on the aircraft or engine itself.

1.6.2 Concluding Statement

There is clear incentive for integrating control and automated health monitoring
for performance, economical and safety reasons. A multivariable approach would
allow a more systematic method for including dynamic cross-coupling within the
GT and would reduce design complications of traditional hierarchical loops, at the
cost of requiring more computational power on-board. The performance impro-
vements are expected from running engines closer to safety margins which tra-
ditionally, have been made conservative due to the limitations of classical control
techniques. Active-health monitoring systems will therefore make the estimates of
these safety margins more readily available and unique to each engine. MPC has
been chosen as the candidate algorithm for further study. The main issue observed
in literature is the need for guarantees under degrading gas turbine performance
which motivates an adaptive MPC solution.



Chapter 2

Adaptive Model Predictive
Control Literature Review

2.1 Introduction

Following the review of GT control methodologies, this chapter focuses on MPC
and its adaptive derivatives. The prime motivation of studying MPC is that it
allows safety constraints, numerous to the GT control problem, to be explicitly
programmed into the control law without additional ad-hoc techniques (e.g. anti-
windup and compensator selection logic). The main weakness: sensitivity to pre-
diction model fidelity, motivates either a robust or adaptive approach when at-
tempting control of a degrading engine. In this chapter, adaptive approaches are
studied to avoid conservativeness that is typically observed with explicitly robust
approaches.

It is therefore constructive to explore the adaptive mechanisms that enable
prediction model updates. The review encompasses a wide range of adaptive
MPC controllers, from active methods (using additional exploration/excitation
signals) and passive methods (using existing trajectories) that enable convergent
prediction model estimates to more accurate plant descriptions.

The linear prediction formulation is studied as most practical implementations
use this form. Unfortunately, MPC is a notational disaster with many notational
conventions. The chapter begins with a nominal formulation of MPC, to highlight
the ingredients and technical assumptions that are required for retaining nomi-
nally stable performance, during slowly varying changes in the plant.

23
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2.1.1 State-space Regulation

The concern of this thesis is the regulation of an uncertain plant’s state xk ∈ Rn

to the origin using control input u ∈ Rm in the presence of state and input constraints
and plant uncertainty (see Figure 2.1). Note that a change of variables can be per-
formed to solve any tracking problem (zk = xk − xtarget and vk = uk − utarget) as an
equivalent state error regulation problem.

x1

x2

x(0)

x(N)

Constraints

Figure 2.1: Phase portrait of a con-
strained regulation problem. Das-
hed closed-loop trajectories de-
note violation of plant constraints
under an inaccurate model-based
controller.

2.1.2 Plant Dynamics

In discrete-time, the uncertain plant’s consecutive state is defined as:

Definition 1. (True State Evolution) State-space definition of uncertain plant dynamics.

x+ , xk+1 = f (xk, uk, wk) (2.1)

with w ∈ Rp denoting the unknown disturbance, applied at the current time-
step k and has the property of a Lipschitz continuous function.

Assumption 1 (Lipschitz continuity of the true state evolution). The true state evo-
lution xk+1 satisfies ||xk2 − xk1 || ≤ L f ||k2 − k1|| over ki ∈ Z≥0, with Lipschitz constant
L f .

Note that k may be omitted for notational clarity and will be re-introduced
when reinforcement of time dependency is crucial.

In reality, the true (and possibly non-linear) plant dynamics (2.1) are not neces-
sarily known exactly at k. To simplify analysis of (2.1), the following assumptions
are introduced:
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Assumption 2. Reachable Linear Plant Dynamics

x+ , Ax + Bu + Gw (2.2)

The system matrices A,B and G are compatible with their respectively multiplied vectors
and describe the dynamic response of (2.1). Moreover, the matrices (A, B) are reachable
but with unknown parameters; the parameters of G may also be unknown.

Operation near a single operating condition e.g., an equilibrium point of sy-
stem (2.1) is, in practice, sufficient for Assumption 2 to hold. However, aerospace
systems are non-linear over their operating envelopes and therefore it is common
to approximate the non-linear dynamics as a linear parameter varying (LPV) mo-
del [39]. With an appropriate LPV modelling exercise and design of the scheduling
parameter, switching between models within the LPV model set improves fidelity
whilst retaining simplicity for computation and control synthesis.

The linearity assumption enables the results in this thesis; a proof-of-concept
adaptive controller for a single operating point, which in theory, could be extended
for an entire LPV representation. For now, this assumption is adequate when using
MPC around a single known equilibrium point of the system [87].

Traditionally, the parameters of the system matrices around a chosen equili-
brium would be obtained from standard linearisation methods; using Taylor series
expansion or classical system identification performed on informative experimen-
tal data.

Assumption 3. System Structure, State Availability and Constraints

• The state, input and disturbance dimensions n,m,p respectively, are known and
remain constant. Moreover, the state x is measurable at every sampling instant.

• The state constraint x ∈ X is polyhedral; the input and disturbance constraint sets
u ∈ U and w ∈W are polytopic; each set contains the origin in its interior.

The goal of MPC regulation is to find a control law u = κ(x) online, using
an explicit model of (2.2), such that the closed-loop x+ = f (x, w) is driven to
the origin, or at least, the smallest neighbourhood of it (see Figure 2.1) whilst
satisfying state and input constraints.

2.1.3 Prediction

An explicit prediction model is used to predict the evolution of (2.2) from the
current state measurement xk, under an optimal (depending on the metric) choice



26 2.1. Introduction

of inputs, over a finite number of time-steps into the future {xk+1, . . . , xk+N}. The
prediction model inherits the same structure as (2.2) and is used to define the
predicted state:

x̄+ , Āx + B̄u + Ḡw. (2.3)

Notice that a prediction model (2.3) can differ in parameters to the true plant
dynamics (2.2), at a particular equilibrium point. Nevertheless, the parameters
are time-invariant with respect to each equilibrium point. This implies that the
degradation considered is time-invariant with respect to the plant’s transients,
which is reasonable when studying long-term wear-and-tear.

Assumption 4. (Nominal Model Predictive Control) The external disturbance acting on
(2.2) is zero.

x̄+ , Āx + B̄u (2.4)

Nominal MPC considers the problem of regulation without explicitly accoun-
ting for external disturbances within the prediction model, as in (2.4). In summary,
the dynamics (2.2) denote the true plant behaviour whereas the predictions from
(2.4) are used to evaluate the cost of candidate control policies that steer (2.1) to
the origin; the optimal sequence of policies found through an online optimisation.

2.1.4 The Online Optimisation

The nominal MPC regulator u = κN(x) is an implicit control law that is obtained
from an online optimisation problem that is solved at each time-step. At a state x,
the problem is

P1(x) : V0
N(x) = min

u
{VN(x, u) : u ∈ UN(x)} (2.5)

where the decision variable is the sequence of controls over the prediction horizon
of length N, i.e., u = {u0, u1, . . . , uN−1}. The cost function is

VN(x, u) = Vf (xN) +
N−1

∑
i=0

l(xi, ui)

where Vf (xN) is the terminal (i = N) cost function and l(xi, ui) denotes the stage
cost i.e. the cost at each point along the prediction horizon. The infinite-horizon
linear quadratic cost function is equivalently denoted using a finite-horizon repre-
sentation

VN(x, u) = x>N PxN +
N−1

∑
i=0

x>i Qxi + u>i Rui (2.6)
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with l(xi, ui) = ||x̄i||22,Q + ||ui||22,R for i = 0, . . . , N − 1 and weighting matrix P � 0
for the terminal stage. The cost function is The admissible input set UN(x) employs
the nominal prediction model (2.4) as part of the following constraints:

x0 = x (2.7a)

x̄i+1 = Āxi + B̄ui (2.7b)

x̄i ∈ X (2.7c)

ui ∈ U (2.7d)

x̄N ∈ X f (2.7e)

The optimal control problem P1(x) is therefore a conventional linear quadratic
MPC one, albeit with terminal conditions. The terminal ingredients P and X f

are designed in the well-established way that guarantees stability and recursive
feasibility in the absence of any uncertainty (i.e., Ā = A and B̄ = B =⇒ x̄i = xi)
[106]:

Assumption 5. (Terminal Dynamics and Terminal Control Law Design - Mode 2) X f

is a PI set for x̄+ = Āx + B̄u under some stabilizing control law u = Kx; that is,
(Ā + B̄K)X f ⊆ X f . Moreover, X f is a polytope, contains the origin in its interior, and is
admissible with respect to the constraints (X f ⊆ X and KX f ⊆ U). The matrix P is the
solution of the Lyapunov equation under the same u = Kx:

(Ā + B̄K)>P(Ā + B̄K)− P = −(Q + K>RK)

Employing Assumptions 2-5, the optimal control problem for regulation P1(x)
becomes a quadratic program (QP) that is readily solvable using efficient convex
solvers [20]. The solving of P1(x) yields the optimal control sequence u0(x) =

{u0
0(x), u0

1(x), . . . , u0
N−1(x)}; taking the first control input of the sequence optimi-

zed at each sampling instant and applying it to the system then defines the implicit
feedback control law

κ̄N(x) = u0
0(x). (2.8)

The region of attraction of this control law (and value function V0
N(x)) is, by defini-

tion, XN = {x : UN(x) 6= ∅}. This formulation of MPC, also known as dual-mode
MPC, provides exponential stability guarantees of the origin under no uncertainty,
in the linear framework [106]. Furthermore, dual-mode MPC possesses a degree
of inherent robustness to small uncertainties [106]; the key property exercised in
this thesis. Given that an adaptive controller has to deal with degrading plant
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dynamics, it is constructive to study the implications of plant uncertainty on this
nominal MPC recipe.

Changing Model

The initial prediction model of the GT dynamics will be out-dated by changing
parameters within (2.4) caused by degradation. The GT monitoring system must
be capable of tracking these changes. A basic requirement is that the parameters of
the newly identified models lead to reachable systems. Given that degradation is
restricted to “small” changes in parameters, such an assumption is not restrictive
and may only be of concern when considering faults that lead to lost control
degrees of freedom. These types of faults are out of the scope for this work.

It is important to consider the extreme case of the true system becoming open-
loop unstable, despite a small change of model parameters. An unstable pre-
diction model will cause open-loop predictions to diverge for a large prediction
horizon. This in turn may lead to numerical conditioning issues when attempting
to solve (2.5) as a QP. However, this can be alleviated by pre-stabilising the system
and therefore predicting the pre-stabilised system trajectories. This pre-stabilising
feedback law computation still requires an accurate model.

Changing Constraints

Not only do the constraints define the physical boundaries of the controlled sy-
stem, but they are implemented as a means to guarantee its theoretical stability.
Terminal state constraints ensure that the mode-2 stabilising control law does not
violate constraints [95]. The terminal constraint set X f defines the maximal po-
sitively invariant set of states in which the chosen terminal feedback control law
produces feasible control inputs. This set would be classically determined a-priori
by iteratively solving linear programs till convergence [48].

Supposing that degradation can be represented as a change in the linear model
assumption 5 may no longer hold as X f is not guaranteed to be PI for the newly
degraded system. This motivates on-line re-computation of the terminal set, which
is even more computationally demanding if the system is high-dimensional. In the
context of robust control, rather than using an iterative approach proposed in [48],
recent work has proposed finding the terminal robust positive invariant set (RPI)
set by solving a single linear program [126]. Whilst the proposed method offers
an attractive simplification of computing minimal robust control invariant (RCI)
sets, the method assumes an a-priori number of inequalities to represent the outer
approximation of the minimal RCI set. Without the algorithm in [48], it is currently
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not possible to find an appropriate number of inequalities a-priori. Despite these
difficulties, new results show promise in reducing the computation time of RCI
sets; regardless of system dimension [97]. Online learning of the controllability
and invariant sets using machine learning are being explored as alternatives to
this fundamental problem [25].

2.2 Adaptive Model Predictive Control Review

Adaptive MPC was first demonstrated to work within the process control in-
dustry [108]. The problem of controlling relatively slow industrial processes,
unlike gas turbines, lends itself well to the computational complexity of MPC.
The dual-control problem of simultaneous identification and control was then not
deemed necessary due to safe operating conditions during open-loop model re-
identification. Clearly, this type of adaptive MPC is not possible in the GT control
problem; degradation must be accounted for in closed-loop and in real-time.

Adaptive MPC, for true dual-control, gives scope for improving MPC control-
lers without bringing the plant off-line for model maintenance. The largest time
requirement in commissioning of all MPC controllers is from the modelling of a
satisfactory prediction model [120]. Given that a plant change occurs, due to a
newly installed feature or slowly time-varying change, the cost of re-modelling
using ad-hoc identification experiments may be economically infeasible. Hence,
adaptive MPC can be used to reduce the effect of uncertainty in plant-model mis-
match by automatically learning the best model within a chosen model structure
[44].

Whilst conventional MPC theory has been firmly established in academia, in-
dustrial applications are still limited to basic formulations [39]. Robust, stochastic
and adaptive flavours of MPC have all emerged to tackle modelling uncertainty,
despite industry still being hesitant in using basic stability ingredients such as ter-
minal invariant sets, as described in the introduction of this chapter [17, 92]. The
issue of computational complexity is of main concern for industry, with significant
research efforts proposing new solution methods and hardware implementations
[55, 64, 67, 111]. Given the observations in table 1.1, computational concerns are
becoming less of a priority.

Despite attention being focused on the computational implementation of MPC,
the basic formulations have a fundamental problem; limited stability guarantees
and potential infeasibility of the online optimisation under prediction model chan-
ges [87, 135]. Extensive simulations of possible operating scenarios have to be con-
ducted to ensure that the controller does not become infeasible [39, 81]. In robust
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MPC, the computation of the RPI sets requires knowledge of an accurate model
for the invariance properties to be retained [70]; large model mismatch leads to
large disturbance sets which increases conservatism when larger RPIs are used for
constraint tightening. Clearly, this motivates the need for a dual controller that
can match the prediction model with the true dynamics. Once a “good” enough
model is obtained, a robust design can be implemented without introducing un-
necessary conservatism (i.e. robustness to a bounded disturbance rather that the
sum of a bounded disturbance and model mismatch).

2.2.1 Dual-control

A dual controller needs to provide a control signal that simultaneously regulates
and excites. Intuitively, the excitation should minimise the deterioration on control
performance whilst maximising the richness of the signal for parameter identifi-
cation. Persistency of excitation (PE) of the regressor is an established ingredient for
discriminating between linear models within a chosen model structure [49].

However, the idea of dual-control is argued to have a common misconception
[56]: the presumption of an intuitive trade-off between a system’s control perfor-
mance and its exploration. In the framework of receding horizon control, the opti-
mal control sequence can be found using dynamic programming (DP). Deviations
from the optimal trajectories (in the classical DP sense), caused by exploration,
will seemingly induce sub-optimal trajectories. This perceived sub-optimality is
argued to occur because the classical optimality principle does not account for
potential reduction of uncertainty in future predictions through exploration in the
present. A re-formulation of the optimal control problem to include optimisation
over future uncertainty permits the following example: performing “sub-optimal”
decisions in the present (in the classical sense), to make an optimal control de-
cision in the future (accounting for uncertainty), which is better than the optimal
decision had their been no effort to reduce future uncertainty. A key issue is one of
ambiguity; that is, how to model the uncertainty within this newly defined dual-
control approach? Given that it is well known that optimising over functions in an
MPC framework to choose the optimal feedback policy is intractable (optimising
over functions is an infinite dimensional problem) [106], optimising over poten-
tial model structures shares exactly the same problem. With this observation and
the little-known literature on variable structure MPC controllers, the dual-control
problem will be considered in its classical sense of [41].
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2.2.2 Excitation: Persistency and Optimality

Promoting excitation for closed-loop identification has been suggested through
minimisation of the parameter covariance and also metrics associated with the
chosen identification algorithm’s variables; for example, maximising the determi-
nant, eigenvalues and/or traces of a so-called information matrix [57, 105]. In the
recursive least squares setting, the information matrix is defined as (3.7b) and is
intimately linked to the estimation algorithm’s “gain”. In [57], online experiment
design is proposed through the augmentation of a nominal MPC cost function and
its constraints. The augmentation of the cost function introduces a term which
promotes input signals that both regulate and excite the system, for generating
frequency rich data for parameter identification. Two cost terms are compared in
sensitivity studies. Firstly, the trace of the predicted parameter covariance is mi-
nimised, which introduces non-convex constraints into the optimisation problem.
However, the problem can be relaxed to a quadratically constrained quadratic pro-
gram (QCQP) through an appropriate reformulation; the simulations of this paper
did not take advantage of this result. Secondly, the exponents of the negated dia-
gonal elements of the least squares information matrix (as defined by (3.7b)), are
minimised. Non-convexity is also introduced through performing predictions of
the information matrix over the excitation horizon (an analogous concept to the
prediction horizon which defines the number of future time-steps to excite the
system). Through simulation it is shown that maximising properties of the infor-
mation matrix are less disruptive to the regulation objective. The sensitivity study
of this augmentation showed that varying the excitation horizon for values larger
than unity do not benefit the identification convergence rate. However, this obser-
vation is predicated on the fact that a discount factor was used to de-emphasize
future information matrix predictions in the cost function. In fact, this is contrary
to the observations of [105] who argue that it is indeed valuable to predict the in-
formation matrix when maximising the minimum eigenvalues of the information
matrix. For the dual controller utilizing the parameter covariance minimization,
simulations show that parameters do not necessarily converge to the true values of
the plant. This is explained by the fact that the notion of PE is completely ignored
in this cost framework.

In [90], a backwards looking horizon is employed to ensure that the regressor
remains persistently exciting whereas in [105], a SISO dual control problem is
considered within an MPC framework that utilises the notion of maximising the
minimum eigenvalue of the information matrix. This maximisation is used to
satisfy the persistence of excitation condition. The paper suggests that maximising
the information matrix over several prediction steps does benefit the parameter
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identification process, but is only shown through simulation.

The conclusion of [43] is that optimising over a single measure for "richness"
of excitation does not ensure optimal excitations; information about model para-
meter dynamics is not utilised, as discussed in the re-definition of the dual control
problem. It is therefore sensible to interpret that the choice of excitation metric is a
tuning parameter/heuristic of the adaptive MPC algorithm in the classical optimal
control setting.

In [28], the authors attempt to avoid PE by storing a buffer of regressors which
maximise the minimum singular value of the buffer. In [10], a non-deterministic
excitation signal is accounted for using robust tube MPC [106] to update the pre-
diction model whilst providing recursive feasibility. However, the explicit and
implicit robust tubes remain conservative under the initial model parameters.
Another adaptive robust approach is utilized in [3] where predictions of para-
meter error bounds are used to reduce the conservativeness of a min-max MPC
approach.

Similarly in [131], an adaptive estimator is used to estimate the disturbance
caused by mismatch. Both approaches briefly discuss the computational com-
plexity of their respective algorithms. Moreover, computation of the predicted
parameter error bounds in [3] are performed using nominal parameters, rather
than the true parameters. Indirect adaptive MPC uses a polytopic linear differen-
tial inclusion description of system uncertainty that enters through the dynamics
matrix [37]. Under the assumed problem structure, robust feasibility and stability
results are obtained using predictions of a vector describing the convex combina-
tion of possible dynamics matrices, which must be known a-priori. However, the
problem only requires the solution of a standard quadratic program.

Tracking to a PE reference input signal computed from a constrained least
squares problem is shown in [26]. The resultant PE reference signal is then tracked
by a standard MPC controller whilst ensuring parameter convergence under state
and input constraints. The convex relaxation of the exciting reference control input
has to be solved iteratively and online; convergence of the relaxed optimization
problem is only briefly discussed. Similarly, model re-identification is proposed
using a controller that tracks a PE reference input within a control invariant set
that is claimed to be safe for identification experiments [50]. However, the control
invariant set is computed based on an uncertain model (assumed strictly stable),
which does not guarantee robust stability and feasibility after only performing
prediction model update.

In [90], PE is guaranteed at the current time-step by taking advantage of natural
transients that may already be PE, without inducing additional excitation. Hence,
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the PE condition over a backward-in-time window of control signals is checked.
This is a non-convex constraint on the online optimal control problem (OCP); a
feasible solution of this OCP is shown to be an input that was implemented at the
end of the backward-in-time window, which implicitly induces periodicity seen in
classical adaptive control formulations [8]. However, the solution is feasible only
under input constraints and is not optimal with respect to any excitation measure.

PE is addressed under state constraints in [60] using a tube MPC approach; it is
shown that, under mild conditions, PE of the additive exciting input is transferred
to PE of the regressor. Another robust dual-controller is described in [132] which
modifies the regulation cost with an excitation cost that diminishes as a function
of the prediction model error. Robustness is shown to an a-priori known polytopic
inclusion of the system with both parametric and additive uncertainty. However,
both [60] and [132] suffer from conservatism induced by using robust (control)
invariant sets for constant uncertainty sets, and moreover, propose non-convex
optimal control problems that are computationally infeasible in practice.

On the other hand, [123] and [82] rely on an implicit satisfaction of PE in a re-
cursive set membership identification framework [12]. Here, the idea is to restrict
uncertainty around the true dynamics to within a contracting fixed-complexity
polytope; rather than attempting to identify a specific set of parameters that fit
a model structure. An extension to this set identification method, using a robust
tube MPC parametrization with u = Kx + v as the control law, has been propo-
sed for both time invariant and time-varying systems [83]. The linear feedback
gain K is designed (for example, using H-infinity) to robustify against a bounded
disturbance that, in addition to additive noise, also encompasses the modelling
uncertainty. The degree of freedom v is optimised over a shrinking set of model
candidates and a homothetic tube for ensuring robust positive invariance of the
terminal constraint [104]. Least mean-squares estimation is used to identify point
estimates within the set of model candidates, such that certainty equivalence MPC
is solved. However, this terminal cost is chosen conservatively to satisfy the Ly-
apunov equation for the initial large set of model candidates. Conservatism is
also present in computation of the terminal constraint which is the trade-off for
reduced computational complexity. The work in [84] provides respite to the con-
servatism of [82] by optimising over the cross-section of the robust-tube, whilst
maintaining the same number of inequalities. PE conditions are explicitly satis-
fied with an additional constraint in [83], which under the single input example,
is still convex (and requires the iteration of two quadratic programs). For general
multivariable systems, convexity is lost.

The results of [123] have since been updated in [124] which now guarantee
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recursive feasibility for linear time-varying systems. This result is obtained by
making predictions of the parameter sets using assumed bounds on the rate of
change of these parameter sets. However, the proposed methodology is still con-
servative since the terminal constraint uses the largest parameter uncertainty set
to ensure recursive feasibility. Moreover, the complexity of the parameter uncer-
tainty polytope has to be tuned for a reasonable trade-off between conservatism
and computational complexity. Generation of informative data for performing up-
dates of the uncertainty polytope is omitted; the simulation example relies on the
excitation from the square wave reference signal for tracking.

2.3 Conclusion

This chapter summarises a nominal and conventional recipe for synthesising MPC
controllers that provide exponential stability whilst guaranteeing recursive feasi-
bility of the online optimisation; in the unrealistic setting of no uncertainty. The
recipe is examined for the case where a new model becomes available as a result
of learning long-term degradation in gas turbines. The key issues that must be
satisfied before adaptation can be performed include:

• The choice of prediction horizon N must be stabilising for the updated and
potentially unstable identified dynamics.

• The Mode-2 control law u = Kx in Assumption 5 must be stabilising for the
newly identified prediction model; a solution is to re-compute K online for
the new prediction model.

• The terminal constraint set X f must be PI for the newly identified model; a
solution is to re-compute X f online for the new prediction model.

A range of learning mechanisms have been observed in literature which vary
in implementation, computational complexity and efficacy. It is clear that in the
linear framework presented in this chapter, an implicit or explicit PE condition
of the regressor vectors must be satisfied to ensure convergent parameter identi-
fication. The choice of excitation cost is a heuristic within a classical dual-control
framework. However, there is little (if any) recognition of the stability properties
of the nominal formulation of MPC under additional excitation. Motivated by this
observation, the following chapter proposes a computationally efficient (convex)
precursor to a fully adaptive MPC controller which produces excitations that re-
spect nominal robustness margins; thereby guaranteeing robust behaviour within
a sub-set of the controller’s region of attraction.



Chapter 3

Learning Model Predictive
Control

3.1 Introduction

In the previous chapter, the adaptation of a prediction model is studied around an
assumed operating point. In this chapter, the same assumption is utilised to study
a generic dual-control problem for linear time invariant (LTI) constrained systems,
without loss of applicability to the GT problem at hand.

It is assumed that the true (degraded) dynamics are unknown, and that only
a nominal (healthy) model is available for control. Using the nominal model, a
MPC based controller is designed which employs two online optimisation pro-
blems: the first problem is a conventional MPC regulation problem, albeit with
stabilizing terminal conditions. The second problem adds perturbations to the op-
timal regulating control law in order to promote excitation of the system dynamics
and facilitates accurate learning by a RLS algorithm. Maximising a deterministic
analogue of an “information objective” [5] in the linear framework is implemented
[91].

The mechanism behind the prediction model update with the more accurate
model learned online is deferred to Chapter 5; instead, in this chapter, the focus
is on what can be achieved with respect to stability and feasibility in the nominal
MPC framework. The main novel result—compared with lack of stability results in
similar approaches [90, 105, 137]—uses the well-established exponential stability
result of LQ-MPC. With the inherent robustness of this exponentially stabilising
controller, explicit bounds on the perturbation signal magnitude (in terms of mo-
del error) are derived such that, if met, guarantee closed-loop stability despite
model uncertainty and the exciting perturbations.

35
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3.2 Problem Statement

In this section, a statement of the closed-loop plant identification problem under
LQ-MPC is presented. Firstly, recall the regulation problem of controlling the
unknown plant

x+ , Ax + Bu (3.1)

to the smallest neighbourhood of the origin, as in Figure 2.1. The plant (3.1)
represents slowly time-varying linear dynamics that have changed since initial
controller synthesis (i.e., slow enough to be considered constant with respect to
the controller horizons and closed-loop transients). Suppose that an initial LQ-
MPC controller, u = κ̄N(x), employs the best available prediction model that was
developed through off-line first principles physics and data-driven methods:

x̄+ , Āx + B̄u. (3.2)

Since the model (3.2) was used to compute the stabilising ingredients of the regu-
lation optimisation P1(x) (2.5) for the non-degraded plant, the theoretical guaran-
tees of the stabilising ingredients for the closed-loop system x+ = Ax + Bκ̄N(x)
will no longer hold [106]. Moreover, performance of the MPC regulator may not
match an equivalent MPC controller with prediction model (3.1). Furthermore,
since it may not be possible to operate the plant in open-loop after controller de-
ployment, conventional open-loop identification schemes will no longer be avai-
lable for estimating the true plant dynamics. Therefore, this chapter proposes a
modified LQ-MPC control law

u = κ̄N(x) + v, (3.3)

where the perturbation term v is used to overcome the technical issues of closed-
loop system identification, whilst retaining the attractive properties of constraint
satisfaction under the MPC approach. These modifications are derived from fun-
damental properties of the well-known recursive least squares estimation algo-
rithm.

3.3 Recursive Least Squares

In the deterministic linear receding horizon framework, convergent model esti-
mates can be obtained using RLS estimation algorithm under informative data,
generated from PE signals [78]. Moreover, RLS facilitates the use of parameter
dynamics models, which if available, can accelerate convergence. Such an estima-
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tor can be shown to be equivalent to the Kalman filter and provides the optimal
trade-off between parameter tracking ability and sensitivity to noise, in terms of
parameter error covariance [78]. Parameter dynamics models are application spe-
cific and extremely sensitive intellectual property, particularly in the aerospace
industry. Without loss of generality, and the worst-case of no available parameter
dynamics, the following section formalises the basic RLS definitions.

3.3.1 State-space Formulation of RLS

For online identification, the RLS estimation of the true dynamics (3.1) uses the
following definitions of the regressor, predictor and parameter estimate.

Definition 2 (Regressor). The regressor vector used to perform the linear regression:

ψ> =
[

x> u>
]

(3.4)

Definition 3 (Predictor). The predictor, based on (3.2), used to define the current state
estimate:

x̂> = (ψ−)> θ̂− (3.5)

Definition 4 (Parameter Estimates). The estimated elements of the dynamics matrices.

θ̂ =
[

Â B̂
]>

(3.6)

The superscript ‘−’ denotes a predecessor value (the previous time-step) such
that the update law equations for the estimates are

θ̂ = θ̂− +R−1ψ−
[

x> − (ψ−)> θ̂−
]

(3.7a)

R = γR− + ψ−(ψ−)> (3.7b)

where γ ∈ (0, 1) is a forgetting factor that is used to discount old measurements,
whilstR is known as the information matrix. The inversion of the information ma-
trix, with its recursive definition, lends itself to being efficiently computed using
the matrix inversion lemma.

Lemma 1 (Matrix Inversion Lemma). Let P = R−1 for notational convenience. Then,
P , can be recursively computed using

P =
(

γR− + ψ−(ψ−)>
)−1

= P− −P−ψ−
(

γ + (ψ−)>P−ψ−
)−1

︸ ︷︷ ︸
∈R

(ψ−)>P− (3.8)
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if the inversion P− exists at the preceding time-step.

The proof of this statement can be found in Appendix 5. Using this lemma,
the parameter update law can then be further simplified to:

L =
P−ψ−

γ + (ψ−)>P−ψ−
(3.9a)

θ̂ = θ̂− + L
[

x> − (ψ−)> θ̂−
]

(3.9b)

It is well known that exponential convergence of the estimates θ̂ to (A, B) is assu-
red if the regressor ψ is persistently exciting [52].

Definition 5 (Persistency of Excitation). The regressor ψ is said to be persistently
exciting if for all k, there exists some integer M > 0 and real constants α > 0, β > 0 such
that:

αI(n+m)×(n+m) �
k+M

∑
i=k

ψiψ
>
i � βI(n+m)×(n+m). (3.10)

To satisfy Lemma 1, the initial knowledge of R− is required to initialize the
RLS scheme with the initial inversion P−.

Assumption 6. At time k = 0, the prior information matrix R−(0) is positive definite.

The initial value of R− may incorporate any prior knowledge of the estimates
and/or an optimised excitation sequence; it can be chosen freely by the designer to
improve the convergence rate of RLS. However, this aspect of the design is beyond
the scope of this thesis. The choice of a forgetting factor γ ∈ (0, 1) will ensure that
after a sufficient length of time, the initialisation will be discounted [65].

3.3.2 Closed-loop Identification

It is important to highlight an important fallacy in closed-loop identification: per-
sistence of excitation is not a sufficient condition for convergent parameter estimates in
closed-loop identification [78]. Under linear feedback it can be easily shown, with a
simple example, that the predictor’s structure leads to ambiguity.

Remark 1 (Ambiguity in closed-loop identification). The system (3.2) under a linear
state feedback control u = Kx yields the closed-loop dynamics x+ = (A + BK)x; using
(3.5), an equivalent “open-loop” system can be constructed:

x̂ = Â∗x− + B̂∗u−
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with Â∗ = (A + σBK) and B̂∗ = (B− σB) for some arbitrary σ. Clearly, identification
under linear feedback leads to identification of the closed-loop dynamics since there is no
way to distinguish between the open-loop and closed-loop dynamics for any σ.

Nominal LQ-MPC is indeed a linear control law when constraints are inactive
[106]. However, the affine structure of the proposed control law (3.3) alleviates the
linear correlation between the measured states and inputs, through the purpose-
fully designed perturbation term (3.13).

3.3.3 Learning Model Predictive Control Overview

With the preceding definitions, it is now possible to describe an optimisation pro-
blem that addresses the technical issues of closed-loop identification. The lear-
ning MPC controller architecture follows that of [105], with two optimal control
problems solved in series and at each time-step, in order to determine the control
inputs to the system for regulation and excitation. Note that unlike the previous
works, the dual-control problem in the nominal setting is considered in the state-
space framework; a formulation that naturally fits the multivariable problem.

First, a conventional MPC regulation problem (2.5) is solved, which impli-
citly defines the state feedback law (2.8). Subsequently, but at the same sampling
instant, a secondary optimisation problem is solved in order to determine per-
turbations to the optimal regulating control law, that excite the system in order
to promote convergent parameter estimation. Although the feedback law κ̄N(x)
regulates the system (to the origin in the absence of uncertainty), it does not ne-
cessarily provide the excitation of the system dynamics needed for convergent
identification [78]. For example, consider the closed-loop trajectories under a de-
adbeat controller design; they may not provide enough informative data samples
for the estimation algorithm before reaching the origin. Moreover, the data gat-
hered under feedback will induce estimation bias as discussed in Section 3.3.2.
Hence, immediately following the solving of P1(x) at state x, which generates the
sequence u0(x), the secondary optimisation

P2(x; u0(x)) : H0
N(x; u0(x)) = max

v
{HN(x, v) : u0(x) + v ∈ ŨN(x)} (3.11)

is solved; where HN(·) is an objective function designed to promote PE of the
regressor (3.4), the decision variable is the N-step sequence of control perturbations,
v = {v0, . . . , vN−1}, and the feasible set ŨN(x) is defined by the constraints (2.7)
together with the additional constraint:

||vi|| ≤ E for i = 0, . . . , N − 1. (3.12)
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This constraint permits a perturbation of the input from that of the optimal re-
gulating control sequence; E ≥ 0 is therefore a tuning parameter to be set by the
designer, and its role in stability is analysed in Section 3.7. Assuming that the op-
timal solution to (3.11) achieves PE of the regressor, application of the first element
of v0(x; u0(x)), the analogous MPC control law for excitation,

v = πN(x) = v0
0
(
x; u0(x)

)
(3.13)

will ensure that the norm of the parameter estimate’s error decays exponentially
to zero, thus yielding an estimate that corresponds to the true plant dynamics. In
practice, convergent identification must be checked with simulations; the discus-
sion of this observation is left to Proposition 2, after the excitation optimisation
has been defined with an appropriate solution method.

True Plant
+

Learning
Module (RLS)

Exciter

Regulator (MPC)

+

LMPC

Figure 3.1: Block-diagram depicting the optimisation dependencies within the
LMPC controller.
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3.4 Excitation Optimisation Definition

It is easy to show that the summation of regressor outer products (3.10) and the
information matrix recursion (3.7b), with γ = 1, is equal to the net change in the
information matrix:

Rk+1 = Rk + ψkψ>k

Rk+2 = Rk + ψkψ>k + ψk+1ψ>k+1

...

Rk+M −Rk =
k+M

∑
i=k

ψiψ
>
i

and therefore, persistence of excitation can be ensured by achieving positive de-
finiteness of Rk+M − Rk i.e., the positiveness of the smallest eigenvalue λ of
Rk+M −Rk. Accordingly, with the current value of the information matrix equal
to R (the output of (3.7b)) at the state x, the cost function of the secondary opti-
misation is designed as:

HN(x, v) = λ(RN −R0) (3.14a)

R0 = R (3.14b)

Ri+1 = Ri + ψiψ
>
i (3.14c)

ψ>i =
[

x>i (u0
i (x) + vi)

>
]

(3.14d)

Explicit predictions of future information matrices (3.14d) are used to provide
additional degrees of freedom for the excitation optimisation, given that the regu-
lator part will be acting against both the excitation and uncertainty.

3.4.1 Excitation Optimisation Tuning

Weighting constants σi can be introduced to emphasise perturbations on specific
information matrices such that the cost term, (3.14a), can be modified to:

k+M

∑
i=k

σiψiψ
>
i .

Choosing optimal weightings with respect to maximising the minimum eigen-
value, subject to a constraint on the norm of the weightings, in itself, is a semi-
definite program (SDP) [4]. Such a tuning approach could be used to alleviate
the problem of using open-loop predictions of the information matrix. Since the
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information matrix is predicted using the nominal prediction model, there is no
explicit guarantee that the future regressors of the true system (3.1) will be exci-
ting. Hence, the weighting of information matrix predictions closer to the current
time-step are more likely to be implemented in the receding horizon framework.

For more practical tuning, the designer may choose to truncate the “excitation”
horizon of (3.14a) to both prioritise excitations earlier in the prediction horizon,
and moreover, reduce computational demand of the excitation optimisation. For
simplicity, the excitation horizon is chosen to equal the prediction horizon N.

3.4.2 Non-convexity of the Excitation Problem

Unfortunately, the product of the decision variables caused by the definition of
the regressor (3.4), leads to an eigenvalue problem with linear matrix inequality
(LMI) constraints and a quadratic equality constraint (from ψiψ

>
i terms) [47]; which

is a non-convex optimisation problem that does not fit any of the standard con-
vex optimisation forms. The following section describes how this non-standard
problem can be approximated and potentially solved online.

3.5 Excitation Optimisation Solution

The excitation optimisation problem P2
(
x; u0(x)

)
, as it stands, may be computati-

onally expensive to implement. The following section addresses the non-linearity
by utilising the optimal sequences from P1(x) to form an appropriate approxima-
tion of the excitation problem, inspired by the results of [47] that also deal with a
similar PE constraint. The novelty in this formulation is that, rather than enforcing
a fixed magnitude of excitation as in [47], the optimiser of (3.11) is free to choose
an excitation up to the bounded magnitude (3.12), providing that the state and
input trajectories that develop from x satisfy their respective constraints.

3.5.1 Linearisation of the Eigenvalue Problem

The linearisation of problem P2
(

x; u0(x)
)

now denoted P∗2
(
x; u0(x)

)
makes use

of the following regressor decomposition:

Definition 6 (Regressor Decomposition). Using the nominal optimal trajectories tra-
jectories u0(x) = {u0

0(x), u0
1(x), . . . , u0

N−1(x)} and x0(x) = {x, x̄0
1(x), . . . , x̄0

N−1(x)},
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the regressor ψi can be decomposed as

ψi = ψ∗i + δψi (3.15a)

(ψ∗)>i = [x̄>i , (u0
i )
>]> (3.15b)

δψ>i =

[0>, v>i ]
>, if i = 0

[∑i−1
j=0 Āi−1−jB̄v>j , v>i ]

>, if i > 0
(3.15c)

where the subscript i denotes the index of the respective elements of the trajectories u0(x)
and x0(x), and index i = 0 denotes the first element of each trajectory.

Note that the bar indicates trajectories from a nominal model MPC regulator,
with the initial measured state x̄0 = x. The terms vi belong to the candidate
perturbation sequence v = {v0, . . . , vN−1} i.e., the decision variable of (3.11). With
the decomposition defined, the approximation of P2

(
x; u0(x)

)
is derived in the

following proposition.

Proposition 1 (Linearisation of P2
(
x; u0(x)

)
). The problem (3.11) can be linearised to

a new convex problem P∗2
(

x; u0(x)
)
, that lower bounds the original problem (3.11), and

is solvable using semi-definite programming.

Proof. The cost function (3.14a) implies the excitation problem in LMI form [21]:

max
λ,v

λ subject to: RN(v)−R0 − λI � 0 (3.16)

The constraint (3.16), using the regressor decomposition, is used to define the
modified cost function

N

∑
i=0

(ψ∗i + δψi) (ψ
∗
i + δψi)

> � λI

N

∑
i=0

ψ∗i (ψ
∗
i )
> + ψ∗i (δψi)

> + δψi(ψ
∗
i )
>

︸ ︷︷ ︸
H∗N(x,v)

+δψi(δψi)
> � λI

H∗N(x, v) + δψi(δψi)
> � H∗N(x, v)

where H∗N(x, v) is a linearised version of the original excitation cost (3.14a).

An explicit lower bound on (3.10) has been obtained by removing the new
quadratic cross-terms δψi(δψi)

>, yielding a LMI. The convex excitation problem
P∗2
(

x; u0(x)
)
, subject to the same constraints of (2.7), can be readily solved using

interior point methods [21].
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Having defined both regulation (2.5) and excitation (3.11) problems, the follo-
wing elementary result links their feasibility.

Proposition 2 (Connected feasibility). If x ∈ XN , then P1(x) is feasible and, moreover,
P2 (x; u∗(x)) is feasible for any u∗(x) ∈ UN(x) (i.e., not necessarily optimal for P2).

Proof. This observation follows from the fact that the zero solution (i.e., no pertur-
bation) is always feasible for (3.11).

This observation, whilst attractive from a feasibility standpoint, weakens the
exponential result for the implemented RLS algorithm; the null perturbation so-
lution may not necessarily satisfy the PE condition. Hence, convergence of the
estimates to the true plant dynamics must be tested in simulation.

3.5.2 Successive Linearisation

By maximising the minimum eigenvalue of the lower bound of the information
matrix increment, (i.e. the problem P∗2 (x; u∗(x))), the real objective λ(RN −R0)

will be only indirectly maximised. Moreover, the drawback of this approach is sub-
optimality with respect to the regulation objective. However, because the original
constraints are accounted for, the computed excitation sequence will still satisfy
constraints for the nominal predicted trajectories.

The linearisation P∗2
(
x; u0(x)

)
may, at most, lead to slower convergence of

the RLS parameters. To combat this sub-optimality, as proposed in [47], re-
linearisation of P∗2

(
x; u0(x)

)
at an updated ψ∗ can be implemented. Specifically,

the updated linearisation point for the j-th iteration (j = 0, . . . , p) is:

ψ∗i,j+1 = ψ∗i,j + δψi,j (3.17)

where ψ∗i,0 = ψ∗i . For 1 ≤ j ≤ p, the linearisation iteration is

(ψ∗i,j)
> =

[
(x∗i,j)

>, (u∗i,j)
>
]

. (3.18)

The new predicted state trajectories are

x∗i,j = Āix +
i−1

∑
l=0

Āl B̄u∗i−1−l,j (3.19)

with the perturbed inputs (and sub-optimal with respect to P1(x)):

u∗i,j = u0
i +

j

∑
l=1

vi,l . (3.20)
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The intuition of this recursion can be explained with the following example:
suppose iteration j = 0 is the first linearised excitation problem P∗2,j=0

(
x, u0(x)

)
that has already been solved to obtain perturbation sequence vj=0. By definition
of the decomposition for P∗2

(
x; u0(x)

)
, the state and input trajectories u0(x) and

x0(x) have already been used to define ψ∗i,0. Hence, at the following iteration
j = 1, to solve P∗2,1

(
x, u0(x)

)
, decomposition ψ∗i,1 is composed of the adjusted state

trajectories caused by the updated input sequence u = u0(x) + vj=0. This process
is repeated until satisfactory convergence criterion is met or until there is no time
left for further optimisation during the sampling interval.

3.6 The LMPC Algorithm

Algorithm 3.1 provides a detailed description of the proposed learning model pre-
dictive controller for estimating the true model of the degraded system. The im-
plementation and simulation results of this algorithm can be found in Section 3.9.

Algorithm 3.1 Learning MPC with RLS

Initialization
1: At k = 0, set x = x(0), solve P1(x) for u0(x) and initialize R−, θ̂− for online

steps
Online

2: Measure x and compute R from (3.9)
3: Solve P1(x) for u0(x)
4: Solve P∗2,j=0

(
x; u0(x)

)
for v0

j=0

(
x; u0(x)

)
5: while remaining time in sampling instant do
6: Update linearisation ψ∗i,j+1 = ψ∗i,j + δψi,j

7: Solve P∗2,j+1

(
x; u0(x)

)
for v0

j+1

(
x; u0(x)

)
8: Update iteration index to j + 1
9: end while

10: Apply sum of first controls from each sequence to the system

u = κ̄N(x) + πN(x) = u0
0(x) + v0

0,j
(
x; u0(x)

)
11: Wait one time-step, then go to step 2
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Initialize LMPC and RLS 
parameters

Solve LQ-MPC: 

Update recursive least 
squares (RLS) parameters 

and measure state: 

Solve LQ-MPC: 

for

Solve Excitation Problem: 

for

Apply first term of each 
sequence: 

Advance to next step: 

Figure 3.2: Flow chart describing the steps of a simplified LMPC algorithm (no
iteration of the excitation optimisation).
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3.7 Theoretical Stability Analysis

Having defined the control architecture and the optimisation problems involved, it
is now essential to understand the impact of both model uncertainty and excitation
on the closed-loop system under the LMPC controller:

x+ = Ax + B(κ̄N(x) + πN(x). (3.21)

The main result establishes an upper bound on the model error (the mismatch
between (Ā, B̄) and (A, B)) which, if met, guarantees stability of the closed-loop
uncertain and perturbed system.

3.7.1 Main Result

To guarantee stability of a neighbourhood of the origin, which is the best that can
be done given the excitation term, the well-known exponential stability results of
nominal MPC with terminal conditions are employed [106]. Moreover, the inhe-
rent robustness of the regulating controller κ̄N(x) is exploited to handle the state
prediction error caused by modelling uncertainty and the exciting perturbation.
This is a novel robust stability result that is explicitly in terms of the modelling
uncertainty and available magnitude of excitation [53].

Proposition 3 (Exponential stability of nominal MPC). Suppose Assumptions 2,3,4,5
hold and the objective is quadratic and positive definite as in (2.6), under a terminal
control K that is LQ optimal. Then, the origin is exponentially stable for the nominal
system x̄+ = Āx + B̄κ̄N(x), with region of attraction X̄N . Moreover, there exist constants
c2 > c1 > 0 such that the value function satisfies:

c1||x||2 ≤ V0
N(x) ≤ c2||x||2 (3.22a)

V0
N (Āx + B̄κ̄N(x)) ≤ ζV0

N(x) (3.22b)

for all x ∈ X̄N , where ζ , (1− c1/c2).

This result (textbook proof may be found in [106]) implies that in the absence
of model uncertainty and the perturbing input for identification, the states of the
regulated system decay exponentially fast to the origin. However, in reality, the
model uncertainty and exciting perturbations are present. Moreover, the true
successor state is not Āx + B̄κ̄N(x) but (3.21). To deal with this, the following
property of the value function is utilised [106].

Lemma 2 (Lipschitz continuity of the value function). The value function V0
N(·)

satisfies ||V0
N(x1)−V0

N(x2)|| ≤ L||x1 − x2|| over XN , with Lipschitz constant L.
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Proof. This Lemma holds under the defined regulation formulation (2.5). The
proof of Lemma 2 can be found in Theorem C.29 in Appendix C of [106].

Lemma 2 together with Proposition 3 are used to establish the main stability
result:

Theorem 1 (Stability in terms of model mismatch). Suppose Assumptions 2-5 hold,
and let x0 ∈ Ωc , {x : V0

N(x) ≤ c} ⊂ XN with positive constants b < c. If E ≥ 0 for
some ρ ∈ (ζ, 1) and L satisfying Lemma 2 such that,

E ≤ (ρ− ζ)b− L||δAx + δBκ̄N(x)||
L||B̄ + δB|| (3.23)

for all x ∈ Ωc, where δA , A − Ā and δB , B − B̄, then (i) the set Ωb is positively
invariant for the system (3.21), (ii) the set Ωc is also positively invariant for (3.21). Hence,
starting from x0 ∈ Ωc, the states of the system enter the set Ωb in finite time and remain
therein.

Proof. (i) If x ∈ Ωb then V0
N(x) ≤ b. Using (3.22) as an ISS Lyapunov function [106]

for the true plant behaviour x+ = Ax + B(κ̄N(x) + πN(x)), the triangle inequality
and induced matrix norm properties lead to

V0
N(x+) ≤ ζb + L||B̄ + δB||E + L||δAx + δBκ̄N(x)||.

If there exists a ρ ∈ (ζ, 1] such that,

ζb + L||B̄ + δB||E + L||δAx + δBκ̄N(x)|| ≤ ρb (3.24)

for all x ∈ Ωb, then the set Ωb is PI for x+ = Ax + B(κ̄N(x) + πN(x)); the
bound (3.23) is obtained by making E the subject of (3.24).

(ii) The claim for invariance of Ωc and finite time convergence to Ωb; consi-
der some x(0) ∈ Ωc \Ωb. Using the ISS property of the value function and the
existence of ρ ∈ (ζ, 1] yields

V0
N (x(1)) ≤ ζV0

N (x(0)) + (ρ− ζ)V0
N (x(0))

≤ ρV0
N (x(0)) .

Thus, V0
N (x(k)) ≤ ρkV0

N (x(0)), and so V0
N (x(k′)) ≤ b after some finite k′, implying

x(k′) ∈ Ωb.

Here, Ωb is desired to be as small as possible to reduce regulation error, while
Ωc is the largest sublevel set contained in XN . The inequality (3.23) establishes
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an upper bound on the value E which limits the perturbing input vi in problem
P2. Note that Ωb can be chosen arbitrarily large so long as it is contained within
the domain of attraction XN . The trade-off from a large choice of b is reduced
regulation performance of the closed-loop due to larger permissible excitations.

3.7.2 Discussion

Though theoretically interesting, the bound (3.23) is of little practical use since
several of the terms on the right-hand side are unknown or difficult to determine
accurately:

1. The model errors δA, δB are unknown a-priori, but estimated bounds may
be known.

2. The decay constant ζ can be estimated conservatively from theoretical consi-
derations [106], or more accurately from numerical simulations as described
later in Section 3.8.

3. The remaining constants b, c, ρ, and the Lipschitz constant L, have to be esti-
mated from numerical simulations, in view of the value function being only
implicitly defined (as the optimum of a parametric optimisation problem).

4. The use of the triangle inequality means that the developed upper bound
on excitation is conservative; larger excitations may exist under which the
closed-loop system remains stable and feasible.

On the other hand, some salient points that support intuition about the dual-
control problem can be inferred:

• If model error is sufficiently small, the right-hand side of (3.23) is positive,
and hence E > 0 is permitted in problem P2: that is, exciting perturbations
to the regulating control signal are admissible while maintaining the closed-
loop stability of the uncertain system.

• Conversely, for large model error the right-hand side of (3.23) may be ne-
gative, implying that no non-negative E exists. Hence, model uncertainty is
too large to permit any exciting perturbations to the input, and if stability
guarantees are to be achieved then a stronger regulatory action is required
from the controller (i.e., producing a small decay constant ζ).

Finally, it is noted that model error in both A and B means that it is difficult
to establish a practical bound on model uncertainty that maintains the stability
guarantee. If, however, error is exclusive to A then a bound that is more practical
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(albeit still requiring numerical determination of the relevant constants) follows as
a corollary of Theorem 1.

Corollary 1. If B̄ = B, then the stability guarantee of Theorem 1 holds provided that:

||δA|| ≤ 1√
b/c1

(
(ρ− ζ)b

L
− ||B̄||E

)
(3.25)

Proof. With no uncertainty in the input matrix B̄, then the inequality (3.23) simpli-
fies to:

E ≤ (ρ− ζ)b− L||δAx||
L||B̄||

Algebraic manipulation and using triangle inequality for a second time,

(ρ− ζ)b
L

− ||B̄||E ≥ ||δA||.||x||

According to Theorem 1, the state converges to x ∈ Ωb and the lower bound of
(3.22) implies the c1||x||2 ≤ b. Re-arranging to make ||δA|| the subject leads to
Corollary 1.

Note that, confirming intuition, large input-to-state gain implies the need for
small E (and hence small exciting perturbations) in order to maintain stability of
the regulator.

3.8 Computing Value Function Constants

This section describes how to compute the constants required to evaluate the
bounds for Corollary 1.

3.8.1 V0
N(x) Lower Bound

Since the value function is, by definition, the optimal cost

V0
N(x) = x0>

N Px0
N +

N−1

∑
i=0

x0>
i Qx0

i + u0>
i Ru0

i (3.26)

with the superscripts denoting the optimal trajectories, it follows that V0
N(x) ≥

x0>
0 Qx0

0 ≥ λ(Q)|x|2 with x being the measured state, hence c1 = λ(Q).
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3.8.2 V0
N(x) Upper Bound

From dynamic programming recursions of Section 2.4.4 in [106], the terminal cost
upper bounds the value function such that

V0
N(x) ≤ x>N PxN , ∀x ∈ X f (3.27)

and hence, V0
N(x) ≤ λ̄(P)|x|2 = α(||x||) provides an upper bounding κ∞ function

within X f . However, this definition requires extension to the entire region of
attraction XN . Utilising Proposition 2.18 of [106] guarantees the existence of c >

η > 0 such that a new κ∞ function β(||x||) = c
η α(||x||) = c

η λ̄(P)||x||2 bounds the
value function within XN . Therefore, c2 = c

η λ̄(P). The remaining task is to find
the least conservative pair c and η such that c2 is the tightest upper bounding
constant.

Computing η

Proposition 2.18 of [106] defines η as

η = max
x∈Br

α(||x||) (3.28)

where Br = {x ∈ Rn : ||x|| ≤ r}, which is equivalent to fitting the largest Eucli-
dean norm ball within the terminal constraint X f .

Computing c

Proposition 2.18 of [106] defines c as the constant which implicitly defines the
largest level set such that V0

N(x) ≤ c for all x ∈ XN . By definition of the value
function (3.27), the upper bound

V0
N(x) ≤ (N − 1)max

xc∈X
x>c Qxc︸ ︷︷ ︸

lc(.,u)

+ (N − 1)max
uc∈U

u>c Ruc︸ ︷︷ ︸
lc(x,.)

+ max
xc∈X f

x>c Pxc︸ ︷︷ ︸
Vc

f (.)

, ∀x ∈ XN

(3.29)
is obtained by selecting the worst-case stage cost at each step along the prediction
horizon. With abuse of notation, the constant is defined c = lc(., u) + lc(x, .) +
Vc

f (.). For a least conservative approximation of c2, c has to be minimal whereas
η maximal. By numerically testing near the boundaries of the controllability sets
(4.2), rather than the boundary of X, at each stage thus reducing the contribution
from l(., u).
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3.8.3 V0
N(x) Decay Rate

The decay rate ζ is a result of the stabilising ingredients utilised in Theorem 1.
As the value function is used as a Lyapunov function for the closed-loop, the
following conditions are satisfied:

c1||x||2 ≤ V0
N(x) ≤ c2||x||2 (3.30a)

V0
N (Āx + B̄κ̄N(x)) ≤ V0

N(x)− c1||x||2 (3.30b)

for all x ∈ XN . The decay constant in V0
N (x̄+) ≤ ζV0

N(x) is found from a straig-
htforward re-arrangement using the upper bound of the value function, yielding
ζ = (1− c1/c2).

3.8.4 V0
N(x) Lipschitz Constant

The Lipschitz constant is challenging to evaluate since the value function does
not have an analytical expression and requires the solution of the MPC problem,
hence, characterisation of the implicit control law κ̄N(x). The best that can be
hoped for is a tight upper bound [134]. In the context of (1), the smallest Lipschitz
constant will lead to the most desirable bound on model mismatch. Methods for
finding the best approximations of the Lipschitz constant are still an active field
of research, even for quadratic programs and as such, the reader is referred to
[30]. In the context of MPC, upper estimations have been shown in non-convex
value function examples [117]. A conjecture for simplifying the computation of the
Lipschitz constant has been proposed which uses tools from explicit MPC [106].

3.9 Illustrative Example

The learning MPC algorithm is demonstrated using the convex relaxation descri-
bed in 3.5.1, on a system with the unstable dynamics:

x+ =

[
1 1
0 1.2

]
︸ ︷︷ ︸

A

x +

[
0 1

0.5 0.2

]
︸ ︷︷ ︸

B

u

Contrary to the instability of the true dynamics, the prediction model used by
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the controller is stable:

x̄+ =

[
0.7 0.7
0 0.84

]
︸ ︷︷ ︸

Ā

x +

[
0 1

0.5 0.2

]
︸ ︷︷ ︸

B̄

u.

Table 3.1 shows the parameters selected for the controller and RLS algorithm,
chosen to comply with Assumptions 2-5. The following constraints were conside-
red:

X = {x ∈ R2 : |[x]h| ≤ 4, h = 1, 2},

U = {u ∈ R2 : |[u]h| ≤ 1, h = 1, 2}.

The set X f is designed to satisfy Assumption 4 with the computed P and the
unconstrained LQ-optimal terminal control law K.

Figure 3.3 shows the state and input trajectories of the system under the com-
posite regulating and exciting control law (3.3). The controller achieves regulation
of the system to a neighbourhood of the origin, despite the input perturbations
and the model error.

Figure 3.4 shows, over the same time period, the learning of the true system
dynamics by the RLS module. In this case, the perturbations applied to the re-
gulating control law are sufficient to achieve accurate convergence of the model
parameters.

Table 3.1: Controller parameters

Parameter Value Parameter Value

State x0 [3, 0]> γ 0.7
R I2×2 E 0.7
Q 5I2×2 N 10
P

[
5.2485 0.1314
0.1314 5.7667

]
R− I4×4
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Figure 3.3: State and input trajectories under the composite control law, inclu-
ding a magnified view. The dashed lines denote conventional MPC trajectories
(i.e., without the exciting perturbations).
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Figure 3.4: Estimated A-matrix parameters. Dashed red lines denote the true
parameters. Dotted black lines denote the parameters estimated under only con-
ventional LQ-MPC, which do not converge to the true parameters.
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3.10 Summary and Conclusion

An approach to the dual-control problem has been presented in a linear MPC
framework, where persistency of excitation is promoted through an additional
optimisation problem solved online. Closed-loop stability of the true uncertain
system, despite the model error and exciting perturbations applied to the regu-
lating control law, was established by using the well-known exponential stability
result of LQ-MPC. The main result gives an upper bound on the permitted mag-
nitude of input perturbations determined by the secondary optimisation. When
specialized to the case of uncertainty only in the A-matrix, the result provides a
more practical, albeit still difficult to determine upper bound on model error.

Since an excitation sequence over a future horizon is made available from the
optimiser P2

(
x; u0(x)

)
, the next logical step is to explore how the original regula-

ting controller κ̄N(x) can utilise the knowledge of a receded perturbation sequence
to further robustify the regulating controller. The next chapter precisely explores
this idea and shows several novel results that improve the inherent robustness of
the control method without adding any additional computational complexity to
the MPC scheme approach.



Chapter 4

Preview Information and Inherent
Robustness

4.1 Introduction

Most industrial MPC controllers work despite their formulations not using the
standard ingredients that provide stability and recursive feasibility guarantees
[87]. These controllers utilise the property of inherent robustness that is present
in feedback control [6]. The linear quadratic formulation of MPC presented in
Chapter 2 does indeed provide a quantifiable degree of inherent robustness, related
to the chosen tuning parameters of the controller. Thus far, the inherent robust-
ness property has been exercised to deal with model mismatch and excitation for
convergent identification.

The novelty of this chapter introduces feed-forward into the algorithm propo-
sed in Chapter 3 by informing the controller of the predicted excitation sequence.
With appropriate modifications of the nominal ingredients in LQ-MPC, the con-
troller’s robustness margins become independent of the magnitude of the excitati-
ons; instead, the change from the expected excitation sequence affects robustness
in an analogous bound to (3.23). Moreover, the proposed approach enlarges the
region of attraction when compared to a nominal LQ-MPC with no preview of the
excitations.

This simple extension of learning MPC improves its robustness without any
additional on-line computational complexity; simple arithmetic operations and
storage of the perturbation sequence are the only additional computational re-
quirements. Similar theoretical analysis to Chapter 3 and numerical arguments
support the claim under appropriate bounds on modelling error.

56
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4.2 Preview Information

In robust MPC, the common design practice is to assume that the disturbance ex-
ists within some worst-case bounded set of potential disturbances. Such a design
prepares the MPC controller to handle any realisation of the disturbance at the
cost of increased conservatism. Given that MPC performs predictions over a future
horizon, it is sensible to investigate how the knowledge of future disturbances–if
available and of sufficient accuracy–can be utilised to robustify LQ-MPC; rather
than resorting to the classical robust approach. In the context of gas turbines, such
a situation could exist if prior information of the flight schedule and future inlet
conditions is available; either through accurate weather predictions or sensors that
can detect the characteristics of the oncoming flow.

It is constructive to begin further discussion of this idea with a definition of
preview information in the linear prediction model framework.

Definition 7 (Preview Disturbance Sequence). The finite preview disturbance sequence
w = {w0, w1, . . . , wN−1} defines the knowledge of state disturbances over the prediction
horizon N, with current disturbance wk = w0 i.e.,the first term of the sequence.

Such an available sequence can be easily introduced into the prediction model
(2.4) yielding

x̄+ = Āx + B̄u + w, (4.1)

and becomes implemented as an analogous constraint (2.7b) in a modified optimi-
sation problem. This system description is equivalent to (2.3) with the assumption
that the disturbance is entirely measurable. However, as will be illuminated in the
coming sections, naively updating the prediction model with future disturbances
is not sufficient for retaining the stability guarantees of LQ-MPC [13].

4.2.1 Issues with including Preview Information

Several theoretic considerations must be addressed when including predictions
of future disturbances in the prediction horizon. Firstly, it is useful to recall and
discuss how some of the assertions from nominal LQ-MPC are affected:

Assumption 2: Linearity and reachability of the dynamics.

Assumption 3: Fixed plant dimensionality and constraints.

Assumption 4: Lack of external disturbances affecting the plant.

Assumption 5: Positive invariance of the terminal constraint set X f .
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Proposition 3: Exponential stability using the value function V0
N(x).

Assumption 2 holds for the system without the preview information. However,
under deterministic knowledge of the preview information, the plant dynamics
become affine. These modified dynamics are the cause of the following issues that
deserve the most attention.

Loss of Invariance of X f

Assumption 5 is clearly broken with the addition of preview information, as the
set X f may no longer be PI for the system x̄+ = Āx + B̄u + w under the same
terminal control law u = K̄x (even under a constant w). Moreover, simply shifting
the original set X f by w will result in violation of the original constraints defined
under Assumption 3.

Ill-posed Objective VN(x, u)

Since the origin is no longer an equilibrium point of the system x̄+ = Āx+ B̄u+w,
the best that can be done is to steer the states into a neighbourhood of the origin. The
value function V0

N(x) is unable to satisfy the conditions of a Lyapunov function
under the new prediction model because the components Vf (x) and l(x, u) will
not be zero for affine dynamics (4.1).

Loss of nesting of the Controllability Sets

The controllability sets, derived in Appendix 6.6, are useful for analysing feasibi-
lity of constrained control. It is well known that the system (2.4) under LQ-MPC,
satisfying Assumptions 2-5, has nested controllability sets if X f is PI for the system
x̄+ = Āx + B̄u [93]. This property is attractive as it allows for straightforward ar-
guments that can prove recursive feasibility. However, with a disturbed prediction
model, the controllability sets are defined as:

Xi+1 = X∩ A−1(Xi ⊕−BU⊕−{w(N − i)}) , for i = 0, . . . , N − 1 (4.2)

where X0 = X f . Notice that the final term in the set recursion (4.2) induces
translation of each controllability set along the prediction horizon. Regardless of
whether X f is made PI for (4.1), with large enough w(N − i), loss of guaranteed
nesting makes it difficult to prove recursive feasibility of the MPC controller (but
not impossible [13]).
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4.2.2 Preview Information Definitions and Assumptions

This chapter does not suggest the use of additional sensing capability or perfect
weather predictions. Rather, the goal is to use a specialised form of the distur-
bance sequence that is already available: the perturbation sequence v as a result
of solving an ancillary optimisation for excitation.

Definition 8 (Preview Perturbation Sequence). The preview perturbation sequence
v = {v0, v1, . . . , vN−1} defines the knowledge of input perturbations, over the prediction
horizon N, at some generic time-step k (which may be omitted for clarity).

To begin analysis, some additional assumptions on the nature of this preview
information are required. The following mild assumptions on the preview pertur-
bation sequence are made:

Assumption 7 (Current knowledge). The current perturbation vk is known exactly at
time-step k (i = 0 in the prediction horizon index); estimates of future perturbation vi for
i ∈ Zi≥1 are available and satisfy Bvi ∈W.

Clearly the preview information definitions 7 and 8 are equivalent when each
term of the latter definition is multiplied through the uncertain B matrix i.e., w =

Bv.

Since most of the issues of including preview information relate to the terminal
conditions of the regulation problem, it is important to define what happens after
the end of the sequence of available perturbation predictions. To simplify analysis
of these terminal conditions, the following definitions define the behaviour of the
perturbation sequence as part of the receding horizon framework.

Definition 9 (Receding perturbations). The tail-end of the perturbation sequence is
defined as ṽ(v) = {v1, . . . , vN−1, vN−1} where the first term of v is removed whilst the
last term is repeated and appended, maintaining the original dimensions of the sequence
such that B� ṽ(v) ∈W× · · · ×W×W f ×W f and W f ⊆W.

Definition 10 (Extension beyond N). The infinite-length perturbation sequence vN(k)
is constructed by concatenating v(k) with v f (k) = {vi}i≥N , where Bvi ∈W f ⊆W for
vi , v f (v) when i ≥ N. Hence, the infinite sequence is vN(k) = {v0, . . . , vN−1, vN−1, . . . }.

In other words, v f (k) contains the final term of the finite sequence, vN−1, and is
repeated infinitely. Finally, the infinite sequence vi(k) for i = 0, . . . , N is a version
of vN(k) but without the first N − i terms. The function ṽ applied to an infinite
sequence, ṽ(vi), removes the first term of vi yielding ṽ(vi) = vi−1.
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With these definitions and assumptions, the results of [13] can be applied and
more importantly strengthened; by utilising the properties that follow from consi-
dering input perturbations rather than state disturbances. The following section
describes the necessary modifications of the optimal control problem that retain
the nominal stability guarantees, whilst accounting for preview perturbation in-
formation.

4.3 LQ-MPC with Perturbation Preview

Knowledge of the perturbation sequence requires a change in notation of the origi-
nal MPC problem. The perturbation sequence v becomes an additional parameter
such that the new LQ-MPC optimisation problem is defined as:

P1(x; v) : V0
N(x; v) = min

u
{VN(x, u; v) : u ∈ UN(x; v)} (4.3)

where the feasible region UN(x; v) is defined for i = 0, . . . , N − 1 using:

x0 = x (4.4a)

x̄i+1 = Āxi + B̄(ui + vi) (4.4b)

x̄i ∈ X (4.4c)

ui ∈ Ui(v) (4.4d)

x̄N ∈ X f (v) (4.4e)

with the cost function

VN(x, u; v) = Vf (xN ; v) +
N−1

∑
i=0

l(xi, ui; v)

and constraints that are modified appropriately to retain the nominal guarantees
of LQ-MPC. Derivations of the critical components VN(x, u; v), U(v) and X f (v)
are developed in the following sections.

4.3.1 Modifications of the Stabilising Ingredients

The required modifications of Vf (x; v), l(x, u; v) and X f (v), first proposed in [13],
address the loss of invariance and ill-posedness of the regulation problem. The key
assumptions from section 3.B of [13] are specialised to the preview perturbation
definitions.
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Assumption 8 (Nominal Terminal Invariant Set). The control invariant set X̄ f is
known and functions l̄(x, u), V̄f (x) satisfy Assumptions 4 and 5 for the reachable system
x̄+ = Āx + B̄u but with scaled constraint sets βxX, βuU where βx,βu ∈ [0, 1).

Assumption 8 implies the existence of a stabilising control law κ̄ f (x) in a set of
stabilising control laws such that:

u f (x) ={u ∈ βuU : Ax + Bu ∈ βxX,

V̄f (Āx + B̄u) + l̄(x, u) ≤ V̄f (x)} ∀x ∈ X̄ f .

Assumption 9. The control law κ̄ f (x) is continuous over its domain of attraction X̄ f ,
κ̄ f (0) = 0 and is continuously differentiable around the origin.

Invoking Assumptions 8 and 9 lead to the nominal terminal dynamics x̄+ =

Āx + B̄κ̄ f (x) = fκ̄ f (x), with a domain of attraction X̄ f . However, the perturbed
terminal system will in fact be

x̄+ = fκ̄ f (x) + w f

with the terminal disturbance stated in terms of the terminal input perturbation
w f = B̄v f ∈ W f . Moreover, Assumption 9 permits the linearisation of fκ̄ f (x)
around the origin such that

Π ,
δκ̄ f (x)

δx
, Φ ,

δ fκ̄ f (x)
δx

= A + BΠ. (4.5)

Note that any linear control law K can be used in place of Π, including a LQ
regulator from the dual-mode approach described in Chapter 2. Given a constant
terminal disturbance, and the technical assumptions thus far, it is now possible to
obtain a new equilibrium point for the perturbed terminal dynamics.

Perturbed System Equilibrium

Steady-state analysis of the perturbed dynamics under the stabilising control law
Π = K yields the new equilibrium point:

x f (v f ) = ΨB̄v f , u f (v f ) = KΨB̄v f (4.6)

where Ψ = (I−Φ)−1. With Ψ being well defined and Schur, the following Lemma
is proved:

Lemma 3. Suppose Assumptions 8 and 9 hold. Then, the equilibrium point
(
x f (v f ), u f (v f )

)
of the terminal dynamics x+ = Φx + B̄v f , computed using (4.6), exists and is unique un-
der a stabilising feedback control law Π = K and constant perturbation v f .
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Modified LQ-MPC Ingredients

The explicit equilibrium point defined in Lemma 3 can now be used to translate
the original stabilising ingredients:

l(x, u; v) , x>e (v f )Qxe(v f ) + u>e (v f )Rue(v f ) (4.7)

Vf (x; v) , x>e (v f )Pxe(v f ) (4.8)

X f (v) , X̄ f ⊕
{

x f (v f )
}

(4.9)

κ̄ f (x; v) , Kxe(v f ) + KΨB̄v f = Kx (4.10)

where the state and input error terms are xe(v f ) = x − x f (v f ) and ue(v f ) = u−
u f (v f ) respectively.

Remark 2. Notice that the modified terminal control law (4.10) can be simplified to the
linear control law u f = Kx of the unmodified terminal control problem, when the defini-
tion of the equilibrium point xe(v f ) is substituted in. The significance of this is that the
terminal cost matrix P remains unchanged, since the solution of the discrete time (DT)
Lyapunov equation that encapsulates the cost-to-go for an infinite prediction horizon, can
be computed with the unmodified terminal control law.

Assumption 10 (Scaling of the terminal perturbation). There exist scalars αx, αu ∈
[0, 1) such that

ΨW f ⊆ αxX , KΨW f ⊆ αuU.

Scaling the terminal perturbation is required to satisfy Assumption 8; the con-
stants αx, αu limit the size of the admissible terminal perturbation given the scaled
down constraint sets βxX, βuU.

The following proposition establishes the stability result for the terminal dyn-
amics, under the proposed set scaling and translations of the nominal ingredients.

Proposition 4 (Invariance of X f (v)). Suppose Assumptions 2,3,4 and 7,8,9,10 hold.
Then, for any constant B̄v f ∈W f , (i) the set

X f (v) = X̄ f ⊕
{

x f (v f )
}

(4.11)

is PI for x̄+ = Āx + B̄κ̄ f (x; v) + B̄v f , and (ii) the functions l(x, u; v) and Vf (x; v)
satisfy

Vf
(

Āx + B̄(κ̄ f (x; v) + v f )︸ ︷︷ ︸
x̄+

; v
)
+ l(x, κ̄ f (x; v); v) ≤ Vf (x; v) ∀x ∈ X f (v).
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Furthermore, (iii) X f (v) ⊆ X and κ̄ f
(
X f (v); v

)
⊆ U if αx + βx ≤ 1 and αu + βu ≤ 1.

Finally, (iv) the point
(
x f (v f ), u f (v f )

)
is an asymptotically stable equilibrium point for

the system x̄+ = Āx + B̄(κ̄ f (x; v) + v f ) with a region of attraction X f (v).

Proof. The proof of Proposition 4 follows exactly the proof of Proposition 1 in [13],
but only replacing w f with w f = B̄v f .

Remark 3. An elegant consequence of Proposition 4 is that, in the case of constant v f and
no modelling uncertainty, stability of a point is achieved rather than a neighbourhood of
the origin for the terminal prediction dynamics. This observation is used to infer the same
behaviour for the closed-loop system in Proposition 6.

The online solving of the modified problem P1(x; v) at each time-step, yields
the analogous stabilising control law κ̄N(x; v) = u0

0(x; v) that returns the first
element of the optimal sequence, as in nominal LQ-MPC; but now accounting for
preview perturbations.

4.4 Nesting of the Controllability Sets

This section addresses the final issue caused by using a perturbed prediction mo-
del: loss of nesting of the controllability sets. Unlike the results of [13], it is shown
that nesting of the controllability sets can be restored under an additional trans-
lation of the input constraint set, yielding Ui(v). The trade-off, from performing
the translation, is a slight reduction in the enlargement of the robust region of at-
traction and is demonstrated in the numerical study of Section 4.8. However, the
extremely attractive property of recursive feasibility is recovered under assump-
tions on the evolution of the preview information sequence and zero modelling
uncertainty [93].

4.4.1 Unchanging Perturbation

Following the MPC Assumptions 2, 3 and 5 with a generic state disturbance se-
quence, the controllability sets are recalled to be

Xi+1(wi+1) = X∩ A−1(Xi(wi)⊕−BU⊕−{w(N − i)}) (4.12)

with X0 = X f . The finite disturbance sequence w = {w(0), . . . , w(N − 1)} fol-
lows all of the same definitions as for v but in the space w ∈ RNn. Note that the
subscripted sequence wi is an infinite sequence, following the definitions of 4.2.2.
As discussed, the computation of (4.12) in the generic disturbance case will lead
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to translation of the controllability sets. Moreover, if A is unstable, the transla-
tion will be further exacerbated and can lead to a XN that is not control invariant.
Instead, by using input perturbations as the disturbance sequence and a suita-
ble translation of the input constraint, nesting of the controllability sets over the
prediction horizon is preserved.

Theorem 2 (Nesting of Controllability Sets). Suppose that the assumptions of Proposi-
tion 4 hold for control of x̄+ = Āx+ B̄(u+ v) with available preview sequence v. If the in-
put constraint set U is translated according to Ui(v) = U	{v(i)} for i = 0, . . . , N− 1,
the controllability sets are nested i.e., XN(vN) ⊇ XN−1(vN−1) ⊇ · · · ⊇ X0(v0).

Proof. The input constraint is translated according to U	 {v(i)} at each step al-
ong the prediction horizon. For example, at i = 0, U 	 {v(0)} whereas at the
consecutive prediction steps, U 	 {v(1)} etc. Specialising equation (4.12) such
that w(i) = Bv(i) yields

Xi+1(vi+1) = X∩ A−1(Xi(vi)⊕−B(U− v(N − i))⊕−{Bv(N − i)}). (4.13)

The Minkowski sum of a set with the negation of a singleton set is simply sub-
traction (see proof in Appendix 6.5). Straightforward algebra results in the con-
trollability set recursion:

Xi+1(vi+1) = X∩ A−1(Xi(vi)⊕−BU). (4.14)

Finally, nesting follows from two additional facts: (i) X, U being polyhedral and
containing the origin (ii) X0 = X f (v) ⊂ X which by construction, satisfies Propo-
sition 4 meaning X f (v) is control invariant.

The preceding proof specialises the arguments of [93].

Remark 4. Theorem 2 proves nesting of the controllability sets over the prediction horizon
but does not imply anything about the nesting between time-steps i.e., x ∈ XN(vN) 6=⇒
x+ ∈ XN−1(v+) if the perturbation sequence changes arbitrarily to v+. However, if the
input perturbation sequence v recedes along the MPC horizon according to v+ = ṽ(v),
nesting of the controllability sets between time-steps is guaranteed and nominal recursive
feasibility is recovered, since x ∈ XN(vN) =⇒ x+ ∈ XN−1(vN−1).

In other words, Corollary 1 of [93] is satisfied and moreover, forward propa-
gation of X f (v) via the recursion (4.14) implies each Xi(vi) is control invariant
if the perturbation sequence v develops according to v+ = ṽ(v). It is important
to note that simply receding the known sequence using ṽ(v) may not provide
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sufficient excitation at the next time step, since the regulator acts against the ex-
citation. Additionally, the sequence vN(k) will converge to a constant after N
time-steps. However, the modifications derived thus far provide the necessary ba-
seline to study the more useful and challenging case of changing the perturbation
sequence between time-steps.

4.5 Modification of LMPC

Hitherto, the discussion of the modifications to account for preview information
has been limited to the newly defined regulation problem P1(x; v). This section
specifies how the ancillary excitation problem P∗2

(
x; u0(x)

)
has to be modified to

satisfy the relevant assumptions when utilising a preview perturbation sequence.

4.5.1 Issues with including Preview Information

Since the goal of the excitation problem is to promote informative data for con-
vergent RLS parameter identification, the feasibility of P∗2

(
x; u0(x)

)
is the main

concern of this section. Optimality is of lesser importance since P∗2
(
x; u0(x)

)
is

already an approximation of the true excitation problem (3.11). Fortunately, the
only assumption that affects the excitation optimisation is:

Assumption 7: Exact knowledge of the current time-step perturbation vk

such that wk = Bvk is known.

Clearly, this assumption causes a catch-22 situation with the new definition of
P1(x; v) and original P∗2

(
x; u0(x)

)
. To solve P∗2

(
x(k), u0(x(k))

)
for v(k) the opti-

mal regulation sequence u0(x(k); v(k)) is required, which itself is computed using
P1(x(k); v(k)) and an already known v(k)! A simple remedy to break the algebraic
loop is to constrain the current time-step perturbation to the previous time-step
prediction, thereby also satisfying Assumption 7.

Assumption 11 (Causality constraint). Given the perturbation sequence notation v(k) =
{v0(k), v1(k), . . . , vN−1(k)}, consider the previous time-step sequence v(k − 1). The
assumption requires that the perturbation realization at current time k satisfies vk =

v1(k− 1).

Remark 5. At first glance, Assumption 11 can lead to a situation where the perturbati-
ons settle to a constant, depending on the initialisation of v(k − 1). However, since the
optimisation P∗2

(
x; u0(x)

)
is free to optimise over the remaining degrees of freedom in v,

receding the perturbation sequence according to ṽ(v) will lead to new perturbations vk.
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Assumption 11 is implemented in a modified version of the excitation problem
P2, which limits the degrees of freedom of the decision variable. Moreover, As-
sumption 11 implies that some initialisation sequence v(k− 1) (also denoted v−)
is required to solve the first optimisation problem P1(x(k); v(k)). This initialisa-
tion sequence can be readily designed off-line. A classic example of an excitation
sequence that is known to have good excitation properties is a pseudo-random
binary signal (PRBS) [79]; providing that such an initial excitation sequence is fe-
asible and does not divert trajectories away from reaching the terminal constraint.

With Assumption 7 and the discussion of Remark 5, the definition and role of
P∗2
(
x; u0(x)

)
is subtly changed. Rather than simply optimising the magnitude of

perturbation along the horizon at each time-step, deviations from the tail-end of
the previous time-step perturbation sequence are used for promoting PE conditi-
ons. This interpretation motivates the theoretical analysis on the rate of change
of the excitation sequence and its affect on stability; the result of the analysis is
presented in Section 4.6. However, before any further analysis, a statement of the
modified excitation problem is given.

Summary of modified P2 Excitation Problem

With the prior discussion on how to deal with introducing preview information
into the learning MPC algorithm, this section defines the modified excitation op-
timisation.

Immediately following the solving of P1(x; v) at state x, which generates the
sequence u0(x), the secondary optimisation is

P∗2(x; v−, u0) : H0,∗
N (x; v−, u0) =

max
v
{H∗N(x, v; v−, u) : u0 + v ∈ ŨN(x; v−)}

with a perturbation sequence v = {v0, v1, . . . , vN−1} as the decision variable. The
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cost function is designed using the same linearisation technique of Proposition 1:

H∗N(x, u) = λ(RN −R0) (4.15a)

R0 = R (4.15b)

Ri+1 = Ri + ψ∗i (δψi)
> + δψi(ψ

∗
i )
> (4.15c)

ψi = ψ∗i + δψi (4.15d)

(ψ∗)>i = [x̄>i , (u0
i )
>]> (4.15e)

δψ>i =

[0>, v>i ]
>, if i = 0

[∑i−1
j=0 Āi−1−jB̄v>j , v>i ]

>, if i > 0
(4.15f)

The modified admissible input set ŨN(x; v−) employs the nominal prediction mo-
del as part of the following constraints:

x0 = x (4.16a)

x̄i+1 = Āxi + B̄(u0
i + vi) (4.16b)

x̄i ∈ X (4.16c)

(u0
i + vi) ∈ U (4.16d)

x̄N ∈ X̄ f ⊕
{

x f (v∗f )
}

(4.16e)

||vi|| ≤ E (4.16f)

v0 = v1(k− 1) (4.16g)

||v(k)− ṽ(v(k− 1))|| ≤ ε (4.16h)

with i = 0, . . . , N − 1 and v∗f = v f (ṽ(v−)). Note that the main differences from
the original optimisation problem P2 are:

1. Input constraint translation (4.16d); the constraint is equivalent to the con-
straint vi ∈ U(v) = U 	 {u0

i }, where the controls u0
i are obtained from

solving regulation problem P1(x; v).

2. Terminal constraint modification (4.16e); which is the same terminal con-
straint x̄N ∈ X f (v) as in regulation problem P1(x; v). The additional no-
tation has been added to distinguish between the final term of the decision
variable v and the final term of ṽ(v(k− 1)), which has already been used in
P1(x; v).

3. Causality constraint (4.16g); used to satisfy Assumption 7 and to remove the
algebraic loop between P1(x; v) and P∗2(x; v, u0(x)).
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4. Rate-of-change constraint (4.16h); the change from the tail-end of the per-
turbation sequence at the previous time-step is norm bounded for robustness
reasons described in Section 4.6.

Note that constraints (4.16b)-(4.16h) are enforced on elements of v, whilst the
optimal sequence for regulation is a constant with respect to P∗2(x; v, u0(x)), since
it has already been computed for the current time-step. The control law that is
analogous to (3.13) is therefore defined as the first term of the optimal perturbation
sequence

πN(x; v) = v0
0
(
x; v, u0(x)

)
. (4.17)

The input translation and modified terminal constraints ensure that the tail
perturbation sequence ṽ(v(k− 1)) is always feasible (in the zero model mismatch
scenario). This claim is explained in the following subsection.

Connected Feasibility

Assumption 11 requires careful consideration with respect to its effect on the fea-
sibility of P∗2

(
x; u0(x)

)
. The following proposition is introduced to show that the

tail-end perturbation sequence is feasible under the modified regulation problem
P1(x; v(k)).

Proposition 5 (Connected feasibility with preview). If x ∈ XN(v(k)), then P1(x; v(k))
is feasible and, moreover, P2 (x, u∗(x); v(k)) is feasible for any u∗(x; v(k)) ∈ UN(x; v(k))
if v(k − 1) is admissible at k − 1 and v(k) = ṽ(v(k − 1)) (but not necessarily optimal
for P2).

Proof. The proof follows directly from the nesting of the controllability sets in
Theorem 2 and the definition of sequence vi, since ṽ(vi) = vi−1.

The modified admissible input sequence set v ∈ ŨN(x; v−), depicted in Figure
4.1 shows how deviations from the the tail-end v = ṽ(v−) are feasible. Since the
sequence u∗(x; v)† translates the original feasibility set UN(x; v), the origin of set
ŨN(x; v−) defines an analogous "zero" solution to that of Proposition 2.

†which is u0(x; v) if the excitation problem is only linearised once.
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Figure 4.1: Construction of the feasible region ŨN(x; v(k − 1)) (denoted by the
green line) of the optimisation problem P2 (x; u∗(x), v(k− 1)) (left to right, top to
bottom). The scaled constraint set µU is scaled by an arbitrary positive constant µ
and is a polytopic approximation of (3.12).
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Additionally, the same successive linearisation of the regressor, described in
Section 3.5.2, can be directly applied to the modified P2 problem. In the case of
modelling uncertainty, there may exist better excitation sequences (with respect to
the P2 cost) that differ from the admissible tail-end ṽ(v(k− 1)) for the measured
state x. Moreover, since the modified MPC controller acts in a receding horizon
manner and attempts to reject disturbances (through the input term produced by
P1(x; v)), PE may be lost at some point in the future. In an intuitive sense, the
modified problem P∗2(x; u0(x), v−) attempts to keep the excitation sequence PE,
given some initial off-line excitation design. In the following section, it is shown
how ε from (4.16h) is used as tuning parameter for trading-off between excitation
and robustness.

4.6 Bounding the Rate of Change of the Perturbation Se-
quence

The main result of this section establishes an upper bound on the model error
(the mismatch between (Ā, B̄) and (A, B)) which, if met, guarantees stability of
the closed-loop uncertain and perturbed system, under the preview information
scheme. To achieve this, the analysis employs the exponential stability result of
nominal MPC from Proposition 3 but with terminal conditions that invoke Pro-
position 4 (invariance of X f (v)). The inherent robustness of this newly modified
controller is then exploited in order to handle the state prediction error caused by
modelling uncertainty and a changing preview perturbation sequence.

Proposition 6 (Exponential stability of preview learning MPC). Suppose Assumpti-
ons 2-4 and 7-10 hold. Then, by Proposition 4, the equilibrium point for the terminal dyna-
mics is exponentially stable for the nominal system x̄+ = Āx + B̄(κ̄N(x; v) + πN(x; u)),
with region of attraction XN(v) if v = ṽ(v(k− 1)) according to Definition 9. Moreover,
there exist constants c2 > c1 > 0 such that the value function satisfies:

c1||x||2 ≤ V0
N(x; v) ≤ c2||x||2 (4.18a)

V0
N
(
x̄+; ṽ(v)

)
≤ ζV0

N(x; v) (4.18b)

for all x ∈ XN(v), where ζ , (1− c1/c2).

This result follows exactly the same proof as Proposition 3 providing that the
terminal ingredients have been modified as described in Section 4.3.1, the pertur-
bation sequence is taken as the tail-end of the previously feasible sequence and no
model uncertainty is present. Therefore, the states of the nominal regulated sy-
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stem decay exponentially fast to the equilibrium point of the terminal dynamics.
However, for the true system, model uncertainty yields:

x+ = Ax + Bu

x+ = (Ā + δA)x + (B̄ + δB)u

x+ = Āx + B̄u + δAx + δBu

The successor state x+, under closed-loop with the preview learning control law,
is therefore:

x+ = Āx + B̄ (κ̄N(x; v) + πN(x; u))︸ ︷︷ ︸
input

+ δAx + δB (κ̄N(x; v) + πN(x; u))︸ ︷︷ ︸
disturbance

(4.19)

where δA , A− Ā and δB , B− B̄. To simplify notation during analysis of the
uncertain system, the following definition is made:

Definition 11 (Composite State). The composite state z , (x, v), with the equivalent
disturbance according to w = B � v ∈ W × · · · ×W ×W f = W leads to a new
definition of the parametrised regions of feasibility:

ZN , {(x, v) : x ∈ XN(v), B� v ∈ W}. (4.20)

Under the properties of XN(v) and W discussed in Sections 4.2.2 and 4.3, the set ZN

inherits convexity, boundedness, closedness and containment of the origin in its interior.

Assumption 12 (Bounded rate-of-change of excitation). The perturbation sequence
evolves as v+ = ṽ(v) + ∆v, where ∆v = v+ − ṽ(v) ∈ ∆V ⊆ V such that v+ ∈ BV ⊆
W .

To deal with the uncertainty, the continuity property of the value function [106]
is recalled:

Lemma 4 (Lipschitz continuity of the value function). The value function V0
N(·)

satisfies ||V0
N(z1)−V0

N(z2)|| ≤ L||z1 − z2|| over ZN , with Lipschitz constant L.

Proof. Similarly to the properties of the value function with no preview informa-
tion, this Lemma holds for the value function resulting from regulation problem
(4.3). In the preview information formulation, Lipschitz continuity is defined with
respect to the value function of the composite state z. The proof of Lemma 4 fol-
lows exactly the same argument of Theorem C.29 in Appendix C of [106] with the
composite state z.
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Lipschitz continuity holds over bounded sets and affinity of the dynamics in
this constrained control setting. Moreover, since the value function is the optimal
cost of problem (4.3), the following analysis requires explicit characterisation of
the value function. The guarantees based on Lipschitz continuity will no longer
hold when the problem is extended to include non-linear dynamics. However, in
this linear setting, an insightful robustness margin is developed in the following
theorem.

Theorem 3 (Stability in terms of perturbation rate of change). Let Assumptions 2-4,
7-10 and 12 hold. Also, let z0 = (x0, v(0)) ∈ Ωz

c , {z : V0
N(z) ≤ c} ⊂ ZN for some

positive constants c > b. If there exists a ρ ∈ (ζ, 1), E(µ) ≥ 0 (perturbation magnitude
bound) and ε ≥ 0 (rate of change bound) such that,

ε ≤ (ρ− ζ)b
L||B̃||

− (||δAx + δBκN(x; v)||+ ||δB||E(µ))
||B̃||

(4.21)

for all z ∈ Ωz
c , then (i) the set Ωz

b is positively invariant for the system (4.19) under the
bounded rate-of-change of excitation; where B̃ = diag[B, . . . , B] ∈ RNn×Nm. Moreover,
(ii) the set Ωz

c is also positively invariant for (4.19). Hence, starting from (x0, v(0)) ∈ Ωz
c ,

the states of the system enter the set Ωz
b in finite time and remain therein.

Proof. The proof utilises Lipschitz continuity of the true system’s value function
along with with the triangle inequality, is used to study the change between the
value function under preview uncertainty and closed-loop state discrepancy. (i)
Firstly, consider z = (x, v) ∈ Ωz

b , {z : V0
N(z) ≤ b} such that

V0
N(x+; v+) ≤ V0

N(x+; ṽ(v)) + L||B̃||.||v+ − ṽ(v)|| (4.22)

is formed from invoking Lipschitz continuity of the value function when consi-
dering rate-limited deviation of the perturbation sequence v+ from the tail-end sequence
ṽ(v). Additionally, in the nominal case, the descent property of the value function
V0

N(x̄+; ṽ) with preview information (Proposition 6) is

V0
N(x̄+; ṽ(v)) ≤ ζV0

N(x; v). (4.23)

Invoking Lipschitz continuity for the value function considering uncertainty in the
dynamics caused by modelling error and excitation yields

V0
N(x+; ṽ(v)) ≤ V0

N(x̄+; ṽ(v)) + L||w(x)||, (4.24)

where w(x) = δAx + δB (κ̄N(x; v) + πN(x; u)) is the disturbance due to the model
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mismatch. Substituting (4.23) into (4.24) yields:

V0
N(x+; ṽ(v)) ≤ ζV0

N(x; v) + L||w(x)|| (4.25)

Suppose there exists a constant ρ ∈ (ζ, 1] that considers slower decay rates that
still maintain the Lyapunov function property of the value function. Since z =

(x, v) ∈ Ωz
b , {z : V0

N(z) ≤ b}, substituting the bound (4.25) in to (4.22) yields:

V0
N(x+; v+) ≤ ζb + L

(
||w(x)||+ ||B̃||. ||v+ − ṽ(v)||︸ ︷︷ ︸

ε

)
≤ ρb (4.26)

Finally, the bound on the rate of change of the perturbation sequence (||v+ −
ṽ(v)|| ≤ ε) is obtained when ε in (4.26) is made the subject.

ε ≤ (ρ− ζ)b− L (||w(x)||+ ||δB||E(µ))
L||B̃||

.

Therefore, if inequality (4.6) is satisfied, the trajectories remain in the smallest
set zk+1 ∈ Ωz

b. (ii) The claim for finite time convergence to Ωz
b; suppose Ωz

c is
the largest possible set within the parametrised region of feasibility ZN , and let
(x0, v(0)) ∈ Ωz

c \Ωz
b. If there exists a constant ρ ∈ (ζ, 1], then

V0
N
(

x+; v+
)
≤ ζV0

N (x0; v(0)) + (ρ− ζ)V0
N (x0; v(0))

≤ ρV0
N (x0; v(0)) .

Thus, V0
N (xk; v(k)) ≤ ρkc for x0 ∈ Ωz

c \Ωz
b. Hence V0

N (xk′ ; v(k′)) ≤ b after some
finite k′, implying (xk′ ; v(k′)) ∈ Ωz

b and the perturbation rate-of-change is limited
according to Assumption 4.6.

Corollary 2. If ||δB|| = 0, then the stability guarantee of Theorem 3 holds provided that:

||δA|| ≤ 1√
b/c1

(
(ρ− ζ)b

L
− ||B̃||ε

)
(4.27)

Proof. The proof follows the similar reasoning as the proof for Corollary 1. With
no uncertainty in the input matrix B̄, then the inequality (4.21) simplifies to:

ε ≤ (ρ− ζ)b− L||δAx||
L||B̃||

. (4.28)



74 4.6. Bounding the Rate of Change of the Perturbation Sequence

Using the triangle inequality for a second time yields

ε ≤ (ρ− ζ)b− L||δA||.||x||
L||B̃||

. (4.29)

Since the composite state converges to (xk′ ; v(k′)) ∈ Ωz
b by part (ii) of Theorem 3,

(4.18a) bounds the state norm, providing the perturbation is rate-limited. Then,
algebraic manipulation to make ||δA|| the subject yields the inequality (4.27).

Remark 6. Under lack of input matrix uncertainty (||δB|| = 0), the stability bound
(4.27) is independent of the perturbation magnitude bound E. The consequence is that
the control scheme employing the assumptions of Theorem 3 is inherently robust to size of
perturbations, providing that perturbations are feasible.

The permissible time-wise difference ε is therefore used as a tuning parameter
and has to be chosen to satisfy (4.27) to guarantee robust stability for an assumed
degree of uncertainty in the dynamics matrix A. The role of ε in the performance
of the RLS algorithm is explored numerically in the following Section 4.8.
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4.7 The PL-MPC Algorithm

Algorithm 4.1 details the procedure for implementing preview learning MPC. A
simplified flow chart in Figure 4.3 has been added to outline the core steps of the
algorithm. The flowchart highlights the difference between standard LMPC. The
PL-MPC algorithm builds upon the results of Chapter 3 with the modifications
outlined in sections 4.3-4.5, including the method to re-linearise problem P2.

Algorithm 4.1 Preview Learning MPC with RLS

Initialization
1: At k = 0, set x = x(0), solve P1(x; v) for u0(x; v) and initialize R−, θ̂−, v− for

online steps
Online

2: Measure x, compute R from (3.9) and recede to v = ṽ(v−)
3: Solve P1(x; v) for u0(x; v)
4: Solve P∗2,j=0

(
x; u0(x; v), v−

)
for v0

j=0

(
x; u0(x)

)
5: while remaining time in sampling instant do
6: Update linearisation ψ∗i,j+1 = ψ∗i,j + δψi,j

7: Solve P∗2,j+1

(
x; u0(x; v), v−

)
for v0

j+1

(
x, u0(x)

)
8: Update iteration index to j + 1
9: end while

10: Apply sum of first controls from each sequence to the system

u = κ̄N(x) + πN(x) = u0
0(x; v) + v0

0,j
(
x; u0(x; v)

)
11: Wait one time-step, then go to step 2

True Plant
+

Learning
Module (RLS)

Exciter

Regulator (MPC)

+

PL-MPC

Figure 4.2: Block-diagram depicting the optimisations within PL-MPC control.
The excitation module now informs the regulator of the perturbation sequence.
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Initialize pLMPC and RLS 
parameters

Solve preview LQ-MPC: 

Update RLS parameters,  
measure state and update 

perturbation sequence: 

Solve LQ-MPC with 
preview: 

for

Solve Excitation Problem: 

Apply first term of each 
sequence: 

Store tail-end of 
perturbations: 

Advance to next step: 

for

,

Figure 4.3: Flow chart describing the steps of a simplified PL-MPC algorithm (no
iteration of the excitation optimisation).
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4.7.1 Summary of Key Algorithmic Steps

Following the order of the flowchart in Figure 4.2, the key steps in algorithm
include:

1. Initialisation: For a measured state x, the algorithm first solves the regula-
tion problem P1(x; v) using an off-line computed perturbation sequence v.
This control law is applied to advance the consecutive time-step.

2. Measurement: The tail-end of the perturbation sequence is receded to v =

ṽ(v(k − 1)). The state x is measured. The RLS equations are updated; in-
cluding definitions of the regressor, parameter estimate and the information
matrix.

3. Regulation: Using the measured state x, the regulation problem P1(x; v) is
solved with the pair (x; v), yielding the control law κ̄N(x; v).

4. Excitation: Using the measured state x, the excitation problem P2(x; u) is
solved with the pair (x; u), yielding the control law πN(x; u). If there is
remaining time left before the next sampling instant, then the excitation pro-
blem is re-linearised around an updated control sequence (as described in
Section 3.5.2) and solved again.

5. Control Assembly: The first elements of the regulation and excitation opti-
misation solutions are summed to yield the PL-MPC control law u = u0

0 + v0
0.

The notation in Figure 4.3 which uses ṽ0 emphasises the fact that the first
term of the perturbation sequence is the perturbation that was computed at
the previous time-step; v0

0 and ṽ0 are numerically the same variable.

6. Update: The PL-MPC control law u = u0
0 + v0

0 is applied to the true system
dynamics x+ = Ax + Bu to advance the state to the consecutive time-step.
The perturbation sequence is stored such that v = ṽ(v(k − 1)). The algo-
rithm now returns to measurement step 2.

Note that steps 2-5 always occur at the same time-step; the time-index only ad-
vances between steps 1 to 2 and 6 to 2.

4.8 Numerical Study

The aim of this section is to numerically demonstrate the advantage of employing
preview information of the input perturbation sequence, within a modified LQ-
MPC setup. The practical implication of this modification–the enlargement of the
closed-loop region of attraction– is a consequence of a corollary of Theorem 3:
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Corollary 3 (Enlarged Region of Attraction).

∞⋃
k=0

Ωb(v(k)) with ||v(k)− ṽ(v(k− 1))|| ≤ ε

where Ωb(v(k)) = {x : (x, v(k)) ∈ Ωz
b} ⊂ XN(v(k)). Notice that for nominal

MPC without preview information, the largest sub-level set Ωb(v(0)) is the RoA
when v(0) = {0, . . . , 0}. On the other hand, for the PL-MPC case, the union of
all sub-level sets with every disturbance realisation produces the largest effective
RoA [13]. This is a non-standard method of defining a region of attraction of
the closed-loop uncertain system. The enlarged region arises from the translation
of the nominal terminal ingredients according to the realisation of the preview
disturbance. The individual sets for each disturbance realisation potentially yield
smaller instantaneous regions of attraction Ωb(v(k)) due to the required scaling;
however, each instantaneous region may cover new portions of the state-space as
a consequence of translating to new equilibria. Therefore, the union describes
the effective robust region of attraction, given that the disturbance sequences are
realized exactly as predicted. In the following example it is numerically shown
that

⋃∞
k=0 Ωb(v(k)) is made larger than the nominal RoA.

4.8.1 Simulating Worst-case Rates of Change

Since it is impractical to pre-compute the possible perturbation sequences re-
sulting from P2 at each state x ∈ XN(v) (to evaluate the value function V0

N(x; v)),
the sequences which deviate from the null perturbation, whilst satisfying the rate
of change bound (4.21), are tested. Hence, the enlarged RoA is numerically eva-
luated at the vertices of a polytope that defines perturbation sequences with the
largest rates of change.

v∗(k) = {0, v∗1 , . . . , v∗N−1}

with each v∗i = ±E1 for i = 1, . . . , N − 1 and 1 ∈ Rm. Therefore, a total of
2N−1 permutations of the sequence are tested over a discrete set of states within
each XN(v(k)). This implicitly assumes that v(k− 1) = {0, . . . , 0} was previously
implemented perturbation sequence. Without limitation, these experimental con-
ditions exercise the worst case scenario in terms of the feasibility of the problem.
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4.8.2 Illustrative Example Parameters

The robust regions of attraction of the closed-loop system (4.19) under PL-MPC
are constructed for the following system, with marginally stable dynamics:

x+ =

[
1 1
0 1

]
︸ ︷︷ ︸

A=Ā

x +

[
0

0.5

]
︸ ︷︷ ︸

B=B̄

u.

In this example, the prediction model is assumed to match the true dynamics;
the point of this study is only to show and verify that the resultant robust region
of attraction is enlarged. The sets X f (v) are designed to satisfy the assumptions
of Proposition 4 with the state and input constraints

X = {x ∈ R2 : |[x]h| ≤ 10, h = 1, 2}

U = {u ∈ R : |u| ≤ 3}

and the computed P from the linearised LQ-optimal terminal control law K. Ta-
ble 4.1 shows the parameters chosen to comply with the PL-MPC description in
this chapter.

Table 4.1: PL-MPC Controller parameters

Parameter Value Parameter Value

R 1 E 0.3
Q 5I2×2 N 3
P

[ 8.9139 −3.1250
−3.1250 7.5615

]
ε 1.56

b 800 αx, βu 0.5
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4.8.3 Regions of Attraction

Figure 4.4: The RoA for the nominal LMPC and PL-MPC algorithms with nominal
input constraint U.

Figure 4.5: The RoA for the nominal LMPC and PL-MPC algorithms with input
constraint translation Ui(v).
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4.8.4 Discussion

Two cases in which satisfaction of Theorem 2 are explored; firstly, when the in-
put constraint is simply U; secondly, when the input constraint is modified to
Ui(v). The simulation results show that the RoA is enlarged by 36% and 21%
from Ωb(v(0)), respectively. For both cases, the value function was evaluated over
an evenly sampled grid contained within feasible regions X f (v) and Ui(v), with
approximately 8700 points.

State, input and parameter trajectories under PL-MPC converge as expected
and have not been shown for brevity. For meaningful convergence plots, the reader
is referred to the comparison in following section or the final numerical example
where PL-MPC is applied to a linear GT model in Chapter 5.

The enlarged RoAs incorporate portions of the state constraints that would ot-
herwise not be contained within the robust RoAs. The discussion of the robustness
bound (4.27) follows analogously from the discussion from Section 3.7.2, but now
in terms of the rate of change of the perturbation sequence between time-steps.
The same numerical problems for evaluating the bound are inherited. However,
the new bound (4.27) is now independent of the excitation magnitude, provided that
the input constraint is modified to satisfy the new definition Ui(v); if the initiali-
sed excitation sequence v(k− 1) is chosen such that the problem P1 is feasible, the
controller’s inherent robustness property only has to deal with deviations from
the design perturbation sequence and modelling uncertainty. On the other hand,
the standard LMPC formulation’s inherent robustness has to deal with the enti-
rety of the excitation sequence and modelling uncertainty. The modifications for
preview information absorb a deterministic portion of the uncertainty such that
more of the inherent robustness margin is reserved for modelling uncertainty and
exogenous noise.

4.8.5 Comparison with LMPC

Figures 4.6 and 4.7 illuminate some of the differences between the behaviour of
LMPC and PL-MPC; using the same numerical example as Chapter 3. These figu-
res depict system trajectories under a PL-MPC control law that has been designed
using the same parameters as in Table 3.1. The PL-MPC specific parameters αx, αu

and ε are all selected as 0.5. A side-by-side comparison is complicated by the fact
that standard LMPC does not allow the use of an a-priori designed excitation se-
quence. Hence, the simulation is initiated assuming a null perturbation sequence
(to the disadvantage of PL-MPC).

Under a common choice of tuning parameters, the PL-MPC excites the system
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more aggressively than LMPC. The resultant frequency-rich trajectories enable the
RLS estimator to converge to the true dynamics roughly two-times faster than in
the case of standard LMPC. Despite the small perturbations of standard LMPC,
the true dynamics are identified since the PE condition 3.10 can be satisfied by
any arbitrarily small constants. In reality, such small excitations may not even be
implementable due to resolution of real actuators. Moreover, such small excitati-
ons will be obscured by real-sensor noise and disturbances. On the other hand,
PL-MPC selects larger excitations despite the same magnitude constraints. It is
speculated that controller’s ability to predict the disturbing nature of the inter-
nally generated perturbation enables fuller use of the region of feasibility before
reaching constraints. It was observed that the choice of forgetting factor γ had the
greatest influence on the convergence time.
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Figure 4.6: State and input trajectories under a PL-MPC control law, applied to
the illustrative example of Section 3.9 with the same tuning parameters.
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Figure 4.7: Estimated A-matrix parameters under PL-MPC for the illustrative ex-
ample of Section 3.9. Dashed red lines denote the true parameters.

4.9 Summary and Conclusion

This chapter provides an extension of the LMPC controller, making it inherently
robust to the perturbations that are required to excite the system for convergent
closed-loop identification. Robust formulations of MPC have been avoided to mi-
tigate unnecessary conservatism typically seen in robust control design. Provided
that the modelling uncertainty is bounded and the rate change of the perturbation
sequence is chosen to match this uncertainty through (4.27), robust performance
of the closed-loop system is guaranteed under input and state constraints. Whilst
the rate-of-change bound is conservative, the conservatism only affects the per-
formance of the excitation optimisation - once parameter estimates converge, this
excitation problem can be turned off without affecting the nominal regulating LQ-
MPC controller.

It is emphasised that the additional computational complexity added is trivial.
For completeness, these additional online complexities include:

• Storage of the perturbation sequence between time-steps.
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• Online translations of the sets X f and U to X f (v) and Ui(v).

• Additional equality constraint due to Assumption 11 on excitation problem
P2.

Only the tuning of this new controller is complicated by additional tightening
factors βx,βu, excitation bound E and rate of change bound ε. However, these
parameters are intuitive and simple to understand; the rationale of this propo-
sed extension is well suited to the simplicity required in certifying safety-critical
controllers. For a real engineering system, a-priori knowledge of good excitation
signals can be utilised to design an offline excitation sequence for initialising the
PL-MPC algorithm.

Given that the controller has been robustified with respect to its initial no-
minal modelling, the final logical step is to consider the conditions under which
stable and feasible adaptation can be made to a newly identified model. The final
technical chapter will demonstrate that a gas turbine model can be used within
this inherently robust adaptive model predictive control approach.



Chapter 5

Adaptation in MPC under Gas
Turbine Degradation

5.1 Introduction

The final contribution of this thesis considers the adaptation mechanism of the
proposed adaptive MPC algorithm. The rationale of this mechanism is to switch
to a LQ-MPC controller which utilises a refined prediction model and its associ-
ated terminal ingredients. Hence, after an update to a more accurate model, a
larger proportion of the inherent robustness can be dedicated to uncertainty that
cannot be modelled in practise; avoiding the conservatism of robust approaches.
Whilst exhaustive simulations can show that serendipitously switching between
controllers with small discrepancies in their prediction models may lead to stable
and acceptable performance, there are no control-theoretic guarantees. Moreover,
simulations for all possible pairs of nominal/identified prediction models under
an assumed norm bounded uncertainty may be impractical.

Therefore, a survey of contemporary methods in MPC for conducting safe-
updates, with an online identified prediction model, is conducted. The identified
control-theoretic challenges include:

• Lyapunov stability of the closed-loop dynamics under switching.

• Feasibility of state and input trajectories between controller transitions.

Following the survey, mild technical assumptions are proposed to ensure that
the MPC scheme can safely adapt the MPC controller’s stabilising ingredients.
Under these assumptions, the inherently robust adaptive control scheme is de-
monstrated in a simulation study of a hobby-scale gas turbine.

85
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5.2 The Switched Control Problem

In this section, the problem of controlling a degrading plant is posed in a swit-
ched systems framework. This framework can be used to capture changes in the
true system’s dynamics. The control designer’s aim is to synthesize a monitoring
system that can correctly identify what the active mode of the system may be and
therefore implement a control law that is most appropriate given the available
knowledge.

Consider the true dynamics (2.1), where the exogenous vector w(k) is now
replaced with a switching signal σ(k). Let these true dynamics be approximated
by a linear system of the form:

x+ , Aσ(k)x + Bσ(k)u (5.1)

Definition 12 (Switched System). The signal σ : Z[0,∞) → p ∈ P , where P is a
compact set denoting the possible dynamics, and (Ap, Bp) defines the selected pair of plant
matrices. Moreover, the set P contains both the nominal (Ā, B̄) and true (A, B) dynamics,
with unique indexes p̄ and pt respectively.

Definition 12 is used to represent the envelope of plant dynamics that can
be safely controlled. The problem considered is one of autonomous switching;
specifically, the sub-category of time-dependent switching with an unknown swit-
ching signal [76]. The objective is to update the LQ-MPC feedback law to a con-
trol design u = κN,p(x) that corresponds to the active plant matrices. Howe-
ver, the only design that is available a-priori is the nominal control law design
u = κN,p̄(x) = κ̄N(x).

Assumption 13. The LQ-MPC regulator κ̄N(x), designed for the nominal model (3.2),
asymptotically stabilises all plant dynamics (Ap, Bp).

Assumption 13 is motivated by the the need to always have a controller that
stabilises the currently active plant matrices. Without this assumption, it would
be difficult to certify the control scheme on safety-critical aerospace system. The
rationale for updating to u = κN,p(x) is therefore to retain performance and ro-
bustness margins of nominal LQ-MPC designs. The closed-loop system under the
this rationale is

x+ = Aσ(k)x + Bσ(k)κN,p(x) (5.2)

where the aim is to match the correctly designed control law u = κN,σ(k)(x) to the
currently active plant dynamics induced by σ(k). Switched system stability and
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feasibility issues naturally arise from this formulation. The following review of
literature motivates further assumptions on the rate of the switching signal, such
that the control laws proposed in the previous chapters can be readily applied in
a quasi-time invariant setting.

5.2.1 Switching between Stable Sub-systems

In classical switched systems theory, where unconstrained control problems are
considered, it is well-known that arbitrary switching between different globally
stable dynamics can lead to overall instability of the switched system [76]. Con-
versely, arbitrary switching between different globally unstable dynamics can lead
to overall stability of the switched system. This discussion focuses on the former
and more relevant scenario, where dwell-time τs is employed to force a system
to remain within a single stable operating mode, for a prescribed length of time
[140].

Definition 13 (Stability Dwell-Time). An explicit computation of dwell-time is possible
by comparing the Lyapunov functions of each mode before and after the switch such that

τs ≥ ceil
[
− ln µ

ln(1− ζ)

]
, (5.3)

where the constant µ > 1 denotes the allowable increase and 0 < ζ < 1 denotes entered
mode’s Lyapunov function’s decay rate, respectively. The function ceil(n), returns the
nearest integer that is greater than or equal to n due to the discrete time context.

In essence, stability dwell-time uses the decay rates of the value functions to
dominate the sudden increases of the value between mode switches. Definition
13 holds in the discrete time domain framework. However, average dwell time is
a more flexible approach since it permits more often switches when required, at
the expense of prolonged single mode operation in the future [76]. Unfortunately,
such considerations only apply to continuous time MPC systems [99].

Implication of dwell-time on MPC

There is a natural limitation for the choice of µ in the context of stability dwell-
time for constrained MPC. The regions of attraction for the nominal and identified
prediction model controllers are X̄N and X̂N ; both are compact sets under their
respective stabilising MPC control laws (2.8). Hence, the maximum sub-level sets
of the value functions V̄0

N(x) for the nominal and V̂0
N(x) for the identified mode,

are upper bounded, thereby bounding µ. Moreover, despite a stability dwell-
time being satisfied, the trajectories of a particular mode may not necessarily be
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feasible for other modes [77], motivating use of a feasibility dwell-time τ f . Prior-
art tackling both feasibility and stability dwell-time in adaptive MPC is reviewed
in the following section.

5.3 Switching for Adaptation in MPC

Switching between stabilizing MPC controllers in a DT setting was first considered
in [29]. These early works considered switching systems with prescribed switching
signals; including time uncertainty around each switching instant [96].

The predecessor paper of the adaptive MPC scheme in [37] describes how stabi-
lity of the terminal dynamics under a changing prediction model can be preserved,
without burdensome online recomputation of the terminal cost and control law
[36]. This approach requires a-priori known modes that are parametrised by con-
vex combinations of the A-matrix polytopic uncertainty set’s vertices. Satisfaction
of an appropriate LMI condition enforces cost decrease between two consecutive
modes. A precomputed common robust PI set for all modes is used, introducing
conservatism. Ultimately, these additional stability and feasibility technicalities
depend on the true system being contained within the polytopic uncertainty set.

The LQ-MPC dual-mode paradigm for a DT switched linear system was first
considered in [22]. In this paper, nominal stability and feasibility is guaranteed
under modifications of the terminal constraints, if the switching signal is known
exactly along the prediction horizon [22]. Since the dynamics of each mode are
known a-priori, the off-line computed terminal ingredients that satisfy Assump-
tion 5 (individually for each mode) are used to compute mode-wise common con-
trol invariant common control invariant (CCI) sets. Given an admissible switching
signal, the terminal constraints are enlarged by using the dwell-time in a particu-
lar mode, to steer the system into a mode-wise PI set. The dwell-time effectively
extends the MPC’s control horizon, without adding additional decision variables
to the online optimisation. The main assumption of this approach is that the
modified terminal constraint sets of each mode must also be nested within the
τ-step controllability set of every other mode (computed using equation (4.2)),
which reduces the tolerable degree of collective heterogeneity in all of the mo-
des. Whilst the computation of these sets can be performed offline, these sets may
become restrictive; the numerical example only considers two modes. However,
this approach is still less conservative than naively computing one single common
invariant set for all modes. Ultimately, there is an increased memory requirement
since the relaxation of the terminal constraints for each mode uses τ − 1 number
of relaxed terminal constraints. Moreover, the explicit characterisation of a mini-
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mum dwell time for the system, with respect to the value function of each mode,
is not explicitly stated. An extension of this work removed the requirement of a
known switching signal over the horizon, but still requires a-priori knowledge of
the minimum stability dwell-time for each mode and a directed graph of admissi-
ble mode transitions [32].

In [61], switching between a-priori known modes is considered in a robust
tube MPC formulation [106], for an uncertain switched linear system with addi-
tive disturbances. The exponential decay properties of the value function are utili-
sed to explicitly characterize conservative minimum mode-dependent dwell-times
(MDTs) for stable and feasible mode transitions, despite the assumed heteroge-
neity of each mode. The proposed approach utilizes invariant multi-sets [11] in
a transition controller to ensure feasibility of the admissible mode switches. Ho-
wever, to reduce the computational complexity of computing the bounds of the
MDT, conservatism is introduced through using a 1-norm ball to conservatively
bound the 2-norm of state trajectories. The exponential decay property characte-
rizes the instances in which the state’s trajectory enters the region of feasibility of
an adjacent mode. This is the key difference from a similar approach proposed
in [141], where the controllability sets are used to compute the MDTs. In general,
computing the controllability sets for high dimensional systems can become com-
putationally intractable, whereas the bounded 2-norm trajectories using a 1-norm
proxy is relatively straightforward. Additionally, in [61], the use of multi-sets le-
ads to larger approximations of the minimal robust positive invariant sets, leading
to smaller regions of attraction than in a nominal MPC control implementation
(i.e., the formulation of Section 2.1.4). Due to the relative simplicity of [61] com-
pared with [141], the characterisation of [61] is computationally more efficient, yet
still difficult to be performed online.

Tackling feasibility issues has been extensively studied in both continuous and
discrete time settings [35]. Feasible switching is shown in [100] using a min-max
MPC approach, where under a known dwell-time restriction on the switching sig-
nal, all admissible permutations of the switching signal are considered over the
MPC horizon. In this approach, only the switching signal at the current time-step
is required. Feasibility between switches was enforced by implementing speciali-
sed input constraints, named consistency constraints. Whilst recursive feasibility
is guaranteed, the paper shows that the min-max approach is more conservative
than a nominal MPC implementation on a nominally feasible example.

A totally different perspective on safe transitioning between controllers has
been studied in [127]. In this work, an a-priori safe set and safe controller are
known, whilst a learning control law is used to probe a disturbed linear polyto-
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pic difference inclusion. A tube-like MPC is employed to ensure that the learning
control law, which is unaware of system constraints, evolves under feasible trajec-
tories. This “safe” control law minimises the norm between a back-up control law
and the probing control signal such that the the minimum objective is obtained
when applying the probing control policy. If the predicted trajectories under the
probing control law violate constraints, the back-up control law selects a control
that satisfies the constraints whilst deviating as little as possible from the pro-
bing control signal. Under conservative modifications of the terminal safe-set, the
scheme is shown to be recursively feasible. The conservatism is alleviated online
by identifying and growing the initial safe-set with states that are verified to be
feasible under the learning control law; resulting in a so-called model predictive
safety certification scheme.

To the best of the author’s knowledge, no work has been conducted on utilising
the LQ-MPC’s cost function’s continuity to handle infrequent mode switching for
small heterogeneity.

5.4 Performance Monitoring

The main idea of the inherently robust adaptive controller is to use an online iden-
tified prediction model, to avoid the conservatism and complexity of available al-
gorithms in adaptive MPC literature. Whilst theoretical guarantees of convergence
of the proposed RLS algorithm have been well-established, the measurements used
to perform the identification will undoubtedly become corrupted by real world
phenomena. Sophisticated feature extraction and signal processing may alleviate
some degree of corruption from noise, but the glaring question remains: how can
the engineer be certain that updating to an online obtained prediction model will
lead to performance enhancement?

5.4.1 Explicit Performance Monitoring

An explicit answer can be found by exercising the model in a safe manner. Before
such an exercise is proposed, it is useful to survey the juvenile field of control-
ler performance monitoring. Much of the technical solutions to controller per-
formance monitoring remain occluded by application specific and in-house de-
veloped solutions [138]. The survey [138] presents the most recent discussion
of performance monitoring solutions in the context of PI, LQG and MPC. Clas-
sical performance metrics, including minimum variance based metrics, become
complicated under multivariable and constrained systems. For MPC, there is no
standardised method for performance supervision.
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In [138] a key performance indicator (KPI) is derived using the linear quadratic
Gaussian (LQG) controller’s value function. The unconstrained setup of this pro-
blem enables the analytical computation of the KPI for both model mismatch and
modelled disturbance scenarios. However, for an equivalent MPC controller using
the same model of the dynamics and the disturbance, the KPI fails to converge to
the analytical expected KPI; this is accredited to the constraints becoming active.
Therefore, despite having an accurate model, the KPI may falsely infer inferior
performance. Since the KPI converges to a constant value, it is suggested that
Monte-Carlo simulations can be used to compute the constrained KPI equivalent,
as a replacement to the analytical KPI.

Explicit Performance Assessment Metrics in MPC

In summary, two metrics for performance monitoring have been identified:

• Time-averaged value function Ṽ0
N

– Requires solution of the online optimisation that uses the identified mo-
del as the prediction model.

• Prediction model error ||x> − (ψ−)> θ̂||

5.5 Prediction Model Adaptation

Theoretical considerations for safe controller updates, in the presence of uncer-
tainty, require careful consideration for preserving stability and feasibility of no-
minal LQ-MPC controllers. This section states the assumptions required to permit
adaptation of the PL-MPC to a more accurate prediction model.

Once the estimates (Â, B̂) converge to the true parameters (A, B), the solution
of the excitation problem P2 is no longer required; the exciter in Figure 4.2 is
effectively turned off. Clearly, with the knowledge of an improved prediction
model, LQ-MPC can be updated for performance gains. However, the non-trivial
question of when to safely update the LQ-MPC emerges. This problem is modelled
by considering the switch between two closed-loop systems:

1. Nominal Controller, True Dynamics: x+ = Ax + Bκ̄(x), with the nominal
LQ-MPC controller u = κ̄N(x).

2. Adapted Controller, True Dynamics: x+ = Ax + Bκ(x), with the updated
LQ-MPC controller u = κN(x).
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Notice that only the regulator part of the adaptive PL-MPC is considered. Mo-
reover, the regulator’s dependency on v is removed, since the excitations have
been turned off. The problem is now tantamount to that of a classical switched
system [76], albeit with constraints and an unknown switching signal. The identi-
fied technical problems of constrained switching in MPC, discussed in Section 5.3,
are recalled:

• Lyapunov stability of the closed-loop dynamics under switching.

• Feasibility of state and input trajectories between controller transitions.

Inherent robustness of LQ-MPC, without additional assumptions, does not pro-
vide explicit guarantees for dealing with these technical issues. Several assump-
tions on the nature of the model uncertainty are proposed to ensure safe updates
in the LQ-MPC setting. Hence, the proposed adaptive PL-MPC controller avoids
the use of robust/stochastic formulations to preserve the simplicity of a nominal
LQ-MPC design.

5.5.1 Stability Considerations

In the LTI setting, only a single switch is required to adapt to the LQ-MPC for
the true dynamics (3.1). Moreover, after convergence of the estimates to the true
model, finite time is required to re-compute stabilising ingredients of Table 5.1.

Table 5.1: LQ-MPC Stabilising Ingredients

Ingredient

Terminal control law u f = Kx
Terminal invariant set X f
Terminal weighting matrix P

Therefore, whilst the stability ingredients are being computed, dwell-time re-
quirements can be potentially satisfied under normal operation; the time required
to compute the LQR control law K, the PI set X f and weighting matrix P for the
system (3.1), is likely to be longer than the dwell-time for stability. In the case
that there is excess computational power available, the following assumption is
introduced.

Assumption 14. Let the time required to compute the LQR control law K, the PI set X f

and weighting matrix P for the system (3.1) be τc. If τc is less than the minimum dwell-
time τs for stability when switching between x+ = Ax + Bκ̄N(x) to x+ = Ax + BκN(x),
the system is held in mode x+ = Ax + Bκ̄N(x) for at least τs − τc additional steps.
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By performing the update only after the stabilising ingredients are computed,
dwell-time for stability is satisfied. Whilst re-computing these ingredients online is
non-ideal from a computational perspective, this only has to be performed when
a new model is identified. For slowly-varying systems, this may only have to
be done a few times. The work of [37] avoids the computational burden of re-
computing these stability ingredients for vertices of a model uncertainty polytope,
but at the cost of additional conservatism. In this work, it is deemed reasonable to
re-compute the stabilising ingredients, since it is only done once for the identified
LTI true dynamics.

5.5.2 Feasibility Considerations

The more difficult problem is that of guaranteeing feasibility, since the state trajec-
tories under the nominal control law u = κ̄N(x) may not lie within the region of
feasibility XN for the system x+ = Ax + BκN(x). By utilising the inherent robust
properties of LQ-MPC, the following proposition is explored to derive conditions
for a feasible update.

Proposition 7 (Feasible Update). Suppose Assumptions 2-5 hold such that the nomi-
nal closed-loop system x̄+ = Āx + B̄κ̄N(x) under LQ-MPC control law u = κ̄N(x) is
exponentially stable, in-line with Proposition 3. Consider Corollary 1, but with E = 0 im-
plying excitations have been turned off, such that the system x+ = Ax + Bκ̄(x) converges
to a smaller robust positive invariant set Ω̄b′ , where b′ < b. Additionally, let XN be the
region of feasibility of P1(x) for the true system (3.1) under the control law u = κN(x).

If x ∈ Ω̄b′ ⊂ XN then the switch from x+ = Ax + Bκ̄(x) to x+ = Ax + Bκ(x) is
feasible.

Unfortunately, Proposition 7 is not helpful for a-priori design, since XN can
only be obtained after learning the true dynamics. Moreover, the size of the set
Ω̄b′ depends on the magnitude and structure of the uncertainty, and has to be
obtained from simulating the closed-loop. However, the implicit assumptions on
the model uncertainty (Assumption 13), allows the set Ω̄b′ to be be collapsed to
the origin.

Proposition 8. If Assumption 13 holds, the smallest robust positive invariant for the
system x+ = Ax + Bκ̄N(x) is Ω̄b′ = {0}.

The final assumption is introduced to allow the existence of control laws with
the same tuning weightings as the nominally designed LQ-MPC.

Assumption 15. The LQ-MPC regulator κN(x) exists for the same weighting matrices
Q, R and an updated P that satisfies Assumption 5 with the true system (3.1).
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Since the the nominal control law exponentially stabilizes (5.5) to the smallest
robust positive invariant set Ω̄b′ = {0} and XN contains the origin by construction,
the state is guaranteed to enter XN at some future time. The update from x+ =

Ax + Bκ̄N(x) to x+ = Ax + BκN(x) can therefore be performed after checking
whether the measured state satisfies x ∈ XN . By simulating the proposed control
algorithm on the SPT5 dynamics, Assumptions 13 and 15 are shown to hold for
the gas turbine example in the following section.
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5.6 JetCat SPT5 Control Implementation

In this section, a simulation study of the inherently robust adaptive control law
is conducted on an example multivariable gas turbine model: a modified JetCat
SPT5 turbo-prop [102]. This case-study two-shaft gas turbine is a 6kW hobby-
scale engine that has been fitted with a variable pitch propeller, enabling variable
pitch to be used as an additional input degree of freedom. The regulation of
the engine’s shaft speeds, to those at cruise, is demonstrated under pre-specified
prediction model error; emulating a typical engine acceleration command under
degraded plant conditions.

5.6.1 SPT5 Dynamics

The SPT5’s dynamics at the cruise operating condition have been extracted from
the LPV description of [101]. For brevity, the following discussion will use the term
CRZ to refer to the linear model at cruise. The authors obtained linear models by
linearising a high-fidelity non-linear physics based model, which was previously
validated with data from an experimental set-up; depicted in Figure 5.1. For a
complete description of the validation approach, the reader is directed to the work
of [102]. In this chapter, the CRZ model is utilised to show a proof-of-concept of
the adaptive PL-MPC algorithm around a single operating condition.

Modelling Degraded Engine Health

Since degradation is a complex phenomenon, that is unique to each engine, there
is no easy method of predicting how each engine’s dynamics will degrade. In
this study, the convention is to use the CRZ model from [101] as the true degraded
behaviour of the plant. On the other hand, a nominal model is used to represent
dynamics that were deemed true at the beginning of service life. The nominal
dynamics are artificially fabricated by scaling the true dynamics matrices by a
constant Ξ. This inverted approach is used to demonstrate that the proposed
algorithm is able to handle arbitrary model error; provided that the error is norm
bounded in-line with the results of Theorem 3 and its related assumptions.

JetCat SPT5 Engine Specification

The data provided in tables 5.2 and 5.3 provide a specification of control related
variables. It is highlighted that input rate of change constraints (slew rates) have
been assumed using engineering judgment, as these were not disclosed by the
authors of the experimental rig [101, 102].
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Figure 5.1: Head-on view of the modified JetCat SPT5. This image has been
reproduced with the kind permission of the authors of [101].
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Table 5.2: JetCat SPT5 Parameters

Description (Variable) Normalisation (Units) Constraints

HP Shaft Speed (N2) 170,000 (RPM) 50, 000 ≤ N2 ≤ 170, 000
Prop. Shaft Speed (N1) 7000 (RPM) 1500 ≤ N1 ≤ 7000
Fuel Flow (W f ) 3.532× 10−3(kg/s) (0.512 ≤W f ≤ 3.532)× 10−3

Fuel Flow Rate (Ẇ f ) N/A (kg/s2) ? ≤ Ẇ f ≤?
Prop. Pitch Angle ([u]2) N/A (deg) 0 ≤ [u]2 ≤ 35
Pitch Angle Rate ( ˙[u]2) N/A (deg) ? ≤ ˙[u]2 ≤?

Table 5.2 describes the main engine variables; the states, inputs and their respective
constraints used for control. These parameters have been extracted from the ma-
nufacturer’s data-sheet [101].

Definition 14. The input rate of change is defined as ∆u = u − u−. Moreover, it is
bounded such that ∆u ∈ ∆U ⊆ U ⊂ Rm.

The JetCat SPT5’s dynamics model has been provided in terms of normali-
sed variables. Since the aim of this work is to study control around CRZ, the
constraints on each variable are appropriately translated. These translated CRZ-
specific constraints are presented in Table 5.3. The translation is made using the
CRZ equilibrium point i.e., the target steady-state and input from Table 5.4. These
translations are imperative for satisfaction of the second part of Assumption 3. In-
terestingly, the propeller pitch angle was not normalised by the authors of [101].

Table 5.3: JetCat SPT5 constraints around CRZ

Normalised Variable Translated Variable Normalised Constraints

HP Shaft Speed (N2) [x]1 −0.432 ≤ [x]1 ≤ 0.274
Prop. Shaft Speed (N1) [x]2 −0.286 ≤ [x]2 ≤ 0.500
Fuel Flow (W f ) [u]1 −0.324 ≤ [u]1 ≤ 0.532
Fuel Flow Rate (∆W f ) ∆[u]1 −0.08 ≤ ∆[u]1 ≤ 0.08
Prop. Pitch Angle ([u]2) [u]2 −16 ≤ [u]2 ≤ 19
Pitch Angle Rate (∆[u]2) ∆[u]2 −0.25 ≤ ∆[u]2 ≤ 0.25

The notation [x]h,[u]p denotes the h-th state (h = 1, 2) and p-th input (p = 1, 2) for
the vectors xk ∈ Rn, uk ∈ Rm respectively. For the JetCat SPT5, n = m = 2. The ∆
operator is used to denote the discrete-time rate of change ∆[uh]k = [uh]k − [uh]k−1
between consecutive time-steps.
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True Dynamics

The SPT5’s continuous time dynamics at cruise (CT-CRZ) are:

ẋ =

[
−1.700 0.100
0.600 −1.100

]
︸ ︷︷ ︸

Ac

x(t) +

[
1.200 0.000
0.300 −0.023

]
︸ ︷︷ ︸

Bc

u(t). (5.4)

The CT-CRZ dynamics are discretised using zero-order hold sampling with a pe-
riod of ts = 50ms, yielding:

xk+1 =

[
0.919 0.005
0.028 0.947

]
︸ ︷︷ ︸

A

xk +

[
0.058 0.000
0.016 −0.001

]
︸ ︷︷ ︸

B

uk. (5.5)

The control problem is studied in the discrete-time framework because the pro-
posed MPC controller requires finite time to compute the feedback signal; the
inter-sample period limiting the available time for computing solutions to both P1

and P2. The zero-order-hold sampling rate fs =
1
ts

is chosen to be at least 10 times
faster than the fastest dynamic mode of the CT-CRZ model.

The resultant normalised discrete-time dynamics (DT-CRZ) (5.6) are controlla-
ble and open-loop stable. Moreover, it can be observed that the states are unidi-
rectionally coupled i.e., the affect of the propeller shaft dynamics on the HP shaft
speed is more than five times the magnitude of the HP shaft’s dynamics affect on
the propeller speed. Additionally, propeller pitch input does not directly affect
the HP shaft speed. This is a consequence of the engine’s free turbine architecture
[116].

Nominal Model Dynamics

The nominal discrete time dynamics (DT-CRZ) are

xk+1 = Ξ

[
0.919 0.005
0.028 0.947

]
︸ ︷︷ ︸

Ā

xk +

[
0.058 0.000
0.016 −0.001

]
︸ ︷︷ ︸

B̄

uk. (5.6)

This nominal model emulates a-priori control modelling of a healthy and unde-
graded engine. As the engine degrades, the performance and robustness margins
of the nominal MPC design will deteriorate. By learning the true SPT5 dynamics
around CRZ, the prediction model of the controller (and its stabilising ingredients)
can be updated to recover robustness and optimality of an ideal LQ-MPC design.
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5.6.2 Regulation to Cruise Equilibrium

The control problem is the regulation of the true SPT5 dynamics (5.5), from an
initial state x0, to the target equilibrium point xe associated with CRZ. These initial
and target states are defined in Table 5.4.

Table 5.4: Initial Condition and Target Equilibrium

Equilibrium Normalised Translated[
N1; N2

]> [
W f ; [u]2

]> [
[x]1; [x]2

]> [
[u]1; [u]2

]>
Initial x0 [0.5327; 0.3678]> [0.4685; 16]> [−0.1937;−0.1322]> [0; 0]>

Target xe [0.7264; 0.5]> [0.4685; 16]> [0; 0]> [0; 0]>

The initial state corresponds to operation near the E4 equilibrium point descri-
bed in [101], which is a condition between CRZ and idle. The target state is the
CRZ equilibrium. In the translated reference frame, the target state is the origin.

Assumption 16 (Equilibrium Points). Both the initial and target states are known a-
priori and correspond to desired thrust levels.

The objective of the PL-MPC controller is two-fold; firstly, the states must be
regulated from the initial state to the target equilibrium whilst satisfying state and
input constraints of Table 5.3. Secondly, the estimate of the open-loop dynamics
must converge to the true dynamics at the CRZ condition. When the true dy-
namics (5.5) have been identified, the MPC ingredients are updated to improve
closed-loop performance and robustness.

Figure 5.2: 2D schematic of
regulation from an arbitrary
lower power condition to the
cruise equilibrium point. The
PL-MPC scheme utilises the
linear model associated with
the CRZ point of the nomi-
nal non-linear plant (greyed
out solid line). Note that this
schematic is not to scale; it is
an abstraction to help the rea-
der understand the real high-
dimensional control problem.

Stability Region

Full Thrust

Idle

CRZ
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5.6.3 Simulation Results

The following simulations demonstrate the efficacy of the adaptive PL-MPC con-
troller when applied to linear GT dynamics. These results are generated using the
parameters from the problem setup of section 5.6. The plots are used to investi-
gate the differences between a nominal LQ-MPC implementation and the updated
LQ-MPC controller. The chosen tuning parameters are presented in Table 5.5. The
reader is directed to Appendix 6.7.3 for the tuning method.

State and input trajectories of PL-MPC and nominal LQ-MPC
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Figure 5.3: State and input trajectories under the PL-MPC (coloured) and nominal
LQ-MPC (black). The magnified views demonstrate the trajectories near the swit-
ching event, where the closed-loop is switched to the updated LQ-MPC controller.
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Figure 5.3 demonstrates the regulation of the SPT5 engine from the chosen ini-
tial condition to the origin i.e., cruise. The trajectories illustrate the engine’s accele-
ration response, caused by an initial rise in fuel flow and simultaneous reduction
in propeller pitch. A small overshoot in HP shaft speed is observed. Figure 5.3
also depicts how the PL-MPC state and input trajectories deviate from the nomi-
nal LQ-MPC trajectories. Initially, the PL-MPC and nominal LQ-MPC trajectories
coincide. As simulation time progresses, the excitations become more prominent,
especially near the origin. The excitation optimisation is turned off once the model
estimate convergence metric is satisfied, yielding the updated LQ-MPC trajectories
as shown in the magnified views.

Input rates of change for under PL-MPC and nominal LQ-MPC
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Figure 5.4: Input rate of change trajectories for the PL-MPC (coloured) and nomi-
nal LQ-MPC (black) controllers.
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Figure 5.4 depicts the slew rates of fuel flow and propeller pitch. As in 5.3,
the PL-MPC and the nominal LQ-MPC input slew trajectories coincide during the
initial part of the transient behaviour. Both the fuel flow and the pitch angle rates
of change satisfy the constraints specified in Table 5.3. Note that the deviations
from the nominal input rates of change are caused by a deterministic perturbation,
computed by the excitation optimisation that is solved online.

Parameter estimates under PL-MPC and nominal LQ-MPC
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Figure 5.5: Estimated A-matrix parameters using RLS. The solid red lines denote
the true elements. The lines described by the legends correspond to trajectories
under the PL-MPC whereas the faint and diverging lines denote the trajectories
under nominal LQ-MPC.



Chapter 5. Adaptation in MPC under Gas Turbine Degradation 103

Figure 5.5 depicts the trajectories of the estimated state-transition matrix ele-
ments under two feedback controllers; the PL-MPC and the nominal LQ-MPC. The
estimates for the PL-MPC case can be seen to converge to the respective elements
of the engine’s true open-loop dynamics. Convergence to the true state-transition
matrix is obtained just above 7 seconds. On the other hand, after around 10 se-
conds, the estimate of the state-transition matrix under nominal LQ-MPC conver-
ges to an arbitrary value, that does not correspond to the true dynamics.

Minimum Eigenvalue Trajectory under PL-MPC and nominal LQ-MPC
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Figure 5.6: Trajectory of the information matrix R minimum eigenvalue. The
magnified view highlights the PL-MPC affect on the minimum eigenvalue.

Figure 5.6 shows the minimum eigenvalue of the information matrix incre-
ment, plotted over the duration of the simulation for two feedback cases. Firstly,
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the nominal LQ-MPC controller and secondly, the nominal PL-MPC. The magni-
fied view reveals that the PL-MPC closed-loop trajectories facilitate the increase
of the minimum value. For the LQ-MPC case, the eigenvalues monotonically de-
cay to zero. On the other hand, for the PL-MPC case, the minimum eigenvalue
decays to a neighbourhood of zero, until perturbations are turned off; once the
state-transition matrix estimate satisfies the convergence criterion.

Cost function plots
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Figure 5.7: Cost function trajectories. The cost for each controller is computed
using the quadratic formulation from (3.26).

Figure 5.7 illustrates the LQ cost of the closed-loop under three separate feed-
back control scenarios; the nominal LQ-MPC controller, the PL-MPC controller
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under learning and finally, the updated LQ-MPC controller. The optimal cost for
each controller scenario is computed using (3.26). For both instances of the LQ-
MPC, the cost is monotonically decreasing. Due to model mismatch, there is a
significant difference between the closed-loop costs for the nominal and updated
LQ-MPC scenarios. For the PL-MPC scenario, the magnified view shows that
the optimal cost is not monotonically decreasing due to the additional excitation
inputs.

Comparison of nominal versus updated LQ-MPC
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Figure 5.8: State and input trajectories under nominal and updated LQ-MPC con-
trollers. The black lines, with matching legend line-styles, denote the nominal
LQ-MPC trajectories whereas coloured lines denote updated LQ-MPC.

Figure 5.8 demonstrates the trajectory differences between a nominal and up-
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dated LQ-MPC implementation that starts from the same initial condition as the
regulation problem stated in Section 5.6.2. Note that only the prediction models
and the stabilising terminal ingredients of Table 5.1 are updated; the remaining
tuning constants, such as the Q and R, are kept constant between the adaptation.
Consequently, a more aggressive closed-loop response is observed under the up-
dated LQ-MPC control law. Significantly larger propeller pitch actuation effort is
observed, whilst the fuel flow control input remains roughly the same. The state
settling time is reduced with a small increase on the HP shaft speed overshoot.

Tuning Parameters

Table 5.5: Controller parameters

Parameter Value Parameter Value Parameter Value

αx, αu 0.5, 0.5 γ 0.85 c1 800
R

[
20 0
0 1

]
Ξ 0.87 c2 2426.6

Q
[

800 0
0 1200

]
N 10 ζ 0.67

P
[ 1465 −486
−486 3325

]
R−

[
1 0
0 1

]
L 46.5

Table 5.5 contains the tuning parameters used for the proposed PL-MPC control-
ler. Some of the tuning parameters have been obtained by performing numerical
simulations; these include b, c2, ζ and L which have been obtained using the met-
hods described in Section 3.8.

Optimisation Solution Times

Table 5.6: Simulation Computation Times

Optimisation Minimum Time (sec) Maximum Time (sec) Average Time (sec)

P1(x) 0.1062 1.0572 0.1156
P1(x; v) 0.0719 0.2294 0.0901
P2(x; u) 0.1415 1.0837 0.1828

Table 5.6 denotes the solution time of the regulation and excitation optimsati-
ons under the PL-MPC controller designed using the tuning parameters of Table
5.5. The simulation times presented in Table 5.6 have been obtained by running
MATLAB code on an average desktop computer running Windows 10 with a first
generation i7-3GHz processor and 6GB of RAM.

Note that the times in Table 5.6 are extracted from running MATLAB code
that uses generic optimisation solvers; the results do not reflect the smallest pos-
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sible attainable time on an embedded controller. Interestingly, when solving the
regulation optimisation P1(x) without accounting for preview information or ter-
minal constraint set tightening, all three timing metrics are greater than when
accounting for preview information. More investigations are required to make
any claims about reducing computational effort when using preview information.
One possible conjecture is that accurate preview information can mitigate pre-
dicted trajectories from activating constraints, since run times were observed to be
significantly longer when constraints were active.

The timing results only consider the time spent solving the respective optimi-
sation problems and do not consider the time taken to compute the off-line MPC
ingredients. In the worst case, the prediction, constraint and cost matrices only
have to be re-computed once the decision is made to update to the new prediction
model. The point of the table is to show the relative complexity between the
regulation and excitation optimisation problems. As expected, the semi-definite
program solution of the excitation problem takes the longest, on all three timing
metrics.

5.7 Discussion

Despite the error in the dynamics matrix, the controller is able to simultaneously
regulate and excite the system to the cruise equilibrium point whilst satisfying
state, input and input slew rate constraints. Moreover, the LQ-MPC controller
feasibly updates to the true plant model, whilst demonstrating a performance im-
provement through faster regulation of the states to the origin when compared to
the original MPC design. The following subsections discuss the salient observati-
ons and limitations distilled from the simulation study.

Validation of the Robust Stability Inequality 4.27

Having synthesized the control law for the JetCat SPT5, the robust stability ine-
quality (4.27) is verified. Firstly, the robust stability bound is recalled:

||δA|| ≤ 1√
b/c1

(
(ρ− ζ)b

L
− ||B̃||ε

)
. (5.7)

Substituting the values from the PL-MPC tuning constants and the numerically
obtained parameters stated in Table 5.5 yields:

0.124 ≤ 1√
55.08/800

(
(1− 0.6703)× 55.08

46.5409
− 0.0596× 0.1

)
= 1.46 (to 3 s.f.)
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implying that the closed-loop system under PL-MPC, x+ = Ax + B(κ̄N(x; v) +
πN(x; u)), is robustly stable within the sub-level parametrised by b = 55.08;
despite the assumed prediction model mismatch and the additional input exci-
tations. Notice that ρ = 1 since it is only required that the closed-loop value
function of the uncertain system is monotonically decreasing.

Clearly, for this numerical example, the robustness margin is relatively large;
the norm of the model mismatch could be increased by an order of magnitude
and still be satisfied. However, it is important to note that this inequality is only
useful if all the relevant assumptions hold; most importantly, Assumption 13. This
assumption requires that the nominal LQ-MPC is stabilising for the true plant.
Indeed, with such a large margin in this example, it is possible to find examples
where a severely unstable prediction can be chosen such that ||δA|| satisfies (5.7),
but the resultant κ̄N(x; v) is not stabilising. This highlights that the inequality (5.7)
is not a sufficient condition for robust stability guarantees and requires careful
analysis of all assumptions under specific numerical examples.

Similarity to standard LQ-MPC

Notice that when the simulation is begun, the PL-MPC trajectories behave simi-
larly to those of the standard LQ-MPC solution. This can be explained by the fact
that when the problem is initialised closer to constraint boundaries, the excita-
tion problem P2 will favour smaller deviations from the tail-end of the excitation
sequence to satisfy constraints; recall that by construction, the tail-end of the exci-
tation sequence should be feasible for P2 (even with modelling uncertainty, provi-
ded that P1 is feasible). As the trajectories move deeper into the interior of XN(v),
the excitations become more pronounced; P2 is able to choose perturbations which
would have previously been infeasible because of proximity to the constraints.

Convergent closed-loop identification

The online RLS identification scheme using closed-loop data under PL-MPC re-
sults in estimation of the true plant dynamics around CRZ. On the other hand, RLS
under nominal LQ-MPC closed-loop data (with no excitation) does not converge
to the true dynamics. Moreover, Figure 5.6 shows that the minimum eigenvalue of
the current information matrix is increased in the PL-MPC compared to the nomi-
nal LQ-MPC. More importantly, the PL-MPC controller promotes excitations that
satisfy the original constraints of the problem. On the other hand, the classical
approach of conducting an equivalent closed-loop identification exercise would
superimpose dither signals over the regulator input. In such an approach, ad-hoc
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constraint handling methods would be required, leading to further suboptimality
with respect to the regulation objective.

Computational complexity

As discussed in the previous chapters, the regulation and excitation optimisations
are both convex. Solution time data has been gathered to give insight into the
computational complexity of the PL-MPC algorithm. Note that these simulation
times correspond to code executions in MATLAB; using YALMIP to interface with
MATLAB’s quadprog solver (to solve P1) and SeDuMi for semi-definite program
solver (to solve P2) [80]. The code has not been optimised for solution time and is
expected to be further reduced if implemented in hardware-specific programming
languages, such as C/C++.

Excitation problem redundancy

The attractive feature of the PL-MPC algorithm is the redundancy of the excitation
problem. Since its feasibility depends on the feasibility of the regulation problem,
it can be turned on/off whenever the closed-loop is running under the LQ-MPC
regulator. Moreover, the proposed re-linearisation method of Section 3.5.2 can be
used to improve the solution of the excitation problem, if there is remaining time
left before the next sampling instant.

Parameter Bursting

Adaptive control schemes can suffer from the phenemenon known as bursting [7].
This can occur when the regressor is not persistently exciting, leading to abrupt
changes in the parameter estimates. It is a complex phenomenon which has been
numerically explored in [7] on a second-order non-linear system; the phenome-
non results from the interaction between the parameter dependent dynamics an
estimator that uses data which is only PE over a finite interval. Since the LMPC
scheme does not guarantee PE at all times, but rather promotes PE when the
system constraints allow it, issues associated with bursting are avoided by not up-
dating the prediction model with the estimates at arbitrary time-steps. Moreover,
the RLS algorithm is turned off after satisfactory convergence is achieved.

Concluding Remarks

Updating the ingredients leads to a LQ-MPC design, described in Section 2.1.4
and [107], but with the prediction model matching the true dynamics. Thus, under lack
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of any other exogenous uncertainty, recursive feasibility is recovered. Moreover,
if exogenous disturbances are present, then the inherent robustness property of
this updated LQ-MPC controller is fully dedicated to dealing with the exogenous
uncertainty; rather than model mismatch.

5.7.1 Limitations of the Applied Algorithm

It is important to illuminate the limitations of this numerical study of PL-MPC.
These limitations stem from the assumptions that have been made in order to
make the theoretical arguments of Chapters 2-4.

• Modelling and MPC Assumptions: 2, 3, 4 and 5.

These modelling assumptions simplify the control problem to that of regu-
lating a linear system with fixed dimensions and no exogenous noise; actual
practise is to use an output tracking formulation [87]. The only uncertainty
comes from the the plant-model mismatch and thus, the controller’s robust-
ness is exercised to handle this single type of uncertainty. If exogenous noise
were to be considered, it can still be included within derived robustness
bounds under appropriate boundedness assumption.

Without this linear framework, inherent robustness using the continuity pro-
perty of the value function cannot be guaranteed [106]. The choice of using
a quadratic cost function formulation of MPC is fundamental for showing
the inherent robustness results; a 1-norm cost (||.||1) would not provide the
same a-priori stability guarantees.

Whilst availability of the state vector is a standard assumption in academic
literature, in reality, this assumption requires high accuracy of the on-board
sensors or a robust state estimation design.

• RLS Assumption: 6.

This assumption is necessary for the PE property to hold. However, because
the RLS estimation algorithm utilises a forgetting factor γ ∈ [0, 1), even
an arbitrarily chosen initialisation of the information matrix will have an
insignificant affect on the estimates after a long time period, and is therefore
not considered an issue; at worst, slower convergence to the true parameters
may be observed.

• Preview Information Assumptions: 7, 8, 9, 10, 11 and 12.

The assumptions for including preview information rely on the nominal li-
near formulation of MPC [106] which has been well-established from the
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discussion of the required modification in 4.2.1. The key limitation is the
need to use a perfect B̄ matrix; Assumption 7 implicitly requires that the
B matrix is known exactly, such that the current perturbation is known, as
required in the results of [13]. Evaluation of the inherent robustness bound
in Corollary 1 and equation (4.21) also relies on perfect knowledge of the B
matrix.

• Knowledge of Initial and Target States: 16

For the specified regulation problem, this assumption is required to avoid
steady-state offset. In reality, thrust control requires accurate mapping bet-
ween the states and desired thrust level, since it is difficult to obtain a direct
measurement of thrust whilst in-flight; shaft speeds are used as proxies for
thrust [109]. Observer-based tracking formulations that introduce integra-
tors can be used to relax this assumption [87].

• Detecting True Parameter Convergence

In reality, the true system model is unknown and therefore the model error
norm cannot be evaluated. This complicates the determination of conver-
gence to the true dynamics. If a naive threshold on the derivative of each
parameter estimate is used, then the controller may update prematurely wit-
hout converging to the true dynamics. Under PL-MPC, PE conditions are
promoted rather than guaranteed (as a consequence of Proposition 5), hence,
some portions of the collected data may not have been PE. More sophistica-
ted convergence detection methods must be employed in practise, to ensure
that the prediction model is updated to a more accurate prediction model.

• Online computation: 14

The computation of the stabilising ingredients online poses a challenge for
an embedded control implementation. However, with the advent of cloud
computing and the push for greater connectedness in gas turbine monito-
ring, the re-computations may not necessarily have to be performed on the
engine itself.

• Uncertainty Matching: 13, 15.

The assumptions that enable guaranteed feasible updates of the stabilising
ingredients depend on the model uncertainty. This limits the degree of mis-
match that can be tolerated. This assumption will always need extensive
validation to check that the nominal and updated control laws regulate the
states of the system to the origin.
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• Feasible Switch Check

To check if the switch to the updated controller is feasible, the controllability
set recursion (4.2) is used to construct the domain of attraction for the upda-
ted LQ-MPC controller. The controllability sets under linear dynamics and
polytopic constraints are convex. However, in practice, these convex sets can
become difficult to compute, particularly for large horizons and system di-
mensionality, since numerous recursions of (4.2) can lead to polytopes with
arbitrarily large number of facets.



Chapter 6

Conclusion and Future Work

Advanced control algorithms that utilise novel actuation have been identified as
enablers for unprecedented engine capability. Apart from reducing specific fuel
consumption, emissions and maintenance costs, novel control laws can increase
the robustness and safety margins by adapting to engine-specific health states. To
enable such capability, introducing further autonomy to the engine control laws
is required; to avoid the costs of manual re-tuning. Therefore, automating the
learning of engine-specific parameters has been identified as a potential route to
alleviate over-design and conservatism, which is endemic in gas turbine control.
This thesis derives a candidate control solution: the proposed preview learning
MPC control law. The following sections conclude the observations, contributions
and proposed improvements for future work.

6.1 Contributions

The chapter-wise contributions are stated in the following sub-sections.

Chapter 1 - Motivation and Background

Chapter 1 investigates and surveys a wide-range of control strategies applied to
the gas turbine control problem. The survey distils features of the gas turbine
control problem that translate to desirable features of a potential candidate con-
trol algorithm. The conclusions of this survey are used to support the choice of
studying adaptive model predictive control.

Chapter 2 - Adaptive Model Predictive Control

Chapter 2 focuses the literature review on adaptive model predictive control, in-
cluding frameworks that enforce PE conditions and those that do not. The nominal

113
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LQ-MPC recipe is defined and investigated to consider the technical issues that
arise under changes to the plant’s prediction model. A summary of LQ-MPC’s
shortcomings is reported, motivating the need for the technical contributions of
this thesis.

Chapter 3 - Learning Model Predictive Control

Chapter 3 derives stability results for the proposed LMPC algorithm. The LMPC
algorithm is constructed to simultaneously regulate and excite the uncertain plant
dynamics, subject to state and input constraints. Steering the plant’s states to the
origin whilst identifying its underlying open-loop dynamics, using RLS, is provisi-
oned by the resultant “information rich” state and input trajectories. The inherent
robustness property of LQ-MPC is employed to characterize robust stability of the
closed-loop, in the form of a novel inequality. This inequality is expressed in terms
of plant-model mismatch and excitation magnitude; it enables the selection of an
appropriate magnitude of excitation such that robust stability is preserved. This
inequality provides a tuning guideline that alleviates the trial-and-error selection
of the excitation magnitude, which is frequently observed in prior-art. Finally, the
theory is demonstrated with a numerical example.

Chapter 4 - Preview Information and Inherent Robustness

Chapter 4 describes the extension of the LMPC framework, by utilising existing
results for including preview disturbance information within an MPC controller’s
prediction horizon. By specializing prior-art to the case of known input excitation
sequences, several contributions are made as part of the proposed PL-MPC.

Firstly, in the uncertainty-free scenario, recursive feasibility is guaranteed un-
der assumptions on the evolution of the preview information and appropriate
translation of the input constraints. This is a consequence of controllability set
nestedness, which is obtained through the proposed optimisation formulation.
This nestedness property does not necessarily hold if a generic disturbance se-
quence is considered, as shown in prior-art. Hence, Chapter 4 strengthens the
preview information framework when it is specialized to input disturbances.

Secondly, robust stability results are derived for the PL-MPC algorithm. The
tuning rule of PL-MPC, analogous to the inequality derived in Chapter 3, is shown
to depend on the rate-of-change of the excitation sequence between time-steps; rat-
her than the magnitude of the excitation as shown previously. This subtly changes
the role of the excitation optimisation that is used to promote PE conditions. Given
an a-priori designed excitation sequence (which can even be the null perturbation
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sequence), the PL-MPC seeks to promote PE condition of the trajectories, whilst
handling constraints. To the author’s best knowledge, there are no other met-
hods that robustify against an internally generated excitation without inducing
conservatism using known robust MPC methods.

Finally, the region of attraction under a PL-MPC controller is numerically
shown to be significantly larger than in the nominal LQ-MPC case, confirming
the proposition of prior art.

Chapter 5 - Adaptation in MPC under GT Degradation

Chapter 5 proposes conditions under which inherently robust LQ-MPC algorithms
can perform stable and feasible adaptation. These conditions are identified by con-
sidering the LQ-MPC adaptation in the switched systems framework [76]. A set of
assumptions on the permissible degradation is defined, to allow the LTI results of
the previous chapters to hold for slowly time-varying systems. A JetCat SPT5 gas
turbine control model is used to demonstrate the adaptive PL-MPC algorithm’s
efficacy on a validated linear gas turbine engine model. Input rate-of-change con-
straints are introduced to highlight the controller’s ability to respect constraints,
despite the additional input excitations required for learning the true dynamics.
The numerical simulations demonstrate the controller’s ability to perform regula-
tion, identification and safe switching to an LQ-MPC control law that is matched
to the true dynamics of the gas turbine.

6.2 Summary of the Proposed Algorithm

The proposed preview learning model predictive controller has known stability
guarantees and inherent robustness margins to limited modelling uncertainty. The
theoretical extension enables an initial MPC control law to learn an updated pre-
diction model that corresponds to the true open-loop dynamics of the plant. Of
course, no model is a perfect representation of reality; however, under the mild
technical assumptions of this thesis, the PL-MPC is able to learn updated (i.e., more
accurate) plant parameters, without over-complicating off-line design effort. Since
the controller automatically designs online and “optimal” closed-loop identifica-
tion experiments, that also satisfy constraints, the classical recursive least squares
estimator can converge to the true plant parameters; provided that the estimation
data is sufficiently exciting. With a more accurate estimate of the true open-loop
plant dynamics, the LQ-MPC prediction model and its associated stabilising ingre-
dients are updated. By updating the LQ-MPC with the aforementioned stabilising
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ingredients, the nominal MPC controller regains a portion of its robustness mar-
gin; since disturbances caused by model mismatch are eliminated. The inherent
robustness of LQ-MPC feedback can therefore be fully committed to dealing with
exogenous uncertainty, that exist in reality.

6.2.1 Desirable Features

The choice of using MPC as the control framework was justified by the following
observations from gas turbine control literature:

• Explicit handling of constraints.

Complicated gain-scheduled limiting-logic and anti-windup schemes are made
redundant.

• Online reconfigurability for adaption to health condition.

The implicit form of MPC solves an optimisation online that can be updated
with online identified parameters when they become available.

• Optimal control policies.

The closed-loop trajectories minimise a quadratic cost metric; the optimisa-
tion can be intuitively tuned to reduce specific fuel consumption through
appropriate selection of weighting matrices. The excitation optimisation can
be turned off once a better model is identified.

• Multivariable control strategy.

The cross-coupling between states and inputs can be explicitly utilised for
control.

6.2.2 Scope of Application

The scope of this research applies to fixed dimensionality LTI systems and slowly
time-varying systems that satisfy continuity and dwell-time arguments. Polyhe-
dral state and polytopic input constraints, with full state measurements available
and no exogenous noise conditions are required. Whilst the proposed controller
solves convex optimisations, the applicability is limited to low dimensional sys-
tems due to the computational difficulties when computing stabilising ingredients
online. Moreover, obtaining the value function properties for high dimensional
can become numerically burdensome and conservative if a-priori guarantees are
to be verified.
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6.3 Future Work

Several interesting avenues for extending the results of this thesis exist.

6.3.1 Linear Time-varying Plant

Future work should investigate the necessary modifications of the PL-MPC algo-
rithm to cope with quickly time-varying true plant dynamics, that vary within
the settling time of the closed-loop e.g., a sudden actuator failure. Currently, the
quasi-LTI assumption only allows to consider slowly varying dynamics that are
orders of magnitude slower than the control transients. It would be interesting to
see the results of this thesis united with the nominal time-varying MPC literature
[106], to consider plant-model mismatch within the control horizon.

6.3.2 Linear Parameter-varying Plant

Since a single linear model cannot accurately represent the operation of a gas
turbine over its entire envelope, a study of how PL-MPC can be systematically
introduced into an LPV framework could yield interesting results. After all, swit-
ching between controllers can also provide excitation for identifying open-loop
dynamics [78].

6.3.3 Non-linear Systems

Instead of focusing on linear approximations, non-linear systems can alleviate
the problems of model mismatch. However, extending the results to non-linear
systems may prove difficult since continuity, which is the basic property that the
results of this thesis rely on, can be lost. Therefore, identifying classes of non-
linear systems where continuity is not lost may be a useful exercise to confirm
whether an equivalent non-linear learning MPC exists. Relatively easy NARMAX
identification in an MPC framework may yield interesting results [15].

6.3.4 Reducing Excitation Suboptimality

The convex approximation of the excitation problem results in sub-optimality in
the excitation signals, which further exacerbates the sub-optimality of the regula-
tion objective. An investigation into alternative solution methods for solving the
excitation problem, to provide better quality trajectories with respect to both con-
flicting regulation and excitation objectives, could reduce convergence time and
reduce unnecessary actuation. Results in the field of multi-objective optimisation,
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such as lexicographic programming, provide interesting approaches to reformu-
late the conflicting objectives in dual-control [1].

6.3.5 Alternative Identification Schemes

As for the identification scheme, RLS was chosen due to its simplicity and expli-
cit relation between the information matrix and the parameter update law. Ot-
her recursive algorithms, such as least mean squares proposed in set-membership
problem setting of [82], provide an alternative for robust adaptive MPC; but the
resultant controllers, that utilise a set of possible prediction models, suffer from
conservatism. Integration of the ideas from PL-MPC and set-membership could
allow for the treatment of time-varying plant dynamics, whilst reducing conserva-
tism. The issues of having an ill-posed cost function when excitations are present
[84], could be avoided through equivalent translations that are proposed in section
4.3.1.

6.3.6 Degradation Modelling and Output Feedback

The engine degradation is assumed to enter through the state-transition matrix.
Future work could consider alternative methods for modelling engine degrada-
tion; as has been done in [109], which considers an unknown health state vector
that acts like an unknown exogenous disturbance. In such instances, tracking fil-
ters are being explored [19] to estimate the health state vector. However, careful
consideration is required since introduction of a state estimator may eliminate the
derived robustness margins; it it is well-known that LQG that not possess any, if
the noise covariance is sufficiently large. Hence, for “large” noise models with
unbounded supports (e.g. Gaussian white noise with large covariance), stochas-
tic MPC methods may be more appropriate [58]. Dual-control in the stochastic
framework is receiving recent attention with the works of [56].

6.3.7 Hardware-in-the-loop Validation

From a practical standpoint, the PL-MPC algorithm requires further validation
with real hardware. Whilst the proposed theoretical algorithm solves convex op-
timisation problems, a real-time embedded implementation that copes with the
realities of state-estimation error, sensor noise, exogenous disturbances and even
delay and packet-loss, would be most valuable for demonstrating higher techno-
logy readiness levels.
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6.4 Matrix Inversion Lemma

The recursive definition of the information matrix (3.7b) is well suited for use
with the matrix inversion lemma. In the sequel, it is shown that the problem of
finding the inverse of the information matrix R−1 is simplified to the inversion
of a scalar; given that the preceding inversion (R−1)− is available. Therefore, the
matrix inversion lemma significantly reduces the computational complexity of the
RLS algorithm. The the matrix inversion lemma identity is verified in the sequel.

Lemma 5 (Matrix Inversion Lemma). Let A, C and C−1 + DA−1B be non-singular
square matrices. Then the following equation holds

(
A + BCD

)−1
= A−1 − A−1B

(
C−1 + DA−1B

)−1DA−1.

Proof. The proof shows that the equation holds by multiplying both sides with
(A + BCD). This yields:

I = I + BCDA−1 − B
(
C−1 + DA−1B

)−1DA−1 − BCDA−1B
(
C−1 + DA−1B

)−1DA−1

= I + BCDA−1 − B(C−1 + DA−1B
)−1(I + CDA−1B

)
DA−1

= I + BCDA−1 − BCDA−1

= I

For the RLS formulation, the lemma holds under the definitions of the matrices

Table 6.1: Matrix Inversion Lemma and Equivalent RLS Definitions

A B C D

γR− ψ I ψ>
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6.5 Singleton Set Manipulation in the Minkowski Sum

Let A,B ⊂ Rn be two sets in a common vector space. Consider some vector
b∗ ∈ Rn that is added:

A+ c = {a + b∗ : a ∈ A},

= b∗ + {a : a ∈ A}.

Now, recall the definition of the Minkowski sum

A⊕ B , {a + b : a ∈ A, b ∈ B}.

If the set B is constructed such that it is the singleton set B = {b∗}, then the
Minkowski sum is:

A⊕B = {a + b : a ∈ A, b ∈ B},

= {a + b∗ : a ∈ A},

= b∗ + {a : a ∈ A}.

The Minkowski sum is equivalent to standard addition when one of the sum-
mands is a singleton set. With this fact, the right hand side term of equation 4.13
simplifies as follows:

−B(U− v(N − i))⊕−{Bv(N − i)} = −BU.

6.6 Derivation of the Controllability Sets

The controllability sets of a generic discrete-time non-linear system x+ = f (x, u),
with constraint sets x ∈ X and u ∈ U, are given by the recursive definition

Xi+1 , {x ∈ X : ∃u ∈ U, f (x, u) ∈ Xi}.

The set Xi+1 contains the states that can be steered, in one-step, to the controllabi-
lity set at the i-th step, under the system dynamics x+ = f (x, u), whilst respecting
state and input constraints. These sets are of importance in MPC because the re-
cursion can be used to prove recursive feasibility. When the recursion is initialised
with X0 = X f , the positively invariant terminal set for the system x+ = f (x, u),
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the MPC controller’s region of attraction can be explicitly obtained. However, for a
generic non-linear system, these sets may be prohibitively difficult to compute be-
cause of the possible arbitrary complexity of the dynamics and the constraints. By
specialising the recursion to the linear system with polytopic constraints, studied
in this thesis, the recursion is simplified to

Xi+1 = {x ∈ X : ∃u ∈ U, Ax + Bu ∈ Xi}

= {x ∈ X : ∃u ∈ U, Ax ∈ Xi ⊕ {−Bu}}

= {x ∈ X : Ax ∈ Xi ⊕ {−BU}}

= {x ∈ X : x ∈ A−1(Xi ⊕−BU)}

= X∩ A−1(Xi ⊕−BU).

6.7 JetCat SPT5 Tuning Constants

6.7.1 Maximal Level Set of the Nominal Value Function

Figure 6.1: Numerical approximation of the largest level set of the value function
V0

N(x) contained within the region of feasibility XN , for the nominal closed-loop
system.
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6.7.2 Nominal Explicit LQ-MPC

Figure 6.2: The nominal explicit LQ-MPC control law regions.

6.7.3 Tuning Method

1. Set ρ = 1.

2. Compute norm of Input matrix B

3. Choose a degradation constant Ξ E.g Ξ = 0.87.

4. Choose initial Q, R weighting matrices and control horizon N.

(a) Set N to be as small as possible to be able to compute the explicit solu-
tion for finding the Lipschitz constant of the value function.
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(b) Extract lower bound from min eig of Q.

5. Compute explicit LQ-MPC control law.

(a) Obtain the Lipschitz constant L.

i. Take the norm of each feedback matrix gain, select the largest norm.

6. Simulate closed-loop with nominal LQ-MPC controller, κ̄N(x) for prediction
model matching the plant as if the plant were to behave as predicted.

• Obtain value function constants.

– i. Max level set – from inspecting value contours.

– ii. Decay rate – from fitting upper bounding exponential to closed-
loop cost.

7. Compute Corollary inequality and check if satisfied. If not satisfied, reduce
model error norm.
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