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Abstract— Three decades have passed encompassing a flurry
of research and commercial activities in model predictive
control (MPC). However, the massive strides made by the
academic community in guaranteeing stability through a state-
space framework have not always been directly applicable in an
industrial setting. This paper is concerned with a priori and/or
a posteriori certification of persistent feasibility, boundedness
of industrial MPC controllers (i) based on input-output formu-
lation (ii) using shorter control than prediction horizon (iii) and
without terminal conditions.

I. INTRODUCTION

MPC is a form of control in which the current control
action is obtained by solving, at each sampling instant, a
finite horizon open-loop constrained optimal control prob-
lem, using the current state (i.e. past inputs, outputs) of the
plant as the initial state; the optimization yields an optimal
control sequence and the first control in this sequence is
applied to the plant. Given this systematic means of handling
constraints, MPC has had a tremendous impact on industrial
control practice [1].

The vast majority of research in stabilizing MPC and
guaranteeing infinite time feasibility has invariably enforced
one or all of the three ingredients: terminal penalty, terminal
constraints, terminal control law [2]. The desirable features
of using terminal conditions in MPC are [3]:

1) Nominal stability follows easily from the properties of
stabilizing ingredients.

2) The problem is infinite time feasible (i.e. a solution
exists that satisfies the constraints every time).

The objections raised to this method of stabilization include:

1) The stabilizing ingredients may be difficult to compute.

2) Adding a fictitious terms may compromise perfor-
mance.

3) The region where the problem is feasible may shrink.

4) Most of the stabilizing ingredients are not used in the
process industry.

However, the theoretical framework is not necessarily imple-
mented for practical systems, given that industrial implemen-
tations largely continue to use input-output formulations of
MPC and avoided using the mentioned stabilizing ingredi-
ents, thus appearing to defy mathematical analysis. It is not
always easy to construct an MPC controller which has an
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a-priori guarantee of infinite feasibility and stability, either
due to theoretical complications, or pragmatic decisions in
practice [4]. Instead, we might have a situation where we
are given an MPC controller, and the goal is to deduce a
region where the problem is infinite time feasible/stable. The
principal contribution of this paper is to deduce such a region
of inputs and outputs where the industrial controllers without
stabilizing ingredients are certifiable with respect to stability
through infinite time feasibility.

II. PROBLEM FORMULATION

The research literature on MPC has adopted the following
formulation as standard (which is a regulation problem in
the nominal case) [5]:

Problem 1:

No—1
= rmn

min {2 K

+ T(x(t+ Ng\t))}7 subJ. to: z(t + No) € T

u(t+k)eU, z(t+k)eX, Vke[0,Nsz) (D
under the state-space model z(t + 1) = f(z(t),u(t)), with
prediction horizon between [Ny, Na).

Theorem 1: The MPC problem 1 is infinite time feasible
and asymptotically stable if the stage cost L(.) and terminal
cost T'(.) are positive definite; T'(.) is a control Lyapunov
function (CLF) for the closed-loop system under a terminal
control law h(z(t + k)),Vk > No; and terminal constraint

set T is invariant under h(.).
Proof: Since, T(.) is a CLF, it implies that:

T(f (@(t), h(x(t)) — T(x(t)) < —L(x(t), h(x(t))),
Va(t) € T )

V*((t)) (t+ K|t), u(t + k|t))

From this, it follows (with an optimally computed sequence
t= {U*(t), sy U*(t + N2 - 1)})

VE(f (), UM (2(1)) = V7 (2(t) < —L(z(t),w" (1)) (3)

and therefore the optimal cost is a Lyapunov function for
the closed-loop system, and convergence to the origin is
guaranteed. The invariance of T guarantees the feasibility
of an Ns-step control sequence that enters T in Ny — 1 steps
from x(¢ + 1|t). Thus, feasibility of Problem 1 at a given
time instant implies feasibility also at the next time instant.
|

However in many industrial MPC formulations, apart from
using a transfer function representation and shorter control
horizon, one or more of the three mentioned stabilizing
ingredients are not considered in the design phase. Some of
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the advantages of the transfer function models for plant and
disturbance are that these can be more intuitive, grounded
with system identification techniques and compact repre-
sentation of time delays. One can immediately write down
the differences between the academic MPC setup to the
industrial one as follows:

D1 The predictions are made over input-output models

together with disturbance filter.

D2 The control and prediction horizons are not equal.

D3 There is no terminal constraint T.

D4 There is no terminal cost 7°(.).

D5 There is no terminal control law h(.).
In this case neither stability nor infinite time feasibility can
be guaranteed (as the optimal cost is no longer a Lyapunov
function for the closed loop, and there is no enforced
invariance). Some authors have indeed considered omission
of terminal constraint [D3], in which the control horizon
(=prediction horizon) is made sufficiently large to ensure that
the terminal constraint is automatically satisfied [6], [7]. A
recent book [8] deals extensively in solving [D3-5] via the
choice of an appropriate horizon employing the assumption
that the system is asymptotically controllable. Finally, some
tools for showing infinite-feasibility have been developed
in [9], [10] using invariance and in-feasibility of a MPC
controller with [D3-5] has been proposed in [4] by using
bi-level programming.

To our knowledge, there has been no prior-work in dealing
with all the five mentioned differences [D1-5] together and
delivering to the industry a region of attraction for which
the controller (either optimal or not) is certified infinite
time feasible/stable. Thus, we build upon the necessary state
transformation matrices and set-theoretic tools to be able to
develop a procedure to certify stability through infinite time
feasibility in discrete-time.

III. INPUT-OUTPUT TO STATE-SPACE MPC

The state-space based MPC matured through the efforts
of many researchers [11], [12] and now rests on a firm the-
oretical foundation. Next to these, the process industry and
the adaptive control community saw a rise of its own version
of MPC, some of the representative techniques developed in
parallel were Model Heuristic Predictive Control (MHCP)
[13], Dynamic Matrix Control (DMC), Extended Prediction
Self-Adaptive Control (EPSAC) [14] and Generalised Pre-
dictive Control (GPC) [15], which predominantly employed
transfer function representation. We now briefly describe the
EPSAC-MPC formulation which is based on input-output
modelling and filtering techniques. Due to its simplicity of
implementation, this algorithm has been used extensively in
industrial applications.

The process is modeled with y(t),§(t),n(t) as process
output, model output, disturbance respectively as [16]

¢ *B(q™) C(g™h)
Ay O B

where B/A represents the model dynamics with d > 0
samples delay and C/D is chosen to form the disturbance

y(t) = 9(t) +n(t) = e(t) @

filter in the backward shift operator q_l, with e as white

noise. Let the system polynomials be defined as (without
loss of generality):

A=1+aqg +.. . +a,q¢™

B=big ' +... +byqg ™

C=1+cq !t + .. Fenq
D=1+dig +...+dp,q™ 5)

Note that, even if a SISO system is considered for the exposé,
the development applies to MIMO systems by considering
a transfer function matrix instead. The fundamental step is
based on the prediction using the basic process model given
by

y(t + k|t) = 4(t + klt) + n(t + k|t) (6)
where y(t + k|t) is the prediction of process output k
steps in future computed at time ¢, over prediction horizon,
based on prior measurements and postulated values of inputs.
Prediction of model output (¢ + k|t) and of colored noise
process n(t+k|t) can be obtained by the recursion of process
model and filtering techniques respectively. The optimal
control is then obtained by minimizing the following cost
function with respect to the vector u(.|.)

V=302 (4 k) — y(t + K1+ ASEg ult + K[)]
subj. to Au(t+k|t) =0, Vk € [Ny, Na)
u(t+k—Nijt) €U, y(t+klt) €Y, ke [Ni,Na] (7)

where r(t + k|t) is the desired reference trajectory and N,
is the control horizon.

A. The Mappings

Consider the disturbance augmented state-space descrip-

tion of the form A .
[F -l 2[R ] o 3]
} ®)

~— —

_i¢ B(¢
v =1¢ o | 1
where the first state vector #(¢) and the associated terms
represent the dynamics of the nominal model and the vector
n(t) and its associated terms are used for disturbance evolu-
tion with the output y(¢) summing up the respective effects.
A concise representation of (8) is given below in (9) with
the respective terms having direct correspondence:

N —

z(t+1)=A-z(t)+B-u(t) +&-et) (9a)
y(t) = C-z(t) (9b)

The disturbances are bounded by:
n(t) e W, w(t) =E.e(t) € E. (10)

The system is subject to pointwise-in-time constraints on the
control input and/or the states:

u(t) e U, z(t) e X. (11)

The set U is compact, while X, W, [E are closed. It is assumed
that the system and constraints are time invariant.



Theorem 2: The input-output process model of (4) (after
absorbing the delay in B) can be transformed to state-space
form of (9) by choosing the state vector as:

z(t) = [9@),...9(t —ng + 1),ult — 1),...u(t — np +
1),n(t),...nt —ng+1),e(t—1),...e(t —n.+ 1)].

Proof: The time-series model of (4) as explained before
has two additive parts i.e. the model §(t) = B/A-u(t)
and the disturbance n(t) = C/D - e(t). Therefore, the time
history of all these four variables constitute the state vector
and a final addition gives the output, through the following
transformation matrices:

A, | Ay | O 0
A= |00 T
olo|o A
where,
—a1 ... —Qpg bo ... by
A - 1 0 Ay — 0 0
PR P
—d; —dng Co Cnc
A — 1 0 A= 0 0
0 10 0 0
0 0 0 0
A= ! 0 Jo_| © 0
S, SO,
B=[b1 0... 0|1 0... 0]00... 0100... 0]
E=[00... 000... 0 ey O... 0[10... 0
C=[10...0000... 0[10... 0[00... 0] (12

This formulation, though non-minimal is crucial for deriving
set theoretic properties starting from input-output models.
It is now trivial to see that, substitution of the derived
A, B,E,C matrices in the state-space model of (9) gives
exactly the same output as obtained starting from the input-
output equations of (4). [ ]
Lemma 1: The constraints from the input-output model i.e
9(t) € Y,u(t) € U,n(t) € W,e(t) € E are mapped to the
constraints on the state as follows:
z(t) eX =Y X...xY¥YXxUx...xUxWx...xWx
Ex...xE.

Proof: Directly follows from the transformed state-
vector representation in theorem 2. [ ]
Note that, for auto-regressive disturbances with C' =1, £ =
0 and the state vector does not contain white noise terms.
The associated non-minimal representation has the advantage
that disturbances now appear exclusively in the state vector.

Theorem 3: The finite horizon constrained optimal control
problem in the input-output formulation of (7) translates
exactly to the following minimization problem in the state-
space framework:

Problem 2:

N
V*(x(t)) = min { D (4 k[t) = Ca(t + k[t)]” + A
k=N

N,—1

> u(t + k[t)*}, subj. to:Au(t + k[t) = 0,k € [Ny, Na)
k=0
u(t+k—N|t) € U, z(t+klt) € X, Vk € [Ny, No

13)

where Au(t + klt) = u(t + klt) — u(t + k — 1]t), rest
of the terms have exactly the same meaning as before.
The predictions are made by using the state-space maps
of (9). Note that, the formulation is also referred to as
independent model with augmented disturbance dynamics
which has similar interpretation as realigned model for open-
loop stable linear systems.

Proof: Since the state-space model of (9) has been
proven to be equivalent to the input-output model of (4)
in theorem 2, the cost function of (13) exactly matches
that of (7) through the transformation vector C. Further, the
state constraints in (13) are obtained from the input-output
constraints by using lemma 1. [ ]

IV. INVARIANT SET THEORY

Invariant set theory has been shown to be crucial in
understanding the behavior of constrained systems, since
constraints can be satisfied if and only if the initial state
is bounded in a set which is invariant (i.e. trajectories do not
exit this set). Consider the following discrete-time system:

z(t+1) = f(z(t),u(t),n(t)) =A-z(t)+ B-u(t)
y(t) = g(x(t),n(t)) =C-x(t), for LTI
u(t) €U, z(t) €X, n(t) e W (14)

Definition 1: [17] The set X C R" is robust control
invariant for the system z(t + 1) = f(x(t), u(t),n(t)) iff
there exists a feedback control law wu(t) = h(x(t)) such that
X, is robust positively invariant set for the closed-loop system
z(t+1) = f(x(t), h(z(t)),n(t)) and u(t) € U,Vz(t) € X.

Definition 2: The robust output admissible set X9 is the
set of states for which the output constraints are satisfied for
all allowable disturbances, i.e.

X9 2 {z(t) € X|y(t) € Y,Vn(t) € W} (15)
Definition 3: The robust reach set R(X) is the set of
states to which the system will evolve at the next time
step given any x(t), admissible control input and allowable
disturbance, i.e.

R(X) &{z(t +1) € R"3x(t) € X,u(t) € U,n(t) € W :

w(t +1) = f(x(t), u(t),n(t)} _ 36
Definition 4: The i-step robust controllable set (X, T)

is the set of states in X which can be driven by an admissible
input sequence of length ¢ to an arbitrary target set T in
exactly ¢ steps, while keeping the evolution of the state inside
X for the first ¢ — 1 steps, for all allowable disturbances i.e.

Ki(X,T) 2 {z(t) e R*|F{u(t + k) e U}t - {a(t + k)
exXVil eX a(t+i) € T,V{n(t+ k) e W} L} (17)



Remark 1: If K;(X,T) = K;11(X, T), then Koo(X,T) =
K;(X,T) is the robust infinite-time controllable set with
determinedness index i} = i.

Definition 5: The i-step robust admissible set C;(X)
contained in X is the set of states for which an admissi-
ble control sequence of length ¢ exists, while keeping the
evolution of the state inside X for ¢ steps, for all allowable
disturbances i.e.

Ci(X) £ {z(t) € R"F{u(t + k) € U}y :
{z(t+k) e X}io, e X\ V{n(t+k) e WL} (18)
Now, we introduce a new set tailored towards solving prob-
lems with control horizons shorter then prediction horizons.
Definition 6: An i-step robust tunnel set L;(X) is an i-

step robust admissible set C; (X) subject to the constraint
that the admissible control sequence remains constant i.e.

Li(X) 2 {C:(X){Au(t + k) =0}, 21} (19)
Remark 2: If L;11(X) = L;(X), then Lo (X) = L;(X) is
the maximal robust tunnel set with determinedness index
17 = 1.
Note that, all the tools developed for robust sets remain
perfectly valid for nominal systems, in which case n(t) =0
and the invariant sets are represented devoid of the ‘tilde’.

V. PERSISTENT FEASIBILITY

In practice, especially when the system is nonlinear, one
cannot guarantee that the solution is unique nor that the
solver will return the optimal solution to problem 2. It would
therefore be useful if a result could be derived which allowed
one to guarantee that the MPC controller is feasible for all
time and for all disturbance sequences, even if a suboptimal
control input is computed each time. In this section, we
derive the region of attraction for the given MPC problem 2:

1) That satisfies conditions [D2 — D5)

2) And without requiring optimality of the solution.
to be infinite-time (persistent) feasible/stable (Recollect that,
the requirement D1 is already satisfied by the transformation
matrices introduced before). Now, we introduce new defi-
nitions and characterizations for the feasible region of our
MPC problem 2 with short control horizon and no terminal
conditions.

Definition 7: The robust feasible set X r is the set of
states for which an admissible control sequence exists that
satisfies the state/output constraints i.e. a robust feasible
control sequence to the MPC problem 2, for all disturbance
sequences.

Theorem 4: The tobust feasible set X = (X, Ny, N3) of the
MPC regulation problem 2 is given by:

Xp(X, Ny, No) = Kn, (X, Ly,-n, (X)) (20)

Proof: The construction of the robust feasible set can

be divided into two parts in time by approaching it from the
end.

Consider the second part of the MPC problem 2 i.e. between

control and prediction horizon N, — N,,, where the require-

ment is to keep the control moves constant to an admissible

set U and satisfy the state constraints X, for disturbance

N, control moves

Tunnel Set ——— Constraint Set

L (X) N,-N, constant X
N2-N

controls

X(XNN) =

Relationship among the various sets leading to the feasibility set

Feasible Set y

Fig. 1.

set W. This set by definition 6 is the robust tunnel set
Ly,-n,(X).

Next, we consider the first part of the MPC problem 2 i.e. the
window over the control horizon NV,,, now the requirement is
again to be able to find a control sequence in U that satisfies
the state constraints X and lies in the target set Ly,_y, (X)
after NV, moves, for all disturbances. This by definition 4,
is the robust controllable set K, (X, Ly, v, (X)), which is
the overall robust feasible set and completes the proof. M
The entire process is depicted conceptually in Fig. 1 for the
nominal case.

Definition 8: The MPC problem is robust persistently
feasible iff the initial state and future evolutions belong to
the robust feasible set i.e. z(t + k) € Xp,Vk € N.

If the dynamics are linear and the constraints are compact,
convex polyhedra, then Xp is also a compact convex poly-
hedron.

A. Guidelines for stabilizing horizons

Proposition 1: 1If the robust feasible set X is bounded

and the MPC problem is robust persistently feasible, then
the system is robust stable in a practical Lyapunov sense
i.e. trajectories remain bounded.
Now, for the MPC problem to be robust stabilizing, we must
ensure robust persistently feasibility through the parameters
which are the control and the prediction horizon. Note that,
the robust persistently feasible set Xp is independent of the
cost function and optimality of the solution.

Theorem 5: The MPC problem is robust persistently fea-
sible if the difference between the prediction and control
horizons is larger than the determinedness index of the
maximal i} robust tunnel set Loo (X) i.e. No — N, > i}.

Proof:  Since, L(X) is control invariant under
constant control, any :¢—step controllable set to it i.e
K;i(X, Loo (X)), Vi > 1 is also control invariant, which is in
fact also the robust feasible set, and by the nesting property
of invariant sets X (X, Nua,i3) C Xp(X, Nyo, i3), Ny1 <
N2, which is necessary for robust strong feasibility. [ ]

Theorem 6: If Ny > N, + i}, then the size of the robust
feasible set X F increases with the control horizon NN, until
it exceeds the determinedness index ij-of the infinite robust
controllable set Ko (X, L, n, (X)).

Proof: ~ The maximal robust tunnel set Ei; be-
ing control invariant, induces control invariance on
Ky, (X, Z’ii (X)),VN, € Nt. The sets being enclosed
inside the other with increasing NN, is a property of robust
control invariant sets. The size increase stops beyond the
determinedness index ¢% of controllable sets, as by definition
the set sizes remain exactly the same. [ ]



Corollary 7: For a fixed control horizon N,, the size
of the feasibility set decreases with increasing prediction
horizon until the determinedness index of the tunnel set i.e.
Xp(X,Ny,Noy) C Xp(X, Ny, Nop), Nog > Ny, for all
Ny <i7.

Theorem 8: If Xp(X, N, N,) is robust control invariant,
then the MPC problem
X (X, N,+n, No+n),n > 1 is robust persistently feasible.

Proof: The robust control invariance of Xr (X, Ny, Na)
by definition implies that
Xp(X, Ny, No) C K1(X, Xp(X, Ny, Ny). However,
Xp(X, Ny+1, No+1) = K1 (X, X (X, N,, Ny) by applica-
tion of the MPC control law. This implies that X r(X, N, +
n, Ny +n) C Xp(X, Ny, Na), for n = 1 and is true ¥n > 1
by induction, which concludes robust persistent feasibility.

|

Based on the above three theorems, the following algorithms
for tuning the horizons are proposed to stabilize the MPC
problem without terminal conditions.

Algorithm 1: Control horizon-1 tuning procedure (impor-
tant for efficiency of computation):

1) Compute determinedness of the robust tunnel set 77,

if finitely determined.

2) The stabilizing horizons are N, = 1, Ny =4} + 1.
Now, if an additional requirement is to obtain the largest
possible robust feasible region Xp, then:

Algorithm 2: Maximal robust feasible region X tuning
procedure:

1) Compute determinedness of the robust tunnel set i},
if finitely determined.
2) Compute determinedness of the robust controllable set
1%, if finitely determined.
3) The stabilizing horizons are NV, = i}, No = i}, + i}
If, the robust tunnel set is not finitely determined, then:
Algorithm 3: Heuristic robust persistent Xp tuning pro-
cedure:

1) Iterate over different values of the horizons with N,, <
Ny until X (X, Ny, N2) is robust control invariant for
N, N3.

2) The stabilizing horizons are N,, =N +1, No=Nj+1.

B. A posteriori certification of stability

In order to guarantee robust constraint satisfaction in
safety-critical applications it is desirable that infeasibility of
the MPC optimization problem is avoided at all costs. In
other words, once inside the feasible set the system evolution
should remain inside the feasible set for all time and for all
disturbance sequences. Here, we develop test for checking
robust persistently feasibility, given the MPC problem 2
without terminal conditions and shorter control horizon has
already been implemented.

Theorem 9: The MPC regulator that solves problem 2 is
robust persistently feasible iff:

R(Xp(X,Ny,N2)) N Xp(X, N, —1, Ny — 1)

C Xp(X, Ny, N2) 1)

C

Fig. 2. A schematic representation of the mass-spring-damper system.
Proof: R(Xr(X, Ny, Ny)) is the set of states reachable
from the robust feasible set X (X, Ny, N3) using admissible
inputs, while the set }?(XF(X Ny, N2)) N XF(X, N, —
1, Ny — 1) is the subset which is reachable using feasible
control inputs which obey the state constraints. Therefore,
after applying the feasible control computed by the MPC
regulator, the next state &(t 4 1|t) € R(Xr(X, Ny, N2)) N
Xp(X, Ny—1, Ny—1). Now, if &(t+1|t) € X (X, Ny, Na),
then by mathematical induction all future evolutions of
the system remain within the robust feasible set, which
completes the proof. [ ]
Corollary 10: In the special case of control horizon N,, =
1, the robust persistent feasiblity test reduces to:

R(Xp(X;1,N2))N Lyn,—1(X) C Xp(X,1,Ns)

~ Proof: 1In the case with N,, =1,
XF(X,O,N271) :LN2,1(X). |

Lemma 2: In case of output disturbance, the state con-
straints X must be replaced by the robust output admissible
set X9 , refer definition 2. Note that, input disturbances can
be moved to the output by filtering it through the plant
denominator A.
This result in practice can be conservative, as optimality
of the solution is not considered. Note that all the derived
results, as usual, hold for the nominal case with zero
disturbance i.e. n(t) = 0 and the corresponding sets are
represented without the ‘tilde’.

(22)

VI. EXAMPLE: MASS-SPRING-DAMPER

In this section, we demonstrate the procedure of obtaining
and testing persistent feasibility in the nominal and perturbed
cases, starting from transfer function model and using hori-
zon N,, < N, without any terminal conditions, over a mass-
spring-damper (MSD) setup of Fig. 2. The continuous time
input-output model of the MSD is given by

m-§(t) + e g(t) + k-y(t) = F() (23)

where y(t),u(t) = F(t) are the measured output displace-
ment and input force respectively with parameters m,c, k
being the mass, damping and spring constant respectively.
Now, this is discretized with sampling time 7; = 10ms
with the parameter values m = 1.7kg, ¢ = 9N/m/s, k =
450N /m to obtain the following system:

0.0545
1—1.902¢~1 + 0.9264¢2
y()]|oo < 2mm, [[u(t)|loo <IN [|n(t)]|oc <7

u(t)[N] +n(t)
24)

y(t)[mm] =

An input-output MPC regulator is designed with control



Cinv.Fset (1), Rch&Tun (g)

u(t-1) N

y(t-1) mm

y(t) mm

Fig. 3. Robust Persistent feasibility test: R(Xr(X,1,8)) N
L7(X) (green) C Xp(X,1,8) (red)

horizon N,, = 1 and prediction horizon Ny = 8. In the
nominal case ¥ = 0 and in the robust case v > 0 is the
upper bound on the output disturbance. Note that, no other
information is required as the persistent feasibility technique
is independent of the cost function. The first-step is to deduce
the state-space representation. The state vector is x(tf) =
[y(t),y(t — 1), u(t — 1)]T and the transformation matrices:

1.902 —-0.9264 0.0545 0
z(t+1)=| 1 0 0 |z()+| 0 |u(®)[N]
0 0 0 1

y(t)[mm] = [1 0 0]-z(¢) + n(t) (25)
|z(®)]|oo <2x2x 1T O [y x0x 0", [Ju(t)]| <IN

where © is the Pontryagin difference. Recollect that, in case
of output disturbance, the state constraints are mapped to
the output admissible set, which explains the state constraint
mapping above. A perturbation in the form of 10% additive
output disturbance is considered i.e. |y| = 0.2. In this case,
the robust feasibility set is computed as per theorem 4 to:

Xr(X,1,8) = Ki(X, L7(X)) (26)

after the computation of the 7-steps robust tunnel set fq(X)
and the 1-step robust controllable set to it i.e. K (X, L7(X)).
Next, the robust reach set of the robust feasibility set
R(Xp(X,1,8)) is computed and to check robust persistent
feasibility of the MPC problem, we make use of corollary
10:

Indeed, this test is fulfilled as can be seen graphically in Fig.
3 and thus a certificate of practical robust stability can now
be issued to this MPC controller.

Alternately, one may design a persistently feasible and
stabilizing controller by following the guidelines of V-A
for the nominal MSD system of (VI). Algorithm 1 suggests
N, =1, Ny = 32, algorithm 2 gives N, = 9, No = 40, and
algorithm 3 requires N,, = 3, No = 4. All the three designs
satisfy the persistent feasibility subset test of theorem 9.

VII. CONCLUSIONS

A theoretical framework to certify industrial MPC con-
trollers formulated in input-output domain with shorter con-
trol than prediction horizons and without any of the stabi-
lizing terminal conditions has been developed. First, a way
to transform the input-output MPC to state-space MPC has
been formulated. Then, a new robust tunnel set is introduced
to explicitly handle shorter control than prediction horizon.
Based on these, the feasible set of the MPC problem has
been characterized. Next, on one hand new guidelines are
given to choose stabilizing horizons without terminal condi-
tions, and on the other a mechanism for certifying existing
industrial MPC controllers without terminal conditions are
given through the notion of robust persistent feasibility.
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