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Abstract

In this paper we investigate stability and recursive feasibility of a nonlin-
ear receding horizon control scheme without terminal constraints and costs
but imposing state and control constraints. Under a local controllability as-
sumption we show that every level set of the infinite horizon optimal value
function is contained in the basin of attraction of the asymptotically stable
equilibrium for sufficiently large optimization horizon N .

For stabilizable linear systems we show the same for any compact subset
of the interior of the viability kernel. Moreover, estimates for the necessary
horizon length N are given via an analysis of the optimal value function at
the boundary of the viability kernel.

Keywords: predictive control, optimal control, nonlinear control, linear
systems, stability, state constraints, feasibility, optimal value functions

1. Introduction

Model predictive control (MPC) is a controller design technique relying
on the iterative solution of optimal control problems. In this paper we study
stability and recursive feasibility of nonlinear MPC schemes without stabiliz-
ing terminal constraints or costs. For such schemes, it is known that stability
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for sufficiently large optimization horizons can be deduced from controllabil-
ity assumptions or — alternatively and almost equivalently — bounds on
the optimal value functions, see Jadbabaie and Hauser (2005); Grimm et al.
(2005); Tuna et al. (2006); Grüne (2009); Grüne et al. (2010); Grüne and
Pannek (2011); Worthmann (2011).

The present paper extends this body of literature by taking into account
state constraints without assuming viability of the state constraint set or
boundedness of the optimal value function on this set or its viability kernel.
Avoiding the viability assumption is important since computing viable state
constraint sets is typically difficult if not impossible for complex systems.
Our analysis thus ensures proper functioning of MPC also in this case. Al-
lowing for unbounded optimal value functions is important in order to study
the behaviour of MPC schemes in a neighborhood of the boundary of the
stabilizable set, from which it may take arbitrarily long to control the sys-
tem to the desired equilibrium and thus the optimal value function can have
arbitrarily large values.

In the first part of the paper we consider general nonlinear systems and
assume a local controllability assumption in a neighbourhood of the equilib-
rium to be stabilized. Under this condition, we first analyse the behaviour of
the closed loop on level sets V −1∞ [0, C] of the infinite horizon optimal value
function. Using a technique similar to Primbs and Nevistić (2000) we obtain
recursive feasibility and an adaptation of an argument from Grimm et al.
(2005) yields asymptotic stability with V −1∞ [0, C] contained in the basin of
attraction, provided the optimization horizon N is suffiently large. Moreover,
quantitative estimates on the necessary length of N are given. This result
is then extended to compact sets lying in the domain of V∞ and avoiding
suitable defined exceptional regions O. Overall, this part of the paper can
be seen as a (discrete time) extension of Jadbabaie and Hauser (2005) to the
state constrained case and with additional quantitative estimates for N .

In the second part of the paper we specialize the results to the linear
quadratic case with convex constraints. We show that in this setting any
compact subset K in the interior of the viability kernel is contained in the
basin of attraction for sufficiently large N and give an estimate of N in terms
of the distance of K to the boundary of the viability kernel. These quantita-
tive results rely on an estimate of the growth of the optimal value function
V∞ at the boundary of the viability kernel which we obtained adapting a
technique from Gondhalekar et al. (2009). A particularly nice case appears
when V∞ is bounded on the viability kernel and we show that this prop-
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erty implies stationarity of the feasible sets in the sense of (Kerrigan, 2000,
Chapter 5).

The paper is organized as follows. After describing the setting in Section
2, Section 3 contains the nonlinear asymptotic stability and feasibility results.
The specialization to linear systems is presented in Section 4 and conclusions
are given in Section 5.

Notation: R and N denote real and natural numbers, respectively. N0 :=
N∪{0} and R≥0 indicates non-negative real numbers. The Euclidean norm in
Rn is written as | · | while given a matrix M ∈ Rn×m, ‖M‖ := sup|x|≤1 |Mx|.
B denotes the closed unit ball in Rn. Given a set S ⊂ Rn, S denotes its
closure, intS its interior and ∂S := S \ intS its boundary. Furthermore, a
continuous function η : R≥0 → R≥0 is said to be of class K if it is strictly
increasing and satisfies η(0) = 0. If η ∈ K is also unbounded, η is called a
class K∞-function. A function β : R≥0 × R≥0 → R≥0 is called KL-function
if it is continuous, satisfies β(·, t) ∈ K∞, t ∈ R≥0, is strictly decreasing in its
second argument for all r > 0, and limt→∞ β(r, t) = 0 holds.

2. Model Predictive Control

We consider discrete time systems governed by the system dynamics

x+ = f(x, u) (1)

where f : Rn×Rm → Rn is a map which determines the successor state x+ in
dependence of the current state x ∈ Rn and the control input u ∈ Rm. The
state trajectory emanating from initial state x0 and generated by the control
sequence u = (u(k))k∈N0 is denoted by xu(k;x0), k ∈ N0. Here, the trajectory
xu(·) = xu(·;x0) is defined iteratively by xu(k + 1; x0) = f(xu(k;x0), u(k))
and xu(0, x0) = x0. Constraints for the state x and the control u are modeled
by a suitably chosen subset E ⊆ Rn × Rm, i.e., we require

(x, u) ∈ E . (2)

Hence, for a given set E , the set of admissible states is given by the projection
of the set E on the state space Rn, i.e.

X := projRn(E) = {x ∈ Rn : ∃ u ∈ Rm s.t. (x, u) ∈ E}. (3)

Furthermore, for a given admissible state x ∈ X, the control constraints can
be represented by U(x) := {u ∈ Rm : (x, u) ∈ E}. Using these definitions
the concept of an admissible control sequence can be defined as follows.
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Definition 1 (Admissible control sequence). A sequence of control values
u = (u(0), u(1), . . . , u(N − 1)) is called admissible for x0 ∈ X and N ∈
N ∪ {∞} if the conditions

f(xu(k;x0), u(k)) ∈ X and u(k) ∈ U(xu(k;x0))

hold for all k ∈ {0, 1, . . . , N − 1}. The set of all admissible control sequences
of length N ∈ N ∪ {∞} is denoted by UN(x0).

Let x? ∈ X be a (controlled) equilibrium, i.e. there exists u? ∈ U(x?) such
that f(x?, u?) = x? holds. Our goal is to find a static state feedback µ : Rn →
Rm and a basin of attraction S ⊆ X such that the resulting closed loop x+ =
f(x, µ(x)) is asymptotically stable w.r.t. the desired equilibrium x?. This
means that for any initial state x0 ∈ S the closed loop trajectory xµ(k;x0),
k ∈ N0, generated by

xµ(k + 1;x0) = f(xµ(k;x0), µ(xµ(k;x0))), xµ(0;x0) = x0, (4)

remains feasible, i.e., (xµ(k;x0), µ(xµ(k;x0))) ∈ E holds for all k ∈ N0, and
satisfies the estimate |xµ(k;x0) − x?| ≤ β(|x0 − x?|, k), k ∈ N0, for some
KL-function β.

In MPC, the feedback values µ(x) are computed by solving optimal con-
trol problems. To this end, running costs ` : Rn × Rm → R≥0 satisfying
`(x?, u?) = 0 and

η(|x− x?|) ≤ `?(x) := inf
u∈U1(x)

`(x, u) ≤ η(|x− x?|) ∀ x ∈ X (5)

for two K∞-functions η, η are defined. The corresponding cost function

JN : Rn× (Rm)N → R≥0 and optimal value function VN : Rn → R≥0∪{+∞}
are given by

JN(x, u) :=
N−1∑
k=0

`(xu(k;x), u(k)) and VN(x) := inf
u∈UN (x)

J(x, u)

for N ∈ N∪{∞}, x ∈ X and u ∈ UN(x) with the convention VN(x) = +∞ if
x /∈ X or UN(x) = ∅. In principle, the stabilization problem could be solved
by solving the optimal control problem for N =∞. However, solving optimal
control problems on an infinite time horizon is, in general, computationally
hard. This explains why we pursue a different approach: model predictive
control (MPC), also termed receding horizon control. Fixing a finite predic-
tion horizon (or optimization horizon) N and setting xµ(0;x0) := x0, k := 0,
the MPC loop is as follows:
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1. Measure x = xµ(k;x0), solve the optimal control problem

minu∈UN (x) JN(x, u)

and denote a respective minimizing control sequence1 by u? ∈ UN(x).

2. Define the MPC feedback value by µN(x) := u?(0).

3. Apply the control µN(x) to the system, set k := k + 1 and go to 1.

Remark 2. In this paper we consider nominal MPC, i.e., we assume that
xµ(k;x0) resulting from the MPC algorithm satisfies (4) with µ = µN . We re-
mark that additional conditions would be needed in order to rigorously analyse
the effect of perturbations, as, e.g., discussed in Sections 8.8 and 8.9 of Grüne
and Pannek (2011). For the sake of brevity we refrain from addressing this
issue in this paper.

The MPC iteration yields a closed loop trajectory for the implicitly defined
MPC feedback law µN : X → Rm. However, while for N = ∞ stability of
the nominal closed loop follows by standard Lyapunov arguments, due to the
truncation of the optimization horizon stability, feasibility, and optimality
may get lost for finite N , see, e.g., Raff et al. (2006).

3. Recursive Feasibility and Asymptotic Stability

In order to guarantee that the optimal control problem in Step 1 of the
MPC loop is feasible, we need to ensure UN(x) 6= ∅ for x = xµN (k;x0),
k ∈ N0. This problem can be solved by incorporating suitable terminal
constraints and costs in the optimal control problem to be solved in each
MPC step. However, the construction of such stabilizing constraints may
be challenging and their use may considerably reduce the operating range of
the MPC scheme, cf. (Grüne and Pannek, 2011, Chapter 8) or Mayne (2013)
for a detailed discussion. Hence, we want to analyse the scheme without
additional terminal constraints or costs. In particular, feasibility of the MPC
algorithm in each step and asymptotic stability of the resulting closed loop
has to be ensured. To this end, the following local controllability condition
is employed.

1Whenever UN (x) 6= ∅, existence of a minimizer u? ∈ UN (x) satisfying JN (x, u?) =
VN (x) is assumed in order to avoid technical difficulties.
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Assumption 1. There exists a neighbourhood N of x? and a positive con-
stant γ ∈ R such that

V∞(x) ≤ γ · `?(x), ∀ x ∈ N ∩X.

Remark 3. (i) The name controllability condition stems from the fact that
the inequality V∞(x) < C requires the system to be controllable to x? suf-
ficienty fast, since otherwise (5) implies V∞(x) = +∞. For the particular
form of the bound γ assumed above, for instance the exponential controlla-
bility assumption w.r.t. `(.) used in (Grüne and Pannek, 2011, Chapter 6)
would be sufficient. However, note that in contrast to Grüne and Pannek
(2011) here we only require the inequality to hold locally around x?.

(ii) The condition on V∞ implies the analogous inequalities for VN , N ∈
N. These inequalities could be replaced by inequalities in which γ depends
on N , thus allowing for less conservative estimates, cf. Worthmann (2011).
However, in order to keep the presentation simple, in this paper we will work
with the assumption on V∞ and a single γ.

In order to formalize recursive feasibility, some notation is needed. The
feasible set for a horizon length N ∈ N ∪ {∞} is defined as

FN := {x ∈ X : UN(x) 6= ∅}. (6)

The set F∞ is also called viability kernel. Note that the definition immedi-
ately implies FN2 ⊆ FN1 for all N1, N2 ∈ N with N1 ≤ N2 and F∞ ⊆ FN for
all N ∈ N.

A set C ⊆ X is said to be (controlled) forward invariant or viable if, for
each x ∈ C, there exists u ∈ U(x) such that f(x, u) ∈ C holds. Observe that
every forward invariant set C ⊆ X satisfies the inclusion C ⊆ F∞ and that
the set of admissible states X is, in general, much larger than the viability
kernel F∞. Methods which can be used in order to compute invariant sets can
be found in Blanchini and Miani (2008). The set C is said to be recursively
feasible if it is forward invariant with respect to the feedback law µN , that is
µN(x) ∈ U(x) and f(x, µN(x)) ∈ C for all x ∈ C.

3.1. Asymptotic Stability on Level Sets

Ideally we would like the basin of attraction S to coincide with F∞ since
the viability kernel is the maximal set on which an admissible feedback can
be defined. However, this is, in general, not possible. The reason for this is
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that the closer we get to the boundary of F∞, the more costly (in the sense
of our objective JN) it may become to steer the system to x? and if this
happens then the optimization criterion may lead the MPC closed loop to
stay near the boundary of F∞ instead of approaching x?. Hence, a central
task considered in this paper is to estimate the basin of attraction S ⊆ F∞
and — conversely — given a set K ⊆ F∞ to estimate an optimization horizon
N such that K ⊆ S is guaranteed. We point out that in general the domain
of V∞, domV∞ := {x : V∞(x) < +∞}, is strictly contained in F∞, cf. the
example after Proposition 12.

As a first step, we consider the problem of determining a recursively
feasible set. To this end, for a given horizon length N ∈ N ∪ {∞} and a
positive constant C define the level set

V −1N [0, C] := {x ∈ X : VN(x) ≤ C}.

Since the running costs are supposed to satisfy (5), existence of the lower
bound

M := inf
x∈X \N

`?(x) > 0 (7)

is ensured. Then, for every x ∈ V −1N [0, C]\N , the inequality

VN(x) ≤ C

M
·M ≤ C

M
· `?(x)

holds. The parameter C can be chosen sufficiently large such that the in-
equality

VN(x) ≤ γ · `?(x) ≤ γ · sup
x∈N∩X

`?(x) ≤ C (8)

holds for all x ∈ N ∩ X. Summarizing, a constant β = β(C,M, γ) only
depending on Assumption 1, Condition (5), and a parameter C can be found
satisfying

VN(x) ≤ β · `?(x) ∀x ∈ V −1N [0, C] and N ∩X ⊆ V −1N [0, C]. (9)

This in particular shows that Assumption 1 can be extended to arbitrary
level sets V −1N [0, C]. This fact is exploited in order to prove Theorem 4.

Theorem 4. Let Assumption 1 and Inequality (5) be satisfied. Take any
positive real number C satisfying (8) and let M be defined as in (7). In
addition, choose N0 ∈ N such that the inequalities

C

(
β − 1

β

)N0−1

< M and 1− αN0 > 0 (10)
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are satisfied with β := max{C/M, γ, 2} and αN := β2
(
β−1
β

)N
. Then, for

every N ≥ N0 and every x ∈ V −1N [0, C], we have

VN(f(x, µN(x))) ≤ VN(x)− (1− αN)`?(x). (11)

In particular VN(·) is a Lyapunov function on the recursively feasible set
V −1N [0, C] which implies recursive feasibility and asymptotic stability of the
MPC closed loop.

Proof. The proof is an adaptation of the arguments developed in Grüne
(2012) to our setting. In particular, Variant II from Section 3.2 of this
paper is used, whose idea was taken from Tuna et al. (2006). Take any
x ∈ V −1N [0, C]. Then VN(x) ≤ C and by hypothesis there exists an admissi-
ble control sequence u? ∈ UN(x) such that VN(x) = JN(x, u?). If we define

`k := `(xu?(k;x), u?(k)) for k ∈ {0, 1, . . . , N − 1},

then VN(x) can be written as VN(x) =
∑p−1

k=0 `k +VN−p(xu?(p;x)) for any p =
0, 1, . . . , N−1. This implies VN−p(xu?(p;x)) ≤ C, i.e., xu?(p;x) ∈ V −1N−p[0, C].
Since β only depends on C, γ, and M (and not on the optimization horizon)
from (9) we obtain the inequality VN−p(xu?(p;x)) ≤ β`p. Therefore

VN(x) =
N−1∑
k=0

`k ≤
p−1∑
k=0

`k + β`p. (12)

If f(x, µN(x)) is feasible, i.e., if f(x, µN(x)) ∈ FN holds or, equivalently,
UN(f(x, µN(x))) 6= ∅, we obtain the inequality

VN(f(x, µN(x))) ≤
N−2∑
k=1

`k + V2(xu?(N − 1;x))

= VN(x)− `0 − `N−1 + V2(xu?(N − 1;x)). (13)

In general, however, without additional hypotheses, we cannot guarantee
feasibility of f(x, µN(x)). Still, by setting V2(xu?(N − 1;x)) = +∞ in case
of infeasibility we can extend (13) to this case.

We keep this in mind and show xu?(N − 1;x) ∈ N ∩ X and, thus,
V2(xu?(N − 1;x)) <∞. Indeed, by (12),

∑N−1
k=p+1 `k ≤ (β − 1)`p holds which

implies

N−1∑
k=p

`k ≥
(

β

β − 1

) N−1∑
k=p+1

`k ≥
(

β

β − 1

)2 N−1∑
k=p+2

`k ≥ . . . ≥
(

β

β − 1

)N−p−1
`N−1
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for p ∈ {0, 1, . . . , N − 1}. When p = 0, since x ∈ V −1N [0, C], we obtain

C ≥ VN(x) ≥
(

β

β − 1

)N−1
`N−1, (14)

β · ` ?(x) ≥ VN(x) ≥
(

β

β − 1

)N−1
`N−1. (15)

According to our choice of N Inequality (14) implies `?(xu?(N − 1;x)) ≤
`N−1 < M and, in view of xu?(N − 1;x) ∈ X and (7), xu?(N − 1;x) ∈ N ∩X
where our local Assumption 1 can be invoked. Consequently feasibility and
V2(xu?(N − 1;x)) ≤ γ`N−1 ≤ β`N−1 hold. A further appeal to (13) and (15)
now gives

VN(f(x, µN(x))) ≤ VN(x)− `0 + (β − 1)`N−1 ≤ VN(x)− (1− αN)`?(x),

i.e. Inequality (11) and recursive feasibility of the level set V −1N [0, C]. From
this and the bounds on VN induced by (5) and (9), the Lyapunov function
property of VN and asymptotic stability follow by standard arguments, see,
e.g. (Grüne, 2009, Section 5).

Remark 5. The optimization horizon N0 guaranteeing stability in Theorem
4 grows like 2 (C/M) lnC as C → +∞. Indeed the horizon N must satisfy

N >
2 ln β

ln β − ln(β − 1)

and β ∼ (C/M) as C →∞.2 A more careful analysis shows that this bound

can be improved by a factor 2: let Ñ be a neighbourhood of the origin such
that Ñ ∩X is controlled forward invariant.3 Define M̃ := infx∈X \ Ñ `

?(x) and

assume that the horizon N only satisfies the first inequality in (10), now with

respect to the constant M̃ . Then feasibility of the MPC closed loop trajectory
is ensured —as proved in Theorem 4— since xu?(N −1;x) ∈ Ñ ∩X which is
forward invariant.Since feasibility is now ensured, the estimates from (Grüne

2We use the notation f(x) ∼ g(x) as x → ∞ to indicate that the functions f(·) and

g(·) have asymptotically the same behaviour, i.e., that limx→∞
f(x)
g(x) = 1 holds.

3Such a neighborhood Ñ exists under the assumptions of Theorem 4 as one may define
Ñ as the interior of a sublevel set of VN .
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et al., 2010, Section 6) can be applied to get the improved value

αN =
(β − 1)N

βN−1 − (β − 1)N−1

which is smaller than 1 (as required) when N > 2 + ln(β−1)
lnβ−ln(β−1) . This bound

for the optimization horizon N now behaves asymptotically as (C/M) lnC
for C → +∞.

Often more restrictive controllability conditions are assumed in order to
ensure asymptotic stability, see, e.g. Tuna et al. (2006) or Grüne (2012) where
our local Assumption 1 was assumed on a (controlled) invariant subset of the
viability kernel. We like to point out that no ‘viability’ conditions — such as
forward invariance — nor regularity hypotheses on the dynamics f(·, ·) and
the control constraint set U(·) are imposed on X in this section.

3.2. Global stability

Theorem 4 implies that for each compact set K ⊆ X satisfying C :=
supV∞(K) <∞ the MPC controller yields asymptotic stability for N ≥ N0

with a basin of attraction S ⊇ V −1N [0, C] ⊇ K. In order to analyse which
kind of sets K have this property, we consider the set V −1∞ [0,+∞) = {x ∈
X : V∞(x) < +∞} and the decreasing family of sets V −1∞ [n,+∞) ⊇ V −1∞ [n+
1,+∞) with varying n ∈ N. For these sets we consider the set valued limit

O := lim
n→∞

V −1∞ [n,+∞) =
⋂
n∈N

V −1∞ [n,+∞),

cf. (Aubin and Frankowska, 1990, Section 1.1). In many cases of interest
the set O has zero measure. If, for example, the value function is uniformly
bounded or continuous on the set V −1∞ [0,+∞), then the set V −1∞ [0,+∞)∩O
is empty. Later on, conditions ensuring one of these two stipulations are
investigated for linear systems, see Section 4.

The relevance of the set O for MPC stems from the following claim: take
any compact set K ⊂ V −1∞ [0,+∞) \ O. Then we claim that there exists
C ∈ R>0 such that

V −1∞ [0, C] ⊇ K.

Suppose to the contrary, it would exist a convergent sequence (xn)n∈N0 ⊂ K
such that xn → x ∈ K and V∞(xn) > n. Thus xn ∈ V −1∞ [n,+∞) and x ∈ O.
This is not possible since x ∈ K.
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The following theorem shows the consequences of this claim for the MPC
controller. Its proof is an immediate consequence of the facts stated so far
in this section.

Theorem 6. Let Assumption 1 and Condition (5) be satisfied and K ⊂
V −1∞ [0,+∞) \ O be a compact set. Then there exists NK ∈ N such that for
each N ≥ NK the MPC closed loop is recursively feasible and asymptotically
stable with basin of attraction S ⊇ K.

Theorem 6 provides a nonlinear extension of the linear results shown in
Primbs and Nevistić (2000). It tells us that, for a sufficiently large horizon,
the MPC algorithm provides a recursively feasible and asymptotically sta-
ble closed loop on every compact set in which the value function is finite,
as long as we avoid ’small’ areas of bad behaviour (close to O). Note that
Theorem 6 is also applicable if state constraints are present and thus ex-
tends Jadbabaie and Hauser (2005). Compared to these references, the main
additional ingredient is the quantitative information on the upper bound
on V∞ provided locally by Assumption 1 and globally by the requirement
K ⊂ V −1∞ [0,+∞) \ O.

The set O can comprise points x satisfying V∞(x) = +∞, but may also
contain points x which are controllable to x? in finite time with V∞(x) <∞.
The latter situation is shown in the following example.

Example 7. Consider the one dimensional system x+ = ux2+(1−u)(x− 3
2
)

with X = [−1
2
, 2], U = {1} ∪ {0} and equilibrium x? = 0. Here, for a cost

function, say `(x, u) := |x|, the set V −1∞ [0,+∞) is equal to X. Nevertheless,
the set O is nonempty since O = {1} holds and V∞(1) is finite, cf. Figure 1.

4. Linear Systems

This section is dedicated to linear constrained systems

x+ = Ax+Bu, (x, u) ∈ E . (L)

For this class of systems we will be able to provide more precise estimates
for the constants involved in the general nonlinear results of the last section.
Moreover, we will be able to characterize the “exceptional set” O in more
detail and investigate the relation between the stabilizable set S and the
viability kernel F∞.
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Figure 1: Illustration of the value function V∞(·) for Example 7.

Like for nonlinear systems, we will base our analysis on the controllability
Assumption 1. It should be noted that for linear systems an alternative
methodology for ensuring stability and recursive feasibility of the MPC closed
loop is available, cf. Primbs and Nevistić (2000). However, this approach
requires precise knowledge on the growth of the value function and can,
thus, be seldomly applied if constraints are present. In contrast to that,
techniques based on Assumption 1 can be applied since this condition is
significantly easier to verify. Below, we prove that Assumption 1 can always
be ensured for a large class of linear constrained systems. To this end, we
make the folowing two assumptions.

Assumption 2. The constraint set E is convex, compact, and contains the
origin (0, 0) in its interior.

Assumption 3. The linear system described by the pair (A,B) is stabilizable.

4.1. Characterization of the Viability Kernel for Linear Systems

In the next two propositions we characterize the viability kernel F∞ in
order to gain insight into the structure of the set S on which the MPC
feedback law µN stabilizes the system. While similar statements can be
found in the viability literature, we decided to give sketches of the proofs in
order to keep the paper self contained.
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Proposition 8. Consider the linear system (L) with constraint E that sat-
isfies Assumption 2. The viability kernel F∞, and all the feasible sets FN ,
N ∈ N, are convex and compact sets.

Proof. Let N ∈ N∪ {∞}. In order to prove convexity, consider x1, x2 ∈ FN .
Then there are control sequences ui(·) ∈ UN(xi) with xui(k;xi) ∈ FN for
i ∈ {1, 2} and all k = 1, 2, . . . , N − 1. For any λ ∈ [0, 1], linearity of the
dynamics implies

xλu1+(1−λ)u2(k;λx1 + (1− λ)x2) = λxu1(k;x1) + (1− λ)xu2(k;x2)

for all k = 0, 1, . . . , N−1. Then convexity of E implies (xλu1+(1−λ)u2(k;λx1 +
(1− λ)x2), λu1(k) + (1− λ)u2(k)) ∈ E and thus λx1 + (1− λ)x2 ∈ FN .

Compactness follows from the fact that the sets FN are closed because E
is closed and the dynamics is continuous, and bounded because FN ⊆ X =
projRn(E) and X is bounded.

Proposition 9. Consider the viability kernel F∞ given by (6) and linear
dynamic as in (L). Let Assumption 2 be satisfied. Then, the following as-
sertions hold.

(a) The set λF∞ is forward invariant for any λ ∈ [0, 1]. More precisely
take any λ ∈ [0, 1] and x ∈ λF∞, there exists an admissible control
sequence u = (u(k))k∈N ∈ U∞(x) such that

(xu(k;x), u(k)) ∈ λE ⊆ E and xu(k;x) ∈ λF∞ ∀ k ∈ N0.

(b) If, in addition, Assumption 3 holds, the origin is contained in the in-
terior of the viability kernel, i.e., 0 ∈ intF∞.

Proof. Fix any λ ∈ (0, 1]. If λ = 0 the result is obvious being 0 an equi-
librium. Given any x ∈ λF∞ we have that x/λ ∈ F∞ and thus there is
uλ ∈ U∞(x/λ) such that

(xuλ(k;x/λ), uλ(k)) ∈ E and xuλ(k;x/λ) ∈ F∞ ∀ k ∈ N0.

Define the control sequence u := λuλ, we claim that u ∈ U∞(x). By linearity
λxuλ(k;x/λ) = xu(k;x) holds and part (a) follows upon multiplication by λ.

Part (b). Since the pair (A,B) is stabilizable, a feedback law F ∈ Rm×n

exists such that %(A+ BF ) < 1 holds, i.e. all eigenvalues of the closed loop
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given by A+BF are contained in the interior of the unit circle, cf. Hinrichsen
and Pritchard (2005). As a consequence, constants C ≥ 1 and σ ∈ (0, 1) exist
such that, for each state x0 ∈ Rn, the closed loop solution (xF (k;x0))k∈N0

generated by xF (k + 1;x0) = (A+BF )xF (k;x0), xF (0;x0) = x0, satisfies

|xF (k;x0)| ≤ ‖(A+BF )k‖ |x0| ≤ Cσk|x0| ∀ k ∈ N0. (16)

This shows in particular that |(xF (k;x0), FxF (k;x0))| ≤ Cσk(‖F‖ + 1)|x0|
holds. Recall that (0, 0) ∈ int E by hypothesis. Therefore existence of an ε-
ball εB ⊆ E is ensured. Hence, (xF (k;x0), FxF (k;x0)), k ∈ N0, is admissible,
which implies x0 ∈ F∞ for arbitrary x0 ∈ δB with C(‖F‖ + 1)δ ≤ ε. This
completes the proof of the proposition.

According to Propositions 8 and 9, when Assumptions 2 and 3 are in
force, the viability kernel F∞ is a compact and convex set containing the
origin in its interior and, for any λ ∈ [0, 1], the shrunk set λF∞ is controlled
forward invariant, i.e. for any x ∈ λF∞ there exists a feasible state trajectory
remaining in λF∞ for any time. In addition, by the fact that F∞ is the
maximal forward invariant set, we have information about the behaviour of
feasible trajectories on ∂F∞.

Proposition 10. Consider the linear system (L). If x ∈ ∂F∞, every feasible
trajectory will remain on the boundary unless it touches ∂X.

Proof. The result derives from the fact that F∞ is the maximal forward
invariant set. If there were a control u ∈ U(x) for x ∈ ∂F∞ \ ∂X such that
f(x, u) ∈ intF∞, then by continuity this would be true on a neighbourhood
of x making F∞ larger. For details we refer to Quincampoix (1992).

Remark 11. We remark that Proposition 10 remains true even if a nonlinear
system is considered, provided the dynamics f(·) are continuous.

4.2. Linear Quadratic MPC

The following Proposition provides a uniform bound for V∞(·) on the
interior of the viability kernel. This is a key ingredient in order to characterize
the operating range of the MPC feedback law µN . In particular, the set O
constructed in Subsection 3.2, if nonempty, can contain only points of the
boundary of the viability kernel.
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Proposition 12. Let Assumptions 2 and 3 be satisfied and let quadratic
running costs ` : Rn × Rm → R≥0 be given by

`(x, u) := (xT uT )

(
Q N
NT R

)(
x
u

)
(17)

with symmetric matrices Q ∈ Rn×n and R ∈ Rm×m. Then, for each λ ∈ [0, 1)
the optimal value function is uniformly bounded from above on λF∞, i.e.,
a constant M = M(λ) ∈ R≥0 exists such that V∞(x) ≤ M holds for all
x ∈ λF∞.

Proof. We borrow techniques from (Gondhalekar et al., 2009, Lemma 12).
Fix any λ ∈ (0, 1) and choose x ∈ λF∞ (the result is obvious for λ = 0). As
we have seen in Proposition 9(a) there exists uI ∈ U∞(x) such that

(xuI (k;x), uI(k)) ∈ λE and xuI (k;x) ∈ λF∞ ∀ k ∈ N0,

i.e. a feasible state trajectory which remains in the interior of F∞. In addi-
tion, since (A,B) is stabilizable, a feedback law F ∈ Rm×n exists such that
the corresponding closed loop x+F = (A+BF )xF satisfies Inequality (16), i.e.

|xF (k;x)| ≤ ‖(A+BF )k‖ |x| ≤ Cσk|x| ∀ k ∈ N0

for some C ≥ 1 and σ ∈ (0, 1) which, in particular, implies xF (k;x) → 0 as
k → ∞. However, the pair (xF , FxF ) may not satisfy the constraints. The
idea is to take a convex combination of these two trajectories and exploit
linearity and convexity of the data to show that such a combination defines
a feasible trajectory which converges to 0. When a sufficiently small neigh-
bourhood of the origin is reached, the constraints can be neglected and the
feedback law F is applied. This procedure yields a uniform bound for V∞(·).
Analytic arguments follow.

Using the control sequence uF given by uF (k) := FxF (k;x), k ∈ N0, we
have

|(xF (k;x), uF (k))| ≤ Cσk(‖F‖+ 1)|x| ≤ Lλσkdmin ∀ k ∈ N0 (18)

where L := C(‖F‖ + 1)dmaxd
−1
min with dmin := infx∈ ∂X |x| > 0 and dmax :=

supx∈X |x| < ∞. Hence, (xF (k;x), uF (k)) ∈ LλE holds for all k ∈ N0.
If λL ≤ 1, uF ∈ U∞(x) so that xF (k;x) is feasible for every k ∈ N0 and a
uniform bound for V∞(·) is given by supx∈X J∞(x, uF ) ≤ α for some α ∈ R≥0.
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Otherwise, for λL > 1, the control sequence u is defined as u(k) :=
µuI(k) + (1− µ)uF (k), k ∈ N0, with µ := λL−1

λ(L−1) ∈ (0, 1). Then, by linearity
of the dynamics

xu(k;x) = µxuI (k;x) + (1− µ)xuF (k;x).

Our choice of µ implies µλ + (1 − µ)Lλ = 1 and, thus, (xu(k;x), u(k)) ∈ E
for all k ∈ N0 which is, in turn, equivalent to admissibility of u. Now since
xF (k;x)→ 0 as k →∞, if k is taken large enough, the pair (xu(k;x), u(k)) ∈
ελE for some ε ∈ (µ, 1). More precisely, (xu(k;x), u(k)) ∈ ελE holds if (recall
Estimate (18))

µλ+ (1− µ)Lλσk ≤ ελ.

Call k∗ the first integer such that this condition is satisfied. If for example
ε := µ + 1−µ

L
, then k∗ is such that σk

∗ ≤ 1
L2 and so it is the only integer

satisfying logσ( 1
L2 ) ≤ k∗ < logσ( 1

L2 ) + 1.
The point xu(k

∗;x) ∈ λεF∞ and the procedure followed so far can be
iterated, say m times, until xu(mk

∗;x) ∈ λεmF∞ and λεmL ≤ 1. We keep
calling u the admissible sequence that transfers the point x ∈ λF∞ to the
point xu(mk

∗;x) ∈ λεmF∞. As soon as the condition λεmL ≤ 1 is satisfied,
we switch to the feedback F which ensures that the system feasibly con-
verges to the origin with uniformly bounded costs for each state contained
in λεmF∞. Since X and the constraint set are bounded, the prior caused
costs are also uniformly bounded since the number of steps needed in order
to reach this set is bounded by mk∗. Note that in particular

V∞(x) ≤ Jmk∗(x, u) + J∞(xu(mk
∗;x), uF ). (19)

This, in addition to the convergence to the origin already shown in (Gond-
halekar et al., 2009, Lemma 12), provides bounds on the number of steps
required in order to reach an arbitrarily small neighborhood of the origin —
independent of the chosen initial state x ∈ λF∞.

Note that, in Proposition 12, the compactness assumption on the con-
straint set cannot be dispensed with. For the simple system x+ = 2x + u,
u ∈ [−1, 1], X = R we have that F∞ = R but V∞(x) <∞ only on the open
interval (−1, 1).

We are now ready to show that for linear quadratic systems, in Theorem
6, Assumption 1 and Condition (5) can be replaced by the easily checkable
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Assumptions 2 and 3. Moreover, the set V −1∞ [0,+∞) \ O, see Theorem 6,
can be replaced by the interior intF∞ of the viability kernel.4

Theorem 13. Let Assumptions 2 and 3 hold. Furthermore, let the dynamics
be given by (L) and the running costs by (17) such that the matrix comprised
of Q, R, and N is positive definite. Let K ⊆ intF∞ be a compact set.
Then, a prediction horizon NK ∈ N exists such that, for each N ≥ NK, the
MPC feedback law µN asymptotically stabilizes the closed loop at x? = 0 on
a recursively feasible set S ⊇ K.

Proof. Since the running costs ` are quadratic and positive definite there
exist constants c, c such that c|x|2 ≤ `?(x) ≤ c|x|2, i.e. Condition (5) holds.
Furthermore, since the origin is contained in the interior of the constraint set
E and the pair (A,B) is supposed to be stabilizable, a neighborhood N of
the origin exists such that an LQR can be applied neglecting the constraints.
Then, the solution P of the algebraic Riccati equation fulfills V∞(x0) =
xT0 Px0 ≤ c|x0|2 ≤ ρ`?(x0) with ρ := cc−1 on N where c is the maximal
eigenvalue of P , implying Assumption 1.

Moreover, since K is compact and contained in intF∞, we can conclude
that K ⊆ intλF∞ for some λ ∈ (0, 1). Hence, by Proposition 12, V∞ is
bounded on a neighborhood of K and consequently K ⊆ V −1∞ [0,+∞) \ O.

Hence, all assumptions of Theorem 6 are satisfied and the assertion follows
from this theorem.

Next, under the assumptions of Theorem 13 we are going to investigate
the dependence of the horizon NK on the distance of the compact set K from
the boundary of the viability kernel ∂F∞. To this end, denoting the control
u in (19) by ux, we obtain

sup
x∈λF∞

V∞(x) ≤ sup
x∈λF∞

Jmk∗(x, ux) + sup
x∈X

J∞(x, uF ) ≤ βmk∗ + α,

for constants α, β > 0 only depending on the data of the problem (m = 0
holds for λL ≤ 1). We emphasise that m depends on λ, indeed m is the
smallest integer which satisfies εm ≤ 1

λL
. We also recall that k∗ can be

chosen to be the unique integer which satisfies logσ( 1
L2 ) ≤ k∗ < logσ( 1

L2 ) +

4Observe that O may still contain points on ∂F∞ at which the value function is finite
but discontinuous, cf. Boccia et al. (2014) for details.
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1. Consequently defining β̃ := βk∗ we obtain supx∈λF∞ V∞(x) ≤ β̃m + α.
Following our choice ε = µ+ 1−µ

L
(where we recall µ = λL−1

λ(L−1)) we have that

ε = 1− 1−λ
λL

. This yields an estimate for the growth of m. More precisely

m ∼ L lnL

1− λ
as λ→ 1. (20)

This estimates is achieved by using the definition of m as the smallest integer
which satisfies εm ≤ 1

λL
, and performing an asymptotic analysis.

When we are in a sufficiently small neighbourhood of the origin, say δB,
constraints can be neglected and V∞(x) = xTPx where P is the solution of
the algebraic Riccati equation. This in turn gives a bound for V∞(·) of the
type V∞(x) ≤ ρ|x|2 for all x ∈ δB. Away from the origin, when constraints
are present this bound is no longer satisfied. We have shown, though, that
it is possible to find constants β̃ and α̃ := max{ρ, α/δ} such that

V∞(x) ≤ β̃m(x) + α̃|x|2. (21)

Here m(x) := inf{m ∈ N : (1− 1−g(x)
g(x)L

)m ≤ 1
g(x)L
}, where

g(x) := inf{γ > 0 : γ−1x ∈ F∞} . (22)

By definition, m(x) = +∞ if x /∈ intF∞ (or equivalently if g(x) ≥ 1),
m(x) = 0 if g(x) ≤ 1/L and it is a finite natural number elsewhere. Moreover
by (20) we know that limx→∂F∞m(x) = +∞. In the next corollary we give
a characterization of the asymptotic behavior of m(x) (and hence of V∞(x))
in terms of the distance of x from ∂F∞ when x approaches the boundary of
F∞.

Corollary 14. Let the assumptions of Proposition 12 be satisfied. Then the
function m(.), defined in (21), behaves asymptotically like5 m(x) ∼ ωL lnL

dist(x;∂F∞)

as x → ∂F∞, where ω ∈ [infx∈∂F∞ |x|, supx∈F∞ |x| ] and L is from the proof
of Proposition 12. Moreover, m(x) = 0 in a sufficiently small neighbourhood
of the origin.

Proof. We only have to verify the assertion m(x) ∼ ωL lnL
dist(x;∂F∞)

for some ω ∈
[f−, f+] where f− := infx∈∂F∞ |x| and f+ := supx∈F∞ |x|. To this end we will

5Given any set Ω ⊂ Rn and x ∈ Rn, dist(x; Ω) denotes the Euclidean distance of the
point x from the set Ω. Given a second set K ⊂ Rn, dist(K; Ω) := minx∈K dist(x; Ω).
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use the function g(·), defined in (22), to compare λ and dist(x; ∂F∞) when
x ∈ λ∂F∞.6

For every x ∈ λ∂F∞, λ ∈ (0, 1), we define π(x) to be a projection of
x onto ∂F∞. Then dist(x; ∂F∞) = |x − π(x)|. Moreover g(x) = λ and
g(π(x)) = 1. Therefore

1− λ = g(π(x))− g(x) ≤ 1

f−
|x− π(x)| = 1

f−
dist(x; ∂F∞) .

On the other hand

dist(x; ∂F∞) ≤ |x
λ
− x| ≤ f+ 1− λ

λ
.

Now the assertion follows from (20).

Using this estimate we arrive at the following estimate for the optimiza-
tion horizon needed in order to ensure K ⊆ S.

Corollary 15. Given a compact set K ⊆ intF∞ there exists a constant D
only depending on the data of the problem such that

sup
x∈K

V∞(x) ≤ D

dist(K; ∂F∞)
. (23)

Moreover, whenever N ≥ NK, where NK is the smallest integer satisfying

NK > 2 +
ln(β − 1)

ln β − ln(β − 1)
(24)

for β = max{D · (M · dist(K; ∂F∞))−1, γ}, then the MPC closed loop is
asymptotically stable with recursively feasible basin of attraction S ⊇ K.
Asymptotically, NK behaves like

D

M · dist(K; ∂F∞)
ln

(
D

dist(K; ∂F∞)

)
.

Proof. The bound in (23) follows directly from Corollary 14 choosing a con-
stant D sufficiently large. Theorem 4 and Remark 5 then yield the inequali-
ties for NK .

6This function is Lipschitz with Lipschitz constant 1/f−. (The function g(·) is com-
monly called gauge or Minkowski functional of F∞, see Brezis (2011), Lemma 1.2.

19



The following example illustrates that the required prediction horizon
grows rapidly for initial values approaching the boundary of the viability
kernel.

Example 16. We consider the controllable and, thus, in particular stabiliz-
able linear system given by

x+ =

(
1 1
0 2

)(
x1
x2

)
+

(
1 0
0 1

)(
u1
u2

)
with constraints X := [−100, 100]× [−1, 1] and

U :=

{
u ∈ R2 :

(
1 −1 1 −1
1 1 −1 −1

)T (
u1
u2

)
≤
(

1 1 1 1
)T}

.

The quadratic stage costs are given by

`(x, u) =

(
x1
x2

)T (
100 0
0 1

)(
x1
x2

)
+

(
u1
u2

)T (
1 0
0 100

)(
u1
u2

)
.

Then, the minimal stabilizing horizon N̂ := min{N ∈ N : xµN (k;x0) →
0 for k → ∞} w.r.t. the origin (controlled equilibrium for u? = (0 0)T ) in
dependence of given initial values are shown in the following table.7

x1 0.5 0.5 0.5 0.5 0.5 0.5
x2 0.9 0.99 0.999 0.9999 0.99999 0.999999

N̂ 6 6 7 10 13 16

4.3. Boundedness of V∞ on the Viability Kernel F∞
In the preceeding Subsection 4.2 we considered the stabilization task for

arbitrary compact sets contained in the interior of the viability kernel F∞.
However, it follows from Theorem 4 that for each sufficiently large N MPC
will yield asymptotic stability with the basin of attraction S containing the
whole viability kernel F∞ if supV∞(F∞) is finite. In this final section we
show that this property implies stationarity of the feasible sets FN .

7Note that the point (0.5, 1)T is not contained in the viability kernel F∞. N̂ was
computed with the Matlab-routine mpc ExampleBGW.m which is available for download at
http://num.math.uni-bayreuth.de/de/publications/2014/boccia et al feasibility 2014.
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We say that the feasible sets FN become stationary, if there exists N0 ∈ N
with FN = FN0 for all N ≥ N0. In (Kerrigan, 2000, Theorem 5.3) (see also
(Grüne, 2012, Section 5.1)), it was shown that stationarity of the feasible
sets is sufficient for recursive feasibility of F∞ for all optimization horizons
N ≥ N0 + 1. In the following theorem we show that it is also necessary for
V∞ being bounded on the viability kernel F∞.

Theorem 17. Consider the linear system (L) with positive definite quadratic
running costs ` and let Assumptions 2 and 3 be satisfied. Then, if V∞(x) ≤
c holds for some c ∈ R>0 and all x ∈ F∞, the feasible sets FN become
stationary for some N0 ∈ N.

Proof. By definition FN ⊇ F∞. Moreover we know that, for every N ∈ N,
FN is convex (Proposition 8) and that VN is a convex function (convex costs,
convex constraints, and linear dynamics). We prove the result by showing
the existence of N0 with FN0 = F∞, which implies stationarity. We proceed
by contradiction, i.e., we assume that FN ) F∞ holds for every N ∈ N.

Due to Assumptions 2 and 3 and the linearity of the system dynamics F∞
contains a (small) ball Br := {x ∈ Rn : ‖x‖ < r} with radius r > 0 around
the origin. Hence, any trajectory originating at x0 cannot reach F∞ and in
particular remains outside Br. Then, if N ∈ N is chosen sufficiently large,
we have that VN(x0) > c+ 2 for every x0 ∈ FN \ F∞ since the running costs
`(·) imply costs of at least infx∈X:‖x‖≥r `

?(x) =: % > 0 along the respective
optimal trajectory and, thus, VN(x0) ≥ N% holds.

Now fix a natural number N ∈ N with N% > c + 2 and observe that by
convexity of the set FN we may choose x ∈ FN \F∞ and y ∈ ∂F∞ such that
λy + (1 − λ)x ∈ FN \ F∞ for all λ ∈ (0, 1). This implies the inequalities
VN(λy + (1 − λ)x) > c + 2 for all λ ∈ (0, 1) and VN(y) ≤ V∞(y) ≤ c. Then
for all λ ∈ (0, 1), convexity of VN yields

c+ 2 < VN(λy + (1− λ)x) ≤ λVN(y) + (1− λ)VN(x) ≤ λc+ (1− λ)VN(x).

For λ sufficiently close to 1 we obtain the desired contradiction because VN(x)
is finite.

The converse is not true in general as shown in the following Example 18.

Example 18. Consider the discrete time system in R given by

x+ = 2x+ u with constraint set E := [−1, 1]× [−1, 1].
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Since every x ∈ X = [−1, 1] is a controlled equilibrium (u = −x) F∞ = X
and, thus, FN = F∞ actually holds for every N ∈ N. Yet, for any positive
definite quadratic cost V∞ fails to be bounded on ∂F∞ and grows unboundedly
for x→ ∂F∞, as the following computation shows.

If x0 = 1 the only admissible control sequence u is u ≡ −1 for every time
instant. Indeed xu(k; 1) = 1 for every k ∈ N. Therefore as soon as we define
a cost say `(x, u) = x2 we have that V∞(1) = +∞. The point x0 = −1 has
a similar behaviour. Every other initial point x0 ∈ (−1, 1) = X \ {1,−1},
different from 1 and −1, can be controlled to zero in finite time by

ux0(k) = − sign(xux0 (k;x0)) min{2|xux0 (k;x0)|, 1}.

However, the closer x0 to 1 or −1, the longer it will take before an interval of
the form [−δ, δ] for δ ∈ (0, 1) can be reached. Hence, as x0 → 1 or x0 → −1,
the value function V∞(x0) tends to +∞.

5. Conclusions

We investigated recursive feasibility and asymptotic stability for nonlinear
MPC schemes with state and control constraints without imposing stabiliz-
ing terminal constraints or costs. Assuming a local controllability condition
around the equilibrium to be stabilized, we have shown that the system can
be asymptotically stabilized and that any level set V −1[0, C] of the infinite
horizon optimal value function V∞ is contained in the domain of attraction
for sufficiently large optimization horizon N . Moreover, we established a
quantitative relation between the level C and the proposed estimate of the
horizon N .

For linear systems, this relation was made more precise by estimating the
growth of V∞ at the boundary of the viability kernel. Particularly, we have
shown that any compact subset of the interior of the viability kernel F∞ is
contained in the basin of attraction S for sufficiently large N . Our analysis
moreover shows that the whole viability kernel F∞ is contained in S if V∞ is
bounded on F∞. This property, in turn, implies stationarity of the feasible
sets FN .
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Grüne, L., Pannek, J., 2011. Nonlinear Model Predictive Control: Theory
and Algorithms. Communications and Control Engineering, Springer Lon-
don Dordrecht Heidelberg New York.

Grüne, L., Pannek, J., Seehafer, M., Worthmann, K., 2010. Analysis of
unconstrained nonlinear MPC schemes with varying control horizon. SIAM
J. Control Optim. 48 (8), 4938–4962.

23



Hinrichsen, D., Pritchard, A., 2005. Mathematical Systems Theory I. Num-
ber 48 in Texts in Applied Mathematics, Springer, Berlin Heidelberg.

Jadbabaie, A., Hauser, J., 2005. On the stability of receding horizon control
with a general terminal cost. IEEE Transactions on Automatic Control
50, 674–678.

Kerrigan, E.C., 2000. Robust constraint satisfaction: Invariant sets and
predictive control. PhD Thesis, University of Cambridge.

Mayne, D., 2013. An apologia for stabilising terminal conditions in model
predictive control. International Journal of Control 86, 2090–2095.
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