566 research outputs found

    Low Power, Low Delay: Opportunistic Routing meets Duty Cycling

    Get PDF
    Traditionally, routing in wireless sensor networks consists of two steps: First, the routing protocol selects a next hop, and, second, the MAC protocol waits for the intended destination to wake up and receive the data. This design makes it difficult to adapt to link dynamics and introduces delays while waiting for the next hop to wake up. In this paper we introduce ORW, a practical opportunistic routing scheme for wireless sensor networks. In a dutycycled setting, packets are addressed to sets of potential receivers and forwarded by the neighbor that wakes up first and successfully receives the packet. This reduces delay and energy consumption by utilizing all neighbors as potential forwarders. Furthermore, this increases resilience to wireless link dynamics by exploiting spatial diversity. Our results show that ORW reduces radio duty-cycles on average by 50% (up to 90% on individual nodes) and delays by 30% to 90% when compared to the state of the art

    A Review of Energy Conservation in Wireless Sensor Networks

    Get PDF
    In wireless sensor networks, energy efficiency plays a major role to determine the lifetime of the network. The network is usually powered by a battery which is hard to recharge. Hence, one major challenge in wireless sensor networks is the issue of how to extend the lifetime of sensors to improve the efficiency. In order to reduce the rate at which the network consumes energy, researchers have come up with energy conservation techniques, schemes and protocols to solve the problem. This paper presents a brief overview of wireless sensor networks, outlines some causes of its energy loss and some energy conservation schemes based on existing techniques used in solving the problem of power management. Keywords: Wireless sensor network, Energy conservation, Duty cycling and Energy efficiency

    Modelling and performability evaluation of Wireless Sensor Networks

    Get PDF
    This thesis presents generic analytical models of homogeneous clustered Wireless Sensor Networks (WSNs) with a centrally located Cluster Head (CH) coordinating cluster communication with the sink directly or through other intermediate nodes. The focus is to integrate performance and availability studies of WSNs in the presence of sensor nodes and channel failures and repair/replacement. The main purpose is to enhance improvement of WSN Quality of Service (QoS). Other research works also considered in this thesis include modelling of packet arrival distribution at the CH and intermediate nodes, and modelling of energy consumption at the sensor nodes. An investigation and critical analysis of wireless sensor network architectures, energy conservation techniques and QoS requirements are performed in order to improve performance and availability of the network. Existing techniques used for performance evaluation of single and multi-server systems with several operative states are investigated and analysed in details. To begin with, existing approaches for independent (pure) performance modelling are critically analysed with highlights on merits and drawbacks. Similarly, pure availability modelling approaches are also analysed. Considering that pure performance models tend to be too optimistic and pure availability models are too conservative, performability, which is the integration of performance and availability studies is used for the evaluation of the WSN models developed in this study. Two-dimensional Markov state space representations of the systems are used for performability modelling. Following critical analysis of the existing solution techniques, spectral expansion method and system of simultaneous linear equations are developed and used to solving the proposed models. To validate the results obtained with the two techniques, a discrete event simulation tool is explored. In this research, open queuing networks are used to model the behaviour of the CH when subjected to streams of traffic from cluster nodes in addition to dynamics of operating in the various states. The research begins with a model of a CH with an infinite queue capacity subject to failures and repair/replacement. The model is developed progressively to consider bounded queue capacity systems, channel failures and sleep scheduling mechanisms for performability evaluation of WSNs. Using the developed models, various performance measures of the considered system including mean queue length, throughput, response time and blocking probability are evaluated. Finally, energy models considering mean power consumption in each of the possible operative states is developed. The resulting models are in turn employed for the evaluation of energy saving for the proposed case study model. Numerical solutions and discussions are presented for all the queuing models developed. Simulation is also performed in order to validate the accuracy of the results obtained. In order to address issues of performance and availability of WSNs, current research present independent performance and availability studies. The concerns resulting from such studies have therefore remained unresolved over the years hence persistence poor system performance. The novelty of this research is a proposed integrated performance and availability modelling approach for WSNs meant to address challenges of independent studies. In addition, a novel methodology for modelling and evaluation of power consumption is also offered. Proposed model results provide remarkable improvement on system performance and availability in addition to providing tools for further optimisation studies. A significant power saving is also observed from the proposed model results. In order to improve QoS for WSN, it is possible to improve the proposed models by incorporating priority queuing in a mixed traffic environment. A model of multi-server system is also appropriate for addressing traffic routing. It is also possible to extend the proposed energy model to consider other sleep scheduling mechanisms other than On-demand proposed herein. Analysis and classification of possible arrival distribution of WSN packets for various application environments would be a great idea for enabling robust scientific research

    A framework for energy based performability models for wireless sensor networks

    Get PDF
    A novel idea of alternating node operations between Active and Sleep modes in Wireless Sensor Network (WSN) has successfully been used to save node power consumption. The idea which started off as a simple implementation of a timer in most protocols has been improved over the years to dynamically change with traffic conditions and the nature of application area. Recently, use of a second low power radio transceiver to triggered Active/Sleep modes has also been made. Active/Sleep operation modes have also been used to separately model and evaluate performance and availability of WSNs. The advancement in technology and continuous improvements of the existing protocols and application implementation demands continue to pose great challenges to the existing performance and availability models. In this study the need for integrating performance and availability studies of WSNs in the presence of both channel and node failures and repairs is investigated. A framework that outlines and characterizes key models required for integration of performance and availability of WSN is in turn outlined. Possible solution techniques for such models are also highlighted. Finally it is shown that the resulting models may be used to comparatively evaluate energy consumption of the existing motes and WSNs as well as deriving required performance measures

    Duty-cycled Wake-up Schemes for Ultra-low Power Wireless Communications

    Get PDF
    In sensor network applications with low traffic intensity, idle channel listening is one of the main sources of energy waste.The use of a dedicated low-power wake-up receiver (WRx) which utilizes duty-cycled channel listening can significantlyreduce idle listening energy cost. In this thesis such a scheme is introduced and it is called DCW-MAC, an acronym forduty-cycled wake-up receiver based medium access control.We develop the concept in several steps, starting with an investigation into the properties of these schemes under idealizedconditions. This analysis show that DCW-MAC has the potential to significantly reduce energy costs, compared to twoestablished reference schemes based only on low-power wake up receivers or duty-cycled listening. Findings motivatefurther investigations and more detailed analysis of energy consumption. We do this in two separate steps, first concentratingon the energy required to transmit wake-up beacons and later include all energy costs in the analysis. The more completeanalysis makes it possible to optimize wake-up beacons and other DCW-MAC parameters, such as sleep and listen intervals,for minimal energy consumption. This shows how characteristics of the wake-up receiver influence how much, and if, energycan be saved and what the resulting average communication delays are. Being an analysis based on closed form expressions,rather than simulations, we can derive and verify good approximations of optimal energy consumption and resulting averagedelays, making it possible to quickly evaluate how a different wake-up receiver characteristic influences what is possible toachieve in different scenarios.In addition to the direct optimizations of the DCW-MAC scheme, we also provide a proof-of-concept in 65 nm CMOS,showing that the digital base-band needed to implement DCW-MAC has negligible energy consumption compared to manylow-power analog front-ends in literature. We also propose a a simple frame-work for comparing the relative merits ofanalog front-ends for wake-up receivers, where we use the experiences gained about DCW-MAC energy consumption toprovide a simple relation between wake-up receiver/analog front-end properties and energy consumption for wide ranges ofscenario parameters. Using this tool it is possible to compare analog front-ends used in duty-cycled wake-up schemes, evenif they are originally designed for different scenarios.In all, the thesis presents a new wake-up receiver scheme for low-power wireless sensor networks and provide a comprehensiveanalysis of many of its important properties

    HEH-BMAC: hybrid polling MAC protocol for WBANs operated by human energy harvesting

    Get PDF
    This paper introduces human energy harvesting medium access control (MAC) protocol (HEH-BMAC), a hybrid polling MAC suitable for wireless body area networks powered by human energy harvesting. The proposed protocol combines two different medium access methods, namely polling (ID-polling) and probabilistic contention access, to adapt its operation to the different energy and state (active/inactive) changes that the network nodes may experience due to their random nature and the time variation of the energy harvesting sources. HEH-BMAC exploits the packet inter-arrival time and the energy harvesting rate information of each node to implement an efficient access scheme with different priority levels. In addition, our protocol can be applied dynamically in realistic networks, since it is adaptive to the topology changes, allowing the insertion/removal of wireless sensor nodes. Extensive simulations have been conducted in order to evaluate the protocol performance and study the throughput and energy tradeoffs.Peer ReviewedPostprint (author's final draft

    MAC protocols with wake-up radio for wireless sensor networks: A review

    Get PDF
    The use of a low-power wake-up radio in wireless sensor networks is considered in this paper, where relevant medium access control solutions are studied. A variety of asynchronous wake-up MAC protocols have been proposed in the literature, which take advantage of integrating a second radio to the main one for waking it up. However, a complete and a comprehensive survey particularly on these protocols is missing in the literature. This paper aims at filling this gap, proposing a relevant taxonomy, and providing deep analysis and discussions. From both perspectives of energy efficiency and latency reduction, as well as their operation principles, state-of-the-art wake-up MAC protocols are grouped into three main categories: (1) duty cycled wake-up MAC protocols; (2) non-cycled wake-up protocols; and (3) path reservation wake-up protocols. The first category includes two subcategories: (1) static wake-up protocols versus (2) traffic adaptive wake-up protocols. Non-cycled wake-up MAC protocols are again divided into two classes: (1) always-on wake-up protocol and (2) radio-triggered wake-up protocols. The latter is in turn split into two subclasses: (1) passive wake-up MAC protocols versus (2) ultra low power active wake-up MAC protocols. Two schemes could be identified for the last category, (1) broadcast based wake-up versus (2) addressing based wake-up. All these classes are discussed and analyzed in this paper, and canonical protocols are investigated following the proposed taxonomy

    Energy-efficient wireless medium access control protocols for Specknets

    Get PDF
    • …
    corecore