199 research outputs found

    Novel algorithms for fair bandwidth sharing on counter rotating rings

    Get PDF
    Rings are often preferred technology for networks as ring networks can virtually create fully connected mesh networks efficiently and they are also easy to manage. However, providing fair service to all the stations on the ring is not always easy to achieve. In order to capitalize on the advantages of ring networks, new buffer insertion techniques, such as Spatial Reuse Protocol (SRP), were introduced in early 2000s. As a result, a new standard known as IEEE 802.17 Resilient Packet Ring was defined in 2004 by the IEEE Resilient Packet Ring (RPR) Working Group. Since then two addenda have been introduced; namely, IEEE 802.17a and IEEE 802.17b in 2006 and 2010, respectively. During this standardization process, weighted fairness and queue management schemes were proposed to be used in the standard. As shown in this dissertation, these schemes can be applied to solve the fairness issues noted widely in the research community as radical changes are not practical to introduce within the context of a standard. In this dissertation, the weighted fairness aspects of IEEE 802.17 RPR (in the aggressive mode of operation) are studied; various properties are demonstrated and observed via network simulations, and additional improvements are suggested. These aspects have not been well studied until now, and can be used to alleviate some of the issues observed in the fairness algorithm under some scenarios. Also, this dissertation focuses on the RPR Medium Access Control (MAC) Client implementation of the IEEE 802.17 RPR MAC in the aggressive mode of operation and introduces a new active queue management scheme for ring networks that achieves higher overall utilization of the ring bandwidth with simpler and less expensive implementation than the generic implementation provided in the standard. The two schemes introduced in this dissertation provide performance comparable to the per destination queuing implementation, which yields the best achievable performance at the expense of the cost of implementation. In addition, till now the requirements for sizing secondary transit queue of IEEE 802.17 RPR stations (in the aggressive mode of operation) have not been properly investigated. The analysis and suggested improvements presented in this dissertation are then supported by performance evaluation results and theoretical calculations. Last, but not least, the impact of using different capacity links on the same ring has not been investigated before from the ring utilization and fairness points of view. This dissertation also investigates utilizing different capacity links in RPR and proposes a mechanism to support the same

    Fairness in a data center

    Get PDF
    Existing data centers utilize several networking technologies in order to handle the performance requirements of different workloads. Maintaining diverse networking technologies increases complexity and is not cost effective. This results in the current trend to converge all traffic into a single networking fabric. Ethernet is both cost-effective and ubiquitous, and as such it has been chosen as the technology of choice for the converged fabric. However, traditional Ethernet does not satisfy the needs of all traffic workloads, for the most part, due to its lossy nature and, therefore, has to be enhanced to allow for full convergence. The resulting technology, Data Center Bridging (DCB), is a new set of standards defined by the IEEE to make Ethernet lossless even in the presence of congestion. As with any new networking technology, it is critical to analyze how the different protocols within DCB interact with each other as well as how each protocol interacts with existing technologies in other layers of the protocol stack. This dissertation presents two novel schemes that address critical issues in DCB networks: fairness with respect to packet lengths and fairness with respect to flow control and bandwidth utilization. The Deficit Round Robin with Adaptive Weight Control (DRR-AWC) algorithm actively monitors the incoming streams and adjusts the scheduling weights of the outbound port. The algorithm was implemented on a real DCB switch and shown to increase fairness for traffic consisting of mixed-length packets. Targeted Priority-based Flow Control (TPFC) provides a hop-by-hop flow control mechanism that restricts the flow of aggressor streams while allowing victim streams to continue unimpeded. Two variants of the targeting mechanism within TPFC are presented and their performance evaluated through simulation

    Control of transport dynamics in overlay networks

    Get PDF
    Transport control is an important factor in the performance of Internet protocols, particularly in the next generation network applications involving computational steering, interactive visualization, instrument control, and transfer of large data sets. The widely deployed Transport Control Protocol is inadequate for these tasks due to its performance drawbacks. The purpose of this dissertation is to conduct a rigorous analytical study on the design and performance of transport protocols, and systematically develop a new class of protocols to overcome the limitations of current methods. Various sources of randomness exist in network performance measurements due to the stochastic nature of network traffic. We propose a new class of transport protocols that explicitly accounts for the randomness based on dynamic stochastic approximation methods. These protocols use congestion window and idle time to dynamically control the source rate to achieve transport objectives. We conduct statistical analyses to determine the main effects of these two control parameters and their interaction effects. The application of stochastic approximation methods enables us to show the analytical stability of the transport protocols and avoid pre-selecting the flow and congestion control parameters. These new protocols are successfully applied to transport control for both goodput stabilization and maximization. The experimental results show the superior performance compared to current methods particularly for Internet applications. To effectively deploy these protocols over the Internet, we develop an overlay network, which resides at the application level to provide data transmission service using User Datagram Protocol. The overlay network, together with the new protocols based on User Datagram Protocol, provides an effective environment for implementing transport control using application-level modules. We also study problems in overlay networks such as path bandwidth estimation and multiple quickest path computation. In wireless networks, most packet losses are caused by physical signal losses and do not necessarily indicate network congestion. Furthermore, the physical link connectivity in ad-hoc networks deployed in unstructured areas is unpredictable. We develop the Connectivity-Through-Time protocols that exploit the node movements to deliver data under dynamic connectivity. We integrate this protocol into overlay networks and present experimental results using network to support a team of mobile robots

    End-to-End Resilience Mechanisms for Network Transport Protocols

    Get PDF
    The universal reliance on and hence the need for resilience in network communications has been well established. Current transport protocols are designed to provide fixed mechanisms for error remediation (if any), using techniques such as ARQ, and offer little or no adaptability to underlying network conditions, or to different sets of application requirements. The ubiquitous TCP transport protocol makes too many assumptions about underlying layers to provide resilient end-to-end service in all network scenarios, especially those which include significant heterogeneity. Additionally the properties of reliability, performability, availability, dependability, and survivability are not explicitly addressed in the design, so there is no support for resilience. This dissertation presents considerations which must be taken in designing new resilience mechanisms for future transport protocols to meet service requirements in the face of various attacks and challenges. The primary mechanisms addressed include diverse end-to-end paths, and multi-mode operation for changing network conditions

    Fast network recovery

    Get PDF
    The Internet is increasingly used to transport time-critical traffic. Applications like video conferencing, television, telephony and distributed games have strict requirements to the delay and availability offered by the underlying network. At the same time, connectivity failures caused by failures in network equipment is a part of everyday operation in large communication systems. The traditional recovery mechanisms used in IP networks are not designed with real-time applications in mind. The distributed nature of popular intradomain routing protocols allows them to eventually recover from any number of failures that leaves the network connected, but this isa time consuming process that can lead to unacceptable performance degradations for some applications. In this work, we argue that there is a need for fast recovery mechanisms that allow packet forwarding to continue over alternate paths immediately after a failure, before the routing protocol has converged on the altered topology. To give rapid response, such mechanisms should be proactive in the sense that an alternate route is readily available when a failure is discovered, and local, so that the recovery action can be effected by the node that discovers the failure. Further, care should be taken so that the shifting of recovered traffic to an alternate route does not lead to congestion and packet loss in other parts of the network. We present and investigate mechanisms that can respond quickly to failures or unexpected traffic shifts in the network. First, we evaluate the recovery strategy used in a network protocol called Resilient Packet Ring (RPR). The ring topology used in RPR allows the implementation of very fast protection mechanisms. We look at the performance of these mechanisms, and propose improvements that reduce packet loss and shorten the experienced disruption time after a link or node failure. Then, in the main part of this work, we focus on fast recovery in general mesh networks. We present Resilient Routing Layers (RRL) and Multiple Routing Configurations (MRC), which are methods for near-instantaneous recovery from component failures in packet networks. We discuss and evaluate our mechanisms with respect to state requirements and distribution of the recovered traffic. For MRC, we move on to present methods for reducing the chances of congestion after a recovery operation. We show that if we have knowledge about the traffic demands, we can use this information to create MRC recovery paths that avoid the most heavily used parts of the network. Finally, we show how the concepts used in RRL and MRC to give recovery from component failures also can be used to avoid congestion when there are sudden shifts in the traffic distribution. Our method is more flexible than traditional traffic engineering methods used in connectionless IP networks, since it does not involve changing link weights to respond to a changed traffic situation. Fast recovery mechanisms like those proposed in this work can help improve the stability and availability of IP networks. This is an important requirement for enabling new and existing real-time applications over general-purpose Internet infrastructure

    Enabling Fairness and QoS for LTE/Wi-Fi Coexistence in Unlicensed Spectrum

    Get PDF
    The increase of the number of interconnected devices, the Internet of Things (IoT) and new types of services have led to the development of new techniques to improve data transmission and new commercial opportunities in the telecommunications world. A possible solution that has attracted many telecom companies is the ability to expand their business by exploring new frequency bands, in particular the unlicensed spectrum. Licensed Assisted Access (LAA) is an LTE based technology that leverages the 5GHz unlicensed band along with licensed spectrum to deliver a performance boost for mobile device users. A key aspect of LAA is how to regulate access to the communication channel in order to maintain fairness between LTE and other technologies already present in this spectrum section. Listen Before Talk (LBT) is a technique used in radiocommunications whereby radio transmitters first sense its radio environment before it starts a transmission. However, the aggressive character of LTE is not always correctly managed by LBT. Based on this observation, we have tried to develop a new channel access method that makes LTE less invasive on the unlicensed spectrum, providing high performance services. The results obtained show that our algorithm is able to better balance resource sharing by ensuring that all technologies within the frequency band have good coexistence and high performance

    Mathematical analysis of scheduling policies in peer-to-peer video streaming networks

    Get PDF
    Las redes de pares son comunidades virtuales autogestionadas, desarrolladas en la capa de aplicación sobre la infraestructura de Internet, donde los usuarios (denominados pares) comparten recursos (ancho de banda, memoria, procesamiento) para alcanzar un fin común. La distribución de video representa la aplicación más desafiante, dadas las limitaciones de ancho de banda. Existen básicamente tres servicios de video. El más simple es la descarga, donde un conjunto de servidores posee el contenido original, y los usuarios deben descargar completamente este contenido previo a su reproducción. Un segundo servicio se denomina video bajo demanda, donde los pares se unen a una red virtual siempre que inicien una solicitud de un contenido de video, e inician una descarga progresiva en línea. El último servicio es video en vivo, donde el contenido de video es generado, distribuido y visualizado simultáneamente. En esta tesis se estudian aspectos de diseño para la distribución de video en vivo y bajo demanda. Se presenta un análisis matemático de estabilidad y capacidad de arquitecturas de distribución bajo demanda híbridas, asistidas por pares. Los pares inician descargas concurrentes de múltiples contenidos, y se desconectan cuando lo desean. Se predice la evolución esperada del sistema asumiendo proceso Poisson de arribos y egresos exponenciales, mediante un modelo determinístico de fluidos. Un sub-modelo de descargas secuenciales (no simultáneas) es globalmente y estructuralmente estable, independientemente de los parámetros de la red. Mediante la Ley de Little se determina el tiempo medio de residencia de usuarios en un sistema bajo demanda secuencial estacionario. Se demuestra teóricamente que la filosofía híbrida de cooperación entre pares siempre desempeña mejor que la tecnología pura basada en cliente-servidor
    • …
    corecore