
Fast network recovery

Amund Kvalbein

Doctoral Dissertation

Submitted to the
Faculty of Mathematics and Natural Sciences

University of Oslo
in partial fulfillment of the requirements for the degree

Philosophiae Doctor

March 2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NORA - Norwegian Open Research Archives

https://core.ac.uk/display/30826974?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

© Amund Kvalbein, 2007

Series of dissertations submitted to the
Faculty of Mathematics and Natural Sciences, University of Oslo.
No. 622

ISSN 1501-7710

All rights reserved. No part of this publication may be
reproduced or transmitted, in any form or by any means, without permission.

Cover: Inger Sandved Anfinsen.
Printed in Norway: AiT e-dit AS, Oslo, 2007.

Produced in co-operation with Unipub AS.
The thesis is produced by Unipub AS merely in connection with the
thesis defence. Kindly direct all inquiries regarding the thesis to the copyright
holder or the unit which grants the doctorate.

Unipub AS is owned by
The University Foundation for Student Life (SiO)

Every man who is high up likes to think that he has done it all
himself, and the wife smiles and lets it go at that.

— James M. Barrie

iv

Abstract

The Internet is increasingly used to transport time-critical traffic. Appli-
cations like video conferencing, television, telephony and distributed games
have strict requirements to the delay and availability offered by the under-
lying network. At the same time, connectivity failures caused by failures in
network equipment is a part of everyday operation in large communication
systems. The traditional recovery mechanisms used in IP networks are not
designed with real-time applications in mind. The distributed nature of pop-
ular intradomain routing protocols allows them to eventually recover from
any number of failures that leaves the network connected, but this is a time
consuming process that can lead to unacceptable performance degradations
for some applications.

In this work, we argue that there is a need for fast recovery mechanisms
that allow packet forwarding to continue over alternate paths immediately
after a failure, before the routing protocol has converged on the altered topol-
ogy. To give rapid response, such mechanisms should be proactive in the sense
that an alternate route is readily available when a failure is discovered, and
local, so that the recovery action can be effected by the node that discovers
the failure. Further, care should be taken so that the shifting of recovered
traffic to an alternate route does not lead to congestion and packet loss in
other parts of the network.

We present and investigate mechanisms that can respond quickly to fail-
ures or unexpected traffic shifts in the network. First, we evaluate the recov-
ery strategy used in a network protocol called Resilient Packet Ring (RPR).
The ring topology used in RPR allows the implementation of very fast pro-
tection mechanisms. We look at the performance of these mechanisms, and
propose improvements that reduce packet loss and shorten the experienced
disruption time after a link or node failure. Then, in the main part of this
work, we focus on fast recovery in general mesh networks. We present Re-

v

vi

silient Routing Layers (RRL) and Multiple Routing Configurations (MRC),
which are methods for near-instantaneous recovery from component failures
in packet networks. We discuss and evaluate our mechanisms with respect
to state requirements and distribution of the recovered traffic. For MRC,
we move on to present methods for reducing the chances of congestion after
a recovery operation. We show that if we have knowledge about the traffic
demands, we can use this information to create MRC recovery paths that
avoid the most heavily used parts of the network. Finally, we show how the
concepts used in RRL and MRC to give recovery from component failures
also can be used to avoid congestion when there are sudden shifts in the
traffic distribution. Our method is more flexible than traditional traffic engi-
neering methods used in connectionless IP networks, since it does not involve
changing link weights to respond to a changed traffic situation.

Fast recovery mechanisms like those proposed in this work can help im-
prove the stability and availability of IP networks. This is an important
requirement for enabling new and existing real-time applications over general-
purpose Internet infrastructure.

Acknowledgements

This dissertation could never have been written without help and support
from many people around me.

First of all, my gratitude goes to my supervisors Stein Gjessing and Olav
Lysne. Stein’s excitement over new ideas and his thoroughness when re-
viewing text and solutions, has made working with him both inspiring and
rewarding. Combined with Olav’s creativity and ability to distinguish the
important from the less important, they have made up a great supervisor
team. I have learnt a lot from both of them that I will benefit from in the
years to come.

Almost equally important has been the inspiring work environment in the
Networks and Distributed Systems department at Simula. In particular, the
close collaboration with Audun Fosselie Hansen and Tarik Čičić has been of
immense importance for this work. Audun and I have shared office for the
almost four years that this project has lasted. It is hard to see how I could
have found a more inspiring officemate, both socially and intellectually. Tarik
has led the “Resilient Networks” project that I have been a part of. With
his hearty involvement in my thesis project, he has in many ways served as
a third supervisor. I am thankful also to my other friends and colleagues at
Simula for creating an environment that fosters both good research and a
good laugh.

Learning is a life-long process. I have been able to write this dissertation
not only because I stand on the shoulders of giants, but also because of
the love and support I have received from my family and friends through my
whole life. The most important things I have learnt, I have learnt from them.

Finally, I owe everything to my wife Siv Merete. Thank you for sharing
joys and sorrows with me every day, and for reminding me that fast network
recovery really is only a small part of the picture in the end.

vii

viii

Contents

1 Introduction 1
1.1 Context of this work . 2

1.1.1 Network recovery . 3
1.1.2 The problems we address 4

1.2 Contributions . 5
1.2.1 Resilient Packet Ring protection 6
1.2.2 Resilient Routing Layers 7
1.2.3 Multiple Routing Configurations 7
1.2.4 Multi Topology traffic engineering 8

1.3 Scientific framework . 8
1.3.1 Evaluation methodology 9

2 State of the Art 11
2.1 Recovery in connection-oriented protocols 12

2.1.1 MPLS protection . 12
2.1.2 Shared path protection schemes 13

2.2 Link layer recovery . 14
2.3 IP routing and recovery . 15

2.3.1 IGP restoration . 16
2.3.2 Local restoration schemes 17

2.4 Proactive IP recovery . 17
2.5 Connectionless load balancing 19

3 Resilient Packet Ring Recovery 23
3.1 Introduction . 23
3.2 Recovery in Resilient Packet Rings 25

3.2.1 Failure detection . 26
3.2.2 Wrapping and steering 26

ix

x CONTENTS

3.3 Analysis of the RPR protection mechanism 28
3.3.1 Traffic disruption . 28
3.3.2 Packet reordering . 31
3.3.3 Packet loss . 34

3.4 Improved protection mechanism for strict order traffic 35
3.4.1 Automatic setting of the topology stabilization timer . 36
3.4.2 Discarding packets at the receiver 38
3.4.3 Selective packet discarding at the receiver 39

3.5 Evaluation . 40
3.5.1 Optimal topology stabilization timer 41
3.5.2 Comparison of packet loss counts 41

3.6 Summary . 43

4 Resilient Routing Layers 45
4.1 Introduction . 45
4.2 RRL overview . 46
4.3 Configuration generation . 48

4.3.1 Generating few configurations 49
4.3.2 Improving Routing Efficiency 51
4.3.3 Resisting multiple failures 52

4.4 Evaluation . 53
4.4.1 Method . 53
4.4.2 Scalability . 55
4.4.3 Backup path lengths 56
4.4.4 Resisting more than one failure 58

4.5 Summary . 59

5 Multiple Routing Configurations 61
5.1 Introduction . 61
5.2 MRC Overview . 63
5.3 Generating Backup Configurations 64

5.3.1 Configurations Structure 65
5.3.2 Algorithm . 69

5.4 Local Forwarding Process . 75
5.4.1 Implementation issues 77

5.5 Performance Evaluation . 79
5.5.1 Method . 79
5.5.2 Number of Backup Configurations 81

CONTENTS xi

5.5.3 Backup Path Lengths 83
5.5.4 Load on Individual Links 85

5.6 Summary . 86

6 MRC Routing Performance 87
6.1 Introduction . 87

6.1.1 Our contributions . 88
6.2 Routing optimization with MRC 89

6.2.1 The failure free case 90
6.2.2 Creating the backup configurations 91
6.2.3 Optimizing link weights in the backup configurations . 94

6.3 Performance evaluation . 99
6.3.1 Method . 99
6.3.2 Results and discussion 102

6.4 Summary . 108

7 Multi-Topology Load Balancing 111
7.1 Introduction . 111
7.2 Temporal variations in backbone traffic 113
7.3 Multi-Topology routing . 113

7.3.1 Building logical topologies 114
7.4 Load balancing using Multi-Topology

routing . 116
7.4.1 Global load balancing 116
7.4.2 Local load balancing 118
7.4.3 Discussion of the global and local methods 119

7.5 Evaluation . 121
7.5.1 Robustness to increase in demand 121
7.5.2 Robustness to changes in demand over time 123

7.6 Summary . 125

8 Conclusions 127
8.1 Resilient Packet Ring . 127
8.2 Resilient Routing Layers . 128
8.3 Multiple Routing Configurations 129
8.4 MRC routing performance . 130
8.5 Multi Topology load balancing 130
8.6 Concluding remarks . 131

xii CONTENTS

8.7 Future research directions . 132

Bibliography 134

A Publication list 147

Chapter 1

Introduction

In recent years the Internet has been transformed from a special purpose
research network to an ubiquitous platform for a wide range of everyday
communication services. It has now become an integrated part of the commu-
nications infrastructure that all modern societies rely on. As our dependency
on the Internet has increased, the demands on its reliability and availabil-
ity have increased accordingly. A failure in central network equipment has
the potential to disconnect thousands of users from essential services like
personal communications, financial transactions and online gaming. The in-
creased demand for a robust Internet is further actualized by the migration of
traditional services like television and telephony from special purpose trans-
port networks over to IP based media. Users of such services have long been
accustomed to high availability and reliability. We believe that increased
availability and reliability will be critical for the adoption of the Internet as
the preferred transport medium for new and existing real-time applications.

The Internet was originally developed for military purposes, and the abil-
ity to recover from failures has always been a central design goal [1]. Net-
works running the Internet Protocol are intrinsically robust, since routing
protocols such as OSPF or IS/IS are designed to update the forwarding in-
formation based on the changed topology after a failure. In these protocols,
upon detecting the failure of one of its attached links, a router broadcasts
an update message to all other routers in the network domain. When the
new state information is distributed, each router individually calculates new
valid routing tables. Such distributed protocols allow IP networks to recover
from any number of failures that leaves the network connected.

However, with the increased number of time-critical services being depen-

1

2 CHAPTER 1. INTRODUCTION

dent on the Internet infrastructure, the traditional recovery mechanisms are
no longer sufficient. A key problem is that the process that is used to restore
new valid routes in a network after a failure situation is slow. A component
failure is typically followed by a period of routing instability before the net-
work converges in a new state. During this period, packets will be dropped
due to invalid routes, and this may give unacceptable performance degrada-
tions for some types of applications. A central theme in this work is fast
recovery mechanisms that allow packet forwarding to continue uninterrupted
in a failure scenario.

1.1 Context of this work

A large and distributed organism like the modern Internet faces a wide range
of challenges to its operation. Examples of such challenges are natural faults
in networking components, misconfigurations, operational errors, large scale
natural disasters, and malicious attacks against hardware and protocols. In
addition, the network must cope with unusual but legitimate conditions
caused by flash crowds and high mobility of nodes and subnets. These chal-
lenges vary widely with respect to severity, complexity and underlying causes.

A networks ability to offer a reasonable service when faced with these
challenges, is referred to as the resilience of the network [2, 3]. A resilient
network needs a range of systems and mechanisms at different networking
layers to respond to the different threats. For example, redundant paths
and duplication of networking equipment is often used to withstand physical
failures. To be resilient against misconfigurations and operational errors,
a network needs operation and management systems that can continuously
monitor the network and detect potential inconsistencies. Cryptographic
methods can be used to secure the exchange of routing information, so that
an attacker cannot give invalid routing information to the routers. Traffic
monitoring systems are needed to be able to detect and counter outsider
threats like denial of service attacks.

Even if much effort is spent on preventing potential threats from materi-
alizing into actual failures, the size and complexity of large networks implies
that failures will occur. A network then needs mechanisms to recover from
the failure state and revert to normal operation.

This dissertation presents and discusses some such mechanisms aiming
at increasing network resilience. These mechanisms are in different ways

1.1. CONTEXT OF THIS WORK 3

parts of a routing protocol, and are concerned with how traffic can be routed
on an alternative path through a network when a failure or an unexpected
traffic pattern occurs. A unifying characteristic of the methods we present
is that they are all designed to respond to an anomaly in a very short time.
All the mechanisms presented in this thesis are proactive, in the sense that
they take measures in advance to prepare for a possible challenge to the
operation. We build defense structures and mechanisms that are used to
continue packet forwarding and to distribute the traffic in the network in an
intelligent manner during the failure situation. Our main concern is network
recovery after loss of connectivity in parts of the network due to a component
failure.

1.1.1 Network recovery

By network recovery we mean the process of returning to an operational state
after a failure situation in a network. Recovery is used as a common term
for protection and restoration. In essence the difference is that protection
schemes are proactive, meaning that they calculate backup routes in advance,
while restoration schemes are reactive, calculating the backup routes upon
detection of failures. Hence restoration offers more flexibility in deciding the
recovery action based on type and localization of the failure. Restoration
also avoids the extra amount of state that is needed in protection schemes
to maintain the pre-calculated backup paths. The main advantage of protec-
tion mechanisms is recovery speed. Hence, protection mechanisms are often
used to give fast recovery and prevent loss of traffic until a slower but more
resource-efficient restoration mechanism has created a new set of valid paths.
Regarding terminology on recovery, it is also common to distinguish between
global, also known as end-to-end, and local recovery. With global recovery,
several or all the nodes in the network must be informed about the failure
and take the appropriate action. The recovery action is typically invoked by
a node that is not local to the failure. With a local approach, it is usually
the node that detects the failure that also performs the recovery. Since sig-
nalling is needed, global recovery typically reacts slower to failures than local
recovery.

Physical failures in the networking equipment can occur due to e.g. cable
cuts, power failures or failing interface cards. Such failures can lead to a
partial or complete loss of connectivity. When these failures occur, a new
path must be found in the network that avoids the failed element. In central

4 CHAPTER 1. INTRODUCTION

parts of a network, routers and links are often duplicated, so that a backup
is instantly available when the primary fails. When this is not the case, a
communications protocol must try to re-establish the connectivity through
a different path. This can be done by a network layer protocol like IP, or at
a lower protocol layer.

Recovery mechanisms at different networking layers have different strengths
and weaknesses [4, 5, 6]. First, they differ in the scope of failures they can re-
cover from. Mechanisms at lower protocol layers cannot recover from failures
in an IP router or the forwarding software. Conversely, several logical IP links
might share a common physical fiber, and hence a physical failure might af-
fect several IP links. Recovery from the failure of such a link is difficult at the
networking layer. Second, there is a difference with respect to the efficiency
and granularity of the mechanisms. Optical layer mechanisms typically work
at a much coarser granularity than network layer recovery protocols, and
must hence reserve more backup capacity in the network. Finally, there
has traditionally been a difference with respect to recovery speed. Protec-
tion mechanisms at the optical layer can give very fast (sub-50 ms) recovery,
while at the networking layer, only much slower restoration mechanisms with
recovery times in the order of several seconds are commercially available.

1.1.2 The problems we address

In IP networks running a link state routing protocol like OSPF or IS-IS,
a component failure triggers a global re-calculation of new routes based on
the altered topology. This network-wide re-convergence is a time consum-
ing process, and a link or node failure is typically followed by a period of
routing instability and packet loss. This phenomenon has been studied in
both intradomain [7] and interdomain context [8], and has an adverse ef-
fect on real-time applications [9]. Events leading to a re-convergence have
been shown to occur frequently, and are often triggered by external routing
protocols [10].

Much effort has been devoted to optimizing the different steps of the
convergence of IP routing, i.e., detection, dissemination of information and
shortest path calculation, but the convergence time is still too large for ap-
plications with real time demands [11]. A key problem is that since most net-
work failures are short lived [12], too rapid triggering of the re-convergence
process can cause route flapping and increased network instability [7].

The IP convergence process is slow because it is reactive and global. It

1.2. CONTRIBUTIONS 5

reacts to a failure after it has happened, and it involves all the routers in the
domain. We believe that in order to achieve the short recovery times that are
required by real time applications, we need protection mechanisms that are
proactive and local also at the networking layer. In this work we introduce,
discuss and evaluate several such mechanisms that can give fast recovery and
maintain packet forwarding during the IP re-convergence phase. We first look
at the protection mechanisms in a ring-based link layer technology, before
we present network layer mechanisms that give fast recovery in general mesh
networks.

Networks are often carefully engineered by the operators so that the dis-
tribution of traffic is fitted to the capacities of the links. When traffic is
moved from the original path and over to an alternative path by a recovery
mechanism, this will disturb the original traffic distribution, and may lead to
congestion and packet loss [13]. Some work has been done to address this, but
none of the existing proposals take into consideration the use of a proactive
protection mechanism. In this work, we discuss how a good load distribution
can be achieved in the network immediately after a failure situation when
our proactive recovery scheme is used.

Mechanisms for controlling the traffic distribution in IP networks with
shortest path routing are normally based on finding a suitable set of link
weights. These link weights are calculated based on an estimate of the traffic
demands between the nodes in the network. However, the traffic demands
are constantly changing, and finding a good estimate of the traffic matrix
that is robust to such changes is a non-trivial task [14]. Frequently adapting
the link weights to a changed traffic matrix has serious implications for the
stability of the network [15]. In this work, we propose a method for rapidly
adapting the load distribution in the network to changes in demands, while
avoiding the stability issues involved in changing the link weights.

1.2 Contributions

In this work we present and discuss mechanisms for increasing network re-
silience against failures and unexpected changes in traffic demands1. Most

1Most of the mechanisms and results presented in this dissertation have previously been
published in the proceedings of various international conferences. A list of these papers
and a discussion of the contributions from the different authors is given in appendix A.

6 CHAPTER 1. INTRODUCTION

of our contributions are related to recovery from component failures, i.e.,
the task of finding an alternate route through the network when the pri-
mary route can not be used due to a failed or otherwise unavailable link,
router or network segment. The proposed recovery mechanisms are designed
for use within a single Autonomous System (AS), sometimes referred to as
intradomain recovery. Also, our mechanisms are mainly focusing on connec-
tionless technologies, where data traffic can be sent without establishing an
explicit path from the source to the destination. Finally, all the mechanisms
we present are proactive, in the sense that alternative routes are planned in
advance and are ready to use when a failure or a change in the traffic is
detected.

In the remainder of this section, we present the contributions we make in
this work.

1.2.1 Resilient Packet Ring protection

Our first contribution is an analysis and improvement of the protection mech-
anisms in a link layer technology designed with fast recovery as a primary
target. Resilient Packet Ring (RPR, IEEE Std. 802.17) is a recent standard
for a packet based, ring topology network. RPR is a Medium Access Control
(MAC) protocol which allows packets to be sent in both directions around
the ring on two counter-rotating ringlets. Ring topologies have for a long
time been used to give failure recovery, and RPR is a good example of how
the ring properties can be used to create very fast protection mechanisms.
The RPR standard claims that a failure will be repaired within 50 ms. At
the same time, RPR maintains a guarantee that all packets sent on the ring
will arrive at its destination in sending order. We analyze the RPR protec-
tion mechanisms, and find that in some cases the in-order delivery guarantee
prevents real sub-50 ms recovery. We proceed to describe three different
mechanisms for improving the RPR recovery time. We demonstrate that
with these mechanisms, the recovery times are reduced to well below 50 ms
while maintaining in-order delivery. The choice between these mechanisms
is a tradeoff between complexity and the amount of changes to the original
standard on the one hand, and recovery times and packet loss on the other.

1.2. CONTRIBUTIONS 7

1.2.2 Resilient Routing Layers

To achieve fast network layer recovery from link failures in general mesh
topologies, we present Resilient Routing Layers (RRL). RRL is agnostic to
the network layer technology, and is applicable for both connectionless and
connection oriented protocols. The key element in RRL is to create a small
number of logical network topologies termed backup configurations. These
backup configurations are used to prepare valid alternate routing or forward-
ing entries in each router. The pre-computed backup entries allow RRL to
give almost instantaneous recovery from any link failure. Inherent in RRL is
a tradeoff between the extra state information that must be stored in each
router and important properties like the backup path lengths and the ability
to recover from more than one concurrent failure. We provide algorithms
for creating backup configurations that balance these tradeoffs in different
ways, and evaluate their performance. We show that for the evaluated net-
works, RRL can give recovery paths that are close to the optimal, with a high
probability of recovering traffic even with multiple concurrent link failures.

1.2.3 Multiple Routing Configurations

We present Multiple Routing Configurations (MRC), which is a scheme for
fast recovery from link and node failures in IP networks. MRC uses backup
configurations to prepare alternative routes in the network. It can be seen as
a refinement of RRL that is adapted to an IP setting and extended to also
protect against node failures. Like RRL, MRC is proactive and local, and
allows packet forwarding to continue on an alternate route immediately after
the discovery of a failure. MRC guarantees recovery from both single link and
single node failures with a single mechanism. We formally define the MRC
mechanism, and evaluate its performance with respect to state overhead,
backup path lengths and post-failure load distribution. As our evaluations
show, the routing of recovered traffic over an alternate backup path gives
a new load distribution in the network, and can in some situations lead to
congestion and packet loss. Hence, we present methods that improve the
load distribution in the network while recovered traffic is routed according
to MRC. Given an estimate of the traffic demand matrix, we seek to avoid
routing recovered traffic over highly utilized links. This is done without com-
promising on the load distribution in the failure free case. Our evaluations
show that with this method, we can achieve a post-failure load distribution

8 CHAPTER 1. INTRODUCTION

than is better than what is achieved by a full shortest path re-convergence
on the altered topology.

1.2.4 Multi Topology traffic engineering

Intradomain traffic engineering in connectionless IP networks is traditionally
done by carefully tuning the link weights that determine the shortest paths
and thus the load on each link in the network. We argue that these methods
are not flexible enough to deal with uncertainties and random variations in
the traffic demands. Instead, we propose a new traffic engineering method
based on the recent concept of Multi-Topology routing. We present two
different ways of utilizing this for load balancing purposes. Our evaluations
show that our method is significantly better at handling demand variations
than traditional methods.

1.3 Scientific framework

Computer science as a discipline was born in the 1940s, and centered around
the use of the newly invented electronic computers for automating computing
tasks. Since then, it has evolved and developed in many different directions.
Today, most institutions for higher education have computer science courses
in their curricula.

The field of computer science is rooted in at least three older disciplines.
First, it is closely related to mathematics, and overlaps in areas like boolean
logic, graph theory and formal proofs. Second, it is related to the natural
sciences through the use of controlled experiments to investigate the prop-
erties of a (often man-made) system. Finally, computer science has much in
common with various engineering disciplines, since much of the knowledge in
the field is gained through designing and implementing prototypes and full
scale systems. Not surprisingly, it is difficult to arrive at a concise definition
of computer science, or even to agree on whether it is a meaningful term at
all [16].

The Association for Computing Machinery (ACM) has done an effort to
define the fields of computer science and computer engineering [17]. They
describe three main paradigms in the field; theory, abstraction (modeling)
and design. The theory paradigm is rooted in mathematics, and is concerned
with giving formal proofs for different properties of a system. The abstraction

1.3. SCIENTIFIC FRAMEWORK 9

paradigm is rooted in experimental science, and is concerned with making
models of a system, and conducting experiments to measure the validity of
the model. Finally, the design paradigm is concerned with building systems
with certain properties, and testing whether the system meets a given set of
requirements.

Two closely intertwined disciplines are computer science and computer
engineering. The authors of [17] state that they find no fundamental differ-
ence between the core material in the two fields, but that computer scientists
focus most on analysis and abstraction, while computer engineers emphasize
abstraction and modeling.

The starting point for this work is the observation that there is a need for
mechanisms that can give rapid response to failures and sudden traffic shifts
in data networks. Specifically, we see the need for methods that can give
fast recovery from component failures in packet switched networks, and that
does this in a resource-efficient way that minimizes the chance of congestion.
With this in mind, we develop and design different methods to handle failure
events in computer networks. To test functional aspects and evaluate the
performance of our proposed methods, we build models of networks and
protocols. Seen in the context of the ACM classifications, this places our
work mainly in the abstraction and design paradigms.

1.3.1 Evaluation methodology

A number of new mechanisms are proposed in this work, and their per-
formance is evaluated and compared to existing methods. Generally, the
performance of new mechanisms can be measured in three different manners;
by building and analyzing mathematical models of the system, by doing
measurements on existing systems or prototypes of systems, or by means of
simulations [18]. In this work, all performance evaluations are done by means
of simulations. This was the only feasible possibility in our case. First, the
size and complexity of the relevant networks that our mechanisms are de-
signed for makes it hard to build analytical models that accurately capture
the effects of our mechanisms. Second, building large scale test networks
or doing measurements on operational networks was impossible due to both
financial limitations and time constraints.

Simulation models are built to resemble the behavior of an existing or
imagined real life system. In a simulation model, real world components
are mapped to corresponding modelled entities. There are many problems

10 CHAPTER 1. INTRODUCTION

involved in building good simulation models of large networks, and even a
“good” simulation model may not capture all relevant aspects of a system
[19]. Not only does the Internet grow rapidly, it also changes substantially
in unpredictable ways. The web and peer-to-peer programs for sharing of
content between users on a global scale are examples of applications that in
short time scales have given large changes in traffic patterns. In addition
comes the difficulties in selecting performance metrics that accurately reflect
the different implications of a new mechanism. These considerations make it
difficult to make hard statements about the performance and future benefits
of a new mechanism based on simulations.

When conducting simulations described in this work, we have taken mea-
sures to make our results as trustworthy as possible. First, our simulations
are limited to a single network domain (Autonomous System) rather than
several interconnected networks. This makes our modelling task much easier.
Also, most of our evaluations are done on many different network topologies,
both real and synthetically generated. We have taken care to use traffic
models that are as realistic as possible.

Two different classes of simulations are used in this work. The first kind
calculates the routing between nodes and the resulting traffic distribution,
but it does not simulate individual packets and does not have a clock that
advances simulated time. We use this approach to evaluate network and
routing properties like recovery path lengths, state overhead and load distri-
butions. For this purpose, we have built our own simulation framework in
the Java programming language.

To evaluate packet loss, delays and other dynamic properties, we have
used a discrete event packet simulator based on the J-sim framework [20].
This framework gives us tools for event scheduling, time management and
output handling, as well as models of networking entities like routers, links,
line cards and routing protocols. In this framework we have built our network
models and incorporated our novel mechanisms.

The details about simulation setup is given along with each simulated
scenario.

Chapter 2

State of the Art

This chapter will give an overview of network recovery and load balancing
methods that are relevant in the context of this work. Figure 2.1 shows a
schematic classification of different network technologies and corresponding
recovery methods. The main contributions in this work are in the context of
protection in connectionless networks. Hence, in this section we focus more
on proactive than reactive mechanisms, and we focus more on connectionless
than connection-oriented technologies. In addition to pure recovery mecha-
nisms, we will also take a look at the state of the art within connectionless
load balancing.

Connection−oriented

Connectionless

R
e
s
to

ra
tio

n

P
ro

te
c
tio

n

Figure 2.1: Classification of network technologies and recovery schemes

11

12 CHAPTER 2. STATE OF THE ART

2.1 Recovery in connection-oriented protocols

With connection-oriented network protocols, data traffic if forwarded along
predefined paths from a source to a destination. These paths must be es-
tablished by an appropriate mechanism before the data exchange can start.
Connection-oriented protocols are dominant at the physical layer, and are
also popular at the networking layer thanks to the Multi Protocol Label
Switching (MPLS) protocol [21]. Both protection and restoration mecha-
nisms can be used to recover traffic after a failure in connection-oriented
networks. Since the main topic in this work is proactive recovery, we will
limit our discussion to protection mechanisms. These come in two flavors;
global (path protecting) mechanisms that prepare an alternate end-to-end
path from source to destination, and local (link or node protecting) mecha-
nisms that prepare a local detour around the protected component.

2.1.1 MPLS protection

In MPLS, a Label Switched Path (LSP) is set up between each source and
destination. An LSP can be protected either globally by setting up a disjoint
end-to-end backup LSP [22], or locally by setting up a separate backup LSP
for each node or link on the path [23]. With global protection, the detection of
a failure must be signalled back to the ingress node, which is then responsible
for switching to the backup LSP. With local protection, the discovering node
locally diverts traffic to a pre-computed LSP that avoids the failed element.
This does not require signalling back to the ingress node, and hence local
protection can give shorter recovery times than global protection.

Local protection in MPLS comes in two different versions, called one-to-
one backup and facility backup. With one-to-one backup, a separate backup
LSP is set up for each LSP that traverses a protected link or node. The
backup LSP starts in the discovering node, and merges with the protected
LSP at some point downstream of the protected component. Hence, as many
as (n − 1) backup LSPs are needed to protect an LSP against all possible
node failures on a path of n hops. With the facility backup, several LSPs
may be protected by the same backup LSP, if they share a common point
of intersection downstream of the protected component. The facility backup
option will still need (n − 1) backup LSPs to fully protect an LSP that
traverses n nodes, but now each of those backup LSPs may cover a set of
LSPs. Hence the total number of backup LSPs in the network can be reduced.

2.1. RECOVERY IN CONNECTION-ORIENTED PROTOCOLS 13

However, this might come at the cost of a higher backup capacity requirement
[24]. As we will see below, the high number of backup LSPs required to
achieve local protection, has been addressed by several connection-oriented
protection schemes.

2.1.2 Shared path protection schemes

At the physical (optical) layer, ring topologies have traditionally been used
to devise fast protection mechanisms such as the popular SONET/SDH Au-
tomatic Protection Switching [25]. Optical networks have later evolved into
more general mesh networks, and many mechanisms have been proposed for
both protection and restoration in such networks (see e.g. [26, 27, 28]). A
key concern for these mechanisms is how to set up the backup paths in the
most bandwidth-efficient way. This is achieved by so-called shared protection,
where several working paths share the same backup path. A complete survey
of such mechanisms is outside the scope of this work, but we will mention two
schemes because they have later been adapted to be used in packet-switched
technologies at higher protocol layers.

One such approach, based on building multiple spanning trees in the net-
work, was introduced in [29]. Later, a more general version of this approach
appeared under the name Redundant Trees [30, 31]. The basic idea in Re-
dundant Trees is to construct two trees, named red and blue, so that any
node is connected to the common root in at least one of the trees in case
of a link or node failure. This way, traffic that passed through the failure
can always be recovered in either the red or the blue tree. They describe
polynomial time algorithms for creating trees that protect against both link
and node failures. The Redundant Tree approach has later been proposed
used for recovery in MPLS [32]. This method differs from [31] by building
a separate set of trees for each destination node, using the destination node
as root. In addition, they calculate optimal primary paths, using the blue
and red trees only for recovery. The authors demonstrate that the approach
requires few labels and that the backup path lengths are not considerably
longer than for MPLS fast reroute.

Protection cycles (p-cycles) is another approach for shared path protec-
tion [33]. The main idea is to pre-configure one or more p-cycles visiting all
nodes in the topology. When a link fails, the traffic is locally switched to be
routed according to the p-cycles instead of the original path. They describe
an integer linear programming formulation for how the p-cycles can be opti-

14 CHAPTER 2. STATE OF THE ART

mally constructed with respect to backup capacity reservation, and describe
a distributed protocol that approximates the optimal solution. P-cycles was
originally designed to protect only against link failures, but has later been
extended to also give protection against node failures using so-called node-
encircling p-cycles [34]. Much work has been done on different aspects of
the p-cycle concept, including the use of Hamiltonian cycles [35] and im-
proved protection against multiple concurrent failures [36]. While originally
designed for optical WDM networks, p-cycles have later been proposed for
use in IP/MPLS networks [37]. P-cycles are then set up as LSPs, and traf-
fic is routed around the failure through an MPLS tunnel along the p-cycle.
A separate set of node-encircling p-cycles must be built to give protection
against node failures.

2.2 Link layer recovery

In the IEEE 802 network protocol series, which includes among others Eth-
ernet (802.3), Token Ring (802.5) and RPR (802.17), the Spanning Tree
Protocol (STP) [38] is used to give loop-free routing when several LAN seg-
ments are interconnected by switches. As the name suggests, this is achieved
through blocking ports in some of the switches, so that the remaining parts
form a spanning tree. Upon the failure of a switch or a LAN segment, STP
must be run again to form a new valid spanning tree. Even if the original
STP has later been replaced by a faster variant known as the rapid Spanning
Tree Protocol (rSTP), the convergence time of the protocol is still in the
range of seconds.

Some methods have been proposed to give faster recovery at the link
layer. Ethernet Automatic Protection Switching (EAPS) [39] can be used
to protect a LAN segment with a ring topology. With EAPS, protection
is managed by a master node. During normal operation, the master node
uses only one of its two ports connected to the ring, thus preventing loops.
Upon detection of a failure, the master node opens its second port to restore
connectivity. EAPS can give sub-second recovery times, but imposing a tree
structure on a ring topology gives poor resource utilization. The need for
fast recovery and more efficient resource utilization on the link layer were
motivating factors behind the development of RPR, which will be discussed
in chapter 3.

The use of multiple spanning trees has been proposed to improve the

2.3. IP ROUTING AND RECOVERY 15

efficiency of switched LANs [40]. This has led to a multi-tree solution for
fast recovery [41]. Their solution is based on building a number of spanning
trees so that at least one of the trees remain connected after the failure of
any link or node. To achieve this, the trees must be built so that all links are
excluded in at least one tree, and all nodes are leaf nodes in at least one tree.
Traffic in the different trees are distinguished by using a unique VLAN tag in
each tree. When a failure occurs, failure messages are sent in all the affected
trees, so that the traffic sources can move traffic over to an unaffected tree.
With this approach, the authors claim that they can achieve recovery times
in the range of 100 ms.

Ring topologies have been popular in LAN environments. Token Rings
[42] were popular in the 80s and early 90s, and consists of nodes connected in
a single logical ring. These rings were often implemented in a physical star
topology using a so-called Multistation Access Unit (MSAU). This layout
allows fast protection against node failures, since a station on the ring can
be bypassed in the MSAU if it fails. Later, a similar ring network based
on token passing called FDDI [43] was introduced. The most important
improvements over Token Ring were that FDDI allows higher capacity links,
and uses a dual ring topology. The dual ring topology allows protection
against both link and node failures, by looping traffic that reaches a point of
failure back on the ring in the opposite direction. This protection technique
is called wrapping, and is also used in RPR networks, as will be discussed in
chapter 3.

2.3 IP routing and recovery

Two main classes of routing protocols are used in IP networks, called link
state protocols and distance vector protocols respectively. In link state pro-
tocols, each node broadcasts information about its directly connected links
to all other nodes in the network. This way all nodes get a complete view
of the network topology, and can run a shortest path algorithm in order to
decide the next-hop towards each destination and build the routing tables.
Link state routing protocols are used for routing within an AS. The most
popular link state protocols in fixed network are OSPF [44] and IS-IS [45].

In distance vector protocols, the routers do not build a global view of
the topology. Instead, each node informs its neighbors of its current cost
(distance) to each destination. The routers then decide the shortest path

16 CHAPTER 2. STATE OF THE ART

to a destination by comparing the distance through each neighbor. This
way, distance vector protocols avoids the broadcasting needed by link state
protocols, and can sometimes manage with less signalling. Distance vector
protocols are used for routing both inside an AS (e.g. RIP [46] and EIGRP
[47]), and between ASes (e.g. EGP [48] and BGP [49]). EGP and BGP are
both examples of a refinement of the distance vector principle called path
vector, where the entire AS path to a destination is specified instead of just
the distance.

In the rest of this section, we will look at recovery mechanisms in con-
nectionless IP networks. We will focus our discussion on link state Interior
Gateway Protocols (IGPs), which are used for routing within an single AS.

2.3.1 IGP restoration

IP networks are intrinsically robust, since IGP routing protocols such as
OSPF or IS-IS are designed to update the forwarding information based on
the changed topology after a failure. This re-convergence assumes full distri-
bution of the new link state to all routers in the network domain. When the
new state information is distributed, each router individually calculates new
valid routing tables. The updated routing table, often termed the Routing
Information Base (RIB), must then be loaded into the Forwarding Informa-
tion Base (FIB) that is stored on the interface cards in modern routers. This
network-wide IP re-convergence is a time consuming process, and a link or
node failure is typically followed by a period of routing instability. During
this period, which can last from seconds to tens of seconds [7], packets may
be dropped due to invalid routes.

The IS-IS re-convergence process is studied in detail in [11]. They divide
the re-convergence process into detection, creation of a link state update
message, flooding time, shortest path calculation, the time to update the RIB
and finally the time to load the new forwarding information into the FIB.
They measure the time consumed in each step on a modern IP router, and
find that the main contributor to the total re-convergence time is actually the
time it takes to load the updated forwarding information into the FIB. Based
on simulations of the backbone network of a Tier-1 ISP, they conclude that
sub-second IGP convergence can be achieved without compromising stability
even in large networks. But still, the recovery time can be too long for some
real-time applications.

2.4. PROACTIVE IP RECOVERY 17

2.3.2 Local restoration schemes

To further reduce the convergence time of IGP routing protocols, some local
restoration schemes have been proposed. These schemes try to limit the
number of routers that are notified of a failure. Only those routers that must
change their routing will be informed, the rest of the routers can carry on
as normal. The main challenge for schemes that do recovery without global
dissemination of the failure is to avoid routing loops.

One such scheme is introduced in [50]. By representing the weight of
each link in the network as a vector instead of a scalar, they are able to build
restoration paths that are considered to have infinitesimally smaller weight
by the nodes on the path. This way, they can guarantee loop-free routing by
only informing the routers on the recovery path. An important advantage
of their scheme is that it does not require changes in the forwarding logic in
the router.

Another local restoration scheme is presented in [51]. For each failure
they want to protect against, and for each destination, they calculate in
advance a backup path to the closest feasible next hop. This is the closest
downstream node that does not include the failed element on its shortest
path to the destination. If the rerouting cannot be done locally without
creating a loop, the minimum number of routers on the backup path must
be notified and change their forwarding table. Since they need to distinguish
recovered traffic from the normal traffic, this scheme needs to make changes
in the forwarding logic in the routers.

2.4 Proactive IP recovery

Recently, a number of approaches have been proposed for giving fast, local
protection in connectionless IP networks [52]. These schemes require no sig-
nalling to neighboring nodes after a failure. Instead, structures are prepared
in advance so that the node that discovers the failure will always have a loop-
free alternate next-hop ready for use. The methods we discuss in chapters 5
and 6 in this work also into this category.

One such proactive recovery scheme called O2 routing was introduced in
[53]. The basic idea is to configure a network so that all nodes have two valid
next-hops to all destinations. Traffic is split between the next-hops in the
normal case, and they function as backup for each other in case of a failure.

18 CHAPTER 2. STATE OF THE ART

In order to avoid loops, some links are excluded from packet forwarding for
certain destinations in the normal case, and are only used as backup. More
refined algorithms for configuring O2 networks have later been developed [54].
A drawback of the O2 scheme is that in order to guarantee the existence of
two loop-free next-hops, the routes used in the normal case are often sub-
optimal. Also, the network topology must be well connected for O2 to be
able to give complete protection. In less connected networks, O2 will leave
some links and nodes unprotected.

Failure Insensitive Routing (FIR) is a local protection scheme that guar-
antees protection against all single link failures in arbitrary biconnected net-
works [55, 56, 57]. With FIR, routers are not explicitly made aware of a
failure through notification messages. Instead, they infer that a link failure
must be present if a packet for a given destination arrives at an unusual inter-
face. By calculating in advance which possible link failures that would give
this unusual traffic pattern, they are able to build interface-specific routing
tables that avoids the failed link. Thus, the next-hop for a packet is de-
pendent both on the destination address and the packets incoming interface.
Later, FIR has been extended to also handle node failures [58]. A weakness
with the original FIR approach was that forwarding loops could occur if more
than one link failed. A solution to this problem has later been proposed [59],
but with this extension, FIR is no longer able to guarantee recovery from
all link failures in arbitrary biconnected networks. A drawback of the FIR
approach is the need for a non-standard routing protocol.

The need for a proactive recovery scheme in connectionless IP networks
has also attracted significant interest from the IETF [60]. They have dis-
cussed several protection strategies with varying protection coverage. The
most important contribution that has come out of their efforts is a protec-
tion scheme called Not-via, which guarantees protection against any single
link or node failure in arbitrary biconnected networks [61]. Their approach
is based on tunnelling packets that would normally be routed through the
failure to the router beyond the failure, “not-via” the failed element. To
protect against the failure of a node P , a special “N-not-via-P” address is
assigned to each of P ’s neighbors. The shortest paths to these addresses are
calculated by all routers in the network on a topology where P is removed.
When the failure of P is detected, traffic that that would normally be routed
through P to N is encapsulated and sent shortest path to “N-not-via-P”. At
node N the packet is decapsulated, and forwarded as normal to the destina-
tion. Since N is closer to the destination than P , we will never get routing

2.5. CONNECTIONLESS LOAD BALANCING 19

loops. This is an elegant solution that gives gives intuitive and well defined
backup paths. A drawback with this method is the large number of shortest
path computations that are needed to calculate the routing for all the not-via
addresses. However, the authors claim that these calculations can be signif-
icantly reduced by relying on incremental algorithms. Another drawback is
the use of tunnelling, which imposes an extra burden on the routers that
must encapsulate and decapsulate packets.

Proactive recovery mechanisms at the IP layer are imagined used to main-
tain a valid routing and avoid packet loss during transient failures. If the
failure is permanent, the normal IGP re-convergence process must be trig-
gered, and a new set of global shortest paths must be calculated. During
the re-convergence process, so-called micro-loops can occur, due to the asyn-
chronous transition to the updated routing tables [62]. This can be avoided
by controlling the order in which the routers update their FIBs [11]. The
same technique can be used to avoid micro-loops after a link weight change
in the network, as long as only a single link weight is changed at a time.

2.5 Connectionless load balancing

Related to the issue of recovery is the question of how the traffic is distributed
in the network before and after a failure. In a well engineered network, the
traffic load is spread on the available inks in a way that maximizes throughput
and minimizes the chances that congestion occurs. In a recovery context, care
should be taken so that the recovered traffic does not cause congestion and
packet loss on the recovery path.

It has long been known that for a given network and a given traffic matrix,
it is possible to find a set of routes that is optimal with respect to some
objective function [63]. Recently, it has been shown that a good routing can
be found with limited or no knowledge of the traffic demands [64]. They show
that for their evaluated current ISP networks, a routing can be found that
performs within 2 times the optimal for any traffic matrix. However, these
schemes require the ability to route any fraction of the demands over selected
and diverse paths. In MPLS networks, paths can be explicitly laid out in
order to meet some traffic engineering objective [65, 66], and it is possible to
obtain this optimal routing.

Connectionless IP protocols like OSPF and IS-IS on the other hand, are
restricted to shortest path routing, and cannot in their present form achieve

20 CHAPTER 2. STATE OF THE ART

optimal routing. It has been shown that it is possible to find an optimal
routing so that all routes are shortest paths [67]. However, this requires
the ability to split the traffic towards a destination in arbitrary fractions
between several equal cost paths, which is not possible with existing routing
protocols. An approach that approximates the optimal solution using only
equal splitting between equal cost paths has later been developed [68]. Both
these approaches require a central entity that calculates how each router
should split its traffic towards each destination on the available links. Hence,
each router can no longer make routing decisions independently based on
simple link weight parameters as is done in OSPF and IS-IS today.

Much of the work on connectionless load balancing in IP networks focus
on finding link weights that give a good load distribution for a given estimate
of the traffic matrix. It has been shown that by using heuristics to carefully
tune the link weights in a network, one can achieve a load distribution that
is close to optimal for a given traffic matrix [69]. Extensions of this work
has mainly followed two directions; finding link weights that are robust to
uncertainties in the traffic matrix estimates, and finding link weights that
are robust to link failures.

It is generally difficult to get good estimates of the traffic demand matrix
in an operational IP network [14]. Hence, it is desirable to find a set of link
weight that performs well under several possible traffic scenarios. A first
approach to handle this problem is described in [15]. They devise a method
for finding a single set of link weights that gives good routing with more than
one traffic matrix. Such an approach is well suited to handle the well-known
diurnal variations in network traffic. Further, they present a method for
adapting the set of link weights to a new traffic situation (caused by e.g. a link
failure or a sudden hot-spot) by only changing a very limited number of link
weights. Later, a method has been proposed that takes into consideration the
tradeoff between the average and the worst case when optimizing for several
traffic matrixes [70].

Some work has also been done on finding link weights that are robust to
link failures. An approach to find a single set of link weights that perform
well in both the normal case and after any single link failure is presented in
[71]. According to their evaluations, they can reduce link overload after a link
failure by 40%, at the cost of a 10% performance degradation in the normal
case. A problem with this approach is the extensive computations needed
to predict the load distribution after all possible failures. Because of this,
methods have been proposed that only optimize the link weights for a subset

2.5. CONNECTIONLESS LOAD BALANCING 21

of the most critical link failures [72, 73]. Very little work has previously been
done with respect to the load distribution after a failure when a proactive
recovery mechanism is used.

22 CHAPTER 2. STATE OF THE ART

Chapter 3

Resilient Packet Ring Recovery

In this chapter, we look at the recovery mechanisms used in the recent Re-
silient Packet Ring (RPR) standard [74, 75]. This link layer technology
takes advantage of the special ring topology to implement very fast recovery
mechanisms. However, the in-order delivery requirements in RPR leads to a
somewhat longer disruption in packet delivery after a failure. To improve on
this, we propose a set of new mechanisms that reduce the response time and
packet loss, while still maintaining the in-order delivery guarantees.

Most of the contents in this chapter has previously been published in [76]
and [77].

3.1 Introduction

RPR is a standard for packet based, dual-ring topology networks. It has
been developed for use in metropolitan and wide area networks, with link
capacities of several Gigabits per second. Traffic in an RPR network may
be sent shortest path along one of the two counter-rotating unidirectional
ringlets. Each ringlet carries both data and control packets. A packet is
stripped from the ring by the receiver node, which makes the bandwidth
downstream of the receiver available for other data streams. This property
is known as spatial reuse, and is illustrated in figure 3.1. Spatial reuse makes
RPR more resource efficient than older ring technologies like Token Ring or
FDDI, where packets traverse the whole circumference of the ring before they
are removed.

Three packet priorities are supported in RPR, with strict delay guarantees

23

24 CHAPTER 3. RESILIENT PACKET RING RECOVERY

1

2

3

4

5

6

Figure 3.1: Spatial reuse allows several packets to be sent on different spans
of the same ringlet at the same time.

for traffic with the highest priority. RPR is a buffer insertion ring, and can
be implemented with a single or a dual transit buffer design. In a single
buffer design, all packets flow through the same transit buffer. In a dual
buffer design, the highest priority packets use one buffer, while the two lower
priorities use the other. Traffic that is in transit on the ring has priority
over local add traffic. To prevent starvation, a fairness mechanism is used
to give each node a fair share of the available bandwidth. We have earlier
analyzed this fairness algorithm, and found that it requires careful parameter
setting in order to be stable [78]. We have also suggested improvements to
increase the stability and decrease the convergence time of the RPR fairness
algorithm [79].

RPR makes two important guarantees with respect to packet delivery.
First, in normal operation, packets that are admitted on the ring are never
dropped. If the demands are larger than the capacity, all packet dropping
takes place at the ingress of the ring. Second, by default packets are deliv-

3.2. RECOVERY IN RESILIENT PACKET RINGS 25

ered to the receiver in the same order as they were sent. This guarantee is
maintained even in a failure scenario.

RPR is designed with a protection mechanism aiming at restoring traffic
within 50 ms in case of a link or node failure. Since every node on the
ring is reachable through either of the ringlets, one ringlet can serve as a
secondary path for traffic on the other. The operations of the RPR protection
mechanisms are transparent to higher layer protocols like IP, except for the
performance degradation that might be experienced due to congestion and
increased path lengths after a failure.

In this chapter, we discuss the recovery mechanisms used in RPR, with a
special emphasis on packet reordering. The IP protocol does not guarantee
in-order delivery of packets, and higher layer protocols must therefore be able
to recover from any amount of packet reordering. In practice, however, many
services are based on the assumption that packet reordering is sufficiently
low. If this assumption is not fulfilled, the consequence with respect to
performance can be severe. For example, TCP’s fast retransmit optimization
treats a reordering spanning more than a few packets as a loss [80]. Since TCP
interprets packet loss as a sign of congestion, this has serious implications on
throughput performance [81].

By default, packets sent over an RPR ring are guaranteed to arrive at the
egress node in sending order. To achieve this, RPR uses a 40 ms, configurable
from 10 to 100 ms, topology stabilization timer in the event of a failure.
During the topology stabilization period, all strict order packets are discarded
on the ring. We analyze the mechanism used in the RPR standard, and
argue that the current mechanism is not satisfactory. Instead, we suggest
three different alternatives, all giving reduced packet loss and disruption
time compared to the original mechanism. The performance of the three
new methods and the original are compared through simulations.

3.2 Recovery in Resilient Packet Rings

The RPR protection mechanisms are designed to restore traffic on the ring
within 50 ms of a link or node failure, including the failure detection time.

26 CHAPTER 3. RESILIENT PACKET RING RECOVERY

3.2.1 Failure detection

A node or link failure can be discovered in two different ways in RPR. Many
physical layer technologies can issue an alarm (e.g. SONET alarm) to the
higher layers if connectivity is broken. Alternatively, an RPR node declares
a link broken if it fails to receive a keep-alive packet from the neighbor in a
specified time interval, which defaults to 3 ms.

RPR uses a hold off timer to prevent RPR protection mechanisms from
declaring a link broken based on glitches in the received traffic. For example,
such glitches can occur due to protection switching of RPR traffic by under-
lying physical layer protection mechanisms. RPR is currently defined over
SONET/SDH and Ethernet/PacketPHY physical layers. The hold off timer
can be up to 200 ms, the default value is zero.

All RPR nodes maintain a topology image, that includes information
about the hop count to the other nodes on both ringlets. When a failure
occurs, the nodes that discover the error broadcasts a topology update on
the ring, informing the other nodes that the ring is broken. The reception
of such a message causes each node to update its topology image. Traffic is
moved over to the other ringlet as necessary.

3.2.2 Wrapping and steering

RPR offers two different recovery mechanisms, called wrapping and steering.
Figure 3.2 shows an RPR ring in a normal, a wrapped and a steered condition
respectively.

RPR nodes may support wrapping, in order to reduce packet loss in a
failure situation. If used, it must be supported by all node on the ring.
Wrapping works in much the same way as SONET/SDH Automatic Protec-
tion Switching. Traffic reaching a point of failure is wrapped over to the
opposite ringlet, as shown in Fig. 3.2. Wrapping is used in RPR to prevent
loss of the traffic in transit on the ring when a failure occurs. Note that
wrapped packets will arrive at the destination on the same ringlet they were
first transmitted on.

Steering is the default protection mechanism in RPR, and must be sup-
ported by all nodes. Steering relies on the source node to transfer traffic to
the ringlet where the destination is still reachable, as shown in Fig. 3.2. This
gives a more optimal utilization than wrapping of the bandwidth resources
after a failure situation.

3.2. RECOVERY IN RESILIENT PACKET RINGS 27

normal wrapping steering

Figure 3.2: RPR ring in normal, wrapped and steered state.

Wrapping is normally used as the first step in a two-step wrap then steer
protection strategy. This way, the number of packets lost is minimized, while
the network utilization is maximized when the steering kicks in.

A wrap then steer protection strategy might introduce reordering of pack-
ets on the ring. By default, RPR packets are marked strict order, meaning
that they are guaranteed to arrive in the same order as they were sent. Since
wrapping can introduce packet reordering, strict order packets are never
wrapped. Instead, the RPR standard prescribes that such packets should
be dropped from the ring until the updated topology has been unchanged
for one context containment period, and the new topology has been verified.
The purpose of this period, which defaults to 40 ms, is to make sure that no
packets that were sent in an old topology context, will arrive at a destina-
tion in a different topology context. When the context containment period
expires, a checksum on the topology image is calculated, and sent to the
neighboring nodes. The topology image in a node is declared stable when
the locally calculated checksum equals that received from the two neighbor-
ing nodes. In the context containment period before the new topology is
declared stable, all strict order packets are discarded at ingress and egress
of all transit nodes, and no new strict order packets are accepted on the
ring. The context containment period must be long enough to allow every
node to completely empty its transit buffer. In this chapter we show that,
because of the context containment period, RPR can not usually fulfil a 50
ms restoration guarantee for strict order traffic.

28 CHAPTER 3. RESILIENT PACKET RING RECOVERY

Wrapping is only performed on wrap eligible packets. Only non strict
order packets can be marked as wrap eligible. A non strict mode packet that
is not wrap eligible, is discarded when reaching a wrap point, but it can be
steered without waiting for context containment period to expire. This way,
we effectively have three different types of packets with respect to failure
handling: strict order packets, non-strict order wrap eligible packets, and
non-strict order non-wrap eligible packets.

3.3 Analysis of the RPR protection mecha-

nism

The main goal of the RPR protection mechanism is to minimize the conse-
quences for the traffic in case of a network failure. Specifically, RPR should
guarantee sub-50 ms protection time. In this section, we will discuss to what
extent the RPR protection mechanisms achieve this. Three important met-
rics in a failure situation are discussed, 1) the experienced disruption in the
traffic at the receiving node, 2) the number of packets reordered, and 3) the
number of packets lost.

3.3.1 Traffic disruption

When a failure occurs in an RPR network, the receiver will typically ex-
perience a period with no arriving traffic, before the protection mechanism
restores the traffic on the secondary ringlet. With this in mind, we define the
disruption time as experienced by the receiver, TD, as the time between the
arrival of the last packet that was not affected by the failure, and the first
packet that was wrapped or steered by the protection mechanism. Figure 3.3
shows a typical arrival sequence during a failure situation.

t

T0 DT

Figure 3.3: The receiver typically experiences a period TD without arriving
packets during a failure situation occurring at time T0. The receiver might
experience reordering of packets after the failure.

3.3. ANALYSIS OF THE RPR PROTECTION MECHANISM 29

TD depends on the size of the ring, traffic load, traffic priority, and the
locations of the sender, receiver, and the point of failure. Topology updates
are sent with the highest priority, while data packets can be sent with any
of the three packet priorities. With steering and non strict order traffic,
TD is made up of (i) the time it takes for the adjacent nodes to discover
the failure, (ii) the processing time it takes for these nodes to update their
edge state and produce a topology update message, (iii) the propagation
time, including buffering in the high priority transit buffers along the ring, of
the topology update messages from the point of failure to the traffic source,
(iv) the processing time to perform the topology update in the source node,
and (v) the data packet propagation delay, including buffering in high or
low priority buffers along the ring, from the traffic source to the destination
along the new ringlet. Note that traffic in transit that has already passed
the point of failure, will still reach the destination, and thus contribute to a
shorter experienced disruption. The processing needed in (ii) and (iv) is not
complex, and can be performed in order of a few microseconds in modern
switches. Hence, the disruption time is dominated by points (i), (iii) and (v).
The buffering delay for high priority packets in each transit node, is bounded
by the time it takes to transmit one MTU. At the high bandwidths of an
RPR network, this time is no considerable factor. Hence, a good estimate
of the experienced disruption at the destination can be given by summing
the error discovery time in (i), the propagation delays from (iii) and (v), and
subtracting the time when traffic in transit is still arriving at the original
ringlet. Formally, using the notation shown in Fig. 3.4, we can estimate the
disruption time TD as shown in Eq. 3.1.

TD = Tdiscovery +
∑

di∈SF

di +
∑

di∈SDnew

di −
∑

di∈FD

di (3.1)

In Eq. 3.1, di denotes the propagation delay of a link between two nodes,
including the buffering delay in the transit queue. SF is the set of links
between the traffic source and the point of failure. FD is the set of links
between the failure point and the destination. SDnew is the set of links
between the traffic source and destination along the secondary ringlet. Note
that the two last parts of Eq. 3.1 include buffering delays for the data packets
in the transit buffers, and will therefore vary with the traffic load. Figure
3.4 shows a generic RPR ring with a source S, a destination D, and a point
of failure F .

30 CHAPTER 3. RESILIENT PACKET RING RECOVERY

SD new

. . .

. . .

.

S

D

SF

F

FD

Figure 3.4: The experienced frame loss is dependent on the relative position
of the source S, the destination D and the point of failure F.

Equation 3.1 above shows the situation for non strict order packets using
steering. With a wrapping only scheme, the disruption time will normally
be longer, since the wrapped traffic must travel the whole circumference of
the secondary ringlet.

Simulated values for TD for non strict order traffic is plotted in Fig. 3.5.
In our simulations, we have used a discrete event packet simulator, based on
the J-Sim framework [20]. The failure discovery time is set to 3 ms, and the
simulations are made for a ring with 64 nodes. For all simulations in this
chapter, the link propagation delay is 0.2 ms, corresponding to a link length
of about 40 km. Node 0 is the traffic source, sending low priority traffic to
node 31. The time plotted is the time between the receipt of the last packet
on the primary ringlet and the first packet on the secondary ringlet. The
quotient obtained by dividing the propagation delay over the FD links by
the propagation delay over the SDnew links, denoted FD/SDnew, is increased
along the x axis.

Turning first to a lightly loaded ring, the experienced disruption is close to
the value derived from Eq. 3.1 with zero buffering delay in the transit nodes.
With steering, TD decreases as FD/SDnew increases, since the source quickly
becomes aware of the failure, and traffic that has already passed the point of

3.3. ANALYSIS OF THE RPR PROTECTION MECHANISM 31

10

20

30

40

50

60

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
(m

s)

BD/SD_new

T_D

Steering - light load
Steering - high load

Wrapping - light load
Wrapping - high load

Figure 3.5: The disruption time, TD, for non strict order traffic decreases if
the secondary ringlet is not much longer than the primary. In heavily loaded
networks, the transit buffer delays cause the disruption time to deviate from
a lightly loaded scenario.

failure keeps arriving on the primary ringlet for some time after the failure.
For wrapping, TD is independent of FD/SDnew, since the wrapped packets
always travel the whole circumference of the ring. For a heavily loaded ring,
TD varies more. Note that when FD/SDnew is close to 1, TD might formally
become negative when steering is used, since packets keep arriving on the
primary ringlet even after traffic starts arriving on the secondary ringlet
(large last term in Eq. 3.1). Since a negative disruption time intuitively seems
meaningless, these values are plotted as zero in Fig. 3.5. With wrapping only,
the transit buffer delays cause TD to increase further, and even exceed 50 ms
in our 64 node scenario.

3.3.2 Packet reordering

As explained above, we may get packet reordering on a heavily loaded ring
when the ring is broken close to the source (few links in SF), and the distance
along the secondary ringlet is not much longer than along the primary ringlet
(| SDold |≈| SDnew |).

32 CHAPTER 3. RESILIENT PACKET RING RECOVERY

100

200

300

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

M
eg

ab
its

 r
ec

ei
ve

d
pe

r
se

co
nd

Steering, low traffic load

100

200

300

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Steering, high traffic load

a) b)

100

200

300

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

M
eg

ab
its

 r
ec

ei
ve

d
pe

r
se

co
nd

Wrapping, low traffic load

100

200

300

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Wrapping, high traffic load

c) d)

100

200

300

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

M
eg

ab
its

 r
ec

ei
ve

d
pe

r
se

co
nd

Wrap + steer, low traffic load

100

200

300

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Wrap + steer, high traffic load

e) f)

100

200

300

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

M
eg

ab
its

 r
ec

ei
ve

d
pe

r
se

co
nd

Time (sec)

Strict order, low traffic load

Primary ringlet
Secondary ringlet

100

200

300

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Time (sec)

Strict order, high traffic load

Primary ringlet
Secondary ringlet

g) h)

Figure 3.6: Received traffic on primary and secondary ringlet after a failure.
Number of bytes received from node 0 in node 31. The vertical line marks
the time of the failure. Failure occurs at node 1 in plots a, b, g, h, and at
node 30 in plots c, d, e, f.

3.3. ANALYSIS OF THE RPR PROTECTION MECHANISM 33

Fig. 3.6 shows the received traffic on the primary and secondary ringlets
in a failure scenario. In our 64 node scenario, node 0 sends a continuous
stream of 500 bytes low priority packets to node 31. All other nodes send
traffic to random receivers. The background traffic is modelled to have self-
similar characteristics, using superimposed Pareto-distributed ON/OFF traf-
fic sources as outlined in [82]. A link on the primary path is broken at time
0.15. Figure 3.6 shows how traffic is shifted over to the secondary ringlet.
The eight plots in Fig. 3.6 show the arrival rate from node 0 in node 31.
Results are shown for both steering, wrapping, wrap + steer, and strict or-
der steer, and for a heavily and a lightly loaded ring. With steering, failure
occurs at the link between nodes 0 and 1, while with wrapping, the point of
failure is between nodes 29 and 30. The failure points are chosen this way to
highlight the differences between the schemes. A failure close to the source
shows that reordering can occur with steering, while a failure close to the
destination gives reordering when wrap + steer is used.

Figure 3.6a) shows that on a lightly loaded ring using steering, all the
traffic that is sent on the primary ringlet arrives at node 31 before traffic
starts arriving at the secondary ringlet. Thus, we get no reordering in this
situation, since the primary path is shorter than the secondary path. Figure
3.6b) shows that when the load on the ring is increased, frames that were
delayed in the transit buffers along the primary ringlet, keep arriving even
after traffic starts arriving on the secondary ringlet.

In plots c) and d), only wrapping is used. In this scenario, there will be no
reordering of frames, regardless of the load in the network. Remember that
all wrapped packets are received from the primary ringlet. Wrapping not
succeeded by steering results in poor bandwidth utilization after a failure.
This is the reason for the low packet arrival rate after time 0.30 in plot 3.6d).

Figure 3.6e) and f), show that when wrapping then steering is used for
protection, reordering of frames will occur regardless of the load on the ring.
The reordering happens when the traffic source updates its topology image,
and starts sending traffic directly on the secondary ringlet. This traffic might
then arrive at the destination before the wrapped traffic, which has to traverse
the whole circumference of the ring. In a heavily loaded ring, the period with
packet reordering will be longer.

Finally, Fig. 3.6g) and h) shows the situation for strict order traffic. No
reordering occurs, but the restoration time is increased by at least one context
containment period (40 ms).

Note for all plots, that with low traffic load, the jitter increases after the

34 CHAPTER 3. RESILIENT PACKET RING RECOVERY

failure, because the failure gives an increased load on parts of the network.
With heavy load, the experienced throughput is decreased, since the capacity
is already fully used.

3.3.3 Packet loss

Another important metric is packet loss. The experienced packet loss is
dependent on which protection method is used, and the relative placement
of the source, the point of failure, and the destination. Packets that are
in transit between the source and the point of failure, and packets that are
sent by the source after the failure occurs, but before the topology update
has reached the sender, will be lost if wrapping is not used. Let ta denote
the propagation + buffering delay from the source to the point of failure,
tb denote the propagation + high priority buffering delay from the point of
failure back to the source, and consider a failure that occurs at time T. Then
frames sent in the interval 〈T − ta, T + tb〉 will be lost. Figure 3.7 shows how
the number of frames lost increases with SF in a 64 node ring when steering
is used. Again, node 0 sends a continuous stream of low priority 500 byte
packets to node 31.

If wrapping is used, the frames in transit will be wrapped back on the
opposite ringlet, and are not lost. With wrapping, only frames in the failing
node or at the failing link, and frames reaching a point of failure before the
failure has been discovered (default 3 ms), are lost. As seen in Fig. 3.7, the
packet loss is independent of the point of failure.

Strict order traffic experiences significantly more packet loss, due to the
40 ms context containment period following a failure, as seen in Fig. 3.7.
Nodes in a context containment state, discard all strict order packets until
the topology image is declared stable.

Note that after recovery from the failure, the nodes on the ring will ex-
perience lower throughput due to the reduced bandwidth, but no additional
packets are lost on the ring.

The simulated results highlight the need for a better mechanism that can
secure strict packet ordering without using the context containment period
that gives a longer disruption time and increased packet loss.

3.4. IMPROVED PROTECTION MECHANISM FOR STRICT ORDER TRAFFIC35

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 5 10 15 20 25 30

P
ac

ke
ts

 lo
st

Link failure at node number

Packet loss

Strict order
Steering

Wrapping
50 ms

Figure 3.7: The experienced packet loss is significantly higher if strict order
is required. The horizontal line shows 50 ms worth of packet production.

3.4 Improved protection mechanism for strict

order traffic

In this section, we present three different ways to reduce the consequences
of a link or node failure for strict order traffic. We refer to the methods as
Automatic, Receiver and Selective Discard in the text below.

The Automatic method requires only very small changes to the existing
specification, while the Receiver and Selective Discard methods demand some
logic to be moved from the transit nodes to the receiver node. The Selective
Discard method gives the most optimal performance, at the cost of some
added complexity. None of the three proposed mechanisms rely on packets
to be sent shortest path before a failure. Hence, they can easily be adapted
to handle network elements that are restored on the ring, as well as failing
elements.

36 CHAPTER 3. RESILIENT PACKET RING RECOVERY

3.4.1 Automatic setting of the topology stabilization
timer

As explained above, the context containment period is used to make sure that
no strict order packet in a particular flow sent in a new topology context,
will arrive at the destination before a strict order packet from an old context.
Once a node enters context containment, all strict order packets are discarded
upon reception and transmission from the node. Hence, the period with
context containment must be long enough to let a node on the ring empty
its transit buffers. Once all packets have left the transit buffers in a node,
the node is in the clear with respect to packet reordering. The aim of the
Automatic method is to reduce packet loss by reducing the value of the
topology stabilization timer to the minimal safe value.

In the existing RPR specification, the topology stabilization timer is con-
figurable in the interval 10 to 100 ms. In many cases, even the minimal value
of 10 ms is too restrictive with respect to reordering. The optimal value of
the topology stabilization timer depends on the link bandwidth, the distri-
bution of traffic in the different service classes, and the size of the transit
buffer.

We observe that propagation delays between the source, destination and
the point of failure do not influence the setting of the stabilization timer.
Remember that a topology update is broadcast on both ringlets with the
highest priority after a failure. This ensures that all nodes on the ring will
receive notification of a failure and enter context containment before any
steered traffic can reach that node. Once a node A enters context contain-
ment, no more strict order traffic is sent from that node for one context
containment period. In other words, once a topology update that triggers
context containment arrives on the next downstream node B, no more strict
order packets will arrive from A for at least one context containment period.
It is then sufficient with a context containment period that is long enough to
guarantee that all strict order packets have left the transit queues in node B.

To find the minimal value for the topology stabilization timer, we need
to know the maximal time a data packet can be delayed in the transit buffer.
Figure 3.8 shows a simplified view of the data path for one ringlet in an
RPR node. This data path implements the dual transit buffer design, where
the highest priority class A traffic flows through the Primary Transit Queue
(PTQ), while class B and C traffic uses the Secondary Transit Queue (STQ).

In the worst case, the STQ might be completely filled up by transit traffic.

3.4. IMPROVED PROTECTION MECHANISM FOR STRICT ORDER TRAFFIC37

upstream
From

down−
stream

To

a
d

d
 A

a
d

d
 B

a
d

d
 C

class A

class B and C

MAC client

MAC control

MAC datapath highThreshold

PTQ

STQ

Figure 3.8: Simplified view of the transit path for one ringlet in an RPR node,
with dual transit queues. Each service class has its own transmit buffer in
the MAC client.

The time it takes for the last packet in the buffer to be transmitted, depends
on the available link rate assigned to the STQ. As seen in Fig. 3.8, the output
from the STQ has to compete for the outlink bandwidth with the traffic from
the PTQ and the add traffic from the MAC client.

The class A packets from the PTQ and class A and B packets from
the MAC client have precedence over packets from the STQ in the output
selector. Class A and B traffic is shaped at each source node, to make sure
no node exceeds its allowed rate. In the worst case, all nodes on the ring send
class A traffic through this node on this ringlet. At the same time, the MAC
client transmits class A and class B traffic at its maximum allowed rate.

Packets from the STQ have absolute precedence over added class C pack-
ets from the MAC client as long as the STQ is filled above a highThreshold,
which defaults to one quarter of the STQ size. When the STQ level drops
below this threshold, the available bandwidth is shared equally between the
STQ transit traffic and the MAC client class C add traffic.

Equation (3.2) shows an estimate of the upper bound on the time T
needed to completely empty the STQ. The numerator contains the size of
the STQ. The part below the highThreshold is counted twice, since the avail-
able bandwidth is potentially halved below this threshold. The denominator

38 CHAPTER 3. RESILIENT PACKET RING RECOVERY

contains the outlink bandwidth1, minus the worst case bandwidth used for
traffic from the PTQ and class A and B traffic added from the MAC client.

T =
(stqSize + highThreshold)

outLinkRate − (
∑

numNodes−1

rateA) − rateB

(3.2)

In a node with a 1 Gb/s outlink, a STQ size of 256 kB, a total maximum
of 10% of the bandwidth used for class A traffic, and a 10% total limit on
class B traffic, the calculated maximum time required to flush the STQ, is
about 3.2 ms. This is the minimum timeout value we can give the topology
stabilization timer while still fulfilling the strict ordering guarantee.

3.4.2 Discarding packets at the receiver

Reducing the topology stabilization timer to the optimal value gives a re-
duced packet loss count. However, the mechanism still does not differentiate
between traffic from different sources. Packets that were not affected by the
failure, will still be discarded during the context containment period. This
is clearly sub-optimal: packet flows that are transmitted on the same ringlet
before and after the failure, can never experience reordering, and should not
be discarded.

Figure 3.4 shows a generic RPR topology with a source S, a destination
D, and a failure point F. By default, RPR will send packets from the MAC
client shortest path (minimum hop count) around the ring. However, the
MAC client may choose to override this, by explicitly defining which ringlet
should be used on a per packet basis. This could be done for instance to
avoid congestion points on the ring, and thus improve the throughput.

Since the MAC client can choose which ringlet to transmit a packet on, a
destination D will possibly receive packets from a source S on both ringlets
when the ring is connected. However, when a connectivity failure occurs,
there is only one valid path from S to D. Packets will only be sent along this
path, irrespective of the preferences of the MAC client.

The Receiver mechanism seeks to avoid dropping unaffected packets, by
exploiting the knowledge of where the ring is broken. With the Receiver

1Class A traffic is divided into subclasses A0 and A1. Subclass A0 uses reserved band-
width, which cannot be reused by other traffic classes. unreservedRate - rateA1 would
therefore be a more precise formulation than outLinkRate - rateA.

3.4. IMPROVED PROTECTION MECHANISM FOR STRICT ORDER TRAFFIC39

mechanism, transit nodes no longer drop strict order packets during context
containment. Instead, packets are dropped selectively by the receiving node,
based on the source address of the packet. Once the first topology update
is received by a source S (remember that two topology updates will be re-
ceived, one on each ringlet), the topology image is updated so that the source
knows which nodes are reachable on each ringlet. Similarly the other way
around, the topology update gives a destination D enough information to
know which sources S can send packets to D on each ringlet, without pass-
ing a point of failure F. For each ringlet, the receiver can then decide which
nodes are “valid” sources. With the Receiver mechanism, only packets re-
ceived from nodes that are not “valid” are discarded, since only these frames
are potentially received out of order.

Transferring the responsibility for discarding packets to the receiver some-
what increases the traffic load on the ring in the time following the failure
compared to the standard RPR and Automatic methods, since packets are
not discarded immediately by transit nodes. This also prevents the topology
stabilization time from being set as low as indicated by (3.2), since packets
from an old topology context will exist on the ring for a longer period of
time. However, increasing the topology stabilization timer will not result in
increased packet drop count in this situation, since only packets originating
from beyond the point of failure F on the ringlet are discarded. Such pack-
ets will stop arriving as soon as the traffic is steered over on the secondary
ringlet.

As shown below in Sec. 3.5, the Receiver method reduces the packet drop
count, compared to the Automatic method. This gain in performance comes
at the cost of some added complexity in the receiver node, since the receiver
must do a check on each received packet during context containment, to
decide whether it should be kept or discarded. On the other hand, complexity
is removed from the transit nodes, since no check to decide if a strict order
packet should be discarded is needed there. No extra state information is
required in the nodes, as only information already present in the topology
image is used to perform the checks.

3.4.3 Selective packet discarding at the receiver

With the Receiver method, all packets that were sent from beyond a point
of failure in an old topology context, are discarded. However, packets sent
in an old topology context will not necessarily lead to reordering. Only if

40 CHAPTER 3. RESILIENT PACKET RING RECOVERY

packets keep arriving on the primary ringlet even after packets start arriving
on the secondary ringlet, will reordering occur. The idea with Selective Dis-
card, is to accept packets from beyond a point of failure even during context
containment, as long as no packets from that sender has yet arrived on the
secondary ringlet.

Selective Discard requires the receiver node to maintain one bit per node
on the ring indicating whether a packet has been received on the secondary
ringlet after the topology was updated. Once this bit has been set, no more
strict order packets are accepted from beyond the point of failure on the
primary ringlet.

Remember that the MAC client in a sender node can choose which ringlet
to transmit on, to achieve load balancing or avoid congestion points. If a
source node sends traffic to the same receiver on both ringlets, the perfor-
mance gain obtained with Selective Discard can be reduced, since traffic can
be received on the secondary ringlet immediately after a topology update. In
Fig. 3.4, if the source S sends traffic over both the primary and the secondary
ringlet before a failure, packets in transit along the secondary ringlet can
start arriving immediately after the topology update. The Selective Discard
method cannot distinguish the packets that were sent along the secondary
path due to MAC client preferences, from the packets that were steered over
to the secondary path by the protection mechanism. Only the last category
of packets can cause reordering.

One way to improve the performance of the Selective Discard algorithm
when the source S sends packets to the receiver R along both ringlets, would
be to introduce a bit in the frame header marking the packets that are sent a
non-default way due to a protection event. This would allow the receiver to
distinguish the potentially reordered packets from the packets that were sent
along the secondary ringlet due to MAC client preferences. With this im-
provement, the Selective Discard mechanism would give the optimal achiev-
able performance for a reorder avoidance mechanism. Only packets that were
actually received out of order would be discarded.

3.5 Evaluation

In this section we compare the different mechanisms described above. The
measurements are again performed with our discrete event packet simulator
based on the J-sim framework. We do our measurements on a ring with 64

3.5. EVALUATION 41

nodes, numbered 0 – 63, and a link length of 40 km. The link capacity is 1
Gb/s, and the STQ buffer size is 256 kByte where not otherwise specified.

3.5.1 Optimal topology stabilization timer

In the Automatic method, (3.2) is used to calculate the timeout value of the
topology stabilization timer. The calculated value is dependent on several
variables, among them the size of the secondary transit queue. In Fig. 3.9, the
calculated timer value is shown as a function of the STQ size, along with the
maximum experienced STQ transit delay in the network in our simulations.

The traffic pattern is designed to stress the occupancy level of the STQ,
to achieve a high transit delay. In the simulated scenario, node 31 is a “hot
receiver”. Nodes 0 to 29 send class C traffic to node 31 at the maximum
rate allowed by the fairness mechanism. When the fairness mechanism has
stabilized, all nodes start sending class A traffic to node 31 at the maximum
rate (rateA in (3.2)). 0.2 seconds later, the ring is broken between nodes 30
and 31. The simulations show that the highest STQ transit delay occurs at
node 29, which is the bottleneck node in this scenario. The values plotted are
the highest experienced values after running the simulation 100 times with
different seeds.

The simulation results show that the experienced STQ transit delay never
exceeds the value calculated in (3.2). In fact, the experienced delays are
normally quite far from the theoretical maximum. This is because the chance
of actually filling the whole STQ before the fairness mechanism reduces the
sending rate of the class C sources is very small. This effect increases when
the size of the STQ grows.

3.5.2 Comparison of packet loss counts

Figure 3.10 shows the total number of strict order packets lost in the network
after a link failure. Results are given for the different packet reordering
avoidance mechanisms, with increasing traffic load.

In this scenario, all nodes on the ring send traffic to random receivers.
The source picks a random receiver, and sends a stream of packets to that
receiver for a random (Pareto distributed) time interval. Each node has ten
independent traffic sources, and may send to several receivers at the same
time. The traffic is modelled this way in order to show self-similar charac-
teristics [82]. The traffic load is controlled by varying the load produced by

42 CHAPTER 3. RESILIENT PACKET RING RECOVERY

 0

 2

 4

 6

 8

 10

 12

 14

200 400 600 800 1000

S
T

Q
 tr

an
si

t d
el

ay
 (

m
s)

STQ size (kB)

Calculated limit and experienced transit delay

Equation (1)
Highest experienced transit delay

Figure 3.9: The maximum experienced transit queue delay in one node for
different STQ sizes is plotted, along with the calculated maximum from (3.2).

the individual sub-sources. Traffic is always sent the default (shortest path)
way around the ring.

The original RPR mechanism, using a default topology stabilization timer
value of 40 ms, is shown in the upper graph. Optimizing the value of this
timer gives a significant improvement, about 60% in our scenario, as seen
by the second curve. Receiver and Selective Discard further reduces the
experienced packet loss. The experienced reduction is between 80 and 90%.
The difference between the Receiver and the Selective Discard methods is
very small. In our scenario, the difference only appears with very high traffic
load, and even then the difference is very limited (14 packets for load 4.0).

Note that since we do not use wrapping, packets in transit between the
source and the failure before the topology image of the source node is updated
will be lost with all mechanisms. These packets also contribute to the packet
loss count in Fig. 3.10.

With the Receiver and Selective Discard mechanisms, the packet loss
count for a specific traffic stream depends on the distance between the packet
source and the point of failure. When the point of failure is close to the
source, the time it takes for the topology update to reach the source is short.
Thus, fewer packets are sent on the broken ringlet and lost. With increasing

3.6. SUMMARY 43

Method Who
discards
packets?

Which packets are discarded?

RPR default Source and
transit nodes

All strict order packets entering and
leaving a node during the context con-
tainment period

Automatic Source and
transit nodes

All strict order packets entering and
leaving a node during the calculated
context containment period

Receiver Receiver node Packets sent from a node that can-
not reach this receiver on the ringlet
in question

Selective
Discard

Receiver node Packets sent from a node that cannot
reach this receiver on the ringlet in
question, if a packet has been received
on the secondary ringlet

Table 3.1: Overview of the different reorder avoidance mechanisms.

distance from the source to the failure, more packets are sent on the wrong
ringlet before the topology update can take place at the sender. This effect is
not seen with the default RPR and the Automatic methods, since the context
containment period is the same independent of where the failure occurs.

3.6 Summary

In this chapter, we have discussed the protection mechanisms used in the
RPR standard. The wrapping and steering protection schemes have been
discussed with respect to disruption time, packet reordering, and packet loss.
We have discussed the different factors influencing the experienced disruption
in connection with a failure on the ring.

Furthermore, we have identified the topology stabilization as the main ob-
stacle that prevents sub 50 ms restoration for strict ordered traffic. We have
presented three different improvements to the reorder avoidance mechanism.

The Automatic method seeks to minimize the period when packets are
discarded, without compromising on the in order guarantee. This strategy

44 CHAPTER 3. RESILIENT PACKET RING RECOVERY

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 0.5 1 1.5 2 2.5 3 3.5 4

P
ac

ke
ts

 lo
st

Load

Total packet loss, strict mode packets

RPR Default
Automatic

Receiver
Selective Discard

Figure 3.10: The total packet loss count in the network is plotted using the
original RPR method, Automatic, Receiver and Selective Discard
.

implies setting the topology stabilization timer lower than the minimum value
allowed in the RPR standard, but does not otherwise demand changes to the
standard. In our simulated scenarios, packet loss is reduced by about 60%,
compared to the default setting of the topology stabilization timer.

The other two methods move some logic from the transit path in RPR
to the receiver station. The Receiver method does not require any state
information to be maintained at the receiver, while the Selective Discard
method requires the receiver to know which sources it receives packets from
after a topology update. This is a small cost, but it requires an extra entry
in the topology image of the RPR station.

As shown by the simulation results above, the difference between these
methods with respect to packet loss is minimal, and can only be seen in
situations with very high traffic load. These methods reduce the packet loss
by almost 90% in our simulated scenarios. In a practical implementation,
the Receiver method would probably be good enough, and it is unlikely that
a vendor would implement the somewhat more complex Selective Discard
method.

Chapter 4

Resilient Routing Layers

While in the previous chapter we focused on the protection mechanisms in
one specific ring topology protocol, we now turn to the wider problem of
protection in general packet switched networks. We introduce the concept
of Resilient Routing Layers (RRL)1. RRL is a novel scheme for proactive
recovery in packet switched networks.

Our main inspiration for this work is a layer-based approach used to
obtain deadlock-free and fault-tolerant routing in irregular cluster networks
based on a routing strategy called Up*/Down* [84]. Most of the contents in
this chapter has previously been published in [83].

4.1 Introduction

There exist several deployed methods for fast protection at the physical and
link layers, but at the networking layer recovery mechanisms have tradition-
ally been reactive and global. When a failure is discovered, all the nodes in
the network must be informed about the new topology situation before they
can start the process of calculating new routing tables or paths, as explained
in chapter 2. This process typically takes several seconds, which leads to
unacceptable service degradations for real-time applications with strict de-
lay bounds. Fast protection mechanisms at the networking layer have been
developed [22, 23], but the methods that are deployed today are restricted

1To give a consistent presentation through this work, we will talk of configurations
instead of the previously used routing layers [83] in our discussions. We have, however,
opted to keep Resilient Routing Layers as a name for the concept described in this chapter.

45

46 CHAPTER 4. RESILIENT ROUTING LAYERS

to connection-oriented MPLS networks.
On this background we propose a simple, fast and flexible method for net-

work layer recovery named Resilient Routing Layers (RRL). RRL is simple
to understand and deploy, and offers a network administrator simple ab-
stractions of the network after a failure. RRL is applicable to many types of
networks, and can offer close to transparent resilience for both connectionless
and connection-oriented networks.

The main idea behind RRL is to create a small set of connected, spanning
sub-topologies termed backup configurations. The set of backup configura-
tions is constructed so that each of the network elements we want to protect
is isolated in at least one configuration, intuitively meaning that this configu-
ration remains connected even if the network element fails. As will be shown
later, this can be done using a surprisingly low number of configurations. In
this work we focus on applying RRL for protection against link failures, but
the RRL scheme can also be applied to protect against node failures [85].

In the remainder of this chapter, we first give an overview of the basic
principles in RRL in section 4.2. We then present and discuss several algo-
rithms for creating the backup configurations in section 4.3. In section 4.4,
we present evaluation results concerning scalability, backup path length and
the ability to recover from more than one failure, before we summarize in
section 4.5.

4.2 RRL overview

RRL uses pre-calculated backup configurations to forward traffic along al-
ternate routes after a link failure. Redundant Trees [29] and p-cycles [33],
which were described in chapter 2, are examples of other protection schemes
that use spanning sub-topologies to route around a failure. In contrast to
the sub-topologies used in these schemes, the RRL backup configurations are
not restricted to be cycles of trees, but can be general spanning graphs.

In RRL, backup configurations are created by removing links from the
full topology, in such a way that every link is removed in at least one backup
configuration. Thus, each backup configuration contains all nodes in the
original network topology, but only a subset of the links. We say that a link
is isolated in a backup configuration if the link is not present in that config-
uration. Many links can be isolated in the same backup configuration – the
maximum number of links that can be removed in a configuration, is limited

4.2. RRL OVERVIEW 47

by the invariant that all backup configurations must remain connected. In
the discussions below, we say that a link can be removed from a topology
unless it is an articulation link, meaning that removing the link would dis-
connect the topology. We speak of the backup configuration where a link a
is isolated as the backup configuration of link a.

For an illustration of how a network topology can be covered by backup
configurations, consider the example in figure 4.1. To the left, we have the
full topology with six nodes and eleven links. To isolate every link in this
topology, we must create backup configurations so that for each link, there
is a configuration where the link is not present. Configuration 1 and configu-
ration 2 in figure 4.1, makes an example of how all links in this topology can
be isolated using only two backup configurations. Each backup configuration
is a connected subgraph of the full topology, and every link is removed in
(at least) one of the configurations. In configuration 2, we have removed
the maximum number of links – no more links can be removed without par-
titioning the graph. Consequently, configuration 2 is a spanning tree. In
configuration 1 on the other hand, we can still remove one more link while
still keeping all nodes connected. Configuration 1 shows that, in general, the
backup configurations are not cycle-free. It should be stressed that using
configuration 1 and configuration 2 is not the only possible way to isolate
every link in this example topology. In section 4.3, we return to the problem
of how backup configurations should be constructed for a given topology.

Full topology Backup configuration 1 Backup configuration 2

Figure 4.1: Example backup configurations

The configurations calculated in RRL are used as input to routing or
path-finding algorithms that calculate a routing table or path table for each
backup configuration, in addition to the normal full topology. Tables con-
taining routing information for each backup configuration must be kept in

48 CHAPTER 4. RESILIENT ROUTING LAYERS

every node. For simplicity we say that traffic is forwarded in a backup con-
figuration, meaning that the nodes on the path use the tables calculated for
the backup configuration when the forwarding decisions are made.

In the failure free situation, RRL does not put any restrictions on the
routing. When a failed link is detected, the nodes attached to the link
start forwarding traffic that would normally go through the failed link in
the backup configuration where the link is isolated. Packets forwarded in
a backup configuration must be marked with a configuration identifier, so
that the other nodes can keep forwarding it in the same configuration. This
way, recovered traffic is forwarded from the point of failure to the destination
(i.e. the egress node in the network) in the backup configuration where the
failed link is isolated. Traffic that did not pass through the failed link is
not affected, and is still routed in the original full topology. The decision on
when to forward traffic in a backup configuration can be taken locally, which
allows very fast reaction to a failure situation, without any signalling.

4.3 Configuration generation

An important choice when applying RRL is how to generate the backup con-
figurations in an appropriate manner. The only restrictions imposed by the
RRL framework, is that each backup configuration is a connected spanning
subgraph of the network topology, and that all links are isolated in at least
one configuration. These loose restrictions leave several degrees of freedom,
and opens for tradeoffs between the amount of state (number of backup con-
figurations), backup path lengths, multiple-fault resistance etc.

By using a small number of backup configurations, there will be less state
that must be stored in each node, but this can give sparsely connected backup
configurations with relatively long backup paths, as seen in figure 4.1. If we
allow more backup configurations to be used, each configuration can have
richer connectivity, giving more optimal routing after a failure. Using more
configurations without increasing the connectivity in each configuration gives
better resistance against multiple concurrent failures, since each link with a
higher probability is isolated in more than one backup configuration.

In a practical deployment of RRL, the backup configurations can be de-
signed manually or through an automated process. Manual design gives the
network administrator greater flexibility and means to comply with special
needs. For example, links that are particularly vulnerable or error prone,

4.3. CONFIGURATION GENERATION 49

could be isolated in a backup configuration with rich connectivity, so that
the packet forwarding becomes more optimal in case of a failure. Similarly,
paths between central nodes in the network can be made more resistant
against multiple failures etc.

Sometimes, in particular for large networks, an algorithmic backup con-
figuration generation will be preferred as a basis for the configuration design.
An algorithm can be used to produce a specific number of backup configu-
rations, with rich or sparse connectivity. In the following, we present three
different backup configuration generation methods aimed at realizing quite
different design goals. A formal algorithm is given for the first, while the two
last are more briefly described. Tradeoffs between the amount of state, the
backup path lengths and resistance against multiple failures are central in
the choice of backup configuration generation algorithm.

4.3.1 Generating few configurations

RRL relies on keeping routing or forwarding information for each configura-
tion in use. Hence, the amount of state needed in each node will in some
way be dependent on the number of backup configurations used. In the Min-
imum algorithm presented below, we seek to isolate every link in a topology
in exactly one backup configuration, using as few configurations as possible.

The Minimum algorithm works in two steps. First, it makes sure that
all links in the topology are isolated in exactly one backup configuration, by
creating one backup configuration at a time and isolating as many links as
possible in each of them. The algorithm then iterates through the backup
configurations created, and tries to “balance” them by moving links from
the configuration containing the largest number of links to the configuration
with the smallest number of links. This is done to avoid having one backup
configuration with only very few links removed, and one with a large number
of removed links. Such a situation would give poor backup path lengths in
the backup configuration left with only a small number of links to route in.

Given a topology G = (N,A), where N is the set of nodes and A is the
set of links (arcs), the Minimum algorithm generates backup configurations
as shown in algorithm 4.1. The input to the algorithm is the topology graph
G, and the output is a set C of backup configurations. S denotes the set of
links that have been isolated in a backup configuration, and the algorithm
terminates when this set contains all the links in the topology.

Initially, all articulation links in G are added to set S (line 2). artLinks(G)

50 CHAPTER 4. RESILIENT ROUTING LAYERS

Algorithm 4.1: Minimum

C ← ∅1

S ← artLinks(G)2

while S �= A do3

Ci ← G4

A′ ← A\S5

forall a ∈ A′ do6

if a /∈ artLinks(Ci) then7

Ci ← Ci\{a}8

S ← S ∪ {a}9

end10

end11

C ← C ∪ {Ci}12

i + +13

end14

repeat15

Cmax ← configuration with maximum|A|16

Cmin ← configuration with minimum|A|17

δ ← |A|max − |A|min18

move δ/2 links from Cmax to Cmin19

until δ < 220

4.3. CONFIGURATION GENERATION 51

finds all articulation links in G, i.e. links that cannot be removed without
partitioning G. These links can not be isolated without partitioning the
backup configuration, and are therefore ignored by the algorithm. When a
backup configuration is created, it is equal to G (line 4). We loop through all
links that are not yet isolated, and isolate as many as possible in the current
configuration. New configurations are created as needed until all links are
isolated.

When all links are isolated, we proceed to balance the number of isolated
links in each backup configuration (from line 15). It can trivially be shown
that as long as |A|max > |A|min, it will always be possible to find a link that
can be moved from Cmax to Cmin, since any configuration can be reduced to
a spanning tree. The links to be removed must be selected so that Cmax is
still connected. This is done using a similar test as in line 7. We keep moving
links from the largest to the smallest configuration until all configurations
contain the same number of links.

For an arbitrary link in an arbitrary graph, it can be determined whether
the link is an articulation link in O(|N | + |A|) time [86]. The running time
of the first part of the algorithm is O(|C| · |A| · (|N | + |A|)), where |C| is the
number of configurations needed. The number of configurations can never
exceed the number of edges, and is usually much smaller. We show in the
sequel that the number of configurations stays low even for large networks.
The balancing part of our algorithm is less complex with regards to running
time, so the total complexity, replacing |C| with |A|, will be O(|A|3).

4.3.2 Improving Routing Efficiency

After a link failure, traffic that used to pass through the failed link is for-
warded in the backup configuration where that link is isolated. Each backup
configuration consists of a connected subgraph, containing all the nodes and
some subset of the links in the original topology. The backup path lengths
will depend on the structure and connectivity of the backup configurations.

To achieve shorter recovery paths, we can build more backup configu-
rations with a richer connectivity than what is created with the Minimum
algorithm. The purpose of the Rich algorithm is to create a chosen number
of backup configurations, so that every link is isolated in exactly one configu-
ration. By increasing the number of backup configurations, we can remove a
smaller number of links in each of them, thus preserving more links that can
take part in the packet forwarding after a failure. This way, shorter recovery

52 CHAPTER 4. RESILIENT ROUTING LAYERS

paths are traded for more state in the network nodes.
The Rich algorithm takes as input the number k of configurations that

is attempted used. It then tries to remove an equal number of links from
each configuration. If a link cannot be isolated in its intended backup con-
figuration, we try to isolate it in one of the others, until all configurations
are tried. The output of the algorithm is k configurations, each containing
approximately |A|(1 − (1/k)) links, where |A| is the number of links in the
original topology. If all links in the topology cannot be isolated using k con-
figurations, the Rich algorithm will give up and terminate. The running time
of this algorithm is the same as for the Minimum algorithm (O(|A|3)).

4.3.3 Resisting multiple failures

RRL recovers traffic on a failed link by forwarding packets in the backup
configuration of the failed link. If more than one link fails and all the failing
links are isolated in the same backup configuration, all the affected traffic
will trivially be recovered. If the failed links are isolated in different configu-
rations, RRL can not guarantee that this traffic is recovered. However, traffic
can often still be saved, as long as the traffic is not routed through more than
one failure. When two failing links are not isolated in the same configuration,
the routing process decides what traffic can be recovered. Because RRL is
agnostic with respect to routing, we only say that we can protect against
more than one link failure when the links in question are isolated in the same
configuration.

To achieve increased resistance against multiple failures, we introduce the
Sparse algorithm. Like the Rich algorithm above, this algorithm creates a
fixed number of backup configurations. But instead of isolating each link in
exactly one configuration, the Sparse algorithm makes the configurations as
sparse as possible, by removing the maximum number of links in each backup
configuration. In effect, each configuration becomes a spanning tree.

In the Sparse algorithm, we make an effort to maximize the probability
that any two (in general any k) links have a common backup configuration
where they are both isolated. The links in the original topology are split into
different groups, and combinations of links from different groups are isolated
in the same backup configuration. The number of configurations used by
the Sparse algorithm depends on how many simultaneous failures we want
to protect against, and the connectivity of the network topology. Protecting
against more simultaneous failures demands more configurations, while a

4.4. EVALUATION 53

richer original connectivity allows us to reduce the number of configurations.
Note that the Sparse algorithm is designed to maximize the probability

that two simultaneous link failures can be handled, not to make guarantees
that this is the case. As shown in section 4.4.4, the Sparse algorithm will
not protect against two simultaneous failures for all combinations of links.

Due to the splitting into several groups, the complexity of this algorithm
is somewhat higher than for the others, and the running time is O(|A|4).

4.4 Evaluation

A protection scheme incurs additional network state overhead. In order for a
scheme to show satisfactory scalability properties, this overhead should not
grow proportionally with the network size. In RRL, the state overhead is in
the worst case proportional to the number of configurations. Therefore, it
is important to show that the number of configurations remains limited for
large network topologies.

Backup paths are calculated by the routing algorithm in the configuration
that protects the failed link. With shortest path routing, the backup paths
will usually be longer than the original path. A good protection scheme
should however result in backup paths of acceptable lengths.

Two simultaneous link failures can be tolerated in our recovery scheme if
there exists a backup configuration where both links are isolated. Hence, it
is an advantage for our protection scheme if most link pairs have a backup
configuration where they are both isolated.

For our quantitative evaluation, we focus on these three central metrics for
protection schemes: scalability, backup path lengths, and resistance against
two simultaneous failures. We first describe the evaluation method, and then
present and discuss results for each of the metrics.

4.4.1 Method

We evaluate the performance of the Minimal, Rich and Sparse algorithms for
the three above mentioned metrics. We use a wide range of relevant topolo-
gies, both real and synthetic. For our evaluations, we have implemented the
above mentioned algorithms in a Java a software model. The model is used
to calculate configurations and backup path characteristics for the evaluated
topologies.

54 CHAPTER 4. RESILIENT ROUTING LAYERS

In section 4.4.3, we measure the increased path length that the affected
traffic experiences after the failure. For the purpose of this evaluation, we
use shortest path routing. We measure the local recovery path length given
by RRL, meaning the path length from the point of failure to the destination
in the backup configuration of the failed link. For reference, we also measure
the optimal recovery path between the failure and the destination, meaning
the shortest path calculated in a topology where only the broken link is
removed. This is the shortest possible local backup path that can be found
for the given failure.

When evaluating the resilience against two simultaneous failures, we mea-
sure how often there exists a backup configuration where two given links are
isolated. If such a configuration exists, all traffic in the network can be
recovered if the two links fail simultaneously. In the cases where no such
configuration can be found, traffic originally passing through only one of the
failing links can often still be recovered, as long as the backup path does not
pass through the second failure. This is further discussed in [87].

Topologies

Both real and synthetic topologies are used in our evaluations. Real topolo-
gies provide performance indications in real-world settings, while the syn-
thetic ones are important for generality, scalability and statistical relevance.

The real topologies are gathered from the Rocketfuel [88] database of
inferred real network topologies. The topologies used are intra-ISP topolo-
gies on a POP level. We study only failures that occur on the biconnected
portions of the topologies.

We used the BRITE [89] topology generator to generate synthetic topolo-
gies with different characteristics. However, the choice of the generation
model was not obvious. It has been shown that most available power law
topology models do not offer enough flexibility on how nodes are connected
[90]. The Generalized Linear Preference (GLP) model is therefore proposed,
adding some flexibility. However, GLP has been shown to have weaknesses in
the node degree distribution of the topologies generated [91]. The Waxman
model [92] describes another way of constructing synthetic topologies, giving
less central hubs in the topology. However the Waxman implementation in
BRITE limits the flexibility on the links-to-nodes ratio. Based on the lim-
itations of both the GLP and the Waxman models, we have chosen to use
topologies from both models for our evaluation.

4.4. EVALUATION 55

4.4.2 Scalability

We present the number of configurations needed to protect real and synthet-
ically generated topologies, as given by the Minimum algorithm.

Real topologies

The number of configurations needed to cover selected real topologies, using
the Minimum algorithm, is given in table 4.1.

AS number Nodes Links Configurations
4513 5 5 5
13129 5 7 3
2497 8 18 2
4565 12 17 5
11537 15 24 3
16631 20 30 4
1239 32 64 4
3320 68 353 2

Table 4.1: Number of configurations needed

We note that the number of configurations required is never above five in
our topologies. This indicates good scalability properties, which are further
tested for synthetically generated topologies below.

We see that the number of configurations required seems to depend mainly
on the connectivity of the topology, i.e. the links-to-node ratio. When the
connectivity is sparse (like in AS 4513, which is a ring), we need a larger num-
ber of configurations even for small topologies. Richer connectivity allows us
to protect every link using a smaller number of configurations.

Synthetic topologies

Figure 4.2 shows the number of configurations needed to protect topologies
with different size and connectivity, as given by the Minimum algorithm. Six
of the bars show topologies generated with the Waxman model, with a links-
to-node degree of two and three respectively. The bars for the GLP model
has a ratio of about 1.8 links per node. Distributions are shown for networks

56 CHAPTER 4. RESILIENT ROUTING LAYERS

of three different sizes (32, 128, 512 nodes). The notation used on the x-axis,
shows which model is used (Waxman or GLP), the number of nodes in the
network, and the link-to-node ratio. The results shown are computed using
100 different topologies with the wanted characteristics.

Layers distribution

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

GLP
32-1.8

GLP
128-1.8

GLP
512-1.8

W 32-2 W 128-
2

W 512-
2

W 32-3 W 128-
3

W 512-
3

Topology

5 layers

4 layers

3 layers

2 layers

Figure 4.2: Minimum number of configurations needed

Figure 4.2 confirms that the most important factor determining how many
configurations are needed is the link-to-node ratio. The number of config-
urations needed is modest, even for large topologies, but always lower for
topologies with higher connectivity.

4.4.3 Backup path lengths

We present the distribution of recovery path lengths in a 32 node network,
generated using the GLP model with a link-to-node ratio of 1.8, for the
Minimum, the Rich, and the Sparse algorithms. The recovery path lengths
are calculated by failing one link at a time, and then measuring the path

4.4. EVALUATION 57

length from the point of failure to the destination. Tests were also performed
on Waxman-generated topologies, with similar results.

Figure 4.3 shows that both the Rich and the Minimum algorithms achieve
significantly shorter backup path lengths than the Sparse algorithm. This
illustrates that the ability of the Sparse algorithm to resist more than one
link failure by reducing each backup configuration to a spanning tree, comes
at the cost of less optimal routing of recovered traffic.

 0

 10

 20

 30

 40

 50

 0 2 4 6 8 10

P
er

ce
nt

ag
e

of
 P

at
hs

Hops

Path lengths - 32 node GLP topologies

Optimal Backup
Rich 6 algorithm

Minimum algorithm
Sparse algorithm

Figure 4.3: Recovery path length distributions

The shortest recovery paths are achieved using the Rich algorithm, cre-
ating six backup configurations. This is as expected, since spreading the iso-
lated links over six backup configurations, allows us to keep a richer connec-
tivity in each configuration. The Minimum algorithm creates three backup
configurations for the topology used here. Using only three backup configura-
tions gives more sparse connectivity in each configuration, and thus increases
the backup path length.

The tradeoff between backup path length and the number of configu-
rations used is also illustrated in figure 4.4. This figure shows the average
recovery path length using the Rich algorithm for a 32 node topology created
using the GLP model. We see that if we allow the use of more configurations,
the average recovery path length approaches the best achievable. Again, very

58 CHAPTER 4. RESILIENT ROUTING LAYERS

similar results were obtained when evaluating topologies generated with the
Waxman model.

 2

 2.5

 3

 3.5

 4

 4.5

 5

 3 4 5 6 7 8 9 10

P
at

h
le

ng
th

Layers used

Average recovery path lengths

Full Topology
Optimal Backup
Rich 6 Algorithm

Figure 4.4: Recovery path length vs configurations used

4.4.4 Resisting more than one failure

We measure the ability of our recovery scheme to handle two simultaneous
failures. In our evaluation, we look at networks with 32 and 128 nodes,
and with a link-to-node ratio two and three. RRL is said to handle two
simultaneous failures only when there exists a single backup configuration
that contains both failed links. As mentioned above, traffic can often be
recovered even if this is not the case, depending on the routing in the network.

The network topologies are generated using the Waxman model as dis-
cussed above. We have also evaluated GLP topologies, with similar results.
Table 4.2 shows that the Sparse algorithm with six configurations provides
almost 100 % resistance for two link failures when the link-to-node is 3. When
this ratio is 2, the dual link failure resistance falls to about 85 %. Again, the
results shown are averages from 100 generated topologies.

4.5. SUMMARY 59

Method Nodes Links/node ratio p
Sparse 6 32 2 0.860
Sparse 6 128 2 0.847
Sparse 6 32 3 0.995
Sparse 6 128 3 0.992

Table 4.2: Probability of two failure tolerance

4.5 Summary

In this chapter, we have presented Resilient Routing Layers as an approach
for providing fast recovery from link failures at the network layer. RRL is
based on computing fully connected sub-topologies called backup configura-
tions. These backup configurations can be created manually or automatically.
We have presented algorithms that create backup configurations optimized
for minimizing the amount of state, reducing backup path lengths, and re-
sisting dual link failures.

RRL does not influence the routing in the failure free situation. When a
link failure occurs, packets are switched to the backup configuration where
the failed link is isolated, and are routed according to the backup configura-
tion to the destination. Traffic that does not pass through the failed link, is
not affected by the failure.

Although RRL gives recovery path lengths longer than the minimum
achievable, we have shown that the added path lengths typically consist
of a few hops. Using backup configurations with a richer connectivity, we
have demonstrated that RRL gives close to optimal recovery path lengths.
We have also shown that RRL is scalable. In our evaluation using real and
synthetically generated topologies, we found that we never needed more than
5 backup configurations to protect all links.

60 CHAPTER 4. RESILIENT ROUTING LAYERS

Chapter 5

Multiple Routing
Configurations

The previous chapter explained how RRL can be used to give fast recovery
from link failures in general packet networks. In this chapter we will extend
the concepts introduced in RRL, and tailor them to be used in an intra-
domain IP network running a connectionless link-state routing protocol like
OSPF or IS-IS. The extended method is given the name Multiple Routing
Configurations (MRC).

Like RRL, MRC is based on constructing a small number of backup con-
figurations, and to use these to prepare alternate routes that avoid a failed
component. However, instead of removing links in the backup configurations,
MRC restricts the routing by strategic link weight assignment in each config-
uration. In addition to link failures, MRC also guarantees fast recovery from
any single node failure in the network. Therefore, MRC is somewhat more
complex than RRL. Also, being designed with only shortest path connection-
less IGP routing in mind, MRC is more specific than RRL. The increased
complexity makes it necessary to use a more formal language when we de-
scribe MRC than we have done so far.

Most of the contents in this chapter has previously been published in [93].

5.1 Introduction

MRC is a local protection scheme that is designed to guarantee fast recovery
from any single link or node failure in arbitrary biconnected networks. Single

61

62 CHAPTER 5. MULTIPLE ROUTING CONFIGURATIONS

failures constitute a large majority of the component failures experienced in
a network [12]. MRC assumes that the network uses shortest path routing
and destination based hop-by-hop forwarding. With MRC, packet forwarding
can continue over pre-configured alternative next-hops immediately after the
detection of the failure. Using MRC as a first line of defense against network
failures, the normal IP convergence process can be put on hold. This process
is then initiated only as a consequence of non-transient failures. Since no
global re-routing is performed, fast failure detection mechanisms like fast
hellos or hardware alerts can be used to trigger MRC without compromising
network stability [57].

In the literature, it is sometimes claimed that node failure recovery im-
plicitly gives recovery also from link failures, since the adjacent links of the
failed node can be avoided. This is true for intermediate nodes, but the
egress node in a network domain must still be reachable if the link in the last
hop fails (“The last hop problem”, [13]). MRC solves the last hop problem
by strategic assignment of link weights between the backup configurations.

MRC has a range of attractive features:

• It provides almost continuous forwarding of packets in the case of a
failure. The router that detects the failure initiates a local rerouting
immediately, without communicating with the surrounding neighbors.

• MRC helps improve network availability by allowing suppression of
the re-convergence process. Delaying this process is useful to address
transient failures, and pays off under many scenarios [57]. Suppression
of the re-convergence process is further actualized by the evidence that
a large proportion of network failures is short-lived, often lasting less
than a minute [12].

• MRC uses a single mechanism to handle both link and node failures.
Failures are handled locally by the detecting node, and MRC always
finds a route to the destination (if operational). MRC makes no as-
sumptions with respect to the root cause of failure, e.g., whether the
packet forwarding is disrupted due to a failed link or a failed router.

• An MRC implementation can be made without major modifications to
existing IGP routing standards. IETF recently initiated specifications
of multi-topology routing for OSPF and IS-IS, and this approach seems
well suited to implement our proposed backup configurations [94, 95].

5.2. MRC OVERVIEW 63

• Link weights in MRC backup configurations are set independently from
the normal link weights. The load of the recovery traffic can thus
be balanced to reduce the danger of congestion without affecting the
failure-free case.

The rest of this chapter is organized as follows. In section 5.2 we describe
the basic concepts and functionality of MRC. We then define MRC formally
and present an algorithm used to create the needed backup configurations
in section 5.3. In section 5.4, we explain how the generated configurations
can be used to forward the traffic safely to its destination in case of a failure.
We present performance evaluations of the proposed method in section 5.5,
before we summarize this chapter in section 5.6.

5.2 MRC Overview

MRC is based on building a small set of backup routing configurations, that
are used to route recovered traffic on alternate paths after a failure. The
backup configurations differ from the normal routing configuration in that
link weights are set so as to avoid routing traffic in certain parts of the
network. We observe that if all links attached to a node are given sufficiently
high link weights, traffic will never be routed through that node. The failure
of that node will then only affect traffic that is sourced at or destined for the
node itself. Similarly, to exclude a link from taking part in the routing, we
give it infinite weight. The link can then fail without any consequences for
the traffic.

Our MRC approach is threefold. First, we create a set of backup configu-
rations, so that every network component is excluded from packet forwarding
in one configuration. Second, for each configuration, a standard routing al-
gorithm like OSPF is used to calculate configuration specific shortest paths
and create forwarding tables in each router, based on the configurations. The
use of a standard routing algorithm guarantees loop-free forwarding within
one configuration. Finally, we design a forwarding process that takes advan-
tage of the backup configurations to provide fast recovery from a component
failure.

In our approach, we construct the backup configurations so that for all
links and nodes in the network, there is a configuration where that link or
node is not used to forward traffic. Thus, for any single link or node failure,

64 CHAPTER 5. MULTIPLE ROUTING CONFIGURATIONS

there will exist a configuration that will route the traffic to its destination
on a path that avoids the failed element. Also, the backup configurations
must be constructed so that all nodes are reachable in all configurations,
i.e., there is a valid path with a finite cost between each node pair. We
formally describe MRC and the configuration generation in section 5.3

Using a standard shortest path calculation, each router creates a set of
configuration-specific forwarding tables. For simplicity, we say that a packet
is forwarded according to a configuration, meaning that it is forwarded using
the forwarding table calculated based on that configuration. In this chapter
we talk about building a separate forwarding table for each configuration,
but we believe that more efficient solutions can be found in a practical im-
plementation.

When a router detects that a neighbor can no longer be reached through
one of its interfaces, it does not immediately inform the rest of the network
about the connectivity failure. Instead, packets that would normally be
forwarded over the failed interface are marked as belonging to a backup con-
figuration, and forwarded on an alternative interface towards its destination.
The selection of the correct backup configuration, and thus also the backup
next-hop, is detailed in section 5.4. The packets must be marked with a con-
figuration identifier, so the routers along the path know which configuration
to use. Packet marking is most easily done by using specific values in the
DSCP field in the IP header. If this is not possible, other packet marking
strategies like IPv6 extension headers or using a private address space and
tunneling (as proposed in [61]) could be used.

It is important to stress that MRC does not affect the failure-free original
routing, i.e., when there is no failure, all packets are forwarded according to
the original configuration, where all link weights are normal. Upon detection
of a failure, only traffic reaching the failure will switch configuration. All
other traffic is forwarded according to the original configuration as normal.

5.3 Generating Backup Configurations

In this section, we will first detail the requirements that must be put on the
backup configurations used in MRC. Then, we propose an algorithm that
can be used to automatically create such configurations. The algorithm will
typically be run once at the initial startup of the network, and each time a
node or link is permanently added or removed. We use the notation shown

5.3. GENERATING BACKUP CONFIGURATIONS 65

Table 5.1: Notation
G = (N,A) Graph comprising nodes N and directed links (arcs) A

Ci The graph with link weights as in configuration i
Si The set of isolated nodes in configuration Ci

Bi The backbone in configuration Ci

A(u) The set of links from node u
(u, v) The directed link from node u to node v

pi(u, v) A given shortest path between nodes u and v in Ci

N (p) The nodes on path p
A(p) The links on path p

wi(u, v) The weight of link (u, v) in configuration Ci

wi(p) The total weight of the links in path p in configuration Ci

wr The weight of a restricted link
n The number of backup configurations

in table 5.1.

5.3.1 Configurations Structure

MRC configurations are defined by the network topology, which is the same in
all configurations, and the associated link weights, which differ among config-
urations. We formally represent the network topology as a graph G = (N,A),
with a set of nodes N and a set of unidirectional links (arcs) A1. In order to
guarantee single-fault tolerance, the topology graph G must be biconnected.
A configuration is defined by this topology graph and the associated link
weight function:

Definition. A configuration Ci is an ordered pair (G,wi) of the graph G
and a function wi : A → {1, . . . , wmax, wr,∞} that assigns an integer weight
wi(a) to each link a ∈ A.

We distinguish between the normal configuration C0 and the backup config-
urations Ci, i > 0. In the normal configuration, C0, all links have “normal”
weights w0(a) ∈ {1, . . . , wmax}. We assume that C0 is given with finite in-
teger weights. MRC is agnostic to the setting of the link weights in C0. In

1We interchangeably use the notations a or (u, v) to denote a link, depending on whether
the endpoints of the link are important.

66 CHAPTER 5. MULTIPLE ROUTING CONFIGURATIONS

the backup configurations, selected links and nodes must not carry any tran-
sit traffic. Still, traffic must be able to depart from and reach all operative
nodes. These traffic regulations are imposed by assigning high weights to
some links in the backup configurations:

Definition. A link a ∈ A is isolated in Ci if wi(a) = ∞.

Definition. A link a ∈ A is restricted in Ci if wi(a) = wr.

Isolated links do not carry any traffic. Restricted links are used to isolate
nodes from traffic forwarding. The restricted link weight wr must be set to a
sufficiently high, finite value to achieve that. Nodes are isolated by assigning
at least the restricted link weight to all their attached links. For a node to
be reachable, we cannot isolate all links attached to the node in the same
configuration. More than one node may be isolated in a configuration. The
set of isolated nodes in Ci is denoted Si, and the set of normal (non-isolated)
nodes Si = N \ Si.

Definition. A node u ∈ N is isolated in Ci if

∀(u, v) ∈ A(u), wi(u, v) ≥ wr

∧ ∃(u, v) ∈ A(u), wi(u, v) = wr (5.1)

With MRC, restricted and isolated links are always attached to isolated
nodes as given by the following rules. For all links (u, v) ∈ A,

wi(u, v) = wr ⇒ (u ∈ Si ∧ v ∈ Si) ∨ (v ∈ Si ∧ u ∈ Si) (5.2)

wi(u, v) = ∞ ⇒ u ∈ Si ∨ v ∈ Si (5.3)

This means that a restricted link always connects an isolated node to
a non-isolated node. An isolated link either connects an isolated node to a
non-isolated node, or it connects two isolated nodes. Importantly, this means
that a link is always isolated in the same configuration as at least one of its
attached nodes. These two rules are required by the MRC forwarding process
described in section 5.4 in order to give correct forwarding without knowing
the root cause of failure. When we talk of a backup configuration, we refer
to a configuration that adheres to (5.2) and (5.3).

5.3. GENERATING BACKUP CONFIGURATIONS 67

1

2 3

4

56

a)

1

2 3

4

56

b)

Figure 5.1: a) Node 5 is isolated (shaded color) by setting a high weight on
all its connected links (stapled). Only traffic to and from the isolated node
will use these restricted links. b) A configuration where nodes 1, 4 and 5,
and the links 1-2, 3-5 and 4-5 are isolated (dotted).

The purpose of the restricted links is to isolate a node from routing in
a specific backup configuration Ci, such as node 5 in figure 5.1a). In many
topologies, more than a single node can be isolated simultaneously. In the
example in figure 5.1b) three nodes and three links are isolated.

Restricted and isolated links are always given the same weight in both
directions. However, MRC treats links as unidirectional, and makes no
assumptions with respect to symmetric link weights for the links that are
not restricted or isolated. Hence, MRC can co-exist with traffic engineering
schemes that rely on asymmetric link weights for load balancing purposes.

MRC guarantees single-fault tolerance by isolating each link and node in
exactly one backup configuration. In each configuration, all node pairs must
be connected by a finite cost path that does not pass through an isolated
node or an isolated link. A configuration that satisfies this requirement is
called valid :

Definition. A configuration Ci is valid if and only if

∀u, v ∈ N : N (pi(u, v)) \ (Si ∪ {u, v}) = ∅

∧ wi(pi(u, v)) < ∞ (5.4)

68 CHAPTER 5. MULTIPLE ROUTING CONFIGURATIONS

We observe that all backup configurations retain a characteristic internal
structure, in that all isolated nodes are directly connected to a core of nodes
connected by links with normal weights:

Definition. A configuration backbone Bi = (Si, Ai), Ai ⊆ A consists of all
non-isolated nodes in Ci and all links that are neither isolated nor restricted:

a ∈ Ai ⇔ wi(a) ≤ wmax (5.5)

A backbone is connected if all nodes in Si are connected by paths con-
taining links with normal weights only:

Definition. A backbone Bi is connected if and only if

∀u, v ∈ Bi : a ∈ A(pi(u, v)) ⇒ w(a) ≤ wmax (5.6)

An important invariant in our algorithm for creating backup configura-
tions is that the backbone remains connected. Since all backup configurations
must adhere to (5.2) and (5.3), we can show that a backup configuration with
a connected backbone is equivalent to a valid backup configuration:

Lemma 5.3.1. A backup configuration Ci is valid if and only if it contains
a connected backbone.

Proof. We first show that a connected backbone implies that Ci is valid.
For each node pair u and v, zero, one or both of u and v are in Si. Assume
u ∈ Si∧v ∈ Si. From the definition of an isolated node and (5.2), ∃u′, v′ ∈ Si :
wi(u, u′) = wr ∧ wi(v, v′) = wr. From (5.6) a ∈ A(pi(u

′, v′)) ⇒ w(a) ≤ wmax.
Thus,

wi(pi(u, v)) ≤ 2wr + wi(pi(u
′, v′)) < ∞ (5.7)

N (pi(u, v)) \ (Si ∪ {u, v}) = ∅ (5.8)

and (5.4) follows. A subset of the above is sufficient to show the same if only
one, or none, of u, v is in Si.

For the converse implication, assume u, v ∈ Si and node x ∈ N (pi(u, v)).
From (5.4), x ∈ Si and wi(pi(u, v)) < ∞. Since by (5.2) restricted links are
always connected to at least one isolated node, such links can not be part of
A(pi(u, v)), and all links in A(pi(u, v)) must have normal weights.

5.3. GENERATING BACKUP CONFIGURATIONS 69

In backup configurations, transit traffic is constrained to the configuration
backbone. A restricted link weight wr that is sufficiently high to achieve this
can be determined from the number of links in the network and the maximal
normal link weight:

Proposition 5.3.2. Let x be a node isolated in the valid backup configuration
Ci. Then, restricted link weight value

wr = |A| · wmax (5.9)

is sufficiently high to exclude x from any shortest path in Ci which does not
start or end in x.

Proof. Since all links attached to the isolated node x have a weight of at least
wr, the weight of a path through x will be at least 2 ·wr = 2 · |A| ·wmax. From
the definition of an isolated node and (5.2), all isolated nodes are directly
connected to the configuration backbone. From (5.4), any shortest path in
Ci will be entirely contained in Bi, except possibly the first or the last hop.
A valid configuration contains a connected backbone, and the total weight of
the sub-path that is within Bi will be at most |Ai| ·wmax. Since |Ai| < 2|A|,
no shortest path will include x as the transit.

To guarantee recovery after any component failure, every node and every
link must be isolated in one backup configuration. Let C = {C1, ...Cn} be a
set of backup configurations. We say that

Definition. A set, C, of backup configurations is complete if

∀a ∈ A,∃Ci ∈ C : wi(a) = ∞

∧ ∀u ∈ N,∃Ci ∈ C : u ∈ Si (5.10)

A complete set of valid backup configurations for a given topology can be
constructed in different ways. In the next subsection we present an efficient
algorithm for this purpose.

5.3.2 Algorithm

The number and internal structure of backup configurations in a complete
set for a given topology may vary depending on the construction model. If

70 CHAPTER 5. MULTIPLE ROUTING CONFIGURATIONS

more configurations are created, fewer links and nodes need to be isolated
per configuration, giving a richer (more connected) backbone in each configu-
ration. On the other hand, if fewer configurations are constructed, the state
requirement for the backup routing information storage is reduced. How-
ever, calculating the minimum number of configurations for a given topology
graph is computationally demanding. One solution would be to find all valid
configurations for the input consisting of the topology graph G and its associ-
ated normal link weights w0, and then find the complete set of configurations
with lowest cardinality. Finding this set would involve solving the Set Cover
problem, which is known to be NP -complete [96].

Instead we present a heuristic algorithm that attempts to make all nodes
and links in an arbitrary biconnected topology isolated. Our algorithm takes
as input the directed graph G, its associated normal link weights w0, and
the number n of backup configurations that is intended created. If the al-
gorithm terminates successfully, its output is a complete set of valid backup
configurations. For a sufficiently high n, the algorithm will always terminate
successfully, as will be further discussed below.

Description

Algorithm 5.1 loops through all nodes in the topology, and tries to isolate
them one at a time. A link is isolated in the same iteration as one of its
attached nodes. The algorithm terminates when either all nodes and links in
the network are isolated in exactly one configuration, or a node that cannot
be isolated is encountered. We now specify the algorithm in detail, using the
notation shown in table 5.1.

Main loop Initially, n backup configurations are created as copies of the
normal configuration. A queue of nodes (Qn) and a queue of links (Qa) are
initiated. The node queue contains all nodes in an arbitrary sequence. The
link queue is initially empty, but all links in the network will have to pass
through it. Method first returns the first item in the queue, removing it
from the queue.

When a node u is attempted isolated in a backup configuration Ci, it is
first tested that doing so will not disconnect Bi according to definition (5.6).
The connected method at line 13 decides this by testing that each of u’s
neighbors can reach each other without passing through u, an isolated node,
or an isolated link in configuration Ci.

5.3. GENERATING BACKUP CONFIGURATIONS 71

Algorithm 5.1: Creating backup configurations.

for i ∈ {1 . . . n} do1

Ci ← (G, w0)2

Si ← ∅3

Bi ← Ci4

end5

Qn ← N6

Qa ← ∅7

i ← 18

while Qn �= ∅ do9

u ← first (Qn)10

j ← i11

repeat12

if connected(Bi \ ({u}, A(u))) then13

Ctmp ← isolate(Ci, u)14

if Ctmp �= null then15

Ci ← Ctmp16

Si ← Si ∪ {u}17

Bi ← Bi \ ({u}, A(u))18

i ← (i mod n) + 119

until u ∈ Si or i=j20

if u /∈ Si then21

Give up and abort22

end23

72 CHAPTER 5. MULTIPLE ROUTING CONFIGURATIONS

If the connectivity test is positive, function isolate is called, which at-
tempts to find a valid assignment of isolated and restricted links for node u
as detailed below. If successful, isolate returns the modified configuration
and the changes are committed (line 16). Otherwise it returns null, and no
changes are made in Ci.

If u was successfully isolated, we move on to the next node. Otherwise, we
keep trying to isolate u in every configuration, until all n configurations are
tried (line 20). If u could not be isolated in any configuration, a complete
set of valid configurations with cardinality n could not be built using our
algorithm. The algorithm will then terminate with an unsuccessful result
(line 22).

Function isolate(Ci, u)

Qa ← Qa + (u, v), ∀(u, v) ∈ A(u)1

while Qa �= ∅ do2

(u, v) ← first (Qa)3

if ∃j : v ∈ Sj then4

if wj(u, v) = wr then5

if ∃(u, x) ∈ A(u)�(u, v) : wi(u, x) �= ∞ then6

wi(u, v) ← wi(v, u) ← ∞7

else8

return null9

else if wj(u, v) = ∞ and i �= j then10

wi(u, v) ← wi(v, u) ← wr11

else12

if ∃(u, x) ∈ A(u)�(u, v) : wi(u, x) �= ∞ then13

wi(u, v) ← wi(v, u) ← ∞14

else15

wi(u, v) ← wi(v, u) ← wr16

Qn ← v + (Qn \ v)17

Qa ← (v, u)18

end19

return Ci20

Isolating links Along with u, as many as possible of its attached links are
isolated. The algorithm runs through the links A(u) attached to u (lines 2-3

5.3. GENERATING BACKUP CONFIGURATIONS 73

in function isolate). It can be shown that it is an invariant in our algorithm
that in line 1, all links in Qa are attached to node u. The node v in the other
end of the link may or may not be isolated in some configuration already
(line 4). If it is, we must decide whether the link should be isolated along
with u (line 7), or if it is already isolated in the configuration where v is
isolated (line 11). A link must always be isolated in the same configuration
as one of its end nodes. Hence, if the link was not isolated in the same
configuration as v, it must be isolated along with node u.

Before we can isolate the link along with u, we must test (line 6) that u
will still have an attached non-isolated link, in accordance to the definition
of isolated nodes. If this is not the case, u can not be isolated in the present
configuration (line 9).

In the case that the neighbor node v was not isolated in any configuration
(line 12), we isolate the link along with u if there exists another link not
isolated with u (line 14). If the link can not be isolated together with node
u, we leave it for node v to isolate it later. To make sure that this link can be
isolated along with v, we must process v next (line 17, selected at line 10 in
algorithm 5.1), and link (v, u) must be the first among the links originating
from node v to be processed (line 18, selected at line 2).

Output

We show that successful execution of algorithm 5.1 results in a complete set
of valid backup configurations.

Proposition 5.3.3. If algorithm5.1 terminates successfully, the produced
backup configurations adhere to (5.2) and (5.3).

Proof. A link is only given weight wr or ∞ in the process of isolating one of
its attached nodes, and (5.3) follows. For restricted links, (5.2) requires that
only one of the attached nodes are isolated. This invariant is maintained
in line 7 in function isolate by demanding that if a node attached to a
restricted link is attempted isolated, the link must also be isolated. Hence
it is impossible to isolate two neighbor nodes without also isolating their
connecting link, and (5.2) follows.

Proposition 5.3.4. If algorithm5.1 terminates successfully, the backup con-
figurations set C = {C1, C2, . . . , Cn} is complete, and all configurations Ci ∈
C are valid.

74 CHAPTER 5. MULTIPLE ROUTING CONFIGURATIONS

Proof. Initially, all links in all configurations have original link weights. Each
time a new node and its connected links are isolated in a configuration Ci we
verify that the backbone in that configuration remains connected. When the
links are isolated, it is checked that the node has at least one neighbor not
isolated in Ci (line 14 in function isolate). When isolating a node, we also
isolate as many as possible of the connected links. A link is always isolated
in the same configuration as one of its attached nodes. If this is not possible,
the node is not isolated (isolate, line 9). From Lemma 5.3.1, the altered
configuration remains valid.

The algorithm runs through all nodes. If one node cannot be isolated, the
algorithm aborts (line 22 in algorithm 5.1). If it does terminate with success,
all nodes and links are isolated in one configuration, thus the configuration
set is complete.

Termination

The algorithm runs through all nodes trying to make them isolated in one of
the backup configurations and will always terminate with or without success.
If a node cannot be isolated in any of the configurations, the algorithm
terminates without success. However, the algorithm is designed so that any
biconnected topology will result in a successful termination, if the number of
configurations allowed is sufficiently high.

Proposition 5.3.5. Given a biconnected graph G = (N,A), there will exist
n ≤ |N |, so that algorithm5.1 will terminate successfully.

Proof. Assume n = |N |. The algorithm will create |N | backup configu-
rations, isolating one node in each backup configuration. In biconnected
topologies this can always be done. Along with a node u, all attached links
except one, say (u, v), can be isolated. By forcing node v to be the next
node processed (isolate line 17), and the link (v, u) to be first among A(v)
(line 18), node v and link (v, u) will be isolated in the next configuration.
This can be repeated until we have configurations so that every node and
link is isolated. This holds also for the last node processed, since its last
link will always lead to a node that is already isolated in another configura-
tion. Since all links and nodes can be isolated, the algorithm will terminate
successfully.

A ring topology is a worst-case example of a topology that would need
|N | backup configurations to isolate all network elements. In section 5.5 we

5.4. LOCAL FORWARDING PROCESS 75

analyze the number of backup configurations created by algorithm 5.1 for
different input network topologies.

Complexity

The complexity of the proposed algorithm is determined by the loops and
the complexity of the connected method. This method performs a procedure
similar to determining whether a node is an articulation point in a graph,
bound to worst case O(|N |+|A|). Additionally, for each node, we run through
all adjacent links, whose number has an upper bound in the maximum node
degree Δ. In the worst case, we must run through all n configurations to
find a configuration where a node can be isolated. The worst case running
time for the complete algorithm is then bound by O(nΔ|N ||A|).

5.4 Local Forwarding Process

Given a sufficiently high n, the algorithm presented in section 5.3 will create
a complete set of valid backup configurations. Based on these, a standard
shortest path algorithm is used in each configuration to calculate config-
uration specific forwarding tables. In this section, we describe how these
forwarding tables are used to avoid a failed component.

When a packet reaches a point of failure, the node adjacent to the failure,
called the detecting node, is responsible for finding a backup configuration
where the failed component is isolated. The detecting node marks the packet
as belonging to this configuration, and forwards the packet. From the packet
marking, all transit routers identify the packet with the selected backup con-
figuration, and forward it to the egress node avoiding the failed component.

Consider a situation where a packet arrives at node u, and cannot be
forwarded to its normal next-hop v because of a component failure. The
detecting node must find the correct backup configuration without knowing
the root cause of failure, i.e., whether the next-hop node v or link (u, v) has
failed, since this information is generally unavailable.

Let C(u) denote the backup configuration where node u is isolated, i.e.,
C(u) = Ci ⇔ u ∈ Si. Similarly, let C(u, v) denote the backup configuration
where the link (u, v) is isolated, i.e., C(u, v) = Ci ⇔ wi(u, v) = ∞. Assuming
that node d is the egress (or the destination) in the local network domain,
we can distinguish between two cases. If v �= d, forwarding can be done in

76 CHAPTER 5. MULTIPLE ROUTING CONFIGURATIONS

returned from
lookup

Failed link

Switched

No

Yes
configuration

before

Yes

Look up nexthop

Forward packet

Forward packet

Drop

packet

Failed forwarding in node u

towards node v

1

2

3

4

Look up nexthop

in conf C(v)

in conf C(u) in conf C(u)

in conf C(v)

No

Figure 5.2: Packet forwarding state diagram.

configuration C(v), where both v and (u, v) will be avoided. In the other
case, v = d, the challenge is to provide recovery for the failure of link (u, v)
when node v is operative. Our strategy in this case is to forward the packet
using a path to v that does not contain (u, v). Furthermore, packets that
have changed configuration before, and still meet a failed component on their
forwarding path, must be discarded. This way packets loops are avoided, also
in the case that node d indeed has failed. The steps that are taken in the
forwarding process by the detecting node u are summarized in figure 5.2.

Assume there is only a single component failure in the network, detected
by node u on path to the network-local destination d via node v.

Proposition 5.4.1. Node u selects configuration Ci so that v �∈ N (pi(u, d)),
if v �= d.

Proof. Node u selects C(v) in step 2. Node v is isolated in C(v) and will not

5.4. LOCAL FORWARDING PROCESS 77

be in the shortest path pi(u, d) according to proposition 5.3.2.

Proposition 5.4.2. Node u selects configuration Ci so that (u, v) �∈ A(pi(u, d)).

Proof. If v �= d, node u selects C(v) in step 2, and neither node v nor link
(u, v) will be in the shortest path pi(u, d).

Assume that v is the egress node for destination d. Remember that
according to (5.3), C(u, v) = C(u)∨C(u, v) = C(v). We distinguish between
three possible cases, illustrated in figure 5.3.

If C(u) = Ci and C(v) = Ci as in figure 5.3a), then C(u, v) = Ci according
to the definition of an isolated node and (5.2). Forwarding step 2 will select
C(v) = Ci and A(pi(u, v)) does not contain (u, v).

If C(u) = Ci, C(v) = Cj, i �= j, and C(u, v) = Cj as in figure 5.3b),
forwarding step 2 will select C(v) = Cj and A(pj(u, v)) does not contain
(u, v).

Finally, if C(u) = Ci, C(v) = Cj, i �= j, and C(u, v) = Ci as in figure
5.3c), forwarding step 2 will select C(v) = Cj. Link (u, v) is not isolated in
Cj, and will be returned as the next hop. Step 3 will detect this, and step 4
will select C(u) = Ci and A(pi(u, v)) does not contain (u, v).

5.4.1 Implementation issues

The forwarding process can be implemented in the routing equipment as
presented above, requiring the detecting node u to know the backup configu-
ration C(v) for each of its neighbors. Node u would then perform at most two
additional next-hop lookups in the case of a failure. However, all nodes in
the network have full knowledge of the structure of all backup configurations.
Hence, node u can determine in advance the correct backup configuration to
use if the normal next hop for a destination d has failed. This way the for-
warding decision at the point of failure can be simplified at the cost of storing
the identifier of the correct backup configuration to use for each destination
and failing neighbor.

For the routers to make a correct forwarding decision, each packet must
carry information about which configuration it belongs to. This information
can be either explicit or implicit. An explicit approach could be to use a
distinct value in the DSCP field of the IP header to identify the configura-
tion. As we will see shortly, a very limited number of backup configurations
are needed to guarantee recovery from all single link or node failures, and

78 CHAPTER 5. MULTIPLE ROUTING CONFIGURATIONS

u

v

C(u) = C(v)

a)

u
v

C(v)

b)

u
v

C(u)

c)

Figure 5.3: When there is an error in the last hop u → v, a packet must
be forwarded in the configuration where the connecting link is isolated. The
figure shows isolated nodes (shaded color), restricted links (dashed), and iso-
lated links (dotted). In cases (a) and (b), C(u, v) = C(v), and the forwarding
will be done in C(v). In case (c), C(u, v) �= C(v), and the forwarding will be
done in C(u).

5.5. PERFORMANCE EVALUATION 79

hence the number of needed values would be small. A more implicit approach
would be to assign a distinct local IP address space for each backup config-
uration. Each node in the IGP cloud would get a separate address in each
configuration. The detecting node could then encapsulate recovered packets
and tunnel them shortest path in the selected backup configuration to the
egress node. The packets would then be decapsulated at the egress and for-
warded from there as normal towards the final destination. The drawback
with this method is the additional processing and bandwidth resource usage
associated with tunneling.

Recent IETF standardization work on Multi Topology routing mecha-
nisms [94, 95] provides a useful framework for MRC implementation. These
IETF drafts specify how routers can exchange information about the link
weights used in several logical topologies, and build topology specific forward-
ing tables. Use of these drafts for providing proactive recovery is sketched in
[97].

5.5 Performance Evaluation

MRC requires the routers to store additional routing configurations. The
amount of state required in the routers is related to the number of such
backup configurations. Since routing in a backup configuration is restricted,
MRC will potentially give backup paths that are longer than the optimal
paths. Longer backup paths will affect the total network load and also the
end-to-end delay.

Full, global IGP re-convergence determines shortest paths in the network
without the failed component. We use its performance as a reference point
and evaluate how closely MRC can approach it. Note that MRC yields the
shown performance immediately after a failure, while IP re-convergence can
take seconds to complete.

5.5.1 Method

We compare the network performance when MRC is used to recover traffic
to the performance in the failure-free case (denoted “IGP normal”) and after
a full global re-convergence (“IGP rerouting”).

We have implemented the algorithm described in section 5.3.2 and created
configurations for a wide range of biconnected synthetic and real topologies.

80 CHAPTER 5. MULTIPLE ROUTING CONFIGURATIONS

The synthetic topologies are obtained from the BRITE topology generation
tool [89] using the Waxman [92] and the Generalized Linear Preference (GLP)
[90] models. The number of nodes is varied between 16 and 512 to demon-
strate the scalability. To explore the effect of network density, the average
node degree is 4 or 6 for Waxman topologies and 3.6 for GLP topologies. For
all synthetic topologies, the links are given unit weight. The real topologies
are taken from the Rocketfuel topology database [88].

For each topology, we measure the minimum number of backup configura-
tions needed by our algorithm to isolate every node and link in the network.
Based on the created configurations, we measure the backup path lengths
(hop count) achieved by our scheme after a node failure. For a selected
class of topologies, we evaluate the backup path lengths dependence on the
number of backup configurations.

The shifting of traffic from the normal path to a recovery path changes the
load distribution in the network, and can in some cases lead to congestion
and packet loss. We therefore test the effect our scheme has on the load
distribution after a failure. To do this, we have performed simulations of the
European COST239 network [98] shown in figure 5.4, designed to connect
major cities across Europe. All links in the network are given an equal
abstract capacity of 100. To achieve a good load distribution and minimize
the chances of congestion in the failure-free case, we adopt the link weight
optimization heuristic introduced in [69]. They define a piecewise linear cost
function Φ that is dependent on the load l(a) on each of the links a in the
network. Φ is convex and resembles an exponentially growing function. They
then introduce a local search heuristic that tries to minimize the value of Φ
by randomly perturbing the link weights. This local search heuristic has been
shown to give performance that is close to the optimal solution that can be
achieved by a connection oriented technology like MPLS.

The COST239 network is selected for this evaluation because of its re-
silient network topology. By using this network, we avoid a situation where
there exists only one possible backup path to a node. The differences with
respect to link loads between different recovery strategies will only be visible
when there exists more than one possible backup path. In the COST239 net-
work each node has a node degree of at least four, providing the necessary
maneuvering space.

For our load evaluations, we use a traffic matrix where the traffic between
two destinations is based on the population of the countries they represent

5.5. PERFORMANCE EVALUATION 81

Copenhagen

Berlin

Prague

Vienna

Milan

Zurich

Amsterdam

Luxembourg

Paris

London

Brussels

Figure 5.4: The COST239 network

[98]. For simplicity, we look at constant packet streams between each node
pair. The traffic matrix has been scaled so that the load on the most utilized
link in the network is about 2/3 of the capacity. We use shortest path routing
with equal splitting of traffic if there exists several equal cost paths towards
a destination.

5.5.2 Number of Backup Configurations

Figure 5.5 shows the minimum number of backup configurations that algo-
rithm 5.1 could produce in a wide range of synthetic topologies. Each bar in
the figure represents 100 different topologies given by the type of generation
model used, the links-to-node ratio, and the number of nodes in the topology.
Table 5.2 shows the minimum number of configurations algorithm 5.1 could
produce for selected real world topologies.

The results show that the number of backup configurations needed is
usually modest; 3 or 4 is typically enough to isolate every element in a
topology. No topology required more than six configurations. In other words,
algorithm 5.1 performs very well even in large topologies. The algorithm fails

82 CHAPTER 5. MULTIPLE ROUTING CONFIGURATIONS

0 %

20 %

40 %

60 %

80 %

100 %

glp-1.8-16

wax-2-16

wax-3-16

glp-1.8-32

wax-2-32

wax-3-32

glp-1.8-64

wax-2-64

wax-3-64

glp-1.8-128

wax-2-128

wax-3-128

glp-1.8-512

wax-2-512

wax-3-512

Type of topology

P
er

ce
n

ta
g

e
o

f
to

p
o

lo
g

ie
s

6

5

4

3

2

Figure 5.5: The number of backup configurations required for a wide range of
BRITE generated topologies. As an example the bar name wax-2-16 denotes
that the Waxman model is used with a links-to-node ratio of 2, and with 16
nodes.

Table 5.2: Number of backup configurations for selected real world networks
Network Nodes Links Configurations
Sprint US 32 64 4
German Tel 10 17 3
DFN 13 37 2
Geant 19 30 5
COST239 11 26 3

5.5. PERFORMANCE EVALUATION 83

only if it meets a node that if isolated disconnects the backbone in each of
the n backup configurations. The algorithm often goes through all network
nodes without meeting this situation even if n is low, and is more successful
in topologies with a higher average node degree.

In section 5.3.2 we stated that the problem of finding a minimal complete
set of valid configurations can be transformed to the Set Covering problem.
It has long been known that heuristic algorithms can efficiently approximate
an optimal solution to this problem [99], which makes the good performance
of algorithm 5.1 less surprising.

It is difficult to quantify exactly the amount of extra state that must
be stored in the forwarding tables of the routers in order to support MRC,
because this would be highly dependent on the FIB design of the specific
router. It is however clear that the state requirements will is some way be
dependent on the number of backup configurations used. A modest number
of backup configurations shows that our method is implementable without
requiring a prohibitively high amount of state information.

5.5.3 Backup Path Lengths

Figure 5.6 shows path length distribution of the recovery paths after a node
failure. The numbers are based on 100 different synthetic Waxman topologies
with 32 nodes and 64 links. All the topologies have unit weight links. Results
for link failures show the same tendency and are not presented.

For reference, we show the path length distribution in the failure-free case
(“IGP normal”), for all paths with at least two hops. For each of these paths,
we let every intermediate node fail, and measure the resulting recovery path
lengths using global IGP rerouting, local rerouting based on the full topology
except the failed component (“Optimal local”), as well as MRC with 5 backup
configurations.

We see that MRC gives backup path lengths close to those achieved after
a full IGP re-convergence. This means that the affected traffic will not suffer
from unacceptably long backup paths in the period when it is forwarded
according to an MRC backup configuration.

Algorithm 5.1 yields richer backup configurations as their number in-
creases. In figure 5.7 we have plotted the average backup path lengths for
the 75 of the 100 Waxman-32-64 input topologies that could be covered using
3 backup configurations. The figure shows that the average recovery path
length decreases as the number of backup configurations increases.

84 CHAPTER 5. MULTIPLE ROUTING CONFIGURATIONS

Path lengths - 32 nodes, 64 links

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12

Path length in number of hops

P
er

ce
n

ta
g

e
o

f
p

at
h

s

MRC 5

Optimal local

IGP reroute

IGP normal

Figure 5.6: Backup path lengths in the case of a node failure.

Path lengths vs. number of configurations

2,5

3

3,5

4

4,5

5

3 4 5 6 7 8 9 10

Number of configurations

A
ve

ra
g

e
P

at
h

 le
n

g
th

MRC

Optimal local

IGP reroute

IGP normal

Figure 5.7: Average backup path lengths in the case of a node failure as a
function of the number of backup configurations.

5.5. PERFORMANCE EVALUATION 85

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 10 20 30 40 50

R
el

at
iv

e
lo

ad

Link ID

COST239 - worst case load after failure

Failure free IGP reroute MRC

Figure 5.8: Load on all unidirectional links in the failure free case, after
IGP re-convergence, and when MRC is used to recover traffic. Shows each
individual links worst case scenario.

5.5.4 Load on Individual Links

In order to evaluate the routing performance while MRC is used to recover
traffic, we measure the throughput on each unidirectional link for every pos-
sible link failure. We then find the maximum link utilization over all failures
for each link. Five backup configurations were used.

Figure 5.8 shows the maximum load on all links, which are indexed from
the least loaded to the most loaded in the failure-free case. The results
indicate that the restricted routing in the backup topologies result in a worst
case load distribution that is comparable to what is achieved after a complete
IGP rerouting process.

However, we see that for some link failures, MRC gives a somewhat higher
maximum link utilization in this network. The maximum link load after the
worst case link failure is 118% with MRC, compared to 103% after a full IGP
re-convergence. In the next chapter, we discuss a method for improving the

86 CHAPTER 5. MULTIPLE ROUTING CONFIGURATIONS

post failure load balancing with MRC.

5.6 Summary

In this chapter we have presented Multiple Routing Configurations as an
approach to achieve fast recovery in IP networks. Like RRL described in
chapter 4, MRC is based on providing the routers with additional routing
configurations, allowing them to forward packets along routes that avoid a
failed component. MRC guarantees recovery from any single node or link
failure in an arbitrary biconnected network. By calculating backup configu-
rations in advance, and operating based on locally available information only,
MRC can act promptly after failure discovery.

MRC operates without knowing the root cause of failure, i.e., whether
the forwarding disruption is caused by a node or link failure. Different from
RRL, this is achieved by using careful link weight assignment according to
the rules we have described. The link weight assignment rules also provide
basis for a forwarding procedure that successfully solves the last hop problem.

The performance of the algorithm and the forwarding mechanism has
been evaluated using simulations. We have shown that MRC scales well: 3
or 4 backup configurations is typically enough to isolate all links and nodes
in our test topologies. MRC backup path lengths are comparable to the
optimal backup path lengths—MRC backup paths are typically zero to two
hops longer.

We have evaluated the effect MRC has on the load distribution in the
COST239 network while traffic is routed in the backup configurations. In
some cases, the restricted routing in the backup configurations gives an un-
wanted shift of recovered traffic to already highly loaded links. In the next
chapter, we will present a method for mitigating this effect.

Chapter 6

MRC Routing Performance

In the previous chapter, we introduced MRC as a proactive recovery scheme
that can route traffic around a failed element immediately after the failure
is detected. In this chapter, we investigate the routing performance aspects
of the MRC method, and propose a strategy for reducing the chances of
congestion while traffic is routed according to the backup configurations.

Most of the contents in this chapter will also be published in [100].

6.1 Introduction

The motivation for introducing fast recovery mechanisms at the networking
layer is to avoid packet loss during the IGP re-convergence phase, and to
increase network stability by handling failures without triggering a global
re-convergence. Existing proactive IP recovery schemes are limited to guar-
anteeing loop-free connectivity in the network after a failure, and do not
consider the post-failure load distribution. The shifting of traffic to alternate
links after a failure can lead to congestion and packet loss in parts of the net-
work [13]. If the routing calculated by the proactive recovery scheme leads
to congestion, it limits the time that the the backup paths can be used to
forward traffic before the global routing protocol is informed about the fail-
ure. This reduces the chance that a transient failure can be handled without
a full global routing re-convergence. Hence, it is important that the reduced
packet loss is not spoiled by creating congestion in other parts of the network.

A proactive recovery scheme should not only guarantee connectivity after
a failure, but also do so in a manner that does not cause an unacceptable load

87

88 CHAPTER 6. MRC ROUTING PERFORMANCE

distribution. This requirement has been noted as being one of the principal
challenges for precalculated IP recovery schemes [52]. We believe that a well
engineered distribution of recovered traffic will be crucial for the adoption of
any fast IP recovery method.

Important work on traffic engineering in OSPF/IS-IS networks focus on
optimizing link weights, so that traffic is well distributed across the available
links. The work in this area has focused either on the failure free case [69,
67, 68], or on finding link weights that work well both in the normal case and
when the routing protocol has converged after a single link failure [71, 72, 73].
A major drawback of these solutions is that they compromise performance
in the failure free case in order to give reasonable performance after a failure.
Also, these schemes focus on the load distribution after the convergence of
the IGP routing protocol, and are not designed to work with fast IP recovery
schemes. Very little work has been done on the traffic engineering properties
of proactive IP recovery methods.

With MRC, the link weights are set individually in each backup configu-
ration. This gives great flexibility with respect to how the recovered traffic
is routed. The backup configuration used after a failure is selected based
on the failure instance, and hence we can choose link weights in the backup
configurations that are well suited for only a subset failure instances.

6.1.1 Our contributions

In this chapter, we discuss how we can achieve a good load distribution in
the network immediately after a link failure, when MRC is used as a fast
recovery mechanism. We present an algorithm to create the MRC backup
configurations in a way that takes the traffic distribution into account. Then,
we present a heuristic aimed at finding a set of link weights for each backup
configuration that distributes the load well in the network after any single
link failure. Our scheme is strictly proactive; no link weights need to be
changed after the discovery of a failure.

With MRC, all recovered traffic is routed in the backup configurations.
This allows us, unlike previous proposals, to optimize for link failures without
compromising performance in the failure free case. Also, our work is the first
to address the issue of load balancing after a failure in the context of a
proactive IP recovery scheme.

Our solution consists of three phases; first the link weights in the normal

6.2. ROUTING OPTIMIZATION WITH MRC 89

configuration are optimized while only taking the failure free situation into
account, second we take advantage of the load distribution in the failure free
case to construct the MRC backup configurations in an intelligent manner,
and third we optimize the link weights in the backup configurations to get a
good load distribution after any link failure.

Our method for link weight setting is based on perturbing link weights
using a local search heuristic. The link weights in the backup configurations
are optimized to give good performance after any link failure. However,
optimizing for all possible link failures does not scale well as network size
increases, because of the number of evaluations needed. To overcome this
problem, we assume that only a few link failures are critical with respect
to the load distribution after failure. A link failure is more critical if it is
likely that it leads to more congestion. After identifying the most critical
link failures, we use only these failures in our optimization process [72].

We have evaluated our approach using simulations on several real and
synthetically generated network topologies, and we find that we achieve a
load distribution while using MRC that is usually better than after a full
OSPF/IS-IS re-convergence with original link weights. Our results approach
those of a method aimed at a good load distribution after the routing protocol
has converged on the new topology [68], with the additional benefits that our
method does not compromise on the performance in the failure free case.

The rest of this chapter is structured as follows. In section 6.2, we discuss
what decides the post-failure load distribution under MRC, and present our
algorithm for creating the backup configurations and our link weight opti-
mization heuristic. Then we evaluate our method in section 6.3, before we
conclude and offer directions for further work in section 6.4.

6.2 Routing optimization with MRC

MRC recovers from a link or node failure in the network by redirecting the
affected traffic using predefined backup configurations. For the purpose of
the optimizations in this chapter, we restrict ourselves to only look at link
failures. For a given traffic demand matrix, the load distribution in the
network after a link failure depends on three factors:

1. The link weight assignment used in the normal configuration C0.

90 CHAPTER 6. MRC ROUTING PERFORMANCE

2. The structure of the backup configurations, i.e. which links and nodes
are isolated in each Ci ∈ {C1, . . . , Cn}.

3. The link weight assignments used in the backup configurations C1, . . . , Cn.

Given a network G = (N,A) and a demand matrix D, let Φ be the cost
of routing the traffic load through the network. Φ depends on how the load
is distributed in the network, and the exact definition of Φ could depend on
whether we want to minimize delay, avoid congestion etc. Our method is
agnostic with respect to the choice of a particular function Φ, as long as it
penalizes the use of heavily loaded links. The cost function we use in our
evaluations is defined in section 6.3.

With the shortest path routing used in OSPF/IS-IS, the cost Φ is de-
termined by the network graph G, the demand matrix D, and the weight
assignment w used in the network. Our goal is to minimize the cost Φ in
both the normal case and after any single link failure for a given G and
D. Our strategy for achieving this is threefold. First, we use a heuristic to
optimize the link weights in the normal configuration C0. Second, we take
advantage of the knowledge of the load distribution in the failure free case
when we create the backup configurations C1, . . . , Cn. Third, we again use a
heuristic to optimize the link weights used in the created backup configura-
tions.

6.2.1 The failure free case

With MRC, all traffic is routed according to C0 in the failure free case. When
there is a failure, all recovered traffic is routed according to the appropriate
backup configurations. This logical separation gives us great flexibility to
distribute the recovered traffic across available links without sacrificing per-
formance in the normal case. One of the attractive features of our solution,
is that we can optimize the weights w0 used in the normal configuration C0

for the failure free case only, without taking the post-failure load distribution
into account.

To optimize w0, we adopt a modified version of the local search heuristic
presented in [69]. We use this heuristic because it is well known and has been
shown to give good performance with modest complexity, but in principle
we could use any other weight search heuristic with the same objective of
minimizing the cost function Φ.

6.2. ROUTING OPTIMIZATION WITH MRC 91

The heuristic starts with a weight assignment w0 where w0(a) = wmax/2
for all a ∈ A, and calculates the load l(a) on each link and the value of the
cost function Φ resulting from w0. Then a given number of iterations are
performed. In each iteration, Φ is evaluated for a subset of the neighborhood
of w0. A neighbor of w0 is a weight assignment obtained by changing the
link weight of a single link. For each link in the network (one at a time), a
new link weight from the range {1, . . . , wmax} is randomly picked, and Φ is
evaluated after each change. The neighbor that gives the lowest value of Φ,
is selected as the new w0. To escape from local minima in the search space,
the heuristic randomly changes the weight of a fraction of the links if there
is no improvement after a given number of iterations. A hashing function is
used to avoid looping between solutions. For a detailed explanation of the
search heuristic, see [69].

6.2.2 Creating the backup configurations

The structure of the backup configurations is important for the load distribu-
tion after a failure. Traffic that is recovered in configuration Ci is forwarded
only in the backbone Bi, except in the first and last hops. A configura-
tion where many nodes and links are isolated gives a sparse (less connected)
backbone. Such a configuration gives few options with regards to where re-
covered traffic should be routed. Conversely, a backup configuration with a
rich backbone leaves more choices with respect to routing, and increases the
possibilities to get a good distribution of load after a failure.

With MRC, the distribution of recovered traffic depends on the inter-
action between the structure of the backup configurations, and the weight
assignments w1, . . . , wn. Ideally, we would like to create the backup configu-
rations and decide w1, . . . , wn at the same time in such a way that the cost
Φ is minimized. However, such a solution would probably have to involve
heavy computations, and in this work we instead settle for a solution where
we first create the backup configurations, and then decide the link weight
assignments. Joint optimization of the backup configuration structure and
the link weight assignments w1, . . . , wn is left for future study.

The intuition behind our algorithm for creating backup configurations,
is that we want the amount of traffic that is potentially recovered in each
backup configuration to be approximately equal. We want to avoid that
the failure of heavily loaded links results in large amounts of traffic being
recovered in backup configurations with a sparse backbone. Instead, this

92 CHAPTER 6. MRC ROUTING PERFORMANCE

traffic should be routed in a rich backbone, where we have a better chance
of distributing it over less loaded links by setting appropriate link weights.
The algorithm described here resembles Alg. 5.1, with the major difference
that while Alg. 5.1 tries to balance the number of isolated elements in each
backup configuration, we here try to balance the amount of recovered traffic.

When we have decided the weight assignment w0, the load on each link in
the failure free case is given. We use this information to decide the potential
of each node in the network and the potential of each backup configuration.

Definition. The potential γ(u) of a node u is the sum of the load on all its
incoming and outgoing links:

γ(u) =
∑
v∈N

(l(u, v) + l(v, u)) (6.1)

Definition. The potential γi of a backup configuration Ci is the sum of the
potential of all nodes that are isolated in Ci:

γi =
∑
u∈Si

γ(u) (6.2)

The input to our algorithm for generating backup configurations is the
normal configuration C0, and the number n of backup configurations we want
to create. As shown in section 5, n can be set surprisingly low; 3 or 4 backup
configurations is usually sufficient to isolate all elements in a network. In
section 6.3, we evaluate the effect the choice of n has on the post failure load
distribution.

Our modified backup configuration construction method is defined in
Alg. 6.1. We start by ordering all nodes with respect to their potential (line 6
in Alg. 6.1). Then each node u is assigned to a tentative backup configura-
tion CT(u) in line 7, so that the potential γi of each backup configuration is
approximately equal:

γi ≈ γj, i, j ∈ {1, . . . , n} (6.3)

The nodes with the smallest potential are assigned to C1, those with some-
what higher potential to C2, and so on with the nodes with the highest
potential in Cn.

We then go through all nodes in the network, and attempt to isolate
each node u in its tentative backup configuration (line 11). The function

6.2. ROUTING OPTIMIZATION WITH MRC 93

isolate is defined in section 5.3.2. For some nodes, this might not be possible
without breaking the definition of a valid configuration given in (5.4). This
node is then attempted isolated in backup configuration Ci+1, Ci+2 and so
on (line 19), until all backup configurations are tried. If a node can not be
isolated in any of the backup configurations, we give up and abort. Note that
when nodes can not be isolated in the backup configuration it was assigned
to, this will disturb the desired property of equalizing γi among the backup
configurations. However, in our experience this typically only happens for a
very limited number of nodes, and the consequences are not severe.

Algorithm 6.1: Load-aware backup configurations.

for i ∈ {1 . . . n} do1

Ci ← (G, w0)2

Si ← ∅3

end4

Qn ← N5

sort(Qn, γ, ascending)6

assign CT(Qn)7

Qa ← ∅8

while Qn �= ∅ do9

u ← first (Qn)10

i = CT(u)11

while u /∈ Si and not all configurations tried do12

if connected(Bi \ {u}) then13

Ctmp ← isolate(Ci, u)14

if Ctmp �= null then15

Ci ← Ctmp16

Si ← Si ∪ {u}17

else18

i ← (i mod n) + 119

if u /∈ Si then20

Give up and abort21

end22

The outcome of this algorithm is dependent on the network topology and
the traffic demand matrix D. If the load is close to equally distributed on
the links before a failure, we end up with approximately the same number

94 CHAPTER 6. MRC ROUTING PERFORMANCE

of nodes isolated in each backup configuration. If the traffic distribution is
more skewed (as is the case with the traffic model used in our evaluations),
the algorithm typically ends up with isolating many nodes with a small po-
tential in C1, while only very few nodes, with a high potential, are isolated
in backup configuration Cn. This is in accordance with the goal of having a
rich backbone in which to reroute traffic after the failure of heavily loaded
links.

6.2.3 Optimizing link weights in the backup configu-
rations

When we have created the backup configurations C1, . . . , Cn, the next chal-
lenge is to decide the weight assignments w1, . . . , wn. We use a similar search
heuristic as in the failure free case. The straightforward way of doing this
would be to evaluate the cost of the network for all possible link failures and
for each candidate set of weight assignments. However, evaluating a candi-
date weight assignment is a rather expensive operation in terms of comput-
ing resources. The large number of evaluations needed to cover all failure
instances makes this unfeasible for large networks. We therefore apply a
strategy where we assume that a limited number of link failures are the most
critical with respect to the load distribution, as introduced in [72]. Our
method for deciding the weight assignments w1, . . . , wn in the backup config-
urations then consists of two subproblems. First we need to find the critical
links, i.e the subset of links whose failure has the most grave impact on the
load distribution in the network. Then we evaluate each candidate set of
weight settings against the failure of the small set of critical links only. This
gives a significant reduction in the number of cost evaluations needed, and
makes our method feasible also for larger networks.

Identifying critical links

Let Φa denote the cost of routing the demands through the network when
link a has failed. We define the critical link set LC as the k links that give the
highest value of Φa upon failure, i.e. LC is the set of links with cardinality
k so that ∀a ∈ LC , b /∈ LC : Φa ≥ Φb. Note that the initial calculation of
LC is performed after we have optimized w0, but before we have optimized
w1, . . . , wn.

6.2. ROUTING OPTIMIZATION WITH MRC 95

There are two potential dangers with this choice of critical links. First,
there might be links whose failure will give a high cost under any weight
assignment, e.g. if there is only one possible backup path. Trying to optimize
for the failure of such links is obviously futile. Second, the impact of a
link failure on the network cost is a function of the current set of weight
assignments. A failure that has little impact with one weight assignment,
might have a grave impact with another weight assignment. We might thus
end up with a situation where the failures that are in fact most damaging for
the routing performance with the final weight assignment, are not included
in the critical link set.

These considerations have led the authors of [73] to propose a strategy
that incorporates both the failure instance and the routing when selecting the
critical links. They observe that assigning a high weight to a link vaguely
resembles the failure of this link. They then exploit the high number of
weight assignments evaluated while optimizing for the failure free case, by
gathering statistical information about the cost of the network when a link
has “failed” in this way. However, this method does not work well with
MRC. Since recovered traffic is routed according to backup configurations
with completely independent weight assignments, setting a high weight on a
link in C0 does not give a good indication of what will happen if that link
fails.

However, the independent routing of recovered traffic in the backup con-
figurations greatly reduces the second point of criticism against our method
for selecting critical links stated above. We only manipulate the weight as-
signments w1, . . . , wn used in the backup configurations in the second phase
of our heuristic, and never change w0. Hence, it is only the recovered traffic
that is affected by the different weight settings evaluated. This makes LC

less dependent on the current weight assignments. To compensate for the de-
pendency that still exists, we recalculate LC a few times during our search.
While the first objection against our measure of criticality still holds (some
failures give high cost independent of weight assignment), we will see that
our selection of LC gives good performance.

The MRC forwarding strategy explained in section 5.4 gives a fixed de-
pendency between a particular link failure and the two backup configurations
used to route the recovered traffic. Hence, the cost of the network after the
failure of a link in LC is influenced only by the weight assignments wi and
wj used in these two configurations, and not by the assignments used in the

96 CHAPTER 6. MRC ROUTING PERFORMANCE

c(a)c(a)

l0(a) l0(a)

li(a)
lj(a)

Figure 6.1: Traffic on link a before and after a failure.

other backup configurations. For each backup configuration Ci, we define
Li ⊆ LC as the set of critical links whose failure results in recovered traffic
being routed according to Ci:

Definition. The set of critical links Li of a configuration Ci is

Li = {a ∈ LC |a /∈ Bi} (6.4)

Local search heuristic

When we have defined the critical links of each backup configuration, we
perform a local search to optimize the weight assignments w1, . . . , wn. Note
first that according to the MRC forwarding strategy, traffic is diverted to two
different backup configurations after a failure, depending on the destination.
After a failure, we will in general have traffic in two backup configurations
i and j (in addition to the normal configuration). Letting li(a) denote the
load on link a that is routed according to configuration Ci, we have that
l(a) = l0(a) + li(a) + lj(a), as illustrated in figure 6.1.

The traffic distribution after a failure is thus dependent on the weight
assignment in more than one backup configuration. Because of this, we
can not optimize the weight assignments one at a time. Instead, we use
an algorithm that tries to optimize all weight assignments w1, . . . , wn at the
same time.

Like in the optimization of w0 described above, we start with weight
assignments where wi(a) = wmax/2, a ∈ Ai, p ∈ P . We then perform a given
number of iterations, evaluating the cost function Φ over the critical link
failures with different weight assignments. In our search heuristic, the aim

6.2. ROUTING OPTIMIZATION WITH MRC 97

is to minimize the sum Ψ of the cost of the network after the failure of each
link in LC :

Ψ =
∑
a∈LC

Φa (6.5)

In each iteration step, we perform the following operations:

1. First we select the next backup configuration Ci in a round robin fash-
ion.

2. For each link a in the backbone Bi of this configuration (one link
at a time), we choose a random link weight wi(a) from the interval
[1, . . . , wmax]. This corresponds to evaluating 1/wmax of the neighbor-
hood of wi.

3. We evaluate Ψ for each of these candidate weight assignments.

Note that for the failure of the links that are not included in Li for the
current configuration, the evaluation performed in the third step will always
yield the same Φ, irrespective of wi. Hence, these values can be reused for
all candidate weight assignments. We only have to recompute the cost of
the network for the failures of the links in Li. This significantly reduces the
number of evaluations we have to perform in our heuristic.

If we do not see an improvement of Ψ after a given number of consecutive
iterations, we jump to another area of the search space by randomly changing
the link weight of a fraction of the links in the network.

Complexity

Optimizing n different weight assignments for a multitude of potential link
failures is a complex task. An important goal in our approach has therefore
been to create a heuristic that scales to networks of hundreds of nodes. This
is achieved through the use of the critical link set LC , and the further division
of this into a set of critical links Li for each backup configuration.

We can get an idea of the complexity of our heuristic by counting the
number of evaluations of the network cost Φa we need to perform, compared
to the methods in [72, 73]. These methods try to optimize a single link weight
assignment only, and use the same strategy of only evaluating the most criti-
cal link failures. In each iteration, they need to calculate the value of Φa |LC |

98 CHAPTER 6. MRC ROUTING PERFORMANCE

times for each candidate weight assignment. With our heuristic, we only need
to evaluate Φa |Li| times for each candidate weight assignment. The number
of links in Li is dependent on the size of LC and the number of backup con-
figurations used to protect the network. The failure of a link (u, v) results in
recovered traffic being diverted to one or two backup configurations, depend-
ing on whether u and v are isolated in the same configuration. The failure
of a link can thus give traffic in at most 2 out of n backup configurations. If
we assume that the number of isolated nodes are not very different between
the configurations, we have that, on average, |Li| is roughly |LC | ·

2
n
.

In each iteration, we only alter the link weights of links Ai in the back-
bone Bi of the current configuration. The weights of the isolated and re-
stricted links that are not included in Bi are decided by MRC, and can not
be changed. Obviously, the number of links |Ai| in each backbone Bi is less
than |A|.

To sum up our discussion so far; if we use i iterations with the methods
described in [72, 73], evaluating the network cost Φa |A| times with |LC |
different link failures in each iteration, we will perform a total of i · |A| · |LC |
evaluations of Φa. With our method, if we perform i iterations for each
backup configuration, we end up with a total of

n · i · |Ai| · |Li| < 2 · i · |A| · |LC | (6.6)

evaluations of Φa. This means that even if we let the number of backup con-
figurations grow, we never need more than twice the number of evaluations
needed by [72] and [73].

Evaluating Φa involves calculating a shortest path tree for each destina-
tion in the network. This can be done in a more efficient way by relying
on incremental calculations [101] when evaluating Φa for different failures.
Evaluating Φa is somewhat more expensive when using MRC, since we need
to calculate shortest paths in one or two backup configurations in addition
to the normal configuration. On the other hand, since we optimize for a
smaller number of failures in each backup configuration, we have found that
we can decrease the number of iterations used per configuration, and still
achieve good results. All in all, our experience is that the running time of
our heuristic is comparable to that of [73].

6.3. PERFORMANCE EVALUATION 99

6.3 Performance evaluation

We have evaluated our approach using simulations for a range of real and
synthetically generated network topologies. We use the network cost and the
maximum link load after failure as performance metrics.

6.3.1 Method

Topologies and traffic

We have tested our mechanism on topologies from four existing or planned
real-world network topologies from the Rocketfuel [88] database: Sprint US
(PoP level, 32 nodes, 64 links), COST239 (11 nodes, 26 links), Geant (19
nodes, 30 links) and German Telecom (10 nodes, 17 links). We have also
performed tests on synthetically generated topologies. We generated topolo-
gies of four different classes - 32 nodes and 64 links, 32 nodes and 96 links,
and 128 nodes and 256 links. The synthetic topologies were generated us-
ing the Waxman topology model [92]. For all the topologies, both real and
synthetic, all links have an equal abstract link capacity of 1 in our tests.

To evaluate the link load changes after the failure, it is necessary to know
the traffic demands between all network origins and destinations. Even for
real networks, this data is generally unavailable, due to its confidentiality
and difficulties in collecting it. We chose to synthesize the origin-destination
(OD) flow data by drawing flow values from a probability distribution, and
matching the values with the OD pairs using the heuristic described in [102].
In short, we sorted the OD pairs according to their node degree and the
likelihood of one of them being used as the backup node in the case of a
single link failure. Then, we matched the sorted OD pair list with the sorted
list of flow intensities generated using the gravity model, which is suited for
this purpose [103].

Once the OD matrix is generated, it needs to be scaled to the link ca-
pacities so that it can provide a meaningful evaluation of the effect of link
failures on the flows. It has proven hard to find a general parameter set-
ting that achieves this for all networks. We chose to tune the load so that
the maximum link load after the worst case failure is about 100%. In most
cases, this corresponds to a maximum link load in the failure-free case of
approximately 2/3 of the link capacity.

100 CHAPTER 6. MRC ROUTING PERFORMANCE

Routing and cost function

We used shortest path routing in all calculations. When multiple equal cost
paths toward a destination were available, the load was split equally among
them.

To evaluate a given weight assignment, we must define the cost Φ of
routing a given traffic demand through the network. In this work we choose
to adopt the commonly used cost function introduced in [69]. Using this cost
function, each link a is given a cost φa dependent on its load l(a) and its
capacity c(a). The total network cost Φ =

∑
a∈A φa is then the sum of the

cost of each link. The cost φa(l(a)) of a link is defined as the continuous
function with φa(0) = 0 and derivative:

φ′

a(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 for 0 ≤ x/c(a) < 1/3,
3 for 1/3 ≤ x/c(a) < 2/3,

10 for 2/3 ≤ x/c(a) < 9/10,
70 for 9/10 ≤ x/c(a) < 1,

500 for 1 ≤ x/c(a) < 11/10,
5000 for 11/10 ≤ x/c(a) < ∞

(6.7)

The cost function φa(l(a)) is illustrated in figure 6.2. It is defined so that
it is cheap to send traffic over lightly-loaded links, while adding traffic to a
link a that is already overloaded gives a very high value of φa.

Evaluation setup

In our experiments, we optimized C0 for the failure free case using the heuris-
tic described in section 6.2.1 with 1000 iterations. We jumped to another area
of the search space by randomly perturbing weights if we saw 200 iterations
without an improvement. When optimizing the link weights in the backup
configurations C1, . . . , Cn, we used as little as 20 iterations per backup con-
figuration, and did a random perturbation after 10 non-improving iterations.
We used a critical link set size |LC | = 20.

As an evaluation benchmark in our experiments with the GEANT net-
work, we compare our method to an unrealistic full rerouting approach where
link weights are optimized to fit the new topology after each specific link
failure. This optimization is done in the same way as the optimization of
the failure free C0. Performing this operation for every link failure takes
much computing resources, and is only feasible in our experiments for small

6.3. PERFORMANCE EVALUATION 101

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.2 0.4 0.6 0.8 1 1.2

C
os

t

Load

Figure 6.2: Link cost φ(l(a)) as a function of l(a) for link capacity c(a) = 1.

networks. To test the performance of our weight setting heuristic, we also
compare to an idealized MRC approach where link weights in the backup
configurations are optimized to fit a single link failure only. We use the same
heuristic as before, but in each iteration we evaluate Φa for a single link only,
instead of taking all critical links into account.

In our evaluation of real and synthetic networks shown in table 6.1, we
show the performance of MRC using 5 and 10 backup configurations. We
compare this to the results given by a complete OSPF/IS-IS re-convergence
on the normal configuration. Also, in lack of other proactive recovery mech-
anisms that try to optimize the routing after a failure, we compare MRC
performance against the method for robust routing described in [73]. This
method constructs a single set of link weights that performs well in both the
failure free case and with a single link failure. It is not designed to work with
any fast reroute mechanism, and the load distribution is hence only achieved
after a full shortest path re-convergence on the new topology. A drawback
with this method is that its performance can not be optimized for failure free
operation only. In our experiments, parameters are set so that we allow a
cost increase of up to 20% in the failure free case with this method.

We use the cost Φ and the load on the most loaded link in the network

102 CHAPTER 6. MRC ROUTING PERFORMANCE

as our evaluation parameters. To be able to compare networks of different
size, we normalize Φ with the cost of routing the demand through the same
network with unlimited link capacities, i.e. a network where φa = l(a)/c(a)
according to (6.7).

6.3.2 Results and discussion

Cost and link loads in a single network

Figure 6.3a shows the network cost Φa after the failure of each link in the
GEANT network topology. The cost is shown for the unrealistic optimal
shortest path rerouting, idealized MRC, and our MRC approach. The link
failures are sorted on the x-axis after increasing cost in the optimal case.
The traffic demand is scaled so that the cost Φ is 1.33 in the failure free case,
giving a maximum link load of 0.67. Figure 6.3b) shows the maximum link
load in the network after the same link failures.

The graphs show that for most failures, MRC performance is close to
that of the unrealistic optimal rerouting. For a few link failures, our MRC
approach diverts more from the optimal. In these cases, the MRC backup
configurations are constructed so that recovered traffic is routed over links
that are already somewhat loaded. We see that when this happens, the per-
formance of our heuristic is close to that of the idealized MRC. This indicates
that if we want to further improve the performance of MRC, we could expect
the best results by improving the backup configuration construction algo-
rithm, instead of creating a better weight search heuristic. Note that MRC
sometimes gives a lower maximum link load than the optimal shortest path
rerouting. This happens when MRC is forced to create longer recovery paths
(giving a higher Φ) due to the restrictions in the backup configurations, but
this happens to avoid the most heavily loaded link that would otherwise be
used.

Varying the number of backup configurations

Figure 6.4a) shows the network cost Φa after the worst case link failure for a
synthetically generated network with 32 nodes and 64 links, using a varying
number of backup configurations. Since our weight setting search contains
an element of randomness, we sometimes experience cost values that deviate
significantly from what is expected. To mitigate this effect, the values shown

6.3. PERFORMANCE EVALUATION 103

 1.2

 1.6

 2

 2.4

 2.8

 0 5 10 15 20 25 30

C
os

t
a

Failed link id

GEANT network - 5 backup configurations

Optimal
MRC ideal

MRC

a)

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

Lo
ad

Failed link id

GEANT network - 5 backup configurations

Optimal
MRC ideal

MRC

b)

Figure 6.3: Cost Φa and maximum link load in the network after each link
failure.

104 CHAPTER 6. MRC ROUTING PERFORMANCE

are the median value obtained by running our algorithm 20 times with a
different seed.

As expected, we see that the cost is highest when the minimum number
of backup configurations (3 for this network) is used. The load balancing
improves when we increase the number of backup configurations used. Since
each node in the network is isolated in exactly one backup configuration, in-
creasing the number of backup configurations gives richer backbones to route
the recovered traffic in. We see that increasing the number of configurations
used beyond 8 gives a very limited effect for this network. We have observed
similar trends for other networks. This indicates that it is possible to achieve
a good load balancing using a modest number of backup configurations. As
seen in figure 6.4b), the maximum link load after the worst case failure shows
more variation than the maximum Φa. This is a result of the piecewise linear
nature of the cost function (6.7), which does not prefer two links with load
0.95 to one link with load 0.90 and one with load 1.00.

Comparing to IGP rerouting and standard MRC

In figure 6.5a), we show the worst case link loads for the load aware MRC,
and after a full IGP re-convergence on the new topology. The links are sorted
by the load in the failure-free case. Figure 6.5a) is directly comparable to
figure 5.8. We see that the worst case load peaks for the optimized MRC
are somewhat reduced compared to the standard MRC. The maximum link
load after the worst case link failure has been reduced from 118% to 91%,
which is better than what is achieved after a full IGP re-convergence. This
is possible since the re-converged network will choose the shortest available
path, while MRC in this case manages to route the recovered traffic over less
utilized links.

The effect of the recovery load balancing introduced in this chapter is
highlighted in figure 6.5b), where the optimized and standard MRC from
chapter 5 are directly compared. Here, the links are sorted by their load
after a worst case failure using standard MRC. We see how the optimized
MRC often manages to route traffic over less utilized links after the failure
of a heavily loaded link.

6.3. PERFORMANCE EVALUATION 105

 0

 2

 4

 6

 8

 4 6 8 10 12 14

C
os

t

Number of backup configurations

32 node network - synthetic traffic

Average
Max

a)

 0.8

 0.9

 1

 1.1

 1.2

 4 6 8 10 12 14

M
ax

 L
oa

d

Number of backup configurations

32 node network - synthetic traffic

b)

Figure 6.4: Cost Φa and maximum link load in the network after the worst
case link failure. Φa is median over 20 runs, maximum load is mean over 20
runs.

106 CHAPTER 6. MRC ROUTING PERFORMANCE

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 10 20 30 40 50

R
el

at
iv

e
lo

ad

Link ID

COST239 - worst case load after failure

Failure free IGP reroute MRC

a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 10 20 30 40 50

R
el

at
iv

e
lo

ad

Link ID

COST239 - worst case load after failure standard vs optimized

Standard Optimized

b)

Figure 6.5: Load on all unidirectional links in the COST239 network after
the worst case link failure. a)Optimized MRC vs complete IGP rerouting.
b)Standard vs optimized MRC.

6
.3

.
P

E
R

F
O

R
M

A
N

C
E

E
V
A

L
U

A
T

IO
N

107

T
ab

le
6.1:

C
ost

an
d

m
ax

im
u
m

lin
k

load
for

selected
real

an
d

sy
n
th

etic
n
et-

w
ork

top
ologies

Proactive recovery Reactive recovery
Failure free MRC n=5 MRC n=10 S/G Normal SPF

Network Φ lmax Φa
avg Φa

max lmax Φa
avg Φa

max lmax Φa
avg Φa

max lmax Φa
avg Φa

max lmax

German Tel 1.40 66% 1.91 4.85 102% 1.95 5.00 102% 1.63 2.05 81% 14.60 86.53 117%
Geant 1.36 68% 1.65 2.39 101% 1.69 4.94 108% 1.58 1.90 90% 2.54 31.91 120%
Sprint US 1.18 64% 1.40 6.05 110% 1.39 6.00 110% 1.40 5.58 110% 1.35 5.53 110%
Cost239 1.39 66% 1.57 2.62 99% 1.56 2.62 99% 1.51 1.94 79% 1.55 2.61 99%

T32-64-0 1.33 66% 1.48 2.20 103% 1.45 1.59 82% 1.42 1.60 87% 1.41 1.63 98%
T32-64-1 1.26 59% 1.39 1.73 95% 1.38 1.54 75% 1.36 1.54 94% 1.34 1.91 102%
T32-64-2 1.33 67% 1.48 2.21 100% 1.48 2.21 100% 1.42 1.52 89% 1.42 2.15 104%
T32-64-3 1.30 67% 1.46 2.65 105% 1.46 2.65 105% 1.61 3.04 109% 1.47 5.17 111%
T32-64-4 1.29 66% 1.42 1.91 96% 1.41 1.79 90% 1.35 2.04 102% 1.36 2.28 103%

T32-96-0 1.35 67% 1.43 1.99 104% 1.42 1.62 99% 1.39 1.47 92% 1.41 2.23 109%
T32-96-1 1.34 78% 1.46 3.60 110% 1.45 3.22 111% 1.39 1.85 101% 1.50 10.86 114%
T32-96-2 1.36 72% 1.59 7.60 117% 1.46 1.85 103% 1.43 3.05 111% 1.56 6.88 114%
T32-96-3 1.35 65% 1.44 2.27 108% 1.42 1.63 100% 1.41 1.57 98% 1.39 1.69 101%
T32-96-4 1.36 76% 1.48 5.05 113% 1.48 4.02 111% 1.40 1.53 97% 1.46 4.89 112%

T128-256-0 1.23 67% 1.27 1.34 91% 1.26 1.32 95% 1.25 1.28 86% 1.25 1.28 90%
T128-256-1 1.21 66% 1.24 1.30 83% 1.24 1.30 85% 1.23 1.25 73% 1.22 1.24 70%
T128-256-2 1.18 67% 1.21 1.31 92% 1.21 1.33 93% 1.19 1.22 72% 1.19 1.22 72%
T128-256-3 1.20 66% 1.23 1.31 84% 1.23 1.31 90% 1.22 1.23 82% 1.21 1.24 82%
T128-256-4 1.20 66% 1.23 1.31 84% 1.23 1.31 90% 1.21 1.24 76% 1.21 1.23 76%

108 CHAPTER 6. MRC ROUTING PERFORMANCE

Evaluation over different networks

We have evaluated the network cost and the maximum link load after the
worst case link failure for a range of real-world and synthetically generated
network topologies, as shown in table 6.1. Results are shown for MRC using
5 and 10 backup configurations, a normal full SPF re-convergence, and the
method described in [73], denoted S/G. We have run experiments for 5 differ-
ent topologies of each type of synthetic topologies. For each recovery method
we show the average cost Φa

avg after each link failure, the cost Φa
max after the

worst case link failure, and the load lmax of the most heavily loaded link after
the worst case link failure. We also show the cost Φ and the maximum link
load in the failure free case. The values shown in the table are median values
over 3 runs with different seed.

The general trend is that MRC performs better than the normal shortest
path rerouting after the worst case link failure, with respect to both cost and
maximum link load. MRC performance is improved if we increase the num-
ber of backup configurations used. Using 10 backup configurations, MRC
performance gets close to that of the S/G method, and for networks of mod-
erate size and connectivity (T32-64), MRC performance is as good as that
of S/G. The cost Φ in the failure free case is up to 20% higher with the S/G
method than with MRC - in our experiments we typically saw values that
were 3-15% higher.

Normal SPF re-convergence performs better for larger networks (T128-
256) than for small networks. We believe this is partly a result of the traffic
model used. With larger networks, the chance that a heavily loaded link is se-
lected in a backup path decreases, and a normal shortest path re-convergence
is closer to the optimal solution.

6.4 Summary

In this chapter, we have argued that the post-failure load distribution should
be taken into account when designing a proactive recovery scheme for IP
networks. We think this is imperative for the adoption of any such scheme.
We presented an algorithm for creating backup configurations and a link
weight assignment heuristic that reduces the chance of congestion after a
link failure when MRC is used for recovery. The heuristic we propose is
inspired by existing link weight heuristics used in single-topology scenarios,

6.4. SUMMARY 109

but is adapted to that it works with our Multiple Routing Configurations.
Our method does not compromise performance in the failure-free case, and
it is strictly pre-configured; no calculations are necessary after the failure.

We have evaluated our method using both real and synthetic network
topologies. Our results show that by using our scheme, MRC offers better
post-failure load distribution in the network than what is achieved by a full
global rerouting using the original link weights. In particular, our heuristic
reduces the load on the most loaded links in the network after a worst-case
link failure compared to a normal shortest path rerouting. The performance
of our method is almost the same as that of the method described in [73],
which is not designed to be used with a proactive IP recovery scheme and
that reduces performance in the failure free case.

In the final stages of the work in this chapter, we discovered the technical
report [104]. This report describes a technique inspired by the method de-
scribed in chapter 5 for creating multiple topologies to achieve fast rerouting
in IP networks, and a heuristic to set link weights in the topologies. They
compare their post-failure load distribution to that achieved by using the
not-via approach [61], and find that their multi-topology strategy performs
better for the tested networks according to their metrics. Both the method
for creating backup topologies and for setting link weights is substantially
different from ours. As future work, we plan to compare the performance of
this method to that of our own.

110 CHAPTER 6. MRC ROUTING PERFORMANCE

Chapter 7

Multi-Topology Load Balancing

So far, we have looked at mechanisms that give fast recovery from component
failures in a network domain. In this chapter, we will utilize some of the
concepts that we have discussed earlier to solve another kind of challenge in
a network: how to maintain a good routing when the traffic demands are
constantly changing.

7.1 Introduction

In connectionless intradomain routing protocols like OSPF or IS-IS, traf-
fic engineering is done by carefully tuning the link weights that decide the
shortest paths from each ingress to each egress node. Based on the network
topology and the projected traffic demands, the link weights are set so as to
minimize the cost of routing the demands through the network. The perfor-
mance of such methods have been shown to be close to what can be achieved
using connection oriented protocols like MPLS [69, 68]. The main problem
with traffic engineering approaches based on optimizing link weights is that
they rely heavily on the available estimate of the traffic demands. These
estimates can be based on traffic measurements and projections of customers
needs. However, the demands vary significantly over time, and it is difficult
to get an accurate network-wide view of the situation [14].

With a changed traffic matrix, we would like to run the optimization
heuristic again, and install the new optimized link weights in the network
to maintain the desired load balancing properties. However, changing link
weights in an operational network is a bad thing. Not only does it lead to a

111

112 CHAPTER 7. MULTI-TOPOLOGY LOAD BALANCING

period of routing instabilities as the routing protocol converges on the new
topology [7], but it may also change the egress routers that are chosen in the
BGP route-selection process, causing additional unwanted traffic shifts [105].

Several proposals have been made to mitigate the effects of traffic demand
changes. In [15], a method is described that adapts the routing to the new
traffic demands with as few weight changes as possible. This reduces the
consequences, but it does not remove the problem. Other schemes try to
find a link weight setting that performs well also in the presence of a link
failure [71, 72, 73]. These proposals prepare for changes to the routing caused
by failures, but do not handle natural changes in the traffic matrix caused
by shift in user demands.

In this chapter, we propose a new method for IGP traffic engineering
that avoids the problems associated with link weight changes. Our method
is based on Multi-Topology (MT) routing, which is currently being defined
by the IETF [94, 95]. MT routing allows the routers to maintain several
independent logical topologies, with independent link weights, and hence
independent routing, in each topology.

The main idea in our contribution is to construct the set of logical topolo-
gies in such a way that any congested link can be avoided in at least one
topology. Traffic is then spread among the topologies in a way that gives
good load balancing. We explore two different ways of utilizing this; one
global method where ingress-egress flows are mapped to a topology at the
ingress node, and one local method where traffic is dynamically moved to an
alternate topology by the node experiencing congestion.

By looking at authentic traffic demands from the pan-European GEANT
network, we show that the day to day variations of ingress-egress flows are
significant. We then evaluate our two methods using simulations of this net-
work, and compare the results to a well known method for traffic engineering
based on IGP weight tuning [69]. We find that our local method significantly
reduces the chances of packet loss in our simulated scenarios, while the global
method performs as good as the weight tuning heuristic with a much simpler
and more dynamic algorithm.

The rest of this chapter is organized as follows. In section 7.2 we illus-
trate that the temporal variations in traffic demands are indeed large. We
then introduce MT routing and describe our algorithm for calculating logical
topologies in section 7.3. In section 7.4 we explain the details of our global
and local methods, before we evaluate our methods and compare them to an
existing traffic engineering method in section 7.5. Finally in section 7.6, we

7.2. TEMPORAL VARIATIONS IN BACKBONE TRAFFIC 113

summarize this chapter.

7.2 Temporal variations in backbone traffic

Traffic demands vary in both daily and weekly patterns, but they also show
significant stochastic day-to-day variations. In this work, we look at real
intradomain traffic matrixes from the GEANT network [106]. GEANT is
a high capacity network connecting the national research networks in most
European countries1. The network consists of 23 nodes connected by 37
bidirectional links. Most of the links have capacities ranging from 2.4 Gbps
to 10 Gbps, with a few links with lower capacities from 155 Mbps to 1.5
Gbps. The traffic matrixes in our dataset tell us how much data was sent
from each ingress node to each egress node in every 15 minutes interval over
a four month period.

The demands in the GEANT traffic trace typically have their daily peak
around lunch hours. To illustrate the stochastic variations in the demands,
we have computed a traffic matrix that consists of the average peak hour
demands in the GEANT network over 7 consecutive days. We then look at
the peak hour demands on the 8th day (a Friday), and measure how much
each ingress-egress flow deviates from the previous week average.

The results are shown in figure 7.1. We see that the variations are sig-
nificant. For this particular day, about 7% of the flows were reduced by
more than 90% compared to the previous week average. Over 13% of the
demand flows were more than doubled, and almost 5% more than 4 times
as large. This illustrates how difficult it is to find a single demand matrix
that can be used as input to a load balancing heuristic based on link weight
manipulation.

7.3 Multi-Topology routing

Multi-Topology routing allows the routers in an AS to maintain several log-
ical views of the network topology. The routers exchange topology-specific
link state advertisements describing the properties of each link. Conceptu-
ally, the routers build a separate routing table for each topology, and create a
separate forwarding entry for each destination in each topology. Data traffic

1A map of the GEANT topology is publicly available at http://www.geant.net

114 CHAPTER 7. MULTI-TOPOLOGY LOAD BALANCING

 0

 5

 10

 15

 20

 25

 30

 35

 40

>3002-3001-200100500-50-100

Fl
ow

s

Deviation from previous week average (%)

Temporal variations in the demands

Figure 7.1: Flow deviations from previous week average

is associated with a specific topology, and is routed according to the corre-
sponding routing table. This association might be in the form of a topology
identifier in the packet header, or by using tunnelling in combination with a
private address space [61].

7.3.1 Building logical topologies

We will now describe an algorithm for creating the alternate topologies. The
algorithm is the same as the Rich algorithm introduced in section 4.3.2,
where we proposed the use of multiple topologies for fast recovery from link
failures. Here, we repeat the rules that control the topology creation.

We define a topology T as a set of nodes N and a set of links A. Given
a network topology T0, we build n additional topologies T1, . . . , Tn. We refer
to T0 as the original topology, and T1, . . . , Tn as the alternate topologies.
The alternate topologies are copies of the original topology T0, with the dif-
ference that a subset of the links are removed in each alternate topology.
Importantly, links are removed in such a way that each alternate topology

7.3. MULTI-TOPOLOGY ROUTING 115

1 2 3

4 5

6 7 8

1 2 3

4 5

6 7 8

1 2 3

4 5

6 7 8

1 2 3

4 5

6 7 8

T0 T1

1 2 3

4 5

6 7 8

1 2 3

4 5

6 7 8

1 2 3

4 5

6 7 8

1 2 3

4 5

6 7 8

T2 T3

Figure 7.2: Example topologies

T1, . . . , Tn is still connected, and thus all nodes are still reachable in all topolo-
gies. Figure 7.2 shows an example of how three alternate topologies can be
built so that all links are removed in one of the topologies.

Input to our algorithm is the original topology T0, and the number n of
desired alternate topologies. The algorithm then iterates through all links
and tries to remove each of them in one of the topologies Ti. A link can only
be removed from a topology if doing so does not disconnect the topology. If
a link cannot be removed in Ti, we try again in topology T(imodn)+1 until all
alternate topologies have been tried. For each link we want to remove, a new
topology is chosen as the first Ti we try, so that the number of removed links
is approximately equal over the different Ti.

The algorithm results in n alternate topologies T1, . . . , Tn with two im-
portant properties.

1. All topologies are connected, so that in each topology, there is a valid
routing path between each pair of nodes.

2. All links are removed in exactly one of the alternate topologies. We
denote by T (l) the topology where link l is removed.

116 CHAPTER 7. MULTI-TOPOLOGY LOAD BALANCING

In section 4, we showed that a surprisingly small number of alternate
topologies are needed to fulfill these two properties. This way of generating
the alternate topologies ensures that when a link becomes overloaded, there
will always exist a topology where the congested link is not used to forward
traffic.

7.4 Load balancing using Multi-Topology

routing

We describe two different methods for load balancing based on MT routing.
We refer to the two as the global and the local methods respectively.

7.4.1 Global load balancing

The global method takes as input the network graph, the link capacities,
and the available traffic matrix estimate. Based on this, it assigns traffic
flows to topologies in a way that tries to minimize the chances of congestion,
by minimizing the maximum link utilization in the network. Note that we
use the notion of a flow to describe the aggregate of traffic going from an
ingress to an egress, and we to not distinguish traffic on a finer granularity.
We foresee the global method being used in a centralized off-line tool that
calculates the consequences of different routings.

The global method starts out with routing all traffic demands according
to the original topology T0, and then moves some selected flows over to the
alternate topologies in order to minimize the utilization of the most loaded
link in the network. The load distribution in the network in the initial stage
of the algorithm is determined by the link weights used in T0. Our method
is agnostic to the setting of these weights.

Pseudo-code for the algorithm that assigns ingress-egress flows to alter-
nate topologies is given in algorithm7.1. Each iteration in the outer while
loop starts by identifying the most utilized link amax in the network, and the
flows F that are routed over this link. The inner for loop then iterates over
F to evaluate the consequences of moving each flow. The flow that gives the
lowest new max utilization is moved from T0 to the topology T (amax) where
amax is avoided. The algorithm terminates when no flow is found that gives
a lower max utilization. The output of the algorithm is a mapping that is
used by the ingress nodes to assign each flow to the correct topology.

7.4. LOAD BALANCING USING MULTI-TOPOLOGY ROUTING 117

Algorithm 7.1: Topology assignment algorithm

continue ⇐ true1

while continue do2

amax ⇐ most loaded link in the network3

umax ⇐ utilization of amax4

F ⇐ set of flows routed through amax in T05

u′ ⇐ ∞6

forall f ∈ F do7

Move f to T (amax)8

uf ⇐ new max utilization in the network9

if uf < u′ then10

u′ ⇐ uf11

f ′ ⇐ f12

end13

Move f to T014

end15

if u′ < umax then16

Move f ′ to T (amax)17

else18

continue ⇐ false19

end20

end21

118 CHAPTER 7. MULTI-TOPOLOGY LOAD BALANCING

Since we operate only on coarse ingress-egress flows, the number of flows
routed over any single link will be modest. Hence, we evaluate the conse-
quences of moving each flow to T (amax) before deciding which flow is actually
moved. If we wanted to decrease the running time of our algorithm, this could
be done by basing this selection on randomness or the size of the flows instead
of testing for each flow.

Responding to changing traffic demands

Network operators use various tools to monitor the state of their network,
and to detect changes in the traffic demands [107]. When such changes are
detected, we can use the above algorithm to calculate a new mapping from
flows to topology. A key point here is that only this mapping needs to be
changed to respond to changes in the demands. This gives two important
advantages over traffic engineering methods based on link weight tuning.
First, the calculation of this mapping is fairly simple and takes considerably
shorter time than a weight search heuristic. Second, and most important,
changing the mapping does not trigger a new IGP convergence in the network,
and it is transparent to the BGP route selection process.

Because our algorithm has low complexity and does not introduce in-
stability in the routing, we argue that this recalculation can be done quite
frequently. We believe it can be done on a time scale of hours, or perhaps
even minutes, depending on how fast changes in the traffic demands can be
measured.

7.4.2 Local load balancing

With the local method, no prior global calculations or setup is needed, except
the construction of the alternate topologies. Instead, traffic is moved to an
alternate topology that avoids the congested link by the upstream node local
to the congestion. The local method does not require any knowledge of the
traffic matrix, and the method responds immediately to unexpected bursts
or changes in demands.

We propose a simple mechanism inspired by Random Early Detection
[108], where packets are moved to the topology where the congested link is
avoided with a probability that increases as the buffer occupancy gets closer
to 100%. When there is no congestion in the network, all traffic is routed
according to the original topology T0. Packets are moved to the alternative

7.4. LOAD BALANCING USING MULTI-TOPOLOGY ROUTING 119

topology by an intermediate node with a probability p that is 0 if the buffer
occupancy stays below a certain threshold tbuf , and then increases linearly
to 1 when the buffer is full. To prevent looping, we never let a packet chance
topology more than once.

This local moving of traffic from one topology to another increases the
chances of packet reordering, with its adverse effects on TCP performance.
Packet reordering can be reduced by a mechanism that tries to select packets
from the same TCP flow when deciding what traffic should be moved to
another topology, much like what is done today when traffic is split between
several equal cost paths using hashing functions.

7.4.3 Discussion of the global and local methods

While the global method tries to prevent congestion by assigning flows to
topologies that avoid the most heavily loaded links, the local method instead
resolves congestion by routing the traffic on an alternative path from the
point of congestion.

The difference between the two methods is clearly visible in figure 7.3.
The figure shows the simulated load and the corresponding buffer occupancy
over a 5 seconds period for the two 155 Mbps links leading to a node n
in the GEANT network (further description of the simulation environment
and setup will be given in section 7.5). Figure 7.3a) shows how the global
method distributes the traffic towards the node relatively evenly between the
two links. For most of the time, the link utilization is kept below the capacity,
and the buffer occupancy stays close to 0, as seen in figure 7.3b). With the
local method, the load on one of the incoming links is far greater than on
the other, as seen in figure 7.3c). This results in a higher variation in the
buffer occupancy (figure 7.3d). When the buffer occupancy approaches the
capacity, the local method responds by moving traffic over to the topology
that avoids the congested link. This traffic will follow the shortest path in
the alternate topology. Traffic destined for node n will finally finds its way
through the other link attached to n, where we can observe it as small spikes.

The main advantage of the local method is that no knowledge of the
traffic demand is needed, and that it immediately adapts to shifts and short
term fluctuations in the traffic. The price to pay for this flexibility is higher
variation in buffer occupancy than with the global method, which might
affect the delay experienced by the packets.

120 CHAPTER 7. MULTI-TOPOLOGY LOAD BALANCING

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
x10

8

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Link load

- Time -

0

1

2

3

4

5

x10
4

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Buffer occupancy

- Time -

(a) (b)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
x10

8

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Link load

- Time -

0.0
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

x10
4

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Buffer occupancy

- Time -

(c) (d)

Figure 7.3: Link load and buffer occupancy of the two links into a node with
the global (a,b) and the local (c,d) method

7.5. EVALUATION 121

7.5 Evaluation

We have evaluated our proposed methods using simulations of the pan-
European GEANT network, with real intradomain traffic matrixes [106]. We
conduct simulations on the packet level, using the J-sim simulation frame-
work [20]. Network traffic has been shown to have significant short term
variations, with self-similar characteristics [109]. To capture these effects,
we let each ingress-egress flow be modelled as a self-similar packet source at
the ingress node, producing the desired average load to the egress. Our
self-similar packet sources are based on multiplexing several heavy-tailed
ON/OFF sources, and are set to produce traffic with Hurst parameter 0.9.
This method for generating self-similar traffic has been shown to give good
control of the traffic characteristics compared to other known methods [110].
Our traffic setup results in large short term variations in link utilization, as
seen in figure 7.3. We use relatively small buffers (50 kBytes) in the routers.
Combined with the large short term variations in link utilization, this setup
gives a relatively high change of packet drops.

We use destination-based shortest path hop-by-hop forwarding, but the
paths taken by packets will depend on which logical topology the packet
belongs to. We use n = 5 alternate topologies, and we use original GEANT
IGP link weights in all topologies T0, . . . , Tn. These link weights are mainly
based on the inverse of the link capacities, with some manual tuning [106].
For our local method, we use a buffer threshold tbuf of 0.75.

To evaluate the performance of our methods, we compare them to the
load balancing method proposed by Fortz and Thorup [69]. They define a
cost function that penalizes routing traffic over heavily utilized links, and use
a heuristic to tune the link weights in order to minimize this cost function.
We will refer to this method as FT.

7.5.1 Robustness to increase in demand

Figure 7.4 shows the packet loss with our global and local methods, and
with the FT heuristic. The simulations are based on three different 15-
minutes traffic matrix captured between 12:45 and 13:00 from our dataset.
The offered load is increased along the x-axis by multiplying all the flows with
a scaling factor. The plotted values are average values from 20 simulations
with different seeds. As can be seen in figure 7.4, the day-to-day variations
are significant. The three plots are made from days with quite different traffic

122 CHAPTER 7. MULTI-TOPOLOGY LOAD BALANCING

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1 1.2 1.4 1.6 1.8 2

Av
era

ge
 pa

ck
et

los
s

Relative load

Packet loss day 3

a)

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1 1.2 1.4 1.6 1.8 2

Av
era

ge
 pa

ck
et

los
s

Relative load

Packet loss day 2

b)

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 1 1.2 1.4 1.6 1.8 2

Av
er

ag
e p

ac
ke

t lo
ss

Relative load

Packet loss day 3

Fortz/Thorup
Global

Local

c)

Figure 7.4: Packet loss with increasing load

7.5. EVALUATION 123

loads in the network.
Figure 7.4a) shows the situation on a quite representative weekday, with

average traffic loads. We have run simulations for several other days with
similar results. On this day, we see how the local method gives substantially
less packet loss than the other methods, the improvement is of a factor 10-100
compared to the FT heuristic. The global method performs slightly better
than FT when the load factor is relatively low, and slightly worse for higher
loads. This effect is seen because our global method only takes the load on
the most loaded link into account, while the FT heuristic also looks at other
highly loaded links. Hence the global method performs better as long as
packet loss is confined to a single link.

As illustrated in figure 7.4b), there are some days when the FT method
never overtakes the global method even for a high load factor. This is a day
with high traffic load, and we experience packet loss even for a low setting of
the scaling parameter. Again we see that the local method performs signif-
icantly better than the other methods, and that the FT heuristic performs
relatively better at high loads.

Figure 7.4c) shows the situation on a Saturday, when the load in the
network is lower than average. On this day, the traffic demands must be
scaled higher before we experience any packet loss. We see that for this day,
the FT heuristic performs better than both the global and local methods,
except for very high loads. We have included this plot to illustrate that
the relative performance of the different methods has significant variations.
However, the situation on this day was not typical for weekend days.

7.5.2 Robustness to changes in demand over time

We test how the different load balancing methods handle the day to day
variations described in section 7.2. Figure 7.5 shows the packet loss for
7 consecutive days. The FT method and our (static) global method are
optimized for the average demands from the previous week. The dynamic
global method is optimized for each day. In order to stress the network and
get interesting results, the original GEANT traffic demands are multiplied
with a factor 1.3. Again, the results shown are averages over 20 simulations
with different seeds.

The traffic demands, and hence also the packet loss, varies significantly
between weeks. Therefore, we plot results from two different weeks. Figure
7.5a) shows a week with relatively low demands, while figure 7.5b) shows

124 CHAPTER 7. MULTI-TOPOLOGY LOAD BALANCING

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

SunSatFriThuWedTueMon

A
ve

ra
ge

 p
ac

ke
t l

os
s

Packet loss with varying TM

a)

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

SunSatFriThuWedTueMon

A
ve

ra
ge

 p
ac

ke
t l

os
s

Packet loss with varying TM

Fortz/Thorup
Global static

Global dynamic
Local

b)

Figure 7.5: Packet loss with demands that change over time.

7.6. SUMMARY 125

a week with higher demands. Again, the main tendency is the same as in
figure 7.4; the local method gives significantly less packet loss than the other
methods. Also, the performance of the global methods relative to the FT
method is better when the network is not severely overloaded. A final point
to notice is the reduced traffic in the weekends (days 6 and 7), when we see
almost no packet loss.

7.6 Summary

In this chapter, we have argued that current traffic engineering methods
based on link weight tuning are not flexible enough when facing variations in
the traffic demands. Using real traffic demands from the GEANT network,
we have demonstrated that such variations are indeed significant.

We have introduced the use of Multi-Topology routing to improve the
load balancing in intradomain IP networks. This is a much more flexible
approach than link weigh tuning, since it avoids the IGP re-convergence and
the adverse traffic effects that are triggered by link weight changes. We have
described two different mechanisms based on using MT routing. The global
method uses the available estimates of the traffic demands to assign ingress-
egress flows to different topologies, in order to avoid the most heavily loaded
link. The local method needs no prior knowledge of the traffic demands,
and responds to congestion by locally moving traffic to an alternate topology
that avoids the congested link. Our evaluations show that our global method
performs as good as previous methods based on link weight tuning with
respect to packet loss, while our local method performs substantially better.

126 CHAPTER 7. MULTI-TOPOLOGY LOAD BALANCING

Chapter 8

Conclusions

In this work, we have argued that the increased use of the Internet as a
transport medium for interactive and real-time applications makes current
recovery mechanisms insufficient. We have introduced and discussed several
mechanisms aimed at giving very fast response to challenges to normal op-
eration in computer networks. A main theme has been fast recovery from
component failures.

8.1 Resilient Packet Ring

Our first contribution was in the context of a recent link layer technology
called Resilient Packet Ring (RPR). Fast (sub 50 ms) recovery from link or
node failures has been a central motivation behind the development of RPR.
RPR is designed to work in a dual ring topology, and takes advantage of this
specialized topology by letting one ringlet serve as a backup when the other
fails.

To give recovery from link and node failures, RPR offers two distinct
protection mechanisms called wrapping and steering. In this work, we have
analyzed the RPR resilience mechanisms with a particular emphasis on the
mechanism used to prevent packet reordering. We have shown that the sta-
bilization timer used for this purpose is the main contributor to the recovery
time, and that it often prevents RPR from giving sub 50 ms recovery.

We have suggested three different methods that reduce the recovery time
in RPR while maintaining the in-order delivery guarantee. The first method
is based on finding a minimum safe value for the topology stabilization timer,

127

128 CHAPTER 8. CONCLUSIONS

and requires no changes to the forwarding procedure used in RPR. The two
other methods moves the responsibility for avoiding packet reordering to the
receiver nodes, and require somewhat larger changes to the RPR standard.

We have shown that our proposed mechanisms significantly reduce the
amount of packet loss and the experienced disruption in packet delivery. In
our simulated scenarios packet loss was reduced by 60-90% compared to the
RPR standard, and the recovery times were well below 50 ms. The choice
between our proposed methods becomes a tradeoff between recovery time
and the amount of packet loss on the one hand, and the amount of changes
that are introduced in the RPR standard on the other hand.

8.2 Resilient Routing Layers

The protection mechanisms in RPR take advantage of the special ring topol-
ogy to respond rapidly to a failure. Several existing recovery schemes for
general mesh networks imitate this by imposing logical sub-topologies (such
as trees [30] or rings [33]) on the network and using these to form recovery
paths when a failure occurs. This is also the basic idea behind Resilient
Routing Layers (RRL) introduced in this work.

RRL is a local protection scheme that guarantees fast and loop-free recov-
ery from any single link failure in arbitrary biconnected networks. It does not
affect the routing during normal failure-free operation. Since the rerouting
decisions are taken by the detecting node based on pre-calculated information
without any signalling to neighboring nodes, RRL can respond very rapidly
to a failure. The RRL scheme can be used in connection-oriented networks,
but we believe that the most favorable application domain for our approach
is in connectionless networks with destination-based hop-by-hop forwarding.

In RRL, we build a small number of backup configurations that are used to
forward traffic when a link failure is detected. Each backup configuration is a
connected sub-topology that contains all the nodes and a subset of the links
in the original topology. The backup configurations are built so that there
is a valid routing path between all node pairs in the network, and all links
are excluded in at least one of the backup configurations. RRL guarantees
recovery from a single link failure in arbitrary biconnected topologies.

We have presented three different algorithms for creating RRL backup
configurations, with different performance objectives. The different algo-
rithms present tradeoffs between the amount of state information that is

8.3. MULTIPLE ROUTING CONFIGURATIONS 129

stored in the routers, the recovery path lengths, and the ability to resist
more than one concurrent failure. We have shown that RRL can be realized
with a very limited number of backup configurations, and that the number
of backup configurations needed grows very slowly with increasing network
size. We have also shown that RRL gives backup paths that are not much
longer than the optimal, and that the probability of recovering traffic from
two concurrent link failures is high.

8.3 Multiple Routing Configurations

Based on the principles introduced in RRL, we have presented Multiple Rout-
ing Configurations (MRC). MRC is an extension of RRL in two ways. First it
is more general, since it guarantees recovery from both link and node failures.
Second it is more specific, as it is designed only for connectionless networks
with shortest path routing.

Like RRL, MRC is based on the idea of using backup configurations to
give loop-free recovery paths to all destinations after a failure. In MRC, no
links are removed in the backup configurations. Instead, routing is restricted
in parts of the network in the backup configurations by assigning very high
links weights to selected links. Careful assignment of link weights allows
MRC to handle both link and node failures with the same mechanism, and
without knowing whether the connectivity loss is caused by a failed link or
a failed node.

When a proactive recovery scheme like MRC is deployed in a network, the
normal rerouting process can be delayed. By suppressing the advertisement
of a failure for a given period of time, the global rerouting process will only
be triggered by more permanent failures. Since a significant fraction of all
failures are short lived, this increases the stability of the network. Delaying
the re-convergence process also makes it easier to use techniques like fast
hellos for rapid failure detection without compromising stability.

We have given a formal description of MRC, and we have presented an
algorithm that creates backup configurations in accordance with the defined
requirements. The performance of our method is evaluated with respect to
state requirements, backup path lengths and load distribution. We have
shown that MRC can be realized with a very limited number of backup
configurations, requiring a moderate amount of additional state to be stored
in the routers. The recovery paths in the backup configurations are not much

130 CHAPTER 8. CONCLUSIONS

longer than the optimal achievable by a local recovery scheme. However, our
evaluations show that the backup configurations created by our algorithm
can sometimes lead to increased chances of congestion after a failure because
recovered traffic is routed over already highly utilized links.

8.4 MRC routing performance

Motivated by the evaluations of the post-failure load distribution in MRC,
we have described methods that can reduce the chances of congestion after a
link failure. This problem has not previously been addressed in the context
of a proactive recovery scheme for traditional IP routing protocols. We have
argued that such mechanisms are important, since much of the purpose of fast
protection mechanisms at the IP layer is to drop as few packets as possible.
Our method does not compromise performance in the failure-free case, and
it is strictly pre-configured; no calculations are necessary after the failure.

We have presented an algorithm that takes the estimated traffic matrix
into account when the MRC backup configurations are created. The algo-
rithm creates backup configurations so that the chances of spreading the
traffic in the network are best for the most severe link failures. Further, we
have presented a heuristic for finding link weights in the backup configura-
tions that distributes the recovered traffic in a beneficial way.

Our mechanism has been evaluated using simulations of several real and
synthetically generated networks. Our evaluations show that the post failure
load distribution has been significantly improved compared to the MRC algo-
rithm that does not take the traffic matrix into account. In fact, we achieve
a load distribution that is better than after a full IGP re-convergence in most
cases.

8.5 Multi Topology load balancing

Our work with the traffic-aware MRC methods demonstrated how the use
of several logical topologies in an AS can give significant freedom with re-
spect to distributing traffic over the available links in the network. On this
background, we have proposed the use of Multi Topology routing as a traffic
engineering tool in connectionless IP networks.

The main advantage of our Multi Topology approach is that it is more

8.6. CONCLUDING REMARKS 131

flexible than methods based on tuning link weights when faced with unex-
pected changes in the traffic patterns. By looking at realistic traffic matrixes
from a pan-European research network, we have demonstrated that such
traffic variations are significant.

In our approach we use one of the algorithms proposed in RRL to cre-
ate alternate topologies so that all links in the network are avoided in one
topology. We have proposed two different ways to use these alternate topolo-
gies to avoid congested links in heavily loaded networks. The global method
moves some source-destination flows over in alternate topologies in order to
avoid congested links. When the traffic demands change, only this mapping
from source-destination pairs to alternate topology needs to be re-calculated.
Thus, we avoid the global re-convergence and the associated instability that
follows from changing link weights to comply with the new traffic situation.
In the local method, traffic is moved to an alternate topology locally by the
node that experiences congestion. This way, the local method can respond
rapidly to traffic changes, without any knowledge of the underlying traffic
matrix.

Our simulations show that our proposed methods perform well with re-
spect to reducing the chances of packet loss. The global method performs as
well as a well known load balancing method based on link weight optimiza-
tion, while the local method performs significantly better in our simulated
scenarios.

8.6 Concluding remarks

For many years, it has been clear that the single shortest path routing used
in the most common intradomain protocols (OSPF and IS-IS) is an obstacle
to improving resilience and performance in IP networks. A basic challenge is
to find a routing process that gives the routers more options with respect to
where packets should be forwarded, and allows them to dynamically choose
between the available options.

One step in this direction is the deployment of Equal Cost Multi Path
(ECMP) forwarding, which allows a router to split traffic towards a desti-
nation equally over several available equal cost paths. This mechanism can
thus give a better distribution of the load, and improved resilience by using
the remaining next-hops as backup if one of them fails. A more far-reaching
approach is the introduction of MPLS, which gives much more flexibility in

132 CHAPTER 8. CONCLUSIONS

the routing. With MPLS, the routing path from each ingress router to each
egress router can be explicitly set up in advance. An offline tool can be used
to calculate these paths in ways that take different traffic engineering goals
into consideration, and the resilience can be improved by setting up explicit
backup paths that are ready for use when a failure occurs.

However, MPLS introduces significant changes in both the control and
forwarding logic in the routers, and not all operators can or want to use MPLS
in their network. In these cases, we believe that the use of virtualization in the
form of multiple logical topologies in a network is a very promising approach
for achieving both resilience and improved control over the routing. In this
work, RRL and MRC are examples of how a multi-topology approach can
be used to give fast recovery. We have also illustrated how Multi-Topology
routing can be used as an effective traffic engineering tool.

To facilitate such uses of multiple logical topologies in a network, we think
that the existing Multi-Topology routing mechanisms developed by the IETF
should be further developed. First, mechanisms for switching data packets
from one topology to another in-flight should be clearly defined. Rules for
when topology-transitions can or cannot be done are needed in order to
avoid possible forwarding loops. Second, different ways of explicitly marking
data packets as belonging to a given topology should be standardized. In
particular, overloading of some bits in the ToS field of the IP packet header
as a topology identifier should be investigated.

8.7 Future research directions

There are several possibilities for further research based on the methods
presented in this work.

In the context of MRC, several practical deployment issues can be ad-
dressed. One challenge is how to best organize the routing and forwarding
tables in order to minimize the state overhead and make the lookup proce-
dure as simple as possible. MRC requires one logical forwarding table per
configuration, but we believe that these can be structured so that the actual
amount of state information is reduced significantly compared to an n-fold
increase when n configurations are used. Some early thoughts on this are
presented in [104].

Another issue is the use of MRC in networks where some destination
addresses can be reached through several egress routers. In such scenarios, it

8.7. FUTURE RESEARCH DIRECTIONS 133

would be beneficial if traffic is rerouted to the alternate egress router if one
of them fails. Guaranteeing that this will be the case would demand some
changes to MRC in its present form.

An interesting question is also how the MRC backup configurations can
be re-constructed when there is a permanent change to the network topology.
With MRC as described in this work, this requires new configurations to be
constructed from scratch based on the altered topology. An incremental
algorithm that takes the existing backup configurations as a starting point
and only makes the necessary changes would make MRC more robust when
faced with such network dynamics.

Fast protection mechanisms are primarily useful for real-time applications
like IP-TV with strict demands on packet loss and availability. We believe
that such traffic increasingly will be sent using some kind of multicast proto-
col. An interesting research topic is therefore whether MRC or other similar
mechanisms can be used to protect also multicast traffic.

We believe that multiple parallel logical topologies can be a useful tool
also for dealing with other challenges to a network. One possible area might
be security and protection against outsider attacks. Work on robust routing
with byzantine robustness rely at its core on a mechanism that allows a source
to identify and select between several possible routes to the destination [111,
112]. By splitting information and sending it over several logical topologies,
or by switching between sending traffic in different topologies, it can be
made much harder to intercept or eavesdrop on a connection. If the logical
topologies are created in a similar fashion to what we have proposed for
MRC in this work, there will exist a topology that excludes any single node
in a network from its routing paths. This way, mechanisms could be created
so that several routers must cooperate in order to disrupt communication
between any two nodes in the network.

There are also several open questions in the context of using Multi-
Topology routing as a traffic engineering tool. The evaluations in this work
indicate that the local method where traffic is switched to an alternate topol-
ogy at the point of congestion performs very well compared to existing tech-
niques. However, this method can in some cases lead to reordering of packets,
which again has an adverse impact on TCP performance. As future work, it
would be interesting to investigate how severe this packet reordering is with
the local method, and how it can be minimized.

134 CHAPTER 8. CONCLUSIONS

Bibliography

[1] D. D. Clark, “The design philosophy of the DARPA internet protocols,”
SIGCOMM, Computer Communications Review, vol. 18, no. 4, pp.
106–114, Aug. 1988.

[2] D. Hutchison and J. Sterbenz, “Resilinets: Multi-
level resilient and survivable networking initiative,”
http://www.comp.lancs.ac.uk/resilinets/, Aug. 2006.

[3] “Resilinets wiki,” http://wiki.ittc.ku.edu/resilinets wiki/.

[4] A. Fumagalli and L. Valcarenghi, “IP restoration vs. WDM protection:
is there an optimal choice?” IEEE Network, vol. 14, no. 6, pp. 34–41,
Nov. 2000.

[5] L. Sahasrabuddhe, S. Ramamurthy, and B. Mukherjee, “Fault manage-
ment in IP-over-WDM networks: WDM protection vs IP restoration,”
IEEE Journal on Selected Areas in Communications, vol. 20, no. 1, pp.
21–33, Jan. 2002.

[6] G. Iannacone, C.-N. Chuah, S. Bhattacharyya, and C. Diot, “Feasibil-
ity of IP restoration in a tier 1 backbone,” IEEE Network, pp. 13–19,
Mar. 2004.

[7] A. Basu and J. G. Riecke, “Stability issues in OSPF routing,” in Pro-
ceedings of SIGCOMM, San Diego, California, USA, Aug. 2001, pp.
225–236.

[8] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian, “Delayed Inter-
net Routing Convergence,” IEEE/ACM Transactions on Networking,
vol. 9, no. 3, pp. 293–306, June 2001.

135

136 BIBLIOGRAPHY

[9] C. Boutremans, G. Iannaccone, and C. Diot, “Impact of link failures
on VoIP performance,” in Proceedings of International Workshop on
Network and Operating System Support for Digital Audio and Video,
2002, pp. 63–71.

[10] D. Watson, F. Jahanian, and C. Labovitz, “Experiences with moni-
toring OSPF on a regional service provider network,” in ICDCS ’03:
Proceedings of the 23rd International Conference on Distributed Com-
puting Systems. Washington, DC, USA: IEEE Computer Society,
2003, pp. 204–213.

[11] P. Francois, C. Filsfils, J. Evans, and O. Bonaventure, “Achieving sub-
second IGP convergence in large IP networks,” ACM SIGCOMM Com-
puter Communication Review, vol. 35, no. 2, pp. 35 – 44, July 2005.

[12] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C.-N. Chuah, and
C. Diot, “Characterization of failures in an IP backbone network,” in
Proceedings INFOCOM, Mar. 2004.

[13] S. Iyer, S. Bhattacharyya, N. Taft, and C. Diot, “An approach to
alleviate link overload as observed on an IP backbone,” in Proceedings
INFOCOM, Mar. 2003, pp. 406–416.

[14] A. Feldmann, A. Greenberg, C. Lund, N. Reingold, J. Rexford,
and F. True, “Deriving traffic demands for operational IP networks:
methodology and experience,” IEEE/ACM Transactions on Network-
ing, vol. 9, no. 3, pp. 265–280, June 2001.

[15] B. Fortz and M. Thorup, “Optimizing OSPF/IS-IS weights in a chang-
ing world,” IEEE Journal on Selected Areas in Communications,
vol. 20, no. 4, pp. 756 – 767, May 2002.

[16] W. J. Rapaport, “Philosophy of computer science: An introductory
course,” Teaching Philosophy, vol. 28, no. 4, pp. 319–341, 2005.

[17] P. J. Denning, D. E. Comer, D. Gries, M. C. Mulder, A. Tucker, A. J.
Turner, and P. R. Young, “Computing as a discipline,” Communica-
tions of the ACM, vol. 32, no. 1, pp. 9–23, Feb. 1989.

BIBLIOGRAPHY 137

[18] R. Jain, The art of computer systems performance analysis: techniques
for experimental design, measurement, simulation and modeling. New
York: John Wiley & Sons, 1991.

[19] S. Floyd and V. Paxon, “Difficulties in simulating the internet,”
IEEE/ACM Transactions on Networking, vol. 9, no. 4, pp. 392–403,
Aug. 2001.

[20] H.-Y. Tyan, “Design, Realization and Evaluation of a Component-
Based Compositional Software Architecture for Network Simulation,”
Ph.D. dissertation, Ohio State University, 2002.

[21] E. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol label switch-
ing architecture,” in IETF, RFC 3031, Jan. 2001.

[22] V. Sharma and F. Hellstrand, “Framework for multi-protocol label
switching (MPLS)-based recovery,” RFC3469, Feb. 2003.

[23] P. Pan and G. Swallow, “Fast reroute extensions to RSVP-TE for LSP
tunnels,” RFC4090, May 2005.

[24] R. Martin and M. Menth, “Backup capacity requirements for MPLS
fast reroute,” in 7. ITG Fachtagung Photonische Netze (VDE), Leipzig,
Germany, Apr. 2006.

[25] Synchronous Optical Network (SONET) Automatic Protection Switch-
ing.

[26] A. Fumagalli, I. Cerutti, M. Tacca, F. Masetti, R. Jagannathan, and
S. Alagar, “Survivable networks based on optimal routing and WDM
self-healing rings,” in Proceedings INFOCOM, vol. 2, New York, USA,
Mar. 1999, pp. 726–733.

[27] O. Gerstel and R. Ramaswami, “Optical layer survivability - an imple-
mentation perspective,” IEEE Journal on Selected Areas in Commu-
nications, vol. 18, no. 10, pp. 1885–1899, Oct. 2000.

[28] S. Ramamurthy, L. Sahasrabuddhe, and B. Mukherjee, “Survivable
WDM mesh networks,” Journal of Lightwave Technology, vol. 21, no. 4,
pp. 870–883, Apr. 2003.

138 BIBLIOGRAPHY

[29] A. Itai and M. Rodeh, “The multi-tree approach to reliability in dis-
tributed networks,” in Foundations of Computer Science, Oct. 1984,
pp. 137–147.

[30] S. G. Finn, M. Medard, and R. A. Barry, “A novel approach to au-
tomatic protection switching using trees,” in Proc. ICC, vol. 1, June
1997, pp. 272–276.

[31] M. Medard, S. G. Finn, and R. A. Barry, “Redundant trees for
preplanned recovery in arbitrary vertex-redundant or edge-redundant
graphs,” IEEE/ACM Transactions on Networking, vol. 7, no. 5, pp.
641–652, Oct. 1999.

[32] R. Bartos and M. Raman, “A heuristic approach to service restoration
in MPLS networks,” in Proc. ICC, June 2001, pp. 117–121.

[33] W. D. Grover and D. Stamatelakis, “Cycle-oriented distributed pre-
configuration: Ring-like speed with mesh-like capacity for self-planning
network restoration,” in Proceedings IEEE International Conference on
Communications (ICC), Atlanta, Georgia, USA, June 1998, pp. 537–
543.

[34] J. Doucette, P. A. Giese, and W. D. Grover, “Combined node and
span protection strategies with node-encircling p-cycles,” in Proceed-
ings DRCN, Oct. 2005.

[35] H. Huang and J. Copeland, “A series of hamiltonian cycle-based solu-
tions to provide simple and scalable mesh optical network resilience,”
IEEE Communications Magazine, vol. 40, pp. 46 –51, Nov. 2002.

[36] D. A. Schupke, “Multiple failure survivability in WDM networks with
p-cycles,” in IEEE ISCAS, vol. 3, May 2003, pp. 866–869.

[37] D. Stamatelakis and W. D. Grover, “IP layer restoration and network
planning based on virtual protection cycles,” IEEE Journal on selected
areas in communications, vol. 18, no. 10, Oct. 2000.

[38] 802.1D-2004, Standard for Local and Metropolitan Area Networks -
Media Access Control (MAC) Bridges, IEEE, 2004.

BIBLIOGRAPHY 139

[39] S. Shah and M. Yip, “Ethernet automatic protection switching
(EAPS),” RFC3619, Oct. 2003.

[40] 802.1s-2002, Standard for Local and Metropolitan Area Networks - Mul-
tiple Spanning Trees, IEEE, 2002.

[41] J. Farkas, C. Antal, G. Tóth, and L. Westberg, “Distributed resilient
architecture for ethernet networks,” in Proceedings DRCN, Oct. 2005,
pp. 515–522.

[42] ANSI/IEEE Std. 802.5, 1989 Edition, ANSI/IEEE, 1989, iEEE stan-
dard for Token Ring.

[43] F. E. Ross, “An overview of fddi: the fiber distributed data interface,”
IEEE Journal on Selected Areas in Communications, vol. 7, no. 7, pp.
1043–1051, Sept. 1989.

[44] J. Moy, “OSPF version 2,” RFC2328, Apr. 1998.

[45] D. Oran et al., “OSI IS-IS intra-domain routing protocol,” RFC1142,
Feb. 1990.

[46] G. Malkin, “RIP version 2,” RFC 2453, Nov. 1998.

[47] B. Albrightson, J. Garcia-Luna-Aceves, and J. Boyle, “EIGRP - a
fast routing protocol based on distance vectors,” in Proceedings Net-
world/Interop, May 1994.

[48] D. L. Mills, “Exterior gateway protocol formal specification,” RFC904,
Apr. 1984.

[49] Y. Rekhter, T. Li, and S. Hares, “A border gateway protocol 4 (BGP-
4),” RFC4271, Jan. 2006.

[50] P. Narvaez, K.-Y. Siu, and H.-Y. Tzeng, “Local restoration algorithm
for link-state routing protocols,” in Proceedings ICCCN, Boston, MA,
USA, Oct. 1999, pp. 352–357.

[51] Y. Liu and N. Reddy, “A fast rerouting scheme for OSPF/IS-IS net-
works,” in Proceedings of ICCCN 2004, Chicago, Illinois, USA, Oct.
2004, pp. 47–52.

140 BIBLIOGRAPHY

[52] S. Rai, B. Mukherjee, and O. Deshpande, “IP resilience within an au-
tonomous system: Current approaches, challenges, and future direc-
tions,” IEEE Communications Magazine, vol. 43, no. 10, pp. 142–149,
Oct. 2005.

[53] G. Schollmeier, J. Charzinski, A. Kirstädter, C. Reichert, K. J. Schrodi,
Y. Glickman, and C. Winkler, “Improving the resilience in IP net-
works,” in Proceedings of HPSR, Torino, Italy, June 2003, pp. 91–96.

[54] C. Reichert, Y. Glickmann, and T. Magedanz, “Two routing algorithms
for failure protection in IP networks,” in Proceedings of the 10th IEEE
Symposium on Computers and Communications (ISCC), June 2005,
pp. 97–102.

[55] S. Nelakuditi et al., “Failure insensitive routing for ensuring service
availability,” in IWQoS’03 Lecture Notes in Computer Science 2707,
June 2003.

[56] S. Lee, Y. Yu, S. Nelakuditi, Z.-L. Zhang, and C.-N. Chuah, “Proac-
tive vs. reactive approaches to failure resilient routing,” in Proceedings
INFOCOM, Mar. 2004.

[57] S. Nelakuditi, S. Lee, Y. Yu, Z.-L. Zhang, , and C.-N. Chuah, “Fast
local rerouting for handling transient link failures,” Accepted for publi-
cation in IEEE/ACM Transactions on Networking, 2007.

[58] Z. Zhong, S. Nelakuditi, Y. Yu, S. Lee, J. Wang, and C.-N. Chuah,
“Failure inferencing based fast rerouting for handling transient link
and node failures,” in Proceedings of IEEE Global Internet, Mar. 2005.

[59] J. Wang, Z. Zhong, and S. Nelakuditi, “Handling multiple network
failures through interface specific forwarding,” in Proceedings GLOBE-
COM, Nov. 2006.

[60] M. Shand and S. Bryant, “IP fast reroute framework,” IETF Internet
Draft (work in progress), Oct. 2006, draft-ietf-rtgwg-ipfrr-framework-
06.txt.

[61] S. Bryant, M. Shand, and S. Previdi, “IP fast reroute using not-via
addresses,” Internet Draft (work in progress), Oct. 2006, draft-bryant-
shand-IPFRR-notvia-addresses-03.txt.

BIBLIOGRAPHY 141

[62] S. Bryant and M. Shand, “A framework for loop-free convergence,”
Internet Draft (work in progress), Dec. 2006, draft-ietf-rtgwg-lf-conv-
frmwk-00.txt.

[63] D. G. Cantor and M. Gerla, “Optimal routing in a packet-switched
computer network,” IEEE Transactions on Computers, vol. C-23,
no. 10, pp. 1062–1069, Oct. 1974.

[64] D. Applegate and E. Cohen, “Making routing robust to changing traf-
fic demands: Algorithms and evaluation,” IEEE Transactions on Net-
working, vol. 14, no. 6, pp. 1193–1206, Dec. 2006.

[65] D. O. Awduche, “MPLS and Traffic Engineering in IP Networks,”
IEEE Communications Magazine, vol. 37, no. 12, pp. 42–47, Dec. 1999.

[66] D. O. Awduche and B. Jabbari, “Internet traffic engineering using
multi-protocol label switching (MPLS),” Computer Networks: The In-
ternational Journal of Computer and Telecommunications Networking,
vol. 40, no. 1, pp. 111–129, Sept. 2002.

[67] Y. Wang, Z. Wang, and L. Zhang, “Internet traffic engineering without
full mesh overlaying,” in Proceedings INFOCOM, Apr. 2001, pp. 565–
571.

[68] A. Sridharan, R. Guerin, and C. Diot, “Achieving near-optimal traffic
engineering solutions for current OSPF/IS-IS networks,” IEEE/ACM
Transactions on Networking, vol. 13, no. 2, pp. 234–247, Apr. 2005.

[69] B. Fortz and M. Thorup, “Internet traffic engineering by optimizing
OSPF weights.” in Proceedings INFOCOM, 2000, pp. 519–528.

[70] C. Zhang, Z. Ge, J. Kurose, Y. Liu, and D. Towsley, “Optimal routing
with multiple traffic matrices tradeoff between average and worst case
performance,” in Proceedings ICNP, Nov. 2005.

[71] A. Nucci, B. Schroeder, S. Bhattacharyya, N. Taft, and C. Diot, “IGP
Link Weight Assignment for Transient Link Failures,” in 18th Interna-
tional Teletraffic Congress, Berlin, Germany, Aug. 2003.

[72] B. Fortz and M. Thorup, “Robust optimization of OSPF/IS-IS
weights,” in INOC, Oct. 2003, pp. 225–230.

142 BIBLIOGRAPHY

[73] A. Sridharan and R. Guerin, “Making IGP routing robust to link fail-
ures,” in Proceedings of Networking, Waterloo, Canada, 2005.

[74] F. Davik, M. Yilmaz, S. Gjessing, and N. Uzun, “IEEE 802.17 Resilient
Packet Ring tutorial,” IEEE Communications Magazine, vol. 42, no. 3,
pp. 112–118, June 2004.

[75] IEEE Standard 802.17-2004, IEEE, June 2004.

[76] A. Kvalbein and S. Gjessing, “Analysis and improved performance of
RPR protection,” in Proceedings 12th IEEE International Conference
on Networks (ICON 2004)., vol. 1, Singapore, Nov. 2004, pp. 119–124.

[77] ——, “Protection of RPR strict order traffic,” in Proceedings 14th
IEEE Workshop on Local and Metropolitan Area Networks (LANMAN
2005)., Chania, Crete, Sept. 2005.

[78] F. Davik, A. Kvalbein, and S. Gjessing, “An analytical bound for
convergence of the resilient packet ring aggressive mode fairness algo-
rithm,” in Proceedings 40th IEEE International Conference on Com-
munications (ICC 2005), Seoul, Korea, May 2005.

[79] ——, “Improvement of resilient packet ring fairness,” in Proceed-
ings 48th IEEE Global Telecommunications Conference (GLOBECOM
2005), St.Louis, Missouri, USA, Nov. 2005.

[80] W. Stevens, “TCP slow start, congestion avoidance, fast retransmit,
and fast recovery algorithms,” in IETF, RFC 2001, Jan. 1997.

[81] E. Blanton and M. Allman, “On making TCP more robust to packet
reordering,” in ACM Computer Communication Review, vol. 32, no. 1,
Jan. 2002.

[82] W. Willinger, M. Taqqu, R. Sherman, and D. Wilson, “Self-similarity
through high-variability: Statistical analysis of Ethernet LAN traffic
at the source level,” IEEE/ACM Transactions on Networking, vol. 5,
no. 1, pp. 71–86, Feb. 1997.

[83] A. Kvalbein, A. F. Hansen, T. Čičić, S. Gjessing, and O. Lysne, “Fast
recovery from link failures using resilient routing layers,” in Proceedings
10th IEEE Symposium on Computers and Communications (ISCC),
June 2005.

BIBLIOGRAPHY 143

[84] I. Theiss and O. Lysne, “FRoots, a fault tolerant and topology agnostic
routing technique,,” IEEE Transactions on Parallel and Distributed
Systems, vol. 17, no. 10, pp. 1136–1150, Oct. 2006.

[85] A. F. Hansen, T. Čičić, S. Gjessing, A. Kvalbein, and O. Lysne, “Re-
silient routing layers for recovery in packet networks,” in Proceedings of
International Conference on Dependable Systems and Networks (DSN),
June 2005.

[86] M. A. Weiss, Data Structures and Algorithm Analysis. Ben-
jamin/Cummings, 1992.

[87] A. F. Hansen, O. Lysne, T. Cicic, and S. Gjessing, “Fast proactive
recovery from concurrent failures,” in Proceedings 42nd IEEE Interna-
tional Conference on Communications (ICC 2007), Glasgow, UK, June
2007.

[88] “Rocketfuel topology mapping,” WWW,
http://www.cs.washington.edu.

[89] A. Medina, A. Lakhina, I. Matta, and J. Byers, “BRITE: An approach
to universal topology generation,” in Proceedings of IEEE MASCOTS,
Aug. 2001, pp. 346–353.

[90] T. Bu and D. Towsley, “On distinguishing between internet power law
topology generators,” in Proceedings of IEEE INFOCOM, New York,
June 2002, pp. 638–647.

[91] L. Li et al., “A first-principles approach to understanding the internet’s
router-level topology,” in ACM SIGCOMM, Portland, OR, Aug. 2004.

[92] B. M. Waxman, “Routing of multipoint connections,” IEEE Journal
on Selected Areas in Communications, vol. 6, no. 9, pp. 1617–1622,
Dec. 1988.

[93] A. Kvalbein, A. F. Hansen, T. Čičić, S. Gjessing, and O. Lysne, “Fast
IP network recovery using multiple routing configurations,” in Proceed-
ings INFOCOM, Apr. 2006.

[94] P. Psenak, S. Mirtorabi, A. Roy, L. Nguen, and P. Pillay-Esnault, “MT-
OSPF: Multi topology (MT) routing in OSPF,” IETF Internet Draft
(work in progress), Nov. 2006, draft-ietf-ospf-mt-07.txt.

144 BIBLIOGRAPHY

[95] T. Przygienda, N. Shen, and N. Sheth, “M-ISIS: Multi topology (MT)
routing in IS-IS,” Internet Draft (work in progress), Oct. 2005, draft-
ietf-isis-wg-multi-topology-11.txt.

[96] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., 1979.

[97] M. Menth and R. Martin, “Network resilience through multi-topology
routing,” in Proceedings of the 5th International Workshop on Design
of Reliable Communication Networks (DRCN), Oct. 2005.

[98] M. J. O’Mahony, “Results from the COST 239 project. Ultra-high ca-
pacity optical transmission networks,” in Proceedings of the 22nd Eu-
ropean Conference on Optical Communication (ECOC’96), Sept. 1996,
pp. 11–14.

[99] D. S. Johnson, “Approximation algorithms for combinatorial prob-
lems,” in Proc. of the 5. annual ACM symp. on Theory of computing,
1973, pp. 38–49.

[100] A. Kvalbein, T. Čičić, and S. Gjessing, “Post-failure routing perfor-
mance with multiple routing configurations,” in Proceedings INFO-
COM, May 2007.

[101] G. Ramalingam and T. Reps, “An incremental algorithm for a gener-
alization of the shortest-path problem,” J. Algorithms, vol. 21, no. 2,
pp. 267–305, 1996.

[102] A. Nucci, A. Sridharan, and N. Taft, “The problem of synthetically
generating IP traffic matrices: Initial recommendations,” SIGCOMM
Comput. Commun. Rev., vol. 35, no. 3, pp. 19–32, July 2005.

[103] M. Roughan, “Simplifying the synthesis of internet traffic matrices,”
SIGCOMM Comput. Commun. Rev., vol. 35, no. 5, pp. 93–96, Oct.
2005.

[104] G. Apostolopolous, “Using multiple topologies for IP-only protection
against network failures: A routing performance perspective,” ICS
FORTH, Crete, Greece, Tech. Rep., Apr. 2006.

BIBLIOGRAPHY 145

[105] R. Teixeira, A. Shaikh, T. Griffin, and G. M. Voelker, “Network sensi-
tivity to hot-potato disruptions,” in Proceedings of SIGCOMM, Port-
land, Oregon, USA, Aug. 2004, pp. 231–244.

[106] S. Uhlig, B. Quoitin, J. Lepropre, and S. Balon, “Providing public
intradomain traffic matrices to the research community,” ACM SIG-
COMM Computer Communication Review, vol. 36, no. 1, pp. 83–86,
Jan. 2006.

[107] A. Feldmann, A. Greenberg, C. Lund, N. Reingold, and J. Rexford,
“Netscope: Traffic engineering for IP networks,” IEEE Network Mag-
azine, vol. 14, no. 2, pp. 11–19, Apr. 2000.

[108] S. Floyd and V. Jacobson, “Random early detection gateways for con-
gestion avoidance,” IEEE/ACM Transactions on Networking, vol. 1,
no. 4, pp. 397–413, Aug. 1993.

[109] V. Paxson and S. Floyd, “Wide-area traffic: The failure of poisson
modeling,” IEEE/ACM Transactions on Networking, vol. 3, no. 3, pp.
226–244, June 1995.

[110] G. Horn, A. Kvalbein, J. Blomskøld, and E. Nilsen, “An empirical
comparison of generators for self similar simulated traffic,” Elsevier
Performance Evaluation, vol. 64, no. 2, pp. 162–190, Feb. 2007.

[111] R. Perlman, “Network layer protocols with byzantine robustness,”
MIT, Tech. Rep. MIT-LCS-TR-429, Oct. 1988.

[112] ——, “Routing with byzantine robustness,” Sun Labs, Tech. Rep. TR-
2005-146, Aug. 2005.

146 BIBLIOGRAPHY

Appendix A

Publication list

Most of the material in this work has previously been published in the pro-
ceedings of various international conferences. Here we provide a list of the
publications that corresponds to each chapter, and a discussion of the con-
tributions from the various authors.

Chapter 3

Title: Analysis and improved performance of RPR protection
Authors: Amund Kvalbein and Stein Gjessing
Published: 12th IEEE International Conference on Networks (ICON). Pages
119-124, vol.1. Singapore, Nov. 16-19, 2004.
Author contributions: All writing, analysis and simulations are performed
by Amund Kvalbein. The possibility of letting the receiver discard out-of-
order packets was first mentioned by Olav Lysne. The role of Stein Gjessing
was mainly related to improving the structure and consistency of the presen-
tation.

Title: Protection of RPR strict order traffic
Authors: Amund Kvalbein and Stein Gjessing
Published: 14th IEEE Workshop on Local and Metropolitan Area Networks
(LANMAN) Chania, Crete, Sept. 18-21, 2005.
Author contributions: All writing, analysis and simulations are performed
by Amund Kvalbein. The possibility of letting the receiver discard out-of-
order packets was first mentioned by Olav Lysne. The proposed mechanisms
were developed jointly by Amund Kvalbein and Stein Gjessing.

147

148 APPENDIX A. PUBLICATION LIST

Chapter 4

Title: Fast recovery from link failures using Resilient Routing Layers
Authors: Amund Kvalbein, Audun Fosselie Hansen, Tarik Čičić, Stein
Gjessing and Olav Lysne
Published: 10th IEEE Symposium on Computers and Communications
(ISCC). Pages 554-560. Cartagena, Spain, Jun. 27-30, 2005.
Author contributions: Most of the writing was done by Amund Kvalbein.
The algorithms presented in the paper were developed by Amund Kvalbein,
but all authors contributed to the underlying ideas. The simulations were
performed by Amund Kvalbein and Audun Fosselie Hansen.

Chapter 5

Title: Fast IP Network Recovery using Multiple Routing Configurations
Authors: Amund Kvalbein, Audun Fosselie Hansen, Tarik Čičić, Stein
Gjessing and Olav Lysne
Published: 25th Annual Joint Conference of the IEEE Computer and Com-
munications Societies (INFOCOM). Barcelona, Spain, Apr. 23-29, 2006.
Author contributions: Most of the writing was done by Amund Kvalbein,
but all authors took part in the writing. The algorithm presented in the
paper was developed by Amund Kvalbein, but all authors contributed to the
underlying ideas. The simulations were performed by Amund Kvalbein and
Audun Fosselie Hansen.

An extended version of this paper, which also contains some of the work
in chapter 6, might appear in:

Title: Multiple Routing Configurations for Fast IP Network Recovery
Authors: Amund Kvalbein, Audun Fosselie Hansen, Tarik Čičić, Stein
Gjessing and Olav Lysne
Published: Submitted to IEEE Transactions on Networking, 2006.

Chapter 6

Title: Post-Failure Routing Performance with Multiple Routing Configura-

149

tions
Authors: Amund Kvalbein, Tarik Čičić and Stein Gjessing
Published: To appear at 26th Annual Joint Conference of the IEEE Com-
puter and Communications Societies (INFOCOM). Anchorage, Alaska, May
6-12, 2007.
Author contributions: The underlying idea, the writing, the algorithms
and all simulations are by Amund Kvalbein. Tarik Čičić contributed with
input to the simulation setup and improvement of the text. The role of Stein
Gjessing was mainly related to improving the structure and consistency of
the presentation.

Chapter 7

Title: Robust Load Balancing using Multi-Topology Routing
Authors: Amund Kvalbein and Olav Lysne
Published: Not yet published
Author contributions: The underlying idea has appeared through dis-
cussions among Amund Kvalbein, Audun Fosselie Hansen, Tarik Čičić, Stein
Gjessing and Olav Lysne. The algorithms, writing and simulations presented
are by Amund Kvalbein. Olav Lysne contributed in the discussion of the
simulation scenarios and results, and through improving the structure and
consistency of the presentation.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (115 gram silk)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /RelativeColorimetric
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

