161 research outputs found

    A Review of Analog Audio Scrambling Methods for Residual Intelligibility

    Get PDF
    In this paper, a review of the techniques available in different categories of audio scrambling schemes is done with respect to Residual Intelligibility. According to Shannon's secure communication theory, for the residual intelligibility to be zero the scrambled signal must represent a white signal. Thus the scrambling scheme that has zero residual intelligibility is said to be highly secure. Many analog audio scrambling algorithms that aim to achieve lower levels of residual intelligibility are available. In this paper a review of all the existing analog audio scrambling algorithms proposed so far and their properties and limitations has been presented. The aim of this paper is to provide an insight for evaluating various analog audio scrambling schemes available up-to-date. The review shows that the algorithms have their strengths and weaknesses and there is no algorithm that satisfies all the factors to the maximum extent. Keywords: residual Intelligibility, audio scrambling, speech scramblin

    Speech Scrambling Based on Wavelet Transform

    Get PDF

    Dual Key Speech Encryption Algorithm Based Underdetermined BSS

    Get PDF
    When the number of the mixed signals is less than that of the source signals, the underdetermined blind source separation (BSS) is a significant difficult problem. Due to the fact that the great amount data of speech communications and real-time communication has been required, we utilize the intractability of the underdetermined BSS problem to present a dual key speech encryption method. The original speech is mixed with dual key signals which consist of random key signals (one-time pad) generated by secret seed and chaotic signals generated from chaotic system. In the decryption process, approximate calculation is used to recover the original speech signals. The proposed algorithm for speech signals encryption can resist traditional attacks against the encryption system, and owing to approximate calculation, decryption becomes faster and more accurate. It is demonstrated that the proposed method has high level of security and can recover the original signals quickly and efficiently yet maintaining excellent audio quality

    Simple Secrecy: Analog Stream Cipher for Secure Voice Communication

    Get PDF
    Voice signals are inherently analog, and some voice communication systems still utilize analog signals. Existing analog cryptographic methods do not satisfactorily provide cryptosecurity for communication systems due to several limitations. This paper proposes a novel means of provided cryptosecurity for analog signals without digitization; thereby avoiding the latency which results from ADC/DAC conversions. This method utilizes the principles of the digital stream cipher, generating instead a continuous pseudorandom analog key stream signal which is transformed with the original analog signal to create an encrypted ciphertext signal which is statistically independent of the original signal and the key stream signal. The transform is then inverted with the ciphertext signal and the same key stream signal to recover the original signal. The performance and characteristics of such a system has been measured and demonstrated through modeling and simulation

    Methods of covert communication of speech signals based on a bio-inspired principle

    Get PDF
    This work presents two speech hiding methods based on a bio-inspired concept known as the ability of adaptation of speech signals. A cryptographic model uses the adaptation to transform a secret message to a non-sensitive target speech signal, and then, the scrambled speech signal is an intelligible signal. The residual intelligibility is extremely low and it is appropriate to transmit secure speech signals. On the other hand, in a steganographic model, the adapted speech signal is hidden into a host signal by using indirect substitution or direct substitution. In the first case, the scheme is known as Efficient Wavelet Masking (EWM), and in the second case, it is known as improved-EWM (iEWM). While EWM demonstrated to be highly statistical transparent, the second one, iEWM, demonstrated to be highly robust against signal manipulations. Finally, with the purpose to transmit secure speech signals in real-time operation, a hardware-based scheme is proposedEsta tesis presenta dos métodos de comunicación encubierta de señales de voz utilizando un concepto bio-inspirado, conocido como la “habilidad de adaptación de señales de voz”. El modelo de criptografía utiliza la adaptación para transformar un mensaje secreto a una señal de voz no confidencial, obteniendo una señal de voz encriptada legible. Este método es apropiado para transmitir señales de voz seguras porque en la señal encriptada no quedan rastros del mensaje secreto original. En el caso de esteganografía, la señal de voz adaptada se oculta en una señal de voz huésped, utilizando sustitución directa o indirecta. En el primer caso el esquema se denomina EWM y en el segundo caso iEWM. EWM demostró ser altamente transparente, mientras que iEWM demostró ser altamente robusto contra manipulaciones de señal. Finalmente, con el propósito de transmitir señales de voz seguras en tiempo real, se propone un esquema para dispositivos hardware

    Implementation of FPGA in the Design of Embedded Systems

    Get PDF
    The use of FPGAs (Field Programmable Gate Arrays) and configurable processors is an interesting new phenomenon in embedded development. FPGAs offer all of the features needed to implement most complex designs. Clock management is facilitated by on-chip PLL (phase-locked loop) or DLL (delay-locked loop) circuitry. Dedicated memory blocks can be configured as basic single-port RAMs, ROMs, FIFOs, or CAMs. Data processing, as embodied in the devices’ logic fabric, varies widely. The ability to link the FPGA with backplanes, high-speed buses, and memories is afforded by support for various single ended and differential I/O standards. Also found on today’s FPGAs are system-building resources such as high speed serial I/Os, arithmetic modules, embedded processors, and large amounts of memory. Here in our project we have tried to implement such powerful FPGAs in the design of possible embedded systems that can be designed, burned and deployed at the site of operation for handling of many kinds of applications. In our project we have basically dealt with two of such applications –one the prioritized traffic light controller and other a speech encrypting and decrypting system

    Design of an OFDM Physical Layer Encryption Scheme

    Get PDF
    This paper presents a new encryption scheme implemented at the physical layer of wireless networks employing orthogonal frequency-division multiplexing (OFDM). The new scheme obfuscates the subcarriers by randomly reserving several subcarriers for dummy data and resequences the training symbol by a new secure sequence. Subcarrier obfuscation renders the OFDM transmission more secure and random, whereas training symbol resequencing protects the entire physical layer packet but does not affect the normal functions of synchronization and channel estimation of legitimate users while preventing eavesdroppers from performing these functions. The security analysis shows that the system is robust to various attacks by analyzing the search space using an exhaustive key search. Our scheme is shown to perform better in terms of search space, key rate, and complexity in comparison with other OFDM physical layer encryption schemes. The scheme offers options for users to customize the security level and the key rate according to the hardware resource. Its low complexity nature also makes the scheme suitable for resource-limited devices. Details of practical design considerations are highlighted by applying the approach to an IEEE 802.11 OFDM system case study

    Portable Waveform Development for Software Defined Radios

    Get PDF
    This work focuses on the question: "How can we build waveforms that can be moved from one platform to another?\u27\u27 Therefore an approach based on the Model Driven Architecture was evaluated. Furthermore, a proof of concept is given with the port of a TETRA waveform from a USRP platform to an SFF SDR platform
    corecore