298 research outputs found

    Cosmic cookery : making a stereoscopic 3D animated movie.

    Get PDF
    This paper describes our experience making a short stereoscopic movie visualizing the development of structure in the universe during the 13.7 billion years from the Big Bang to the present day. Aimed at a general audience for the Royal Society's 2005 Summer Science Exhibition, the movie illustrates how the latest cosmological theories based on dark matter and dark energy are capable of producing structures as complex as spiral galaxies and allows the viewer to directly compare observations from the real universe with theoretical results. 3D is an inherent feature of the cosmology data sets and stereoscopic visualization provides a natural way to present the images to the viewer, in addition to allowing researchers to visualize these vast, complex data sets. The presentation of the movie used passive, linearly polarized projection onto a 2m wide screen but it was also required to playback on a Sharp RD3D display and in anaglyph projection at venues without dedicated stereoscopic display equipment. Additionally lenticular prints were made from key images in the movie. We discuss the following technical challenges during the stereoscopic production process; 1) Controlling the depth presentation, 2) Editing the stereoscopic sequences, 3) Generating compressed movies in display speci¯c formats. We conclude that the generation of high quality stereoscopic movie content using desktop tools and equipment is feasible. This does require careful quality control and manual intervention but we believe these overheads are worthwhile when presenting inherently 3D data as the result is signi¯cantly increased impact and better understanding of complex 3D scenes

    Stereoscopic three-dimensional visualization applied to multimodal brain images: Clinical applications and a functional connectivity atlas

    Get PDF
    Effective visualization is central to the exploration and comprehension of brain imaging data. While MRI data are acquired in three-dimensional space, the methods for visualizing such data have rarely taken advantage of three-dimensional stereoscopic technologies. We present here results of stereoscopic visualization of clinical data, as well as an atlas of whole-brain functional connectivity. In comparison with traditional 3D rendering techniques, we demonstrate the utility of stereoscopic visualizations to provide an intuitive description of the exact location and the relative sizes of various brain landmarks, structures and lesions. In the case of resting state fMRI, stereoscopic 3D visualization facilitated comprehension of the anatomical position of complex large-scale functional connectivity patterns. Overall, stereoscopic visualization improves the intuitive visual comprehension of image contents, and brings increased dimensionality to visualization of traditional MRI data, as well as patterns of functional connectivity

    Full-Color Stereoscopic Imaging With a Single-Pixel Photodetector

    Get PDF
    We present an optical system for stereoscopic color imaging by using a single-pixel detector. The system works by illuminating the input scene with a sequence of microstructured light patterns generated by a color digital light projector (DLP). A single monochromatic photodiode, synchronized with the DLP, measures the light scattered by the object for each pattern. The image is recovered computationally by applying compressive sensing techniques. The RGB chromatic components of the image are discriminated by exploiting the time-multiplexed color codification of the DLP. The stereoscopic pair is obtained by splitting the light field generated by the DLP and projecting microstructured light patterns onto the sample from two different directions. The experimental setup is configured by simple optical components, a commercial photodiode and an off-the-shelf DLP projector. Color stereoscopic images of a 3D scene obtained with this system are shown.This work was supported in part by MINECO under Grant FIS2013-40666-P, Generalitat Valenciana under Grant PROMETEO2012-021 and Grant ISIC 2012/013, and Universitat Jaume I under Grant P1-1B2012-55

    Web-based Stereoscopic Collaboration for Medical Visualization

    Get PDF
    Medizinische Volumenvisualisierung ist ein wertvolles Werkzeug zur Betrachtung von Volumen- daten in der medizinischen Praxis und Lehre. Eine interaktive, stereoskopische und kollaborative Darstellung in Echtzeit ist notwendig, um die Daten vollständig und im Detail verstehen zu können. Solche Visualisierung von hochauflösenden Daten ist jedoch wegen hoher Hardware- Anforderungen fast nur an speziellen Visualisierungssystemen möglich. Remote-Visualisierung wird verwendet, um solche Visualisierung peripher nutzen zu können. Dies benötigt jedoch fast immer komplexe Software-Deployments, wodurch eine universelle ad-hoc Nutzbarkeit erschwert wird. Aus diesem Sachverhalt ergibt sich folgende Hypothese: Ein hoch performantes Remote- Visualisierungssystem, welches für Stereoskopie und einfache Benutzbarkeit spezialisiert ist, kann für interaktive, stereoskopische und kollaborative medizinische Volumenvisualisierung genutzt werden. Die neueste Literatur über Remote-Visualisierung beschreibt Anwendungen, welche nur reine Webbrowser benötigen. Allerdings wird bei diesen kein besonderer Schwerpunkt auf die perfor- mante Nutzbarkeit von jedem Teilnehmer gesetzt, noch die notwendige Funktion bereitgestellt, um mehrere stereoskopische Präsentationssysteme zu bedienen. Durch die Bekanntheit von Web- browsern, deren einfach Nutzbarkeit und weite Verbreitung hat sich folgende spezifische Frage ergeben: Können wir ein System entwickeln, welches alle Aspekte unterstützt, aber nur einen reinen Webbrowser ohne zusätzliche Software als Client benötigt? Ein Proof of Concept wurde durchgeführt um die Hypothese zu verifizieren. Dazu gehörte eine Prototyp-Entwicklung, deren praktische Anwendung, deren Performanzmessung und -vergleich. Der resultierende Prototyp (CoWebViz) ist eines der ersten Webbrowser basierten Systeme, welches flüssige und interaktive Remote-Visualisierung in Realzeit und ohne zusätzliche Soft- ware ermöglicht. Tests und Vergleiche zeigen, dass der Ansatz eine bessere Performanz hat als andere ähnliche getestete Systeme. Die simultane Nutzung verschiedener stereoskopischer Präsen- tationssysteme mit so einem einfachen Remote-Visualisierungssystem ist zur Zeit einzigartig. Die Nutzung für die normalerweise sehr ressourcen-intensive stereoskopische und kollaborative Anatomieausbildung, gemeinsam mit interkontinentalen Teilnehmern, zeigt die Machbarkeit und den vereinfachenden Charakter des Ansatzes. Die Machbarkeit des Ansatzes wurde auch durch die erfolgreiche Nutzung für andere Anwendungsfälle gezeigt, wie z.B. im Grid-computing und in der Chirurgie

    Object-based 2D-to-3D video conversion for effective stereoscopic content generation in 3D-TV applications

    Get PDF
    Three-dimensional television (3D-TV) has gained increasing popularity in the broadcasting domain, as it enables enhanced viewing experiences in comparison to conventional two-dimensional (2D) TV. However, its application has been constrained due to the lack of essential contents, i.e., stereoscopic videos. To alleviate such content shortage, an economical and practical solution is to reuse the huge media resources that are available in monoscopic 2D and convert them to stereoscopic 3D. Although stereoscopic video can be generated from monoscopic sequences using depth measurements extracted from cues like focus blur, motion and size, the quality of the resulting video may be poor as such measurements are usually arbitrarily defined and appear inconsistent with the real scenes. To help solve this problem, a novel method for object-based stereoscopic video generation is proposed which features i) optical-flow based occlusion reasoning in determining depth ordinal, ii) object segmentation using improved region-growing from masks of determined depth layers, and iii) a hybrid depth estimation scheme using content-based matching (inside a small library of true stereo image pairs) and depth-ordinal based regularization. Comprehensive experiments have validated the effectiveness of our proposed 2D-to-3D conversion method in generating stereoscopic videos of consistent depth measurements for 3D-TV applications

    2d To 3d Video Conversion

    Get PDF
    Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2011Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2011Son yıllarda 3 boyut teknolojisinin gelişmesiyle birlikte tüketici elektroniği piyasasında 3 boyutlu video içeriği ihtiyaç haline gelmiştir. 3 boyutlu gösterim teknolojisi tüketicilerin sahip olup, evlerinde kullanabilecekleri kaliteye erişmiştir. Fakat 3 boyutlu video içeriği 3 boyutlu gösterim cihazlarına oranla geride kalmış bulunmaktadır. Bunun sebebi, 3 boyutlu içerik oluşumu için gerekli olan stereoskopik kameraların çekim maliyetinin yüksek ve kameraların teknik kurulumunun zor olmasıdır. Aynı zamanda 2 boyuttan 3 boyuta çevrim problemi için 2 boyutlu içerik, manüel olarak 3 boyutlu grafiğe çevrilmektedir. Fakat bu iki yol, pahalı, zaman alıcı ve emek gerektiren yöntemlerdir. Bu metotlar yerine bilinen yöntemlerle çekilmiş 2 boyutlu videoları kamera parametre bilgileri olmadan 3 boyut efekti verebilen otomatik 2D/3D dönüştürücü algoritmaları bulunmaktadır. Bu tez çalışmasında, kamera parametleri bilinmeyen 2 boyutlu bir videoya 2D/3D dönüştürme algoritması uygulanarak 3 boyutlu görüntü efektinin oluşturulması hedeflenmiştir. Algoritmayı kurgulamak için, insan derinlik algısı ve 2 boyutlu içerik bilgisi ile 3 boyutlu içerik bilgisi arasındaki ilişki (derinlik haritası) araştırılmıştır. 2 boyuttan 3 boyuta dönüşüm algoritmasında iki farklı method kullanılarak 3 boyut efekti elde edilmeye çalışılmıştır. İlk yöntemde, derinlik haritası, hareket kestirimi yöntemi sonucu elde edilen hareket vektörleri ile oluşturulmuştur. Ve ikinci yöntemde derinlik haritası kenar bilgisi kullanılarak oluşturulmuştur. Derinlik bilgisi sayesinde, iki metot da aynı kaydırma algoritmasını kullanarak yapay stereoskopik çift (sol ve sağ resim) oluştururlar. Stereoskopik video sonuçları görebilmek ve aynı zamanda en ucuz yöntem olduğu için, sonuçlar anaglif formata çevrilmiştir. İzleyebilmek için anaglif gözlüklere ihtiyaç duyulmaktadır. Oluşan stereoskopik videoların kalitesi sübjektif olarak değerlendirilmiş ve kullanılan iki farklı yöntem de birbirleri ile kıyaslanmıştır. Dahası hesaplama zamanları hesaplanmış ve birbirleri ile karşılaştırılmıştır.In recent years, with the development of 3D technology 3D video content has become a need for the consumer electronics market. 3D display technology has reached the quality that consumers can buy and use it in their homes. However, compared with 3D display devices, the development of 3D video content has remained behind. The reason of that is stereoscopic cameras, which are required for shooting 3D content of the video, are very expensive and the technical setup of these cameras is difficult. At the same time, for the problem of 2D to 3D conversion, 2D content information is manually converted to 3D graphics. However, these shooting and manually converting methods are expensive, time consuming and labor-intensive methods. Instead of these methods, there are automatic 2D to 3D conversion algorithms, which generate 3D effect from conventional videos without knowing specific camera parameters. In this thesis, 3D effect generation is aimed by applying 2D to 3D conversion algorithm applied to a conventional 2D video with unknown camera parameters. For implementing this algorithm human depth perception and the relation between 2D and 3D content information (depth map) were investigated. For the 2D to 3D conversion algorithm, two different methods are used to obtain the 3D effect. In the first method, the depth map was generated by using motion vectors that are obtained using motion estimation. In the second method, the depth map was generated by using edge information. With respect to depth information, both methods use the same shift method to create artificial stereo image pairs (left and right images). Results were converted to the anaglyph format for viewing stereoscopic videos. The other reason to use the anaglyph format is that it is the cheapest way to view the stereoscopy. Created stereoscopic videos are evaluated subjectively. Two different methods are used and compared to each other. Computational run time results are also calculated and compared to each other.Yüksek LisansM.Sc
    corecore