3,922 research outputs found

    Distribution pattern-driven development of service architectures

    Get PDF
    Distributed systems are being constructed by composing a number of discrete components. This practice is particularly prevalent within the Web service domain in the form of service process orchestration and choreography. Often, enterprise systems are built from many existing discrete applications such as legacy applications exposed using Web service interfaces. There are a number of architectural configurations or distribution patterns, which express how a composed system is to be deployed in a distributed environment. However, the amount of code required to realise these distribution patterns is considerable. In this paper, we propose a distribution pattern-driven approach to service composition and architecting. We develop, based on a catalog of patterns, a UML-compliant framework, which takes existing Web service interfaces as its input and generates executable Web service compositions based on a distribution pattern chosen by the software architect

    XRound : A reversible template language and its application in model-based security analysis

    Get PDF
    Successful analysis of the models used in Model-Driven Development requires the ability to synthesise the results of analysis and automatically integrate these results with the models themselves. This paper presents a reversible template language called XRound which supports round-trip transformations between models and the logic used to encode system properties. A template processor that supports the language is described, and the use of the template language is illustrated by its application in an analysis workbench, designed to support analysis of security properties of UML and MOF-based models. As a result of using reversible templates, it is possible to seamlessly and automatically integrate the results of a security analysis with a model. (C) 2008 Elsevier B.V. All rights reserved

    Creating and Maintaining Consistent Documents with Elucidative Development

    Get PDF
    Software systems usually consist of multiple artefacts, such as requirements, class diagrams, or source code. Documents, such as specifications and documentation, can also be viewed as artefacts. In practice, however, writing and updating documents is often neglected because it is expensive and brings no immediate benefit. Consequently, documents are often outdated and communicate wrong information about the software. The price is paid later when a software system must be maintained and much implicit knowledge that existed at the time of the original development has been lost. A simple way to keep documents up to date is generation. However, not all documents can be fully generated. Usually, at least some content must be written by a human author. This handwritten content is lost if the documents must be regenerated. In this thesis, Elucidative Development is introduced. It is an approach to create documents by partial generation. Partial generation means that some parts of the document are generated whereas others are handwritten. Elucidative Development retains manually written content when the document is regenerated. An integral part of Elucidative Development is a guidance system, which informs the author about changes in the generated content and helps him update the handwritten content.:1 Introduction 1.1 Contributions 1.2 Scope of the Thesis 1.3 Organisation 2 Problem Analysis and Solution Outline 2.1 Redundancy and Inconsistency 2.2 Improving Consistency with Partial Generation 2.3 Conclusion 3 Background 3.1 Grammar-Based Modularisation 3.2 Model-Driven Software Development 3.3 Round-Trip Engineering 3.4 Conclusion 4 Elucidative Development 4.1 General Idea and Running Example 4.2 Requirements of Elucidative Development 4.3 Structure and Basic Concepts of Elucidative Documents 4.4 Presentation Layer 4.5 Guidance 4.6 Conclusion 5 Model-Driven Elucidative Development 5.1 General Idea and Running Example 5.2 Requirements of Model-Driven Elucidative Development 5.3 Structure and Basic Concepts of Elucidative Documents in Model-Driven Elucidative Development 5.4 Guidance 5.5 Conclusion 6 Extensions of Elucidative Development 6.1 Validating XML-based Elucidative Documents 6.2 Backpropagation-Based Round-Trip Engineering for Computed Text Document Fragments 6.3 Conclusion 7 Tool Support for an Elucidative Development Environment 7.1 Managing Active References 7.2 Inserting Computed Document Fragments 7.3 Caching the Computed Document Fragments 7.4 Elucidative Document Validation with Schemas 7.5 Conclusion 8 Related Work 8.1 Related Documentation Approaches 8.2 Consistency Approaches 8.3 Compound Documents 8.4 Conclusion 9 Evaluation 9.1 Creating and Maintaining the Cool Component Specification 9.2 Creating and Maintaining the UML Specification 9.3 Feasibility Studies 9.4 Conclusion 10 ConclusionSoftwaresysteme setzen sich üblicherweise aus vielen verschiedenen Artefakten zusammen, zum Beispiel Anforderungen, Klassendiagrammen oder Quellcode. Dokumente, wie zum Beispiel Spezifikationen oder Dokumentation, können auch als Artefakte betrachtet werden. In der Praxis wird aber das Schreiben und Aktualisieren von Dokumenten oft vernachlässigt, weil es zum einen teuer ist und zum anderen keinen unmittelbaren Vorteil bringt. Dokumente sind darum häufig veraltet und vermitteln falsche Informationen über die Software. Den Preis muss man später zahlen, wenn die Software gepflegt wird, weil viel von dem impliziten Wissen, das zur Zeit der Entwicklung existierte, verloren ist. Eine einfache Möglichkeit, Dokumente aktuell zu halten, ist Generierung. Allerdings können nicht alle Dokumente generiert werden. Meist muss wenigstens ein Teil von einem Menschen geschrieben werden. Dieser handgeschriebene Inhalt geht verloren, wenn das Dokument neu generiert werden muss. In dieser Arbeit wird das Elucidative Development vorgestellt. Dabei handelt es sich um einen Ansatz zur Dokumenterzeugung mittels partieller Generierung. Das bedeutet, dass Teile eines Dokuments generiert werden und der Rest von Hand ergänzt wird. Beim Elucidative Development bleibt der handgeschriebene Inhalt bestehen, wenn das restliche Dokument neu generiert wird. Ein integraler Bestandteil von Elucidative Development ist darüber hinaus ein Hilfesystem, das den Autor über Änderungen an generiertem Inhalt informiert und ihm hilft, den handgeschriebenen Inhalt zu aktualisieren.:1 Introduction 1.1 Contributions 1.2 Scope of the Thesis 1.3 Organisation 2 Problem Analysis and Solution Outline 2.1 Redundancy and Inconsistency 2.2 Improving Consistency with Partial Generation 2.3 Conclusion 3 Background 3.1 Grammar-Based Modularisation 3.2 Model-Driven Software Development 3.3 Round-Trip Engineering 3.4 Conclusion 4 Elucidative Development 4.1 General Idea and Running Example 4.2 Requirements of Elucidative Development 4.3 Structure and Basic Concepts of Elucidative Documents 4.4 Presentation Layer 4.5 Guidance 4.6 Conclusion 5 Model-Driven Elucidative Development 5.1 General Idea and Running Example 5.2 Requirements of Model-Driven Elucidative Development 5.3 Structure and Basic Concepts of Elucidative Documents in Model-Driven Elucidative Development 5.4 Guidance 5.5 Conclusion 6 Extensions of Elucidative Development 6.1 Validating XML-based Elucidative Documents 6.2 Backpropagation-Based Round-Trip Engineering for Computed Text Document Fragments 6.3 Conclusion 7 Tool Support for an Elucidative Development Environment 7.1 Managing Active References 7.2 Inserting Computed Document Fragments 7.3 Caching the Computed Document Fragments 7.4 Elucidative Document Validation with Schemas 7.5 Conclusion 8 Related Work 8.1 Related Documentation Approaches 8.2 Consistency Approaches 8.3 Compound Documents 8.4 Conclusion 9 Evaluation 9.1 Creating and Maintaining the Cool Component Specification 9.2 Creating and Maintaining the UML Specification 9.3 Feasibility Studies 9.4 Conclusion 10 Conclusio

    Working with the HL7 metamodel in a Model Driven Engineering context

    Get PDF
    HL7 (Health Level 7) International is an organization that defines health information standards. Most HL7 domain information models have been designed according to a proprietary graphic language whose domain models are based on the HL7 metamodel. Many researchers have considered using HL7 in the MDE (Model-Driven Engineering) context. A limitation has been identified: all MDE tools support UML (Unified Modeling Language), which is a standard model language, but most do not support the HL7 proprietary model language. We want to support software engineers without HL7 experience, thus realworld problems would be modeled by them by defining system requirements in UML that are compliant with HL7 domain models transparently. The objective of the present research is to connect HL7 with software analysis using a generic model-based approach. This paper introduces a first approach to an HL7 MDE solution that considers the MIF (Model Interchange Format) metamodel proposed by HL7 by making use of a plug-in developed in the EA (Enterprise Architect) tool.Ministerio de Ciencia e Innovación TIN2013-46928-C3-3-RInstituto de Salud Carlos III PI12/01571Instituto de Salud Carlos III PT13/0006/003
    corecore