Andreas Bartho

Creating and Maintaining Consistent Documents with
Elucidative Development

Beitrage aus der Informatik

Andreas Bartho

Creating and Maintaining Consistent Documents with
Elucidative Development

V

VOGT

Dresden 2014

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen
Nationalbibliografie; detaillierte bibliografische Daten sind im Internet Gber
http://dnb.dnb.de abrufbar.

Bibliographic Information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche
Nationalbibliografie; detailed bibliographic data are available on the Internet at
http://dnb.dnb.de.

Zugl.: Dresden, Techn. Univ., Diss., 2014

Die vorliegende Arbeit stimmt mit dem Original der Dissertation
,Creating and Maintaining Consistent Documents with Elucidative Development"
von Andreas Bartho Uberein.

© Jorg Vogt Verlag 2014
Alle Rechte vorbehalten. All rights reserved.

Gesetzt vom Autor
ISBN 978-3-938860-76-2

Jorg Vogt Verlag
Niederwaldstr. 36
01277 Dresden
Germany

Phone: +49-(0)351-31403921
Telefax: +49-(0)351-31403918
e-mail: info@vogtverlag.de
Internet : www.vogtverlag.de

Creating and Maintaining
Consistent Documents with
Elucidative Development

Dissertation

zur Erlangung des akademischen Grades
Doktoringenieur (Dr.-Ing.)

vorgelegt an der
Technischen Universitit Dresden
Fakultat Informatik

eingereicht von

Dipl.-Inf. Andreas Bartho
geboren am 07.12.1980 in Dresden

Gutachter:
Prof. Dr. rer. nat. habil. Uwe Afmann (Technische Universitit Dresden)
Associate Professor Kurt Ngrmark (Aalborg University)

Tag der Verteidigung: 27.05.2014

Dresden im August 2014

vi

vii

Abstract

Software systems are usually not defined in one big, all-encompassing model,
but they consist of a multitude of different views from multiple technological
spaces, such as requirements, class diagrams, or source code. These views
contain redundancy, i.e., they share some of their information. If redundant
information in different views contradicts with each other, the views become
inconsistent. Inconsistency is a source of errors, and much effort is spent on
research and tool development to avoid it.

Documents are also views on a software system. They are usually written
by human authors. In practice, documents and other views often change
at different paces. Document updates are frequently omitted because they
are expensive and do not pay off immediately. Consequently, documents are
often outdated. Outdated documents communicate wrong information about
the software. The severity of outdated information can range from a minor
inconvenience for the reader to complete uselessness.

Sometimes documents are generated. If generated documents are out-
dated, they can easily be regenerated. However, in many cases it is not
possible to generate the desired document content.

In this thesis, we introduce Elucidative Development (ED), an approach
to create documents from other views by partial generation. Partial gener-
ation means, that some document content is generated, and the remaining
document content is added manually, afterwards. Unlike naive generation
approaches, ED retains manually written content when the generated con-
tent is regenerated. A guidance system informs the author about changes in
the generated content and helps him update the manually written content.

In an evaluation we present our findings regarding the applicability and
versatility of ED. First, we analyse two model specifications, one of them
being the Unified Modeling Language (UML) specification, for inconsistencies
and show that the use of ED would have prevented these inconsistencies. We
also show how ED helps with the update of the specifications. Then, we
present several examples where we successfully wrote documents using ED.

viil

X

Acknowledgement

During the writing of this thesis, I was supported by many people, who
deserve my gratitude. First of all, I would like to thank my former colleagues
at the university, who supported me with new ideas, collaborations, joint
publications and suggestions for case studies, especially Birgit Demuth, Sven
Karol, Claas Wilke, Julia Schroeter and Katja Siegemund. I am particularly
grateful for the support of Sebastian Richly, whose valuable criticism and
recommendations had a great impact on this thesis. I would also like to
thank my former assistants Frank Herrlich and Sebastian Patschorke. Their
excellent theoretical and practical work on the DEFT prototype provided
valuable inspirations for the thesis.

Another big thank you goes to my friends, who proofread the thesis and
helped me improve it, in particular René Ponitz, Frank Herrlich and, most
importantly, my dear girlfriend Claudia Geitner.

Finally, I would like to thank Prof. Dr. Uwe Affmann for the possibility to
join his group, take part in a research project that met my personal interest
and turn it into a PhD thesis. Prof. Dr. Afmann’s visionary ideas and his
extensive knowledge of the work of fellow researchers helped me to broaden
my thinking, see new connections, and relate them to my own work.

Contents xi
Contents
List of Figures XV
List of Tables xvii
List of Listings Xix
Acronyms xxi
1 Introduction 1
1.1 Contributions 2
1.2 Scope of the Thesis 3
1.3 Organisation 3
2 Problem Analysis and Solution Outline 5
2.1 Redundancy and Inconsistency 5
2.2 TImproving Consistency with Partial Generation 8
2.3 Conclusion 11
3 Background 13
3.1 Grammar-Based Modularisation 13
3.2 Model-Driven Software Development 14
3.3 Round-Trip Engineering 15
3.4 Conclusion 17
4 Elucidative Development 19
4.1 General Idea and Running Example 19
4.2 Requirements of Elucidative Development 21
4.3 Structure and Basic Concepts of Elucidative Documents . . . 23
4.3.1 Artefact 26
4.3.2 Active Reference 27
4.3.3 Configuration 28
4.3.4 Operation 29

xil

CONTENTS
4.3.5 Elucidative Development, Grammar-Based Modulari-
sation and Slots 30
4.4 Presentation Layer, 31
4.4.1 Updating Computed Document Fragments 31
4.4.2 Displaying Incomputable References 31
44.3 Chaining Slots 0oL 31
4.5 Guidance 36
4.5.1 Formal Definition of the Guidance State 36
4.5.2 Artefact State Chart 38
4.5.3 Artefact Reference State Chart 40
4.5.4 Document Reference State Chart 43
455 FExampleo oo 46
4.6 Conclusion e 50
Model-Driven Elucidative Development 51
5.1 General Idea and Running Example 51
5.2 Requirements of Model-Driven Elucidative Development . . . 55
5.3 Structure and Basic Concepts of Elucidative Documents in
Model-Driven Elucidative Development 56
5.3.1 The Unison of Active Reference Groups and CDF Groups 56
5.3.2 Active Reference Group 58
5.3.3 Static Reference Group 59
5.3.4 Dynamic Reference Group 64
54 Guidance 72
5.4.1 Hierarchical Guidance Messages 73
5.4.2 Guidance for Static Reference Groups 74
5.4.3 Guidance for Dynamic Reference Groups 75
5.5 Conclusion 76
Extensions of Elucidative Development 77
6.1 Validating XML-based Elucidative Documents 77
6.1.1 Difference between XML and E'TEX documents 78
6.1.2 Structured Documents and Validity 79
6.1.3 Structured Elucidative Documents and Validity 83
6.2 Backpropagation-Based Round-Trip FEngineering for Com-
puted Text Document Fragments 88
6.2.1 Introduction to Backpropagation-Based Round-Trip
Engineeringo Lo 88

6.2.2 Application to Elucidative Development — An Example 89
6.3 Conclusion o 95

CONTENTS xiil

7 Tool Support for an Elucidative Development Environment 97

7.1 Managing Active References 97
7.2 Inserting Computed Document Fragments 100
7.2.1 Document File Manipulation vs. Editor APT 100
7.2.2 Unifying CDF Insertion with Integrators 104
7.2.3 Handling Images 106
7.3 Caching the Computed Document Fragments. 106
7.3.1 Instant Update 107
7.3.2 Deferred Update 107
7.3.3 Discussiono 108
7.4 Elucidative Document Validation with Schemas 109
7.4.1 Restricting the Possible Active Reference Types 109
7.4.2 Using Subtrees as Active References 110
7.4.3 Nillable Active References 111
7.5 Conclusion 112
8 Related Work 115
8.1 Related Documentation Approaches 115
8.1.1 Literate Programming 115
8.1.2 Literate Modelling 120
8.1.3 Elucidative Programming 123
8.2 Consistency Approaches, 128
8.2.1 Transclusion 128
8.2.2 Transconsistency and Active Documents 130
8.3 Compound Documents 132
8.3.1 Object Linking and Embedding 132
83.2 OpenDoc 133
8.3.3 The W3C Compound Document by Reference Frame-
work ... 134
834 HotDoc 135
84 Conclusion e 135
9 Evaluation 137
9.1 Creating and Maintaining the Cool Component Specification . 137
9.1.1 Rewriting the Specification with ED 138
9.1.2 Finding Inconsistencies in the Manual Specification . . 140
9.1.3 Updating the Specification to a new Metamodel Version 141
9.1.4 Discussion 142
9.2 Creating and Maintaining the UML Specification 142
9.2.1 Preparing DEFT for UML 144

9.2.2 Writing and Updating the Package Section 145

Xiv

10

A

CONTENTS
9.2.3 Discussion 145
9.3 Feasibility Studies oL 145
9.3.1 Visualising Requirements 145
9.3.2 Documenting a BPMN Refinement Library 150
9.3.3 Writing a PhD thesis about Elucidative Development
with DEFT, 152
94 Conclusion 154
Conclusion 155
Cool Component Specification 159
A.1 Metamodel Preparation 159
A.2 Inconsistencies in the Manual Specification 160
A.2.1 Convention Errors in Running Text Cross-References . 160
A.2.2 Convention Errors in Metaclass Characteristics Listings 161
A.2.3 Misspelled and Wrong Identifiers 161
A.2.4 Wrong Metaclass Properties 162
A.2.5 Wrong Model Diagrams 162
A.3 Update of the Specification. 162
UML Specification 165
B.1 Metamodel Changes 165
B.2 OCL Changes i 166
B.21 OCL errors v v v v vt i 166
B.2.2 Changes for UML 23 168

Bibliography 169

List of Figures XV

List of Figures

2.1

2.2

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13

5.1
5.2
2.3
5.4
3.5
2.6
2.7
2.8

Types of view overlaps. 6
(a) Partial overlap. oL oL 6
(b) Nooverlap. 6
(¢) Fulloverlap.. 6
Overlapping views of a software system. 7
Model transformations. 15
Round-trip via inverse transformation. 16
Document with computed text fragments and a figure. 21
Elucidative document metamodel. 23
Elucidative Development overview. 24
Different kinds of active references. 25
Configuration dialogue examples. 29
Operation as data-flow diagram. 29
Dataflow graph for weak transconsistency. 33
Operation with multiple outputs. 34
Detailed dataflow graph with intermediate operation results. . 34
Artefact state chart. 38
Artefact reference state chart. 41
Document reference state chart. 44
Updated and corrected documentation. 47
Documentation of a class diagram. 53
CDF groups.« o i vt 54
Model driven elucidative development metamodel. o7
Static reference groups can contain arbitrary document content. 60
Static group expander with operations. 61
Static group expander with a dynamic group expander. 62
Dynamic group expander. 66

Matching model elements from different artefact versions. . . . 70

XVl

2.9

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

7.1
7.2
7.3
7.4
7.5

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

9.1
9.2
9.3
9.4
9.5
9.6

LIST OF FIGURES

Hierarchical guidance messages. 74
Example document with cross reference. 80
Mapping from document to XHTML grammar. 83
Elucidative document as tree. 85
Mapping from elucidative document to XHTML grammar. . . 87
Backpropagation-based round-trip engineering. 89
Skeletons and clothings of source and target artefacts. 90
Configuration determines replacement of syntax tree nodes. . . 92
Computing ranges from the syntax tree. 94
Scenario 1 — Active reference ID missing in document. 99
Scenario 2 — Inconsistent deletion status. 99
Scenario 3 — Identical active reference IDs in document. 99
Scenario 4 — Inconsistent active reference location. 100
Using an integrator to insert a CDF into a document. 105
Related documentation approaches: general overview. 116
Literate Programming overview. 117
Literate Modelling overview. 122
Elucidative Programming overview. 123
Relations of an elucidative program.. 125
Synthesised elucidative program with three frames. 127
Transclusion. 129
Transconsistent dataflow graph. 131
Excel table in Word. 0oL 133
(a) Excel table: graphical representation. 133
(b) Excel table: activated. 133
Excerpt of the Cool Component Model specification. 139
Excerpt of the UML specification. 143
The Requirements Ontology in ODRE. 147
A generated traceability matrix in DEFT. 148
A generated requirements hierarchy tree in DEFT.. 149

Excerpt of the BPMN Refinement Library tutorial. 151

List of Tables xvii

List of Tables

8.1 Comparison of advanced documentation approaches. 116

xviii LIST OF TABLES

List of Listings Xix

List of Listings

6.1
6.2
6.3
6.4
6.5
6.6
6.7
7.1
7.2
7.3
7.4
9.1

Example document as HTML. 80
Formal definition of the example document. 81
Tree grammar of XHTML subset. 82
Excerpt of the formal definition of the elucidative document. . 85
Source code artefact. oL 91
Configuration. 91
Resulting code listing. 92
Div element in an XHTML document. 109
Table element in an XHTML document. 110
Nillable table element declaration. 111
Nil table in an XHTML document. 112
Cached BTEX CDFs.o o o oo 153

XX

LIST OF LISTINGS

Acronyms xxi

Acronyms

API Application Programming Interface.
AR Artefact Removal.

AU Artefact Update.
BPMN Business Process Modelling Notation.

CASE Computer-Aided Software Engineering.
CCM Cool Component Model.

CDF Computed Document Fragment.

CIM Computation Independent Model.
COM Component Object Model.

CORBA Common Object Request Broker Architecture.

DEFT Development Environment For Tutorials.
DSL Domain Specific Language.

DTD Document Type Definition.

EAT Energy Auto-Tuning.
ED Elucidative Development.
EDE Elucidative Development Environment.

EP Elucidative Programming.

GBM Grammar-based Modularisation.

xxii

GUI Graphical User Interface.

HTML Hypertext Markup Language.

IBM International Business Machines Corporation.
JSP Java Server Pages.

LiMonE Literate Modelling Editor.
LM Literate Modelling.

LP Literate Programming.

MDA Model-Driven Architecture.
MDSD Model-Driven Software Development.

MOF Meta Object Facility.

MOST Marrying Ontology and Software Technology.

OCL Object Constraint Language.

ODF Open Document Format.

ODRE Ontology-Driven Requirements Engineering.
OLE Object Linking and Embedding.

OMG Object Management Group.

PDF Portable Document Format.

PIM Platform Independent Model.
PREP Propagate Replay Evaluate Pick.
PSM Platform Specific Model.

QVT Query/View/Transformation.

RO Requirements Ontology.

RTE Round-Trip Engineering.

Acronyms

Acronyms

RTF Rich Text Format.

SMIL Synchronized Multimedia Integration Language.
SOM System Object Model.
SVG Scalable Vector Graphics.

SVN Subversion.
TGG Triple Graph Grammar.

UML Unified Modeling Language.
UNO Universal Network Objects.

URL Uniform Resource Locator.

W3C World Wide Web Consortium.
WWW World Wide Web.
WYSIWYG What You See Is What You Get.

XHTML Extensible Hypertext Markup Language.

XML Extensible Markup Language.

XSLT Extensible Stylesheet Language Transformations.

XX1il

XXiv Acronyms

Chapter 1. Introduction 1

Chapter 1

Introduction

Software is subject to changes during its entire lifetime. In the early phases
of the software life-cycle, documents are written and models, such as Unified
Modeling Language (UML) use-case diagrams, are created. Based on those
documents and models, program code is written. Software development is
usually an iterative process. Many of the documents and models and much
of the code are revised multiple times, both during the initial creation and
maintenance of the software.

The reasons for document changes during software development are mani-
fold. Requirements specifications are written in multiple iterations. Architec-
ture documentation is written early in the development process, but unfore-
seen technological or organisational problems might require modifications.
Application Programming Interface (API) documentation and example-style
tutorials are important for software libraries, frameworks, or software with
plug-in interfaces. When the API changes, the documentation must be up-
dated accordingly. End-user documentation explains the usage of the soft-
ware to the end user. It contains instructions for the achievement of certain
goals, often enriched with screenshots of the Graphical User Interface (GUI).
When the software changes such that it affects the GUI, the instructions and
screenshots must be changed, too.

In practice, documents, models and code often change at different paces.
Document updates are frequently omitted because they are expensive and
do not pay off immediately. Consequently, documents are often outdated.
Outdated documents communicate wrong information about the software.
The severity of outdated information can range from a minor inconvenience
for the reader to complete uselessness. In any case, outdated documents are
generally a problem during software development and maintenance.

2 Chapter 1. Introduction

1.1 Contributions

This thesis makes several contributions to the field of document manage-
ment and consistency enforcement. The main contribution of this thesis is
the introduction of Elucidative Development (ED), a novel approach, which
simplifies the creation and maintenance of documents which describe soft-
ware artefacts. ED is based on partial generation, i.e., some content of a
document is generated and some content is handwritten. In contrast to
naive approaches, ED takes care that handwritten content is not destroyed
when documents are regenerated. Another noteworthy characteristic of ED
is the tight integration of a guidance system, which helps the author keep
the documents in a consistent state.

There are many kinds of documents in the software development life-cycle,
which differ by their level of formality. Based on the definition of document
formality we present ED as an extensible approach for document creation
and maintenance.

e First, we introduce the basic concepts of ED and show how they can
be applied to semi-formal documents.

e Then, we extend ED for the application to formal documents.

We also present two other extensions, which do not depend on the for-
mality of documents.

e Documents written with ED contain special directives, which control
the content generation. These directives prevent standard validation
approaches, such as checking an Extensible Markup Language (XML)
document against a schema. We show possibilities to validate these
documents nonetheless.

e Sometimes it is desirable to modify generated document content and
propagate the change to the original data, from which the content
has been generated. We show how this can be achieved by employ-
ing backpropagation-based round-trip engineering.

Our second big contribution is the evaluation of ED to show its appli-
cability and versatility. In two case studies, we show how ED improves the
document quality and eases the document maintenance. Then, we present
many examples of the successful application of ED.

Our third big contribution is the comparison with related work because
ED is based on many existing ideas. This includes the discussion of related
documentation approaches from the literature, such as Literate Programming

Chapter 1. Introduction 3

(LP) or Elucidative Programming (EP), as well as consistency management
concepts, such as transclusion and transconsistency.

1.2 Scope of the Thesis

In this thesis, we concentrate on the theoretic and technical aspects of ED.
This includes the problems of computing document content from arbitrary
views of a software system, embedding it into documents, and keeping it
up to date. We neither discuss how the other views can be kept consistent,
nor organisational rules that help the author decide when to write or update
documents. We presume that the consistency of views can be achieved to
a satisfactory degree and that the author knows when documents must be
written or updated.

Furthermore, we do not explicitly consider the collaboration of multiple
authors on the same document. We do not forbid multiple authors working
on one document, but we also do not promote it. In this thesis we refer to
both a single author and a group of authors as “the author”.

1.3 Organisation

In Chap. 2, we explain the necessity of redundancy in a software system in
general and how it can lead to inconsistency. Then, we motivate full and
partial generation as possibilities to keep formal and semi-formal documents,
such as requirements analyses, specifications and documentation, consistent
with the rest of the software system.

In Chap. 3, we present some background information on concepts and
technologies, which are used in the thesis. The aim of this chapter is to
introduce the reader to these concepts and technologies.

In Chap. 4, we propose the novel approach ED for the semi-automatic
creation and maintenance of semi-formal documents. We present a number
of challenges that must be solved and derive requirements that ED must
fulfil. This includes the partial generation of content, ensuring that generated
content is always up to date, and a guidance mechanism that informs the
author about outdated or recently updated content. Afterwards, we show
the realisation of these requirements.

In Chap. 5, we show how ED can be used in a Model-Driven Software
Development (MDSD) setting. We explain, why the basic ED approach from
Chap. 4 is not sufficient for uniformly structured, formal documents, such as

4 Chapter 1. Introduction

the UML specification. Based on this, we present extensions, which overcome
these limitations.
In Chap. 6, we present further extensions of ED, namely:

e support for structural validity checking, such as checking an XML doc-
ument against a Document Type Definition (DTD)

e support for round-trip engineering, which allows the synchronisation of
changes in the document with the described software artefacts.

In Chap. 7, we give recommendations regarding the implementation of
an Elucidative Development Environment (EDE). This includes technical
optimisations of the concepts presented in Chap. 4 and 6, but also thoughts
about reusing existing tools and editors for ED.

Afterwards, in Chap. 8, we review the concepts and techniques that have
influenced ED. Unlike in Chap. 3, we also compare these concepts and tech-
niques to ED. Additionally, we show concepts and technologies that did not
explicitly influence ED, but which are related.

In Chap. 9, we present several evaluations that show the applicability and
usefulness of ED. The evaluations have been performed with our EDE called
Development Environment For Tutorials (DEFT).

Finally, we summarise the results of this work in the conclusion in
Chap. 10.

Chapter 2. Problem Analysis and Solution Outline 5

Chapter 2

Problem Analysis and Solution
Outline

In this chapter, we explain the connection between redundancy and incon-
sistency, and show how generation (i.e., automatic document creation from
existing data) improves consistency between documents and other parts of a
software system. Since complete generation is not always possible, we present
the advantages and disadvantages of partial document generation and show
which kinds of documents are suited for partial generation.

2.1 Redundancy and Inconsistency

Software systems are usually not defined in one big, all-encompassing model,
but they consist of a multitude of different parts from multiple technological
spaces, such as requirements, class diagrams, or source code. These parts
describe a software system “from different angles and in different levels of
abstraction, granularity and formality” [52]. We call these parts views, in
accordance with |20].

All views of a software system share information with one or more other
views. This overlap of information is called redundancy. Redundancy is
necessary to connect several views to one coherent description of the software
system. Redundancy can be very technical, for example a Java class that
corresponds to a Unified Modeling Language (UML) class. But redundancy
can also be very abstract, such as the existence of a certain concept, which
appears in several views.

Two different views can overlap partially, fully, or not at all. Figure 2.1
shows examples, inspired by a figure from [20].

6 Chapter 2. Problem Analysis and Solution Outline

Use Case
Use Case "Connect Shapes"
"Connect Shapes"

Class Diagram
"Shapes"-Package Code
"Color
Management"

A\

Code

(a) Partial overlap. (b) No overlap. (c) Full overlap.

Figure 2.1: Types of view overlaps.

In Fig. 2.2, there is an example of 5 views referring to the ability of a
drawing tool to draw shapes and connections. In other words, the information
that the tool allows for drawing shapes and connecting them is contained
redundantly in different views.

The use-case diagram and the class diagram in Fig. 2.2 are partially
redundant, as represented by Fig. 2.1a. Both contain information regarding
shapes and their connections. The overlap in this case is rather small. It
comprises the fact that the user can connect shapes with the drawing tool.
The views represented by Fig. 2.1b do not share any information and thus
contain no redundancy. The use-case of connecting shapes, represented by
the use-case diagram, has nothing to do with colour management and its
implementation. Figure 2.1c shows that there are cases where one view
is completely contained within another view. This means that the inner
view (the view represented by the inner circle in the figure) is completely
redundant and does not provide any additional information. It is not useless,
though. Two completely redundant views usually have a different level of
detail and stem from different phases of the software development process.
For example, the inner view could be a UML diagram and the outer view
(correspondingly, the view represented by the outer circle in the figure) could
be the source code whose skeleton has been generated from the diagram, i.e.,
the outer view is a refinement of the inner view from a later development
phase. Another possibility is that the inner view has been transformed from
the outer view to contain only a subset of the information, but in a clearer
and more concise fashion. This would be the case with Javadoc, which can
be generated from Java source code.

Chapter 2. Problem Analysis and Solution Outline

apo) 924n0S

\

[@umwnﬂﬁ otTand

weude|q sse|D

10j00 & Jojoo & 10j00 &
(adeys woiy) (adeys woiy) (adeys woiy)
[apio H & sulH [4] ®|buepay H

[@EENTD

=T

uoljesynads
syusawalinbay |

sauiionosuL0d

3y3 jo saujodpys ay3 3Je yaym

$10309UU0) 8'%'Z4

sadeys
$199UU02

uolejuawndoqg

@5 40 U010
3y} Suo|e paINgLIISIp B YOIYM ‘S10309UU0D
|eJanag sey odeys 4o pupy YIe3 's10103uuod

{ sadeys)pys 01 payoene aue saul ay
*Aj8uipiodoe :jm‘_vw_ aJe saul|

gw 1 ‘puno.e parow si sadeys Jayio
ST 10 ofponsnied wunGarEy

weudelq

ase) asn

\

sadeys
199Uu0)

sy

f a software system.

Overlapping views o

Figure 2.2

8 Chapter 2. Problem Analysis and Solution Outline

If views contain redundant information, they can become inconsistent.
This is because the views “overlap — that is, they incorporate elements which
refer to common aspects of the system under development — and make asser-
tions about these aspects which are not jointly satisfiable” [52]. We call this
kind of inconsistency global inconsistency [19]. Correspondingly, we speak of
global consistency if all assertions are satisfiable.

Besides global inconsistency, there can also be local inconsistency. Local
inconsistency arises from contradictions within the same view. Correspon-
dingly, we speak of local consistency if the view contains no contradictions.

Since redundancy cannot be avoided, redundant descriptions of the soft-
ware system must somehow be kept consistent. This can be achieved man-
ually or with tool support. Keeping multiple views of a software system
consistent manually is usually very difficult and time-consuming due to the
sheer amount of information that overlaps. Tools can aid to some degree. For
example, a model-to-text transformation tool can create a source code skele-
ton from a UML class diagram, with all defined classes, attributes, methods
and relationships. Unfortunately, tool support is not available for all kinds
of overlapping views. Therefore, inconsistency is still a problem in today’s
software development.

2.2 Improving Consistency with Partial Gener-
ation

As shown in Fig. 2.2, documents, such as specifications and documentation,
are also views on a software system.

Definition 1 (Document). Documents are special views on a software sys-
tem. Their content is primarily meant to be read by humans. Usually, they
consist mostly of text, but they can also include structured information, such
as tables or listings, and media, such as images.

Since documents are views on a software system, they contain redun-
dancy. They are mostly handwritten, i.e., written by humans, which makes
them susceptible to inconsistencies. Global inconsistencies occur if the doc-
uments describe other views incorrectly. During the initial creation of a
document, the author might accidentally omit important information or in-
clude wrong information due to a lack of understanding. Another source of
inconsistencies are incorrect references to other views, such as mentioning a
UML class which does not exist in the UML class diagram. Local inconsisten-
cies occur if different parts of one document contradict with each other. An

Chapter 2. Problem Analysis and Solution Outline 9

example of a local inconsistency is a code listing in a documentation which
contains a method connectShapes (), and explanatory text which calls the
same method connect ().

If the documented views of the software system are changed after a doc-
ument has been written, the document can also become inconsistent. We
say that the document is outdated. Outdated documents must be updated to
make them consistent again. The first step of a document update is to find
all outdated parts. If even one outdated part is not found, the document
cannot become consistent. But even if all outdated parts are identified, it is
still necessary that they are updated correctly. Failing to do so can result
in a globally and locally inconsistent document. Global inconsistency arises
if some parts of the document do not correspond to the rest of the software
system. Local inconsistency arises if the document contains contradictory
outdated and updated information at the same time.

In some cases, document generation can be used to prevent inconsisten-
cies. Documents are generated by a transformation whose input are views
with formal content, such as source code or UML models. Assuming that
the transformation works correctly, generated documents are both locally
consistent and globally consistent to the view(s) from which they are gener-
ated. Whenever generated documents are outdated, the transformation can
be executed again and new, updated documents are created.

Generated documents can only contain information which already exists
in other views. However, they can present the information in a way that
is easier to understand by humans. An example is Javadoc documentation,
as indicated in Fig. 2.1c. The Javadoc tool can create a navigable set of
Hypertext Markup Language (HTML) documents, which contain for each
Java class and interface all fields and methods, together with documentation
text that has been annotated to the source code. Javadoc also makes implicit
information explicit. Among others, the generated documentation shows
the inheritance hierarchy for all classes and interfaces, and it shows for all
methods which superclass methods they override.

If documents contain new information, i.e., information that does not al-
ready exist in other views, they cannot be fully generated. However, they
can be partially generated. After the generation, the author can add the
missing information manually. The update of outdated partially generated
documents is difficult. A regeneration is not easily possible, because the
handwritten content would be overwritten. A manual update by the au-
thor has the same disadvantages as the update of completely handwritten
documents. Therefore, partial generation is rarely used in contrast to man-
ual document writing. The main goal of this thesis is to present a partial
generation approach, which overcomes these problems.

10 Chapter 2. Problem Analysis and Solution Outline

The degree to which a document can be generated depends on its level
of formality. We distinguish between informal, semi-formal and formal doc-
uments, but the boundary is blurred. Usually, the latter are used to describe
formal views. A formal view is a view which has a well-defined syntax and
possibly static or dynamic semantics. Examples are source code or UML
models, such as class diagrams.

Definition 2 (Informal Document). Informal documents describe the soft-
ware system in an abstract way. They give a high-level overview and omit
details. The structure and the content of informal documents are primarily
determined by the author. It is the author’s choice, which topics to empha-
sise, which topics to omut, and how to arrange the content.

An example of an informal document is an introductory documentation
of the software, which sketches its overall goal and outlines the most im-
portant features. Informal documents are usually the first documents read
by someone who wants to learn about the system. They are not suited for
generation, so they are manually created and maintained by the author.

Definition 3 (Semi-formal Document). Semi-formal documents describe a
formal view or related formal and informal views of the software system in
more detail. They do not necessarily describe the view(s) erhaustively. A
substantial part of a semi-formal document contains information on a very
technical, formal level. Apart from that, there is additional, more abstract,
background information.

An example of semi-formal documents are so-called “How To” cook-
books [5]. They are task-oriented framework documentations for software
developers. They contain code examples of framework instantiation, option-
ally together with explanatory text. The targeted audience of semi-formal
documents are usually persons who are starting to get involved with the
details of the system. Semi-formal documents can be partially generated.

Definition 4 (Formal Document). Formal documents describe formal views
or some parts of a formal view. They are comprehensive and the author
does not emphasise or omit any parts. Formal documents usually contain
a number of uniformly structured chapters and sections, and the document
structure follows the structure of the view.

An example of a formal document is generated Javadoc documentation.
Another example, which is slightly less formal, is the UML 2.3 superstructure
specification®. It contains, among other information, descriptions of all UML

'http://www.omg.org/spec/UML/2.3/Superstructure/PDF/

http://www.omg.org/spec/UML/2.3/Superstructure/PDF/

Chapter 2. Problem Analysis and Solution Outline 11

metaclasses. Each class description consists of an enumeration of supertypes
(“generalizations”), a textual description, a listing of attributes and associa-
tions together with their descriptions, and more. The targeted audience of
formal documents are usually persons who already have some knowledge of
the system (or at least the view) and want to look up more details. Formal
documents can be partially generated. If all of their content can be computed
from other views, they can even be fully generated.

The need for partial generation in document writing and the correspon-
ding tool support has also been mentioned in the literature. One example
is a survey, which identifies several attributes that influence the quality of
documentation [21]. The most important ones are documentation content,
actuality (i.e., global consistency), availability and the use of examples. A lot
of participants of the survey thought that much information can be extracted
from source code. They generally saw the automation of documentation pos-
itively. However, they also admitted that full automation is not possible,
because the automated documentation tools “don’t collect the right informa-
tion”. Consequently, most of the participants find a tool useful that can track
changes in a software system for the purpose of documentation maintenance.
For example, such a system would identify all parts of the documentation
that refer to changed source code. The authors suggest that “the technol-
ogy support traceability among documents as well as between source code”.
Thus, the survey showed that documentation systems with partial document
generation and guidance support for the documentation author are needed.

An improved approach for the creation and maintenance of consistent
documents and the corresponding tool support is not only needed for docu-
mentation. This is evident from many papers which point out inconsisten-
cies in the UML specification, for example [9,61]. The UML specification is
written and maintained manually, and many of the identified inconsistencies
could have been avoided with tool support.

2.3 Conclusion

In this chapter, we discussed the necessity of redundancy in software systems
and the resulting consistency problems. We presented generation and par-
tial generation as possibilities to ensure consistency, depending on the docu-
ment’s level of formality. Partial generation has been identified as promising
approach for the creation and maintenance of semi-formal and formal docu-
ments, but the problem is that manually written content is overwritten when
the document is regenerated. Finding a solution to this problem is the main
goal of this thesis.

12

Chapter 2. Problem Analysis and Solution Outline

Chapter 3. Background 13

Chapter 3

Background

In this chapter, we present an overview of various technologies, on which the
thesis relies. It is meant as a short introduction, where the basic principles of
the technologies are explained. Additionally, this chapter contains citations,
which can serve as a starting point for further, more detailed, investigations.
First, we present Grammar-based Modularisation (GBM), an approach
for software composition. Then, we introduce Model-Driven Software Devel-
opment (MDSD), a software development methodology which relies on mod-
els and transformations. Finally, we cover Round-Trip Engineering (RTE),
whose purpose is to keep multiple views of a software system consistent.

3.1 Grammar-Based Modularisation

GBM is a modularisation approach first proposed by [6]. It allows the defi-
nition of programs with “holes”, which can later be filled with fragments in a
type-safe manner. The basic building block in GBM is a form. A form is a
sentential form of the language. For example, an A-form is a sentential form
which has been derived from the nonterminal A. “A” is called the syntactic
category. If a form additionally has a name, it is called a fragment form.

The following example is taken from [25]. It shows a datalog rule-form,
which contains two nonterminals: (num) and (atom):

bonus(X, (num)) :- employee(X), (atom).

In GBM, nonterminals, which are meant to be replaced by fragments, are
called slots. Thus, slots are an area of variability. They have a name and
a syntactic category. In the following example, the nonterminals have been
replaced by slots:

bonus(X, «SLOT value:numy) :- employee(X), «SLOT condition:atom».

14 Chapter 3. Background

Slots can be replaced by fragment forms with the same name and the same
syntactic category. Complete programs are assembled by binding fragment
forms to declared slots recursively.

3.2 Model-Driven Software Development

MDSD is a software development method, which uses transformations to
generate software from formal models. Formal models! have an abstract
syntax and static semantics, which can be defined by a metamodel [53|. The
abstract syntax can be expressed by one or multiple concrete syntaxes, or
Domain Specific Languages (DSLs). For example, the well known graphical
notation with boxes and arrows is one possible concrete syntax for Unified
Modeling Language (UML) class diagrams. Additionally, there are several
textual DSLs? [24].

A metamodel itself is also a formal model and has a structure. This
structure is described by its metametamodel. Well-known examples of meta-
metamodels are Meta Object Facility (MOF)? and Ecore*. Ecore is an im-
plementation of Essential MOF, a MOF subset.

Models are often only created for documentation purposes. In MDSD,
however, models are first-class development artefacts. Multiple models are
used to describe different structural and behavioural aspects of the software
system. Thus, models are views, or parts of views, of the software system.

Models have different levels of abstraction. The distinction is blurred,
as we will see from slightly inconsistent naming schemes in the literature.
At the most abstract level, there are domain-specific models, i.e., models,
which describe the domain of the software system, for example aviation or
logistics. A domain-specific model is abstracted from programming languages
and platforms. In Model-Driven Architecture (MDA), which can be seen as
a specialisation of MDSD, a domain-specific model is called Computation
Independent Model (CIM)>. The term Platform Independent Model (PIM) is
used for a model which describes the software “system, but does not show
details of its use of its platform”. In [53], on the other hand, a domain-specific
model is called PIM.

'We are aware that the notion of formality is also sometimes used to include dynamic
semantics. This is not the case in this thesis. Here, we use the definition from [53].

2http://modeling-languages.com/uml-tools/#textual

3http://www.omg.org/mof/

‘http://www.eclipse.org/modeling/emf/

Shttp://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf

http://modeling-languages.com/uml-tools/#textual
http://www.omg.org/mof/
http://www.eclipse.org/modeling/emf/
http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf

Chapter 3. Background 15

A CIM or PIM can be transformed into a more technical model via
a model-to-model transformation. Models which contain platform-specific
information are called Platform Specific Models (PSMs). The final trans-
formation step usually generates code from a PSM and is therefore called
model-to-code transformation. A PIM can be transformed into a PSM in
one single transformation, or it can be transformed stepwisely, using multiple
transformations. The decision depends on the requirements of the software
project and is made by the developers. Figure 3.1, which is based on a figure
from [53], shows an example transformation chain from a PIM via multiple
PSMs to code.

PIM Transformation PSM Transformation PSM
g (Components) g (EJB 2.0)
Transformation‘
Code Transformation PSM
(Java +XML) | (WL Server 12)

Figure 3.1: Model transformations.

Model-to-model transformations are defined as mapping between the
source and the target metamodel. The source and the target metamodel
can be the same or different. If the target model is more platform-specific
than the source model, the metamodels usually differ. The source and the
target metamodel have the same metametamodel.

Model-to-code transformations, on the other hand, usually have no target
metamodel. The target code is created by outputting text, possibly using
a template engine. However, the input of a model-to-code transformation
must still be based on a metamodel.

3.3 Round-Trip Engineering

According to [1], “the goal of round-trip engineering is keeping a number
of artifacts, such as models and code, consistent by propagating changes
among the artifacts. Making artifacts consistent by propagating changes is
also referred to as synchronization. Round-trip engineering is a special case
of synchronization that can propagate changes in multiple directions, such
as from models to code and vice versa”.

16 Chapter 3. Background

The idea of RTFE is closely related to the view update problem of relational
databases. Here, the term view has a different meaning than in the rest of
the thesis. We understand a view as a simplified representation of database
content. Queries against the view can be easily evaluated because they can
be mapped to queries against the original database. However, this is not
the case with update operations. A mapping of view update operations to
database operations may not be unique or it may not exist at all. This
is called the view update problem and has been extensively studied by the
database community starting in the late 1970’s.

The automatic translation of view updates into corresponding database
updates was analysed in [18]. The work also takes integrity constraints on
the schemata into account. Another approach was followed in [28]. It was
proposed that at the time of the view definition an update translator must
be chosen, which translates view updates into database updates in a certain
manner. The underlying assumption was that the database administrator
who defines the view knows best which database update strategy to employ
for certain view updates.

In general, the view update problem is the problem of modifying gener-
ated data and keeping it consistent with the original data. This problem also
occurs in software development, as we have outlined above. RTE systems
usually synchronise artefacts by applying inverse transformations, as illus-
trated in Fig. 3.2. Unfortunately, this does not work for many real world
scenarios, because there are transformations which do not have an inverse,
or whose inverse is difficult or impossible to compute.

Source Target

N

Source' Target'

Figure 3.2: Round-trip via inverse transformation.

Pierce et al. have introduced the notion of lenses for the synchronisation
of trees [22]. Lenses comprise two functions, which are used to formulate

Chapter 3. Background 17

bidirectional transformations. The first function is called get. It is a for-
ward transformation, which transforms a tree (called concrete tree) into an
abstract tree, i.e., a tree which contains less information than the concrete
tree. The second function is called putback. It is a transformation which
transforms a modified abstract tree into a modified concrete tree. The put-
back function computes the modified concrete tree from the original concrete
tree, the abstract tree, and the modified abstract tree. In [11] the concept
of lenses has been applied to relational data. Lenses were defined whose get
and putback functions could synchronise databases and views.

Another means to formulate bidirectional transformations are Triple
Graph Grammars (TGGs) [47]. TGGs establish relationships between two
or more graphs, which conform to different graph grammars, by means of a
correspondence graph. The correspondence graph also conforms to a gram-
mar, the so-called correspondence grammar, hence the name Triple Graph
Grammar. Even though TGG rules are purely declarative, they can be used
as input for unidirectional or bidirectional transformation tools. Since mod-
els are graphs, too, TGGs can also be used to specify the relationship and
transformations between models. For example, Fujaba®, a Computer-Aided
Software Engineering (CASE) tool for model-based software engineering and
re-engineering, uses TGGs for model synchronisation |29,30].

The Query/View/Transformation (QVT) model transformation lan-
guage, which has been standardised by the Object Management Group
(OMG), has been developed to specify relations between MOF-based models.
QVT is in many respects very similar to TGGs. A comprehensive comparison
is presented in [23].

3.4 Conclusion

In this chapter, we shortly introduced three technologies and approaches,
which are the foundations of some of the contributions presented in the fol-
lowing chapters.

GBM is a modularisation and composition approach for source code. It
allows the specification of typed slots in a program. A running program can
be composed by filling the slots in a type-safe manner with typed fragments.

MDSD is a software development methodology which uses models as first-
class development artefacts. Models can describe the domain of the software
system, but also concrete technical realisations. Transformations are used to
transform domain-specific models to more technical models and source code.

Shttp://www.fujaba.de

http://www.fujaba.de

18 Chapter 3. Background

RTE is used to keep derived software artefacts, such as a generated model
or a database view, consistent with their sources, such as the source model or
a database table. When changes are made to the derived software artefact,
the source artefact is modified correspondingly. However, it is not always
possible to modify the source artefact automatically. There are many differ-
ent RTE approaches, each with their own strengths and weaknesses.

Chapter 4. Elucidative Development 19

Chapter 4

Elucidative Development

In this chapter, we will present Elucidative Development, our approach for
the creation and maintenance of semi-formal documents with partial gen-
eration. First, we give a definition of Elucidative Development and sketch
the basic idea. Then, we list the challenges of partial document generation
and maintenance, and derive requirements for their realisation. The remain-
der of the chapter is centred around these requirements and how Elucidative
Development fulfils them.

4.1 General Idea and Running Example

Partial generation of documents is a possibility to reduce the risk of incon-
sistencies due to human mistakes. However, as outlined in Chap. 2, the
maintenance, i.e., the update of such documents, is not easy, because the
regeneration of the documents would discard the manually written content.

We propose a novel method for the creation and maintenance of partially
generated documents. This approach uses generation directives, which trans-
form views or parts of views of the software system, such as models or code,
to document content, such as text or images. The generation directives exist
side by side with manually written content. If the document must be up-
dated, it is not completely regenerated. Instead, only the content created by
the generation directives is regenerated, leaving the manually written content
intact. Additionally, changes in the views that occur after the writing of the
document are automatically identified and reported with the help of the gen-
eration directives. We call this new approach Flucidative Development. The
name is inspired by FElucidative Programming, a documentation approach for
source code (see Sect. 8.1.3). The term “elucidative” means, according to

20 Chapter 4. Elucidative Development

the Merriam-Webster online dictionary!, “to make (something that is hard
to understand) clear or easy to understand”. The term “development” has
been chosen to express that this approach is feasible throughout the whole
software development process.

Definition 5 (Elucidative Development). Elucidative Development (ED) is
an approach for the creation and maintenance of consistent documents by par-
tial generation. Partial generation means that some parts of the documents
are automatically created and updated, while other parts are handwritten. The
generation of document content is controlled by generation directives, which
are embedded in the handwritten document parts. Document content can be
generated from views of the software system or from existing content of the
document itself. Elucidative Development comprises tool support for:

e the evaluation of the generation directives
e the reporting of changes in the referenced views
e the reporting of changes in the generated content

Documents which have been created by means of ED are called elucidative
documents. We will refer to the non-generated parts of elucidative documents
as “handwritten”, like in Definition 5, or as “manually written”. Unless noted
otherwise, we consider an elucidative document a logical unit, even if it might
physically be spread across multiple files. Therefore, we always talk of “the
elucidative document” in the singular.

Definition 6 (Computed Document Fragment). Computed Document Frag-
ments (CDFs) are the content fragments of elucidative documents which are
automatically created.

In some cases, it is necessary to reference an entire view to generate
a CDF. In other cases, it is sufficient to reference only a part of a view,
for example, a single source code file from the source code view. We call
the generation directives active references from now on. A full definition of
active references is given in Sect. 4.3.

Figure 4.1 shows an example of documentation that has been created
using ED. It contains both handwritten content and CDFs. The CDFs are
the figure, which displays a class diagram and a caption, and the class and
attribute names in the running text, which are framed by a black box.

'http://www.merriam-webster.com/dictionary/elucidative

http://www.merriam-webster.com/dictionary/elucidative

Chapter 4. Elucidative Development 21

[@ Shape @]
A
H Rectangle [7] H Line [H Circle [
o color o color o color

Figure II: Shapes

This diagram shows that the different shapes all implement the

interface. This makes it possible to use them all in a uni-

orm manner. One method which takes a shape as parameter can
work on rectangles, lines and circles.

The colour of the circles can be changed. The class has a
attribute (see Fig. IT), which can be set. After the colour has
been set, the circle can be drawn.

Figure 4.1: Document with computed text fragments (framed) and a figure.

4.2 Requirements of Elucidative Development

ED can be used for the creation and maintenance of semi-formal and formal
documents. In the following, we will discuss ED for semi-formal documents.
ED for formal documents will be covered in Chap. 5.

The creation and maintenance of semi-formal documents presents several
challenges. We explain these challenges and derive requirements, which ED
must fulfil.

A major property of ED is, that every time an active reference is evalu-
ated, it produces a consistent CDF. When a document is to be published, all
active references must be evaluated and replaced by their resulting CDFs.

Challenge 1. Dealing with active references during document creation is
potentially troublesome for the document author because the active references
are very technical and interrupt the flow of reading and writing. Additionally,
active references do not give an impression what the final CDF is going to
look like.

22 Chapter 4. Elucidative Development

Requirement 1. The author must have the possibility to hide the technical
details of active references while editing the elucidative document. He shall
be able to see the CDFs instead of the active references.

This can be achieved by the introduction of a presentation layer. Such
a presentation layer can display active references as CDFs. When the views
or the parts of the elucidative document, which are referenced by the active
reference, are changed, the presentation layer updates the CDFs accordingly.

Challenge 2. According to the discussions from above, the presentation layer
would update the CDFs as soon as the referenced data is changed. This be-
haviour is desired if the elucidative document itself is referenced, i.e., if the
CDF is computed from the content of the elucidative document. In this case,
document changes are immediately reflected in the CDFs and local consis-
tency within the document is enforced. However, the behaviour is not desired
if another view of the software system is referenced, i.e., if the CDF is com-
puted from the content of another view. The reason is that the software
system might be globally inconsistent when views are changed. These incon-
sistencies must not be automatically reflected in the elucidative document.

Requirement 2. When a part of an elucidative document is changed and
there 1s an active reference which points to this part, the corresponding CDF
must immediately be updated. In contrast, if a referenced view is changed,
the corresponding CDF must not be updated without explicit permission of
the author.

Challenge 3. If the document is big, the author might be unaware that ref-
erenced views have changed. In that case, he cannot trigger the update of the
affected CDFs and the document becomes inconsistent. Additionally, even
if all CDFs have been updated, they might not look like expected. Imagine,
for example, that several classes have been added to a Unified Modeling Lan-
guage (UML) class diagram, which destroyed the layout of the corresponding
graphical class diagram CDF.

Requirement 3. The author must be supported by a guidance system. He
must be informed when referenced views have been changed in order to allow
or deny an update of the corresponding CDFs. Additionally, he must be
informed when CDFs have been updated, so he can proofread them.

ED focuses on the specialties of partly generated documents. Standard
document management tools and techniques are not explicitly considered.
Nevertheless, ED tools must provide common features, for example a revision
history or change tracking management. Otherwise they will probably not
be accepted by users.

Chapter 4. Elucidative Development 23

Challenge 4. Building word processors or other document editing tools spe-
cific for ED requires tremendous effort. Additionally, people tend to avoid
using new editors if they do not have to.

Requirement 4. The implementation of tool support for ED should focus
on the problems with the generation and maintenance of partly generated
documents. Fxisting standard components, such as editors, should be reused
if possible.

4.3 Structure and Basic Concepts of Elucida-
tive Documents

When the author writes an elucidative document, he can write text and
insert images, like in a normal document. Additionally, he can insert active
references with the help of the Elucidative Development Environment (EDE),
a special editing environment for the creation and maintenance of elucidative
documents. Active references comprise the necessary information for the
computation of CDFs. The structure of an elucidative document and its
active references is shown by the metamodel in Fig. 4.2. In this section, we
will describe the classes of the metamodel and their relationships.

S\ 5 B H Artefact
contentSource CEIATEEEETE artefacts| id : EString
1 0. % T content : EByte
T repository ESiring
T query . EString
T state : EString
0.* | content
B PocumentContent ~ ~
contentSource | 0.1
| | El Configuration | initialConfiguration
configuration
H ManuallywrittenContent H AdtiveReferance g 1
2 id ; EString 1
T state : EString operation
: J P H Cperation
z% 1
H DocumentReference H ArtefactReference

Figure 4.2: Elucidative document metamodel.

Chapter 4. Elucidative Development

Figure 4.3 shows an overview of the main constituents of ED and the
relationships between them in a more informal way. The general composition
of the figure matches that of the figures from Sect. 8.1 in the Related Work

chapter. This eases the comparison to related documentation approaches.

24

(3@3) uswuouiAug Juswdo|aAaq aA1epdN|3

JaAeq uonejuasald
0} pawlIojsuel} S| Jewno0g 4\# Joyany
dAllepIdoN|3
S400 yum
1usawnoo(q sAejdsip
3 7 / //

juawnoog
a|qeysiiand

0} J9jaJ | sulejuod siojuow

suonelngiyuo) as1dWoo k saping \

/ 798essaln o
ey * sI0jlUOW || Tagessane
m\\ e, -4
b - e —— | seousiagey auigug
) asidwod dAIN .
suoljesadQ ; i dueping
slojuow
01 Jayal
Y Jadojanaqg
01 S10BJO1IY 91BMJOS
paw.iojsuel) ale s;uswalInbay
waisAs / @quosap apod NSd WId Jew.o sdojansp
21EM1JOS ~— >,
{
spoo swos//
} ()®3noexa ptoa ortTqnd

Figure 4.3: Elucidative Development overview.

Chapter 4. Elucidative Development 25

The author can choose how the embedded active references are displayed.
They can either be shown directly or they can be hidden and the correspon-
ding CDFs are displayed instead (see Requirement 1). The author can select
the desired display mode in the EDE. Figure 4.4 shows a schematic repre-
sentation of an elucidative document where the active references are visible.

H Connector@l| [& Shape [.
(from Connect) |1 (from 'Shappe‘ A different
connectors . .
Elucidative
Fi
1'|S Document
H Rectangle [# Hline & E circle &
(from Shape) (from Shape) (from Shape)
2 color T color T color

Software Artefact

Artefact
Reference

/ Configuration I
, &8

#h Manually
O o &2 Created

P ‘.:‘_- h -,.;-»j \ COntent
4 2 .
el s N
."-a-»'r X - ‘
-5 '._.2 -

w Artefact
Reference
Operations Configuration |

Document | |
Reference

‘ Confiéuration |

Elucidative Document

Figure 4.4: Different kinds of active references.

26 Chapter 4. Elucidative Development

4.3.1 Artefact

ED has been designed to ease the writing about one or several views of a
software system. Therefore, it must be possible to insert information from
the views into an elucidative document. Artefacts represent information from
the views and can be used as source for the computation of CDFs.

Definition 7 (Artefact). An artefact is a copy of a view of the documented
software system or a part thereof.

In the following, we say that an artefact represents a view when the
artefact is a copy of that view. This includes the case that the artefact is
only a copy of a part of the view (e.g., a single file).

An artefact comprises the following data:

e id: The unique identifier of the artefact.

e content: The copied data of the view, or view excerpt, which this
artefact represents.

e repository: The data store which contains the original view of the
artefact, e.g., the local file system, a source control repository, or the
internal repository of a modelling tool.

e query: The location of the artefact’s original view within the reposi-
tory, e.g., a file path, a path in the source control repository, or a query
for the modelling tool repository.

state: A flag indicating the update state of the artefact.

Together, the repository and the query describe the origin of the view.
Thus, it is possible to inspect the original view and compare its content to
the artefact. If the view and the artefact content are identical, the artefact
represents the current state of the view. If the view and the artefact differ, the
view has been changed since the artefact has been created, and the artefact
is outdated. The information whether an artefact is outdated is important
for the guidance system, which will be covered in more detail in Sect. 4.5.
The state flag carries the update state of the artefact and is also explained
in Sect. 4.5.

An artefact is initially created by the document author. With the help of
the EDE, he can interactively select the desired repository and formulate a
query. In the simplest case, this would comprise selecting a file from the file
system. If the content of the view is different from the content of the artefact,

Chapter 4. Elucidative Development 27

the author can choose to update the artefact. Updating the artefact means
that its content is replaced by the current content of the view. When an
artefact is updated, all CDFs which depend on this artefact are recomputed
(see Sect. 4.4.1).

4.3.2 Active Reference

Definition 8 (Active Reference). An active reference is a collection of data,
which allows the computation of CDFs.

The term active reference has been chosen because an active reference
references the information which is necessary to compute a CDF. The term
active has been chosen because the term reference is rather general and used
very frequently in computer science. Furthermore, it indicates the relation-
ship to active documents (see Sect. 8.2.2).

An active reference comprises the following data:

e id: The unique identifier of the active reference.

e state: A flag indicating the update state of the corresponding CDF.

e configuration: The configuration, which influences the content and
the formatting of the CDF.

e operation: The operation which creates the CDF.

Additionally, an active reference, or rather its concrete subclasses, have
a content source. The content source of an active reference is the source of
information from which the CDF will be computed. This can either be the
elucidative document itself or an artefact. Depending on the kind of content
source, the active reference is either called document reference or artefact
reference (see below).

Usually, an active reference is added to the document content by the
document author via the EDE. Exceptions are active references in formal
documents, which are automatically created. They are discussed in Chap. 5.

Definition 9 (Document Reference). A document reference is an active ref-
erence whose content source is the elucidative document itself.

Only the current elucidative document can be referenced with a document
reference. For other elucidative documents it is necessary to use artefact
references instead (see Fig. 4.4).

28 Chapter 4. Elucidative Development

Definition 10 (Document CDF). A document CDF is a CDF which has
been computed from a document reference.

Definition 11 (Artefact Reference). An artefact reference is an active ref-
erence whose content source is an artefact.

There can be arbitrarily many artefact references for each artefact. We
say that an artefact reference whose content source is a certain artefact de-
pends on that artefact.

Definition 12 (Artefact CDF). An artefact CDF is a CDF which has been
computed from an artefact reference.

4.3.3 Configuration

A CDF is not only computed from the content source. The author can also
provide additional values that influence the CDF. These values are called
configuration. They are basically parameters of the operation.

Definition 13 (Configuration). A configuration is a set of key-value-pairs,
which influence the generation of a CDF. The possible keys and value ranges
are defined by the operation. The concrete configuration values are provided
by the author.

The values of a configuration are used during the execution of an oper-
ation. Tt is necessary that the configuration contains all values expected by
the operation. Since the operation knows which values it needs, it is the
operation’s responsibility to provide an initial configuration, which contains
all the keys for which the author must specify a value.

Configuration values can be used to influence both the content and the
visual appearance of the CDF. An example of the former is a configuration
value used as a filter, which references the desired part(s) of the content
source. For configurations of document references, the filter could consist
of XPath expressions, IDs of document content, or even line numbers. For
configurations of artefact references, the filter could match a method from a
class in source code or some classes from a UML class diagram. Examples
of the latter are the setting of a background colour, the setting of a scaling
factor if the CDF is an image, or the specification of an image caption.

A configuration is filled by the author who inserts the active reference.
According to Requirement 1, the author should not be forced to deal with
the technical details of a configuration. Therefore, the EDE should present
the author a dialogue where some options can be set, such as in Fig. 4.5.
The selected options are then translated by the EDE into a configuration.

Chapter 4. Elucidative Development 29

x
Create Format
Name: MyCodeFormat
Define Visibility Includegraphics options [
| = | [V Use Figure environment

{
[ClassMemberDedaration] Position
[ClassMemberDedaration] ¥ Force

e Centering I
I Top capton |
I Battom Label [refragyoMAPECKPOEKKDBRA
™ Page
Kl
a) Dialogue for filtering CDFs which b) Dialogue for the formatting of figure
123 g g g g
represent, a code listing. CDFs in a IMTEX-based elucidative
document.

Figure 4.5: Configuration dialogue examples.

4.3.4 Operation

Definition 14 (Operation). An operation o is a function which transforms
several inputs into a CDF.

CDF = o(s,c1,...,¢c,);n >0, where s is the content source and ¢y to ¢, are
values from the configuration (it is also possible that there are no configura-
tion values at all).

e

Class Diagram
Artefact

55

Transforming
to Image and
Scaling down

e

Filtering

Configuration

A4 {V A4

N Operation

Figure 4.6: Operation as data-flow diagram.

Figure 4.6 shows an operation, which transforms a class diagram and a
configuration with 3 values into an image with a caption. The operation

30 Chapter 4. Elucidative Development

is divided into 3 stages. The first stage is a filter, which removes some
unwanted classes from the diagram. The classes to be removed are specified
in the configuration. The second stage converts the diagram into an image
and scales it down. The scaling factor is provided by the configuration. The
third stage adds a caption to the figure, i.e., it creates a compound CDF,
which consists of an image and the caption text. The caption to be set is
also provided by the configuration. Finally, the complete CDF is returned
by the operation.

Operations are developed and deployed to the EDE by a developer. The
author only uses the built-in operations.

4.3.5 Elucidative Development, Grammar-Based Mod-
ularisation and Slots

For some discussions in the upcoming sections and chapters, the distinction
between active references and CDFs is not important. Both are two sides of
the same coin. Therefore, we introduce the concept of slots. This term has
been chosen in accordance with the term slot from Grammar-based Modu-
larisation (GBM), which we introduced in Sect. 3.1.

Definition 15 (Slot). A slot is an area of variability in a document, which
is described by an active reference and can be filled with a CDF. Thus, a slot
s a part of an elucidative document that represents generable content.

If the format of an elucidative document is based on a tree grammar, it is
considered typed, as discussed in Sect. 6.1. In this case, ED is an application
of GBM. The “language” in GBM corresponds to the document format in
ED, which is based on a tree grammar. A slot in an elucidative document
contains both a name and a syntactic category, like a slot in GBM.

If we look at the slot as an active reference, the slot name is the id of
the active reference. The syntactic category is either explicitly stated in the
active reference or it can be queried using the EDE. If we look at the slot as
a CDF, again, the slot name is the id of the active reference. The syntactic
category is the type of the CDF root node.

In general, GBM allows the nesting of slots and fragments. A fragment
form can contain slots, which are bound to other fragment forms, which in
turn can contain other slots, and so on. While it would theoretically be
possible to extend ED with nested slots, we have not found indications that
this would add value. Therefore, slots in ED are defined only at the root
level, i.e., in the elucidative document. CDFs, which correspond to fragment
forms, do not contain slots.

Chapter 4. Elucidative Development 31

4.4 Presentation Layer

According to Requirement 1, the author should be able to hide the active
references during the writing of the elucidative document. A presentation
layer is responsible for displaying the CDFs instead of the active references
and for updating CDFs when the content source, i.e., the artefacts or the
elucidative document, has been changed. This gives rise to a number of
issues that must be considered.

4.4.1 Updating Computed Document Fragments

Artefact CDFs and document CDFs have different update strategies (see
Requirement 2). Document CDFs must be updated immediately when the
referenced document content has changed. This ensures that the document
is locally consistent.

In contrast, artefact CDFs must not be updated immediately when the
corresponding view of the software system has changed. The update of the
artefact CDFs in the elucidative document must be delayed until the software
system is globally consistent. In general, it is not possible for a tool to decide
when all views of a software system are globally consistent. Therefore, the
document author must explicitly update the artefacts, when he believes the
corresponding views of the software system are globally consistent. After the
artefact update, the EDE recomputes all artefact CDFs.

4.4.2 Displaying Incomputable References

There are cases in which it is not possible to compute a CDF. For example,
the artefact might have been deleted, or the configuration contains values
which cause the operation to fail. These errors must be reported to the au-
thor. One way is to employ guidance, as described in Sect. 4.5. Additionally,
the presentation layer can be used to display special CDFs which contain
error messages. Once the error has been resolved, the error message CDFs
can be replaced by the “real” CDFs again.

4.4.3 Chaining Slots

Document CDFs can be computed from arbitrary document content, includ-
ing other CDFs. We say, that a slot can depend on other slots. Thus, it
is possible to create chains of slots. In the following, we will explain how
chained CDFs are computed. Afterwards, we will show the advantages of
chained CDFs.

32 Chapter 4. Elucidative Development

If a slot depends on one or more other slots, the CDF cannot be computed
before the other CDFs have been computed. Such a dataflow graph can theo-
retically be arbitrarily long and must not contain cycles. The first CDF in a
dataflow graph is either computed from an artefact or from the handwritten
content of the elucidative document. Figure 4.1 on page 21 shows an excerpt
of an elucidative document with dependent CDFs. The example shows an
elucidative document with a CDF that represents a figure and some CDFs
that represent identifiers from the figure (framed). Since the CDFs of the
identifiers describe the content of the figure, it makes sense to use the figure
as content source.

The approach of updating document content which depends on other doc-
ument content or external data is known as transconsistency |3]. Transconsis-
tency is discussed in Sect. 8.2.2. The dataflow graph is called transconsistent
dataflow graph in [3].

A document is transconsistent if its computable components are immedi-
ately updated along the dataflow graph when an input value changes. Thus,
the automatic update of document CDFs is an application of transconsis-
tency. In contrast, the automatic update of artefact CDFs is not an example
of transconsistency, because the update does not immediately take place
when the corresponding view is changed. Instead, the update of artefact
CDFs is delayed until the author triggers the update of the dependent arte-
fact. We call this modified concept weak transconsistency.

Definition 16 (Weak Transconsistency). Weak transconsistency is a strat-
eqy of delayed updates for documents with a transconsistent dataflow graph.
In contrast to transconsistency, dependent values along the dataflow graph
are not immediately recomputed when an input value has changed. The re-
computation requires an explicit permission, usually by a human.

Figure 4.7 shows the dataflow graph of the example from Fig. 4.1. Solid
lines indicate that CDFs are immediately updated when their input CDF (the
figure) is changed. The dashed line indicates that the figure is an artefact
CDF which is only updated after an explicit artefact update.

As shown in Fig. 4.7, it is sometimes desired to compute CDFs from
CDFs which contain a figure. But raw images are not suited as input for
other CDFs, because it is difficult to automatically extract useful information
from them. Therefore, we propose a method to make intermediate results
of the CDF operation accessible, which are better suited as input for the
computation of CDFs than images.

As we have seen in Fig. 4.6, operations do not necessarily have to be
performed in one atomic step. They can be divided into multiple stages.
The result of each operation stage is the input for the next operation stage.

Chapter 4. Elucidative Development 33

.‘E Copnecgqr!ﬂ L= [@ Shape @]
from Connect < (from Shape)
connectors -
H Rectangle [H Line [# H Circle @
(from Shape) (from Shape) (from Shape)
2 color 2 color 2 color
|
|
1 Artefact
I
|
|
|
|
€3 Shape [
(from Shape)
H Rectangle @ Hline @ H cCircle @
(from Shape) (from Shape) (from Shape)
= color = color = color

Figure Il: Shapes

Manually written

Text o]
Circle
77777777 p Delayed update

— > Immediate update

Elucidative Document

Figure 4.7: Dataflow graph for weak transconsistency.

The last stage produces the CDEF. If the results of the intermediate operation
stages are made accessible from outside the operation, they can be used as
input for other operations. Figure 4.8 shows the operation from Fig. 4.6, but
now the result of the filtering stage is made available via output r;. Thus, the
text CDFs from Fig. 4.1 can be computed from the results of the operation’s
intermediate filtering stage. Figure 4.9 displays this approach graphically.

34

Chapter 4. Elucidative Development

i

Class Diagram
Artefact

Configuration

T

Transforming
to Image and
Scaling down

Filtering

YyvYy

Operation

Figure 4.8: Operation with multiple outputs.

[Class Diagram Artefact |

L] 3
Filtering b - J

| Filtered Class Diagram i,

Transforming to Image
and Scaling down

| Diagram Image |

) &

y @4 A

o
Extracting Extracting Extracting
Identifier Identifier Identifier
Diagram to Diagram to Diagram to
Identifier Operation Identifier Operation Identifier Operation

Diagram to Figure Operation

y
Handwritten ” Figure with Caption || Handwritten " Identifier ” Handwritten || Identifier ” Handwritten ” Identifier|

Elucidative Document

Figure 4.9: Detailed dataflow graph with intermediate operation results.

Operations with multiple outputs are not covered by Definition 14,
though. Therefore, we present an extended definition.

Definition 17 (Operation (extended)). An operation o is a function which
transforms several inputs into a tuple of outputs.

(CDF,r1,...,mm) = o(s,c1,..

cn);m > 0,n >0, where r1 to r,, are inter-

mediate results, s is the content source and c; to ¢, are values from the

configuration.

Chapter 4. Elucidative Development 35

The advantages of chained CDFs in comparison to “normal” CDFs are
better consistency enforcement and easier maintenance.

Better Consistency

Imagine an operation that transforms a class diagram artefact into a CDF
with an image, like in the example from Fig. 4.1. The image shows various
classes and the running text explains them. The textual explanation explic-
itly refers to the image, using CDFs with the class and attribute names.

At some time in the future, the author decides that the diagram image is
too big and should be made smaller. He changes the configuration and filters
out some classes which he considers unimportant for the documentation.
However, the text still explains these classes and states that they are shown
in the figure. Therefore, the text and the figure are locally inconsistent.

If the CDFs are chained, a semantic relationship is established between
them. Local inconsistencies as the one described above can automatically be
found and reported. The CDFs with the class and attribute names (iden-
tifiers) are computed from the CDF with the figure instead of the original
diagram artefact. If a class is removed from the figure, the CDFs with identi-
fiers of the removed class cannot be computed anymore. The guidance system
(see Sect. 4.5) can give the author an appropriate error message. This would
not have been possible, had the CDFs with the identifiers been computed
directly from the diagram artefact.

Easier Maintenance

Now imagine that the referenced class diagram has been moved to a different
location by a developer. All CDFs in the elucidative document whose active
references point to the old diagram location cannot be computed anymore.
However, if the CDFs with the identifiers depend on the CDF with the figure,
the author only has to repair or recreate the active reference of the CDF with
the figure, so that it points to the new location of the class diagram. Once the
CDF with the figure can be computed again, the CDFs with the identifiers
can be automatically computed, too. Had all CDFs with identifiers pointed
to the class diagram directly, it would have been necessary to repair each
active reference individually.

36 Chapter 4. Elucidative Development

4.5 Guidance

An important property of ED is guidance for the author, as stated by Re-
quirement 3. ED does not enforce the use of a certain technology for the
guidance system. Furthermore, the scope of the guidance system is variable,
depending on a concrete implementation of the EDE. In this section, we will
present a minimal, state-based guidance system, that covers basic consistency
scenarios. After the formal description, we will present an example, how the
guidance system behaves during the update of an elucidative document.

For the guidance system presented in this section, we make the follow-
ing assumptions. These assumptions may or may not apply to alternative
realisations of the guidance system.

e An artefact reference is immutable. It is not possible to change the con-
tent source of an artefact reference in order to point to another artefact.
If another artefact should be referenced, the old artefact reference must
be deleted and a new one must be created.

e The document format of the elucidative document supports cross ref-
erences. The EDE is aware of the cross references.

e A large part of the guidance system is meant to inform the author
about CDF changes. Thus, the EDE must be configured to display the
CDFs instead of the plain references.

4.5.1 Formal Definition of the Guidance State

ED guidance provides the author with information about inconsistencies in
the document, together with recommendations how to resolve them. For
example, the author must be notified

e when document CDFs have been automatically modified, so that the
author can proofread them,

e when views of the software system have been changed, so that the
artefacts are outdated and the elucidative document is not globally
consistent anymore,

e when artefact CDFs have been modified after the author has updated
the artefacts,

e or when CDFs cannot be computed, because the referenced artefacts
or the referenced document content have been deleted.

Chapter 4. Elucidative Development 37

The guidance system presented in this section is state-based. All notifi-
cations for the author and the recommended follow-up actions depend solely
on the update states, also called just states in the following, of the active
references and the artefacts. State changes of artefacts can influence the
state of artefact references. Therefore, we are going to present the guidance
system based on UML state charts, which can fire and react on events.

Definition 18 (Guidance System). A guidance system GS is a state system
GS = (artefacts,referencesa,referencesp, SC, state srie facts, Statea, statep, cr,
crmodified), where

(i) artefacts is the set of existing artefacts.
(ii) referencesy is the set of artefact references.
(iii) referencesp is the set of document references.

(iv) SC is a triple of state charts (SCartefacts, SCa, SCp), which define the
states and transitions of the artefacts, the artefact references and the
document references, respectively.

(v) stateariefacts = artefacts — SCapiefacts states 15 @ function that returns
the current state of an artefact. SCartefactsstates 15 the set of possible
states defined by the state chart SCartetacts-

(vi) statey : referencesy — SCa states 1S a function that returns the current
state of an artefact reference. SCy staes 5 the set of possible states
defined by the state chart SCy.

(vii) statep :referencesp — SCp states 1S a function that returns the current
state of a document reference. SCp siates 1S the set of possible states
defined by the state chart SCp.

(viii) cr is the set of cross references inside the elucidative document.

(ix) crmodified C cr is the set of cross references that point to document
references whose state indicates a modification.

We will present the actual state charts for artefacts, artefact references
and document references below. Each state chart will first be presented
graphically. The transitions between the states are labelled with numbered
abbreviations. These abbreviations denote events that trigger the transitions
and events that are fired by the transitions. Detailed textual descriptions of
all events will be given below each state chart, grouped by states.

38 Chapter 4. Elucidative Development

4.5.2 Artefact State Chart

Changes in the views of the software system might make the elucidative doc-
ument globally inconsistent. If this is the case, the affected CDFs must be re-
computed. But before the CDFs can be recomputed, the author must update
the corresponding artefacts (see Sect. 4.4.3 and Requirement 2). Therefore,
it is important that the author is notified about changes in the views.

changed

Figure 4.10: Artefact state chart.

The artefact state chart SCapsefacts, shown in Fig. 4.10, is the foundation
of this notification mechanism. When a new artefact is created, a new artefact
state chart for that artefact is initialised. The state chart comprises the states
normal, changed, missing and a final state. When the state chart enters the
final state, the artefact is deleted.

Normal State

An artefact is in the normal state when it has been created. If an artefact

is in the normal state, the content of the artefact is the same as the content

of the view it represents. Therefore, no guidance messages are necessary.
The following events can occur in the normal state:

C14.+ The view has been changed. Its content is different from the artefact
content. The resulting state is changed.

M1 4,4 The view has been deleted or moved. The resulting state is missing.

Chapter 4. Elucidative Development 39

Changed State

An artefact is in the changed state when its content is different from the

content of the view it represents. This can happen, for example, if a developer

changed code for which an artefact has been created. If an artefact is in the

changed state, a corresponding message must be presented to the author.
The following events can occur in the changed state:

N14,+ The author has accepted the view changes and considers them a new
revision that must be documented. He uses the EDE to overwrite the
artefact content with the new view content. We say that the artefact is
being updated. The resulting state is normal. Furthermore, an Artefact
Update (AU) event is fired. This event triggers a transition in the state
charts of the dependent artefact references and causes a recomputation
of the corresponding CDFs. See the artefact reference state chart below
for details.

N24,+ Before the author has updated the artefact, the view has been changed
again. The view content now happens to be the same as before, iden-
tical to the artefact content. We say that the view has been restored.
The resulting state is normal.

M1 4.+ The view has been deleted or moved. The resulting state is missing.

Missing State

An artefact is in the missing state when its view has been deleted or moved
to a different location. If an artefact is in the missing state, a corresponding
message must be presented to the author. The author can then decide to
accept that the view has disappeared and invalidate the artefact and all
dependent artefact references. Alternatively, he can wait for the view to be
recreated or moved back.

The following events can occur in the missing state:

N34+ The view has been restored, i.e., the view has been recreated or moved
back to its former location. Furthermore, its content is the same as the
artefact content. The resulting state is normal.

C24,+ The view has been recreated or moved back to its former location.
However, its content is different from the artefact content. The result-
ing state is changed.

40 Chapter 4. Elucidative Development

R1,4,; The author has accepted that the view has been removed. This causes
the artefact to be deleted. The resulting state is the final state. Fur-
thermore, an Artefact Removal (AR) event is fired. Like the artefact
update event, the artefact removal event triggers a transition in the
state charts of the dependent artefact references. It causes the invali-
dation of all artefact references that depend on the removed artefact.
See the artefact reference state chart below for details. The artefact
removal is permanent.

Final State

An artefact is in the final state when the author has accepted that the cor-
responding view is missing. In contrast to the missing state, the final state
cannot be left. If an artefact enters this state, it cannot be used anymore
and is deleted. The deletion of the artefact fires the artefact removal event.
This event invalidates all artefact references, which depend on the artefact,
so they must eventually also be deleted (see the artefact reference state chart
below for details).

4.5.3 Artefact Reference State Chart

When an artefact state chart fires an artefact update event, the dependent
CDFs must be recomputed. A recomputed CDF might not look like the au-
thor has intended, though. Therefore, he should check it, possibly supported
by a visualisation of the differences, and adjust it if necessary. Adjusting
the CDF includes changing the configuration, or completely replacing the
artefact reference with a new one.

If a recomputed CDF looks different from before, we call it modified.
For each modified CDF, the author should check the surrounding document
content, such as running text, for consistency. Following the spirit of Literate
Programming, we believe that document content which refers to CDFs is
usually close to these CDFs. This enables the author to deal with many
local inconsistencies between CDFs and manually written content?. After
the author has approved or revised the content surrounding a CDF, he can
explicitly accept the CDF modification.

Similarly, when an artefact state chart fires an artefact removal event,
the dependent artefact references must be invalidated. As a result, the cor-

2This is only a heuristic. It is not defined how big the “surrounding document content”
is. It could be the whole chapter or only a few lines of text before and after the CDF.
There is no guarantee that the author will find all parts of the content that are inconsistent
with the modified CDF, but chances are increased that he does.

Chapter 4. Elucidative Development 41

responding CDFs must be removed or replaced by error message CDFs (see
Sect. 4.4.2). The author must be informed about all CDFs that have been
modified or removed.

modified

Lincomputable]

Figure 4.11: Artefact reference state chart.

The artefact reference state chart SCy, shown in Fig. 4.11, is the basis
for this notification mechanism. It comprises the states normal, modified,
incomputable and a final state.

Normal State

An artefact reference is in the normal state when it has been newly created.
An artefact reference being in the normal state means that there are no
inconsistencies in the elucidative document w.r.t. the corresponding artefact.
Therefore, no guidance messages are necessary.

The following events can occur in the normal state:

AU[M1,4] The author has applied an update of the corresponding artefact,
i.e., an artefact update event has been fired by the artefact state chart.
The artefact update causes a modification of the CDF. The resulting
state is modified.

42 Chapter 4. Elucidative Development

AUI1,4] The author has applied an artefact update, and the CDF cannot
be computed anymore. The resulting state is incomputable.

12,4 The author has changed the configuration, and the CDF cannot be
computed anymore. The resulting state is incomputable.

AR The author has applied the removal of the corresponding artefact, i.e.,
an artefact removal event has been fired by the artefact state chart.
The resulting state is the final state.

Modified State

An artefact reference is in the modified state when a CDF has been modi-
fied due to an artefact update. If an artefact reference is in the modified
state, a corresponding message must be presented to the author. When the
author sees this message, he must check the modified CDF and proofread
the surrounding document content. Afterwards, he must explicitly confirm
the correctness and consistency of the CDF and the surrounding document
content. Furthermore, the document might contain cross references to the
modified CDF, which might have become inconsistent. Thus, a correspon-
ding message must be presented to the author for each cross reference that
points to the modified CDF. Again, the author must proofread the content
surrounding the cross references and edit it if necessary. Then, he must
confirm that it is consistent.
The following events can occur in the modified state:

N1, The author has examined and explicitly accepted the modified CDF.
The resulting state is normal.

N2, The author has changed the configuration, which results in a new CDF.
The resulting state is normal.

AU[I14] The author has applied an artefact update, and the CDF cannot
be computed anymore. The resulting state is incomputable.

12,4 The author has changed the configuration, and the CDF cannot be
computed anymore. The resulting state is incomputable.

AR The author has applied the removal of the corresponding artefact. The
resulting state is the final state.

Chapter 4. Elucidative Development 43

Incomputable State

An artefact reference is in the incomputable state when a CDF cannot be
computed due to a configuration change or an updated artefact. If an artefact
reference is in the incomputable state, the author must be informed that
the CDF cannot be computed. The author can try to resolve the issue by
changing the view, if he is allowed to, and updating the artefact again or by
changing the configuration.

The following events can occur in the incomputable state:

N2, The author has changed the configuration, which results in a new CDF.
The resulting state is normal.

AU[M1,4] The author has applied an update of the corresponding artefact.
The artefact update causes a modification of the CDF. The resulting
state is modified.

AR The author has applied the removal of the corresponding artefact. The
resulting state is the final state.

Final State

An artefact reference is in the final state when the corresponding artefact has
been deleted. An artefact reference cannot leave the final state. The artefact
reference has become useless and must eventually be deleted. A message
must be presented to the author.

4.5.4 Document Reference State Chart

When the part of the elucidative document to which a document reference
points is modified, the corresponding CDF might change. In contrast to arte-
fact CDFs, the recomputation of document CDFs is not delayed, because this
would make the document locally inconsistent (see Requirement 2). A recom-
puted CDF might not look like the author has intended, though. Therefore,
he must check it, possibly supported by a visualisation of the differences,
and adjust it if necessary. Adjusting the CDF includes changing the configu-
ration, modifying the referenced document content, or completely replacing
the document reference with a new one. Additionally, the author must check
surrounding document content for consistency with the updated CDF. After
the author has approved or revised the content surrounding a CDF, he can
explicitly accept the CDF modification. The author must be informed about
all document CDF changes.

44 Chapter 4. Elucidative Development

incomputable j

N2, N3p

Figure 4.12: Document reference state chart.

The document reference state chart SCp, shown in Fig. 4.12, is the basis
for this notification mechanism. It comprises the states normal, modified
and incomputable. In contrast to the artefact reference state chart there is
no final state.

Normal State

A document reference is in the normal state when it has been newly created.
A document reference being in the normal state means that there are no
inconsistencies in the elucidative document w.r.t. the document reference.
Therefore, no guidance messages are necessary.

The following events can occur in the normal state:

M1p The author has edited the referenced document content, which results
in a different CDF. The resulting state is modified.

I1p The author has edited the referenced document content, and the CDF
cannot be computed anymore. The resulting state is incomputable.

I2p The author has modified the configuration, and the CDF cannot be
computed anymore. The resulting state is incomputable.

Modified State

A document reference is in the modified state when a CDF has changed due
to changed document content. If a document reference is in the modified
state, a corresponding message must be presented to the author. When the
author sees this message, he must check the changed CDF and proofread

Chapter 4. Elucidative Development 45

the surrounding document content. Afterwards, he must explicitly confirm
that the CDF and the surrounding document content are correct and con-
sistent. Furthermore, the document might contain cross references to the
updated CDF, which might have become inconsistent. Thus, there must be
a corresponding message for each cross reference that points to the updated
CDF. Again, the author must proofread the content surrounding the cross
references and edit it if necessary. Then, he must confirm that it is consistent.
The following events can occur in the modified state:

N1p The author has examined and explicitly accepted the modified CDF.
The resulting state is normal.

N2p The author has changed the configuration, which results in a new CDF.
The resulting state is normal.

N3p The author has edited the referenced document content, which causes
the CDF to change back to its original form. The configuration has
not been changed. The resulting state is normal.

I1p The author has edited the referenced document content, and the CDF
cannot be computed anymore. The resulting state is incomputable.

I2p The author has changed the configuration, and the CDF cannot be
computed anymore. The resulting state is incomputable.

Incomputable State

A document reference is in the incomputable state when a CDF cannot be

computed due to a configuration change or edited document content. If a

document reference is in the incomputable state, the author must be informed

that the CDF cannot be computed. The author can try to resolve the issue

by changing the referenced document content or changing the configuration.
The following events can occur in the incomputable state:

N2p The author has changed the configuration, which results in a new CDF.
The resulting state is normal.

N3p The author has edited the referenced document content, which causes
the CDF to change back to its original form. The configuration has
not been changed. The resulting state is normal.

M1p The author has edited the referenced document content, which results
in a different CDF. The resulting state is modified.

46 Chapter 4. Elucidative Development

4.5.5 Example

We will now illustrate these rather abstract descriptions with an example.
The example is based on the elucidative document from Fig. 4.1. We will
show how the elucidative document is updated and how the update affects
its guidance state.

In order to guide the author, the guidance state must be transformed
into messages. If possible, the guidance system should also show tasks, i.e.,
items of work that the author must perform in order to make the elucidative
document consistent again. Some tasks can be executed automatically. It
is only necessary for the author to trigger their execution, such as “Remove
artefact”. Other tasks can only be completed manually, such as “Proofread
section”. The example will contain both guidance messages and tasks.

After the document has originally been written, it has the guidance state
presented below. We use symbolic names for the artefact and reference
names. They appear in the same order as in Fig. 4.1. We do not explic-
itly list the state charts in the example, because we will always use the state
charts that we introduced above.

artefacts ={(Shape.ecorediag)}
referencesa ={ref figure}
referencesp ={ref Shape,ref Circle,ref color}
state Arte facts ={(Shape.ecorediag, normal)}
statey, ={(ref _ figure, normal)}
statep ={(ref_Shape, normal), (ref _Clircle, normal), (ref _color, normal)}
cr ={cr_ figure}
crmodi fied =0

Imagine, that the documented software has evolved after the creation
of the elucidative document. The class diagram with the shapes has also
changed. A new abstract class called AbstractShape has been added. The
color attribute has been moved from the Rectangle, Line and Circle
classes to AbstractShape. Consequently, the elucidative document has be-
come inconsistent and must be updated. In the following, we will describe
the necessary steps to update the elucidative document and how the guidance
system supports the author. Fig. 4.13 shows what the elucidative document
is going to look like after the update.

Chapter 4. Elucidative Development 47

& Shape [7

(from Shape)

P

H Abstractshape Bl
(from Shape)

o color
A
H Rectangle 7 H Line [# H Circle [
(from Shape) (from Shape) (from Shape)

Figure II: Shapes

This diagram shows that the different shapes all extend
‘AbstractShape , which in turn implements the in-
terface. This makes it possible to use all shapes in a uniform
manner. One method which takes a shape as parameter can
work on rectangles, lines and circles.

The colour of the circles can be changed. The |Circle]| class
has a attribute (inherited from ‘AbstractShape ‘,
see Fig. II), which can be set. After the colour has been
set, the circle can be drawn.

Figure 4.13: Updated and corrected documentation.

In the EDE, there is an artefact which represents the class diagram.
Therefore, the guidance system notices the change in the class diagram and
the guidance state is changed to:

artefacts ={(Shape.ecorediag)}
referencess ={ref figure}
referencesp ={ref Shape,ref Circle,ref color}
state artefacts ={(Shape.ecorediag, changed)}
state, ={(ref _figure, normal)}
statep ={(ref Shape, normal), (ref Clircle, normal), (ref color, normal)}
er ={cr_ figure}
crmodi fied =0

48 Chapter 4. Elucidative Development

The guidance system reports the view change to the author. The message
and the task that the guidance system presents could look like this:

e The view Shape.ecorediag has been changed.

— Update artefact Shape.ecorediag in the repository.

When the author executes the task, an artefact update event is fired.
This causes the CDF with the figure to be recomputed. The guidance state
is changed to:

artefacts ={(Shape.ecorediag)}
referencesa ={ref figure}
referencesp ={ref Shape,ref Clircle,ref color}
state arte facts ={(Shape.ecorediag, normal)}
states ={(ref _figure, modified)}
statep ={(ref_Shape, normal), (ref _Circle, normal), (ref _color, normal)}
er ={cr_ figure}
crmodi fied =()

This is only an intermediate state, though. In this example, all the docu-
ment references point to the artefact reference ref figure, which computes
the class diagram CDF (Figure II). The class diagram CDF has been modi-
fied, and all the depending document CDFs must also be recomputed. It
turns out, that the CDFs with the Shape and Circle identifiers are not af-
fected by the modification of the figure CDF. Thus, they keep their normal
state. But the referenced color attribute of the Circle class cannot be
found, because it has been moved to the AbstractShape class. Therefore,
the CDF of the document reference ref color cannot be computed anymore
and the state is changed to incomputable. Furthermore, the cross reference
cr__figure points to the artefact reference ref figure, which is marked as
modified. Therefore, the cross reference is also marked as modified. The
resulting guidance state is:

Chapter 4. Elucidative Development 49

arte facts ={(Shape.ecorediag)}
referencesa ={ref figure}
referencesp ={ref Shape,ref Clircle,ref color}
state arte facts ={(Shape.ecorediag, normal)}
states ={(ref _figure, modified)}
statep ={(ref _Shape, normal), (ref _Circle, normal), (ref _color, incomputable)}
er ={cr_ figure}

crmodified ={cr_ figure}

The guidance system can use the guidance state to display the following
information and tasks:

e Content “Figure II” generated from artefact Shape.ecorediag has au-
tomatically been modified.
— Show in editor.
— Mark as checked.
e There is 1 cross reference which points to the modified content “Fig-
ure IT”.
— Show cross reference in editor.

— Mark cross reference as checked.
e Content “identifier” cannot be generated.

— Show in editor.

— Edit configuration.

The author uses the information from the guidance system to update
the elucidative document. He changes the text, introduces CDFs for the
new AbstractShape and edits the configuration of the incomputable doc-
ument reference ref color. He also marks the modified artefact reference
ref figure and the cross reference c¢r_figure as checked. The final guid-
ance state looks like this:

20

Chapter 4. Elucidative Development

artefacts ={(Shape.ecorediag)}
references ={ref figure}
referencesp ={ref AbstractShape 1,ref Shape,ref Clircle,ref color,
ref AbstractShape 2}
state arte facts ={(Shape.ecorediag, normal)}
statey ={(ref _figure, normal)}
statep ={(ref AbstractShape 1, normal), (ref Shape, normal),
(ref Circle, normal), (ref color, normal),
(ref _AbstractShape 2, normal)}
er ={cr_ figure}
crmodi fied =0

All artefacts and active references are in the normal state. The author

sees no more guidance messages, so he knows that the elucidative document is
globally consistent again. Thus, the guidance system has successfully guided
the author through the process of identifying outdated and (potentially) in-
consistent CDFs and making them consistent with the other views of the
software system, as well as the handwritten document content.

4.6 Conclusion

In this chapter, we presented Elucidative Development as a means to create
and maintain semi-formal, partially generated documents.

e We explained the structure of active references, how operations can

compute content (CDFs) from a software artefact or the elucidative
document itself, and how the author can influence the CDFs with con-
figurations. Based on this, we showed how active references can be
hidden from the author, so that he always sees up-to-date CDFs in-
stead (Requirement 1).

Afterwards, we introduced different update strategies, transconsistency
and weak transconsistency, for document references and artefact refer-
ences (Requirement 2). The discussion of transconsistency and weak
transconsistency also included advantages of chained references and
their realisation.

Finally, we described how update states can be translated into guidance
messages, which inform the author about problems or content that has
been automatically changed (Requirement 3).

Chapter 5. Model-Driven Elucidative Development 51

Chapter 5

Model-Driven Elucidative
Development

In this chapter, we will extend the concept of Elucidative Development (ED),
which has been presented in Chap. 4, so that it can be used for formal
documents. While formal documents with manually written content could
be created and maintained with ED in its basic form, called basic ED in the
following, there are obstacles which make its use cumbersome.

In the following, we will present the reasons why basic ED is not suited
for formal documents. Based on these, we will derive requirements for the
use of ED for formal documents. Afterwards, we present an extension of
basic ED that fulfils the new requirements and supports the creation and
maintenance of formal documents.

For the motivation and examples we focus on Model-Driven Software
Development (MDSD). MDSD is a software development methodology which
uses models and metamodels as first-class citizens during development. An
introduction to MDSD has been presented in Sect. 3.2. During an MDSD
project, many models are created, and the documentation of models is usually
very formal. Thus, MDSD is a suitable application area for the extended ED
approach, which we call model-driven elucidative development'.

5.1 General Idea and Running Example

The chapters and sections of a formal document are usually uniformly struc-
tured. Suppose that there exist models which describe the drawing tool from

'MDSD is the main application area, but model-driven elucidative development is
not limited to MDSD. It can also be used to create formal documents describing other
structured views.

52 Chapter 5. Model-Driven Elucidative Development

the running example in Chap. 2 and 4, and that these models must be docu-
mented. In the examples presented in this chapter, we will focus on a Unified
Modeling Language (UML) class diagram, but the explained concepts can be
applied to other kinds of models, too. The class diagram comprises multi-
ple packages and each package contains multiple classes. In the following,
we use the term classes to denote both interfaces and “real” classes, unless
stated otherwise. Packages and classes will sometimes also be called model
elements. The structure of the documentation reflects the structure of the
class diagram.

Figure 5.1 shows an example. There is one chapter for each package, and
one section for each class of the corresponding package. The first chapter
is the main introduction, all other chapters are package descriptions. The
chapters and the sections have a uniform structure. Chapters start with a
heading, followed by an introductory text and the sections, which describe
the individual classes. Sections do also start with a heading and an intro-
ductory text. Additionally, they contain technical information such as the
superclasses, subclasses, attributes and references.

The colours in the figure indicate the content that could be generated
from the model. The content of the dark-grey boxes, i.e., the sections with
the class descriptions, could be generated from the classes. Superclasses
and subclasses can be derived from the class diagram structure. Attributes
and references can be read directly from the classes. The attributes and
references of the classes can have comments. Therefore, the descriptions of
the attributes and references in the document can also be generated. The
introductory text, indicated by a white box, cannot be generated, though,
because its content is not present in the class diagram. The content of the
light-grey boxes, i.e., the chapters, could be generated from the packages.
The chapter content can also be generated, except for the introductory text.

The aim of model-driven ED is to enable easy creation and maintenance of
formal documents, taking into account the need for manually written content.

Chapter 5. Model-Driven Elucidative Development

1.
connectors
&
H Circle [# H Line & H Rectangle [2]
(from Shape) {from Shape) {from Shape)
2 color 2 color T color
2 xPos 2x1 T xPos
T yPos Tyl T yPos
2 radius 2 x2 2 width
Ty2 T height
1 Introduction 3 Package Shape
T?lshdocumént contlallns th{e documentstlon The Shape package contains all 3.3 Line
of the Drawing Tool class diagram. Eac shapes that can be drawn with the
chapter corresponds to a package of the drawing tool. This class represents a line. A line is a
class diagram. The sections of a chapter special shape.
describe the classes of the corresponding
package. 3.1 Shape General

- Superclasses: Shape

2 Package Connect This class represents an arbitrary

shape that can be drawn. - Subclasses: none
The Connect package contains the
classes that are necessary to € Attributes
implement the feature of glbelclase=one - color: Color
connecting shapes. //The colour of the line.
- Subclasses: -x1:int
- Circle //X-coordinate of the line's first point.
- Line -yl:int
2.1 Connector - Rectangle //Y-coordinate of the line's first point.
K -X2:int
A Connectgr is an adorner on a Attributes //X-coordinate of the line's second point.
Shape, which serves as. an e T
endpoint of a Connection. //Y-coordinate of the line's second point.
References
- connectors: Connector (1..*) References
//Connectors of the shape, which none
allow connections with other
shapes
3.4 Rectangle
3.2 Circle This class represents a rectangle. A

rectangle is a special shape.

This class represents a circle. A
circle is a special shape. General
- Superclasses: Shape

General
- Superclasses: Shape - Subclasses: none
- Subclasses: none Attributes
- color: Color

Attributes //The colour of the rectangle.
- color: Color - xPos: int

//The colour of the circle. //X-coordinate of the upper left point.
- xPos: int -yPos: int

//X-coordinate of the circle's centre. //Y-coordinate of the upper left point.
- yPos: int - width: int

//Y-coordinate of the circle's centre. //Width of the rectangle (x-direction)
- radius: int - height: int

//Radius of the circle. //Height of the rectangle (y-direction)
References References
none none

Figure 5.1: Documentation of a class diagram.

54 Chapter 5. Model-Driven Elucidative Development

In terms of basic ED, a section can be viewed as a Computed Document
Fragment (CDF). The manually written content inside the CDF could be de-
termined by the configuration of the active reference. However, the practical
realisation would be difficult. If the author should be able to format the text,
e.g., make it bold or italic, the user interface to configure the active reference
would have to duplicate many text formatting features of the text editor.
For cases, where this is not feasible or possible, we propose an alternative
approach. Generated content with embedded manually written content can
be assembled from multiple CDFs. The author can add manually written
content between the individual CDFs. We call a group of CDFs which form
a logical unit CDF group. Figure 5.2 shows an example.

3.1 Shape

3.1 Shape

This class represents an arbitrary

shape that can be drawn. This class represents an arbitrary

shape that can be drawn.

General
- Superclasses: none

General
- Superclasses: none

- Subclasses:

) - Subclasses:
- Circle - Circle
- Line - Line
- Rectangle - Rectangle
Attributes Attributes
none none
References References

- connectors: Connector (1..*)
//Connectors of the shape, which
allow connections with other

- connectors: Connector (1..*)
//Connectors of the shape, which
allow connections with other

shapes shapes

(a) (b)

Figure 5.2: CDF groups: (a) shows the logical structure of a CDF group,
(b) shows multiple physical CDFs (grey), which together form a CDF group.

Definition 19 (CDF Group). A CDF group is a collection of one or more
CDF's, which together form a logical unit. CDF groups can contain manually
written content before, between or after the individual CDFs.

Chapter 5. Model-Driven Elucidative Development 55

5.2 Requirements of Model-Driven Elucidative
Development

The management of CDF' groups results in new requirements. In the follow-
ing, we present the challenges of model-driven ED and the resulting require-
ments, similar to Sect. 4.2.

Challenge 5. While it would be possible to let the author build CDF groups
from simple CDFs, it would be inconvenient. If there are n CDF groups and
each CDF group consists of m CDFs, the author would have to add n * m
CDF's in total. Depending on the size of the model, a document can contain
hundreds of CDF groups. The author would have to take care that all CDFs
are added in the correct order with the correct configuration. Creating the
whole document that way 1s tedious and error-prone.

Requirement 5. It must be possible to add a CDF group as a whole to the
elucidative document.

Challenge 6. In model-driven ED, the structure of the elucidative docu-
ment reflects the structure of the documented model. If models are structured
hierarchically, the documents must also be structured hierarchically.

Requirement 6. It must be possible to nest CDF groups to reflect the struc-
ture of the model in the elucidative document.

Challenge 7. If the structure of the model is changed, e.g., a class is added
to, removed from, or moved within a class diagram, the elucidative document
must be changed correspondingly. Furthermore, CDF groups must often ap-
pear in a certain order, e.g., alphabetically. If a model element, e.g., a class,
is renamed, the corresponding CDF group must be moved to a different loca-
tion in the elucidative document. With basic ED, it is not possible to add,
remove or move active references automatically.

Requirement 7. It must be possible to automatically add, remove, rename
and move CDF groups, reflecting the initial structure of the model and sub-
sequent changes of the model structure. When CDF groups are physically
moved inside the document, it is necessary that both the CDFs and the man-
ually written content are moved together.

56 Chapter 5. Model-Driven Elucidative Development

Challenge 8. In the spirit of Requirement 2, CDF groups which are com-
puted from artefacts must not be updated without explicit permission of the
author. In model-driven ED, this includes the addition, removal, renaming
and moving of CDF groups. Thus, the author must be informed if the model
has changed in a way that requires any of these changes in the elucidative
document. However, this is beyond the scope of the basic guidance system.

Requirement 8. The guidance capabilities of basic ED must be extended to
support the addition, removal, renaming and moving of CDF groups.

5.3 Structure and Basic Concepts of Elucida-
tive Documents in Model-Driven Elucida-
tive Development

Model-driven ED is an extension of basic ED. It contains a number of new
concepts, which build upon the concepts that we introduced in Sect. 4.3.
The metamodel in Fig. 5.3 shows the new classes and their relation to the old
metamodel. In this section, we will describe the new classes of the metamodel
and their functionality.

5.3.1 The Unison of Active Reference Groups and CDF
Groups

In Sect. 4.3.5, we explained how CDFs and active references are two sides
of the same coin. The same relationship holds for CDF groups and active
reference groups. We will explain active reference groups in more detail soon.
Active reference groups are divided into static reference groups and dynamic
reference groups. We will call a CDF group computed from a static refer-
ence group static CDF group, and a CDF group computed from a dynamic
reference group a dynamic CDF group.

CDF groups are, possibly hierarchically structured, collections of CDFs
which form a logical unit. Each CDF of a CDF group is computed from an in-
dividual active reference. The individual active references are automatically
added to the elucidative document when an active reference group is added.
From this follows that active reference groups are groups of active references,
as the name suggests. The relationship between an active reference group
and its active references is isomorphic to the relationship between the CDF
group and its CDFs.

57

Model-Driven Elucidative Development

Chapter 5.

]
[|
fieqesswnuapyd H

[|
pusizFepuedxadnots H——————

JOEIBINUZPILYD | T

Jepuedk3dnolb | T

1517133 ¢ bupsisbueys &

dnosstusiaedowenig §

FUCE SRV

MR EUCEE

Jzpued:gdnob

-

—

UoRINgsUIUonEndw o

J3pue: noss H

Jepuedigdnolt T T

noisetusRlEHNElS H

uonenbyuos|ened

—

T| uoneanByuodemL

uoneadn T

|

EiusEEdEELY H

[!
[FPuB.EjauswWnoog H)

E3IN0SIUELI0D | 10

Buns3: mes &
burgs3 : Asenb &

bunss @ sEs o Lopeado bunss : ses &
Bunsa : i & 1 T L3 ! pl & H_
dneugssuasaEyanPY H uopeanbyuos | uopeanbyuod { uone.nbyuod e o k= | RusyuosLERLViAlIEnuen]
JuEjUOD
T
o Y
usjuoD [[|
5 = e R e T T I | P TET o D e = |
"

JELOD | 0

STUNOSIUZLOT

————

Bunsy : Adoysodsa & 0
a1l usguod & soejEEe
Bugss: pl &
PEEY H

UsLInJoganiep N3 §

—

Model driven elucidative development metamodel.

Figure 5.3

58 Chapter 5. Model-Driven Elucidative Development

5.3.2 Active Reference Group

CDF groups have been introduced as a way to combine CDFs and manually
written content. According to Requirement 5, it must be possible to add
CDF groups as a whole, instead of adding multiple CDFs individually. This
can be achieved by active reference groups.

Definition 20 (Active Reference Group). An active reference group is a
container inside an elucidative document. It contains active references or
other active reference groups. This makes it possible to display an active
reference group as CDF group. It also comprises the necessary data for the
computation of the contained active references or active reference groups.

Active references created by and contained within an active reference
group are called child active references of the active reference group. Simi-
larly, active reference groups created by and contained within an active refer-
ence group are called child active reference groups. If the distinction between
child active references and child active reference groups does not matter, we
only talk about children.

When an active reference group is added to the elucidative document, it is
physically represented as a container or a range of text. Inside the container,
or range of text, the computed children will be added. This will eventually
lead to a collection of, possibly hierarchically structured, active references,
which together can be displayed as the CDF group.

An active reference group comprises the following data:

e id: The unique identifier of the active reference group.

e state: A flag indicating the update state of the corresponding CDF
group.

e configuration: The configuration, which influences the content and
the formatting of the CDF group and its children.

e groupExpander: The computation directive for the children.

The children of an active reference group are computed when the active
reference group is added to the elucidative document. We call this the expan-
sion of the active reference group into a collection of children. The expansion
of an active reference group is performed by the so-called group expander.

Definition 21 (Group Expander). A group expander is a computation in-
struction for the content of active reference groups. The group expander has
two inputs, a content source (usually an artefact) and a configuration. With

Chapter 5. Model-Driven Elucidative Development 59

these two inputs, the group expander computes the children and recursively
adds them to the elucidative document.

Group expanders are usually parameterised. Similar to operations, which
need a configuration to compute a CDF, a group expander needs a config-
uration to compute child active references or child active reference groups.
Group expanders also have an initial configuration, which contains the keys
for which a value is required. When the author adds an active reference
group to the elucidative document, the Elucidative Development Environ-
ment (EDE) queries him for these configuration values. The complete con-
figuration is passed to the group expander as input. If a group expander
inserts another active reference group, it is the group expander’s responsibil-
ity to forward the required configuration values to the child group expander.

There are two different kinds of active reference groups, namely static
reference groups and dynamic reference groups. Both differ in the content
they can contain (dynamic reference groups cannot contain manually written
content) and the way their group expanders work. The two kinds of active
reference groups and their group expanders are explained in the following.

5.3.3 Static Reference Group

The chapters and sections of a formal document have a mostly uniform struc-
ture. For example, all sections of the document shown in Fig. 5.1, which
describe classes of a class diagram, look similar. They have a heading and
consist of three parts: “General”, “Attributes” and “References”. The repeated
use of the same structure is the application area of static reference groups.

Definition 22 (Static Reference Group). A static reference group is an ac-
tive reference group which can contain manually written content, child active
references, and child active reference groups. Static reference groups have a
fixed structure.

When a static reference group is added to the elucidative document, only
its children are automatically added. Manually written content can be added
afterwards by the author.

A static reference group comprises the following data:

e content: The list of document content that the static reference group
contains. This includes other active reference groups, active references
and manually written content.

e groupExpander: The static group expander, which is responsible for
the computation of the content, i.e., the child active reference groups
or child active references.

60 Chapter 5. Model-Driven Elucidative Development

Static reference groups can be nested, i.e., they can contain other ac-
tive reference groups and active references. Figure 5.4 shows an excerpt of
Fig. 5.3, making the underlying composite design pattern clearly visible.

H DocumentContent 1.*

I content

H GensrableDocumentContant

A

H ManuallywrittenContent H ActiveReference| |H AdtiveReferenceGroup
| |
| |

A

H DynamicReferenceGroup H StaticReferenceGroup

Figure 5.4: Static reference groups can contain arbitrary document content.

Constituents and Structure of Static Reference Groups

The expansion of a static reference group is performed by the static group
expander. A static group expander contains an initial configuration, whose
purpose we already explained, and a list of so-called group expander elements.

Definition 23 (Group Expander Element). A group expander element is a
container for information that is used to create and configure a child active
reference or child active reference group during the expansion of an active
reference group.

A group expander element consists of a partial configuration and a com-
putation instruction. A partial configuration is a configuration in which some
values are missing. The missing values are added before the static reference
group is expanded. They are taken from the configuration which has been
set as input of the static group expander. All values required by the group
expander elements must be present in the group expander configuration,
otherwise the expansion is not possible.

Chapter 5. Model-Driven Elucidative Development 61

The computation instruction of a group expander element can either be
an operation or another group expander. If the computation instruction is
an operation, an active reference will be created. The active reference will
later use this operation to compute a CDF. Figure 5.5 shows a static group
expander, where all computation instructions are operations. This static
group expander has been used to create the CDF group from Fig. 5.2b.

Static Group Expander
Operations (ClassSpecification)
_ Computation GroupExpanderElement
% d Instruction
,."r’,. N Partial Configuration:
- - HierarchyLevel: heading3
Heading - class: <unset>
N Computation GroupExpanderElement
g & Instruction
2 f
‘--o«f -] Partial Configuration:
aa .
General - class: <unset>
N Computation GroupExpanderElement
ph B Instruction
2 Y
g 2] Partial Configuration:
e - class: <unset>
Attributes
N Computation GroupExpanderElement
% < Instruction
- ¥y
g #] Partial Configuration:
R e - class: <unset>
eferences
Initial Configuration:
- class:

L

Figure 5.5: Static group expander with operations.

62 Chapter 5. Model-Driven Elucidative Development

All partial configurations in the example have an unset “class” entry. The
“class” entry determines, which class of the model the operation must use to
create the CDF. The “Heading” configuration has an additional, preset entry
called “HierarchyLevel”, which is set to heading3. The entry means that the
CDF generated by the operation should be marked up as level 3 heading,
for example, by enclosing it in <h3> tags in Extensible Hypertext Markup
Language (XHTML). In our example, this entry has been preconfigured by
the developer of the group expander because it was known in advance that
the resulting static reference groups will always be at the third level in the
document hierarchy?.

If the computation instruction is a group expander, an active reference
group will be created instead. The group expander will insert a child active
reference group into the elucidative document. Figure 5.6 shows a static
group expander with two group expander elements. It has been used to create
chapters 2 and 3 (the package descriptions) of the example documentation
from Fig. 5.1. The computation instruction of the second group expander
element is a dynamic group expander.

Static Group Expander
(PackageSpecification)

o Computation GroupExpanderElement
F . ¥y Instruction
ey « Partial Configuration:
o - HierarchyLevel: heading2
Heading - package: <unset>
- Computation GroupExpanderElement
Dynamic Group Expander Instruction
(ClassesInPackage) Partial Configuration:
- package: <unset>

L

Initial Configuration:
- package:

4

Figure 5.6: Static group expander with a dynamic group expander.

2The first level is the root document level and the second level is the package description.

Chapter 5. Model-Driven Elucidative Development 63

Adding Static Reference Groups to the Elucidative Document

When the author adds a static reference group to the elucidative document,
the EDE analyses the initial configuration and queries him for the required
configuration values. The values are added to the configuration, which is then
set as input of the static group expander. Afterwards, the static reference
group is expanded and the child active references or child active reference
groups are added to the elucidative document.

We will illustrate the process with the help of our running example. We
will explain the insertion of the static reference group from Fig. 5.5, which
contains four group expander elements with operations. This static reference
group is called “Class Specification” group in the following.

When the author adds the “Class Specification” group to the elucidative
document, he must provide the missing configuration values. The initial con-
figuration contains an entry with the key “class”. Thus, the EDE queries the
author for a class name. The result is stored in the configuration. Now, the
static reference group can be added to the elucidative document, referenc-
ing the static group expander and the configuration. Afterwards, the static
group expander can perform the expansion using the configuration.

The first step of the expansion is the completion of the group expander
elements’ partial configurations. All partial configurations lack the “class”
value. Therefore, the static group expander copies the “class” value from its
configuration to all partial configurations. Afterwards, the partial configura-
tions have no more unset values.

Then, all of the four group expander elements must be processed. All
group expander elements have an operation as computation instruction. This
means, that an active reference must be created for each group expander
element. All information is available to create the active references and
insert them into the elucidative document:

e The content source of the active reference is the content source of the
static reference group, i.e., the class diagram.

e The operation of the active reference is the operation stored in the
group expander element.

e The configuration of the active reference is the configuration stored in
the group expander element.

After the insertion of all child active references, the static reference group
is completely expanded. It can now be used to compute a CDF group.

64 Chapter 5. Model-Driven Elucidative Development

Updating Static Reference Groups

It is not necessary to update static reference groups when the documented
model has been modified, because the structure of a static reference group is
independent from the model. However, it might be necessary to recompute
the corresponding CDF groups. The content of static CDF groups is only
determined by their child CDFs. Therefore, the recomputation of a static
CDF group requires the recomputation of all child CDFs.

Summary

The use of static reference groups has several advantages over individual
active references:

e The insertion of static reference groups into the elucidative document is
easier, faster and less error-prone than the manual insertion of multiple
active references.

e The generated content always has the same structure and layout. It
is not possible that the author accidentally changes the order of the
CDFs, or sets a wrong configuration value for the layout.

e The generated content of the multiple CDFs always stems from the
same part of the content source. For example, it is not possible that the
author accidentally selects two different classes from the class diagram
as content source for the active references.

Static reference groups allow the insertion of whole CDF groups into
the elucidative document. Requirement 5 is fulfilled. Furthermore, static
reference groups can contain other static reference groups as children. This
makes it possible to nest CDF groups. Requirement 6 is also fulfilled.

With static reference groups, the author could add the CDF groups for
all classes of the referenced model. However, static reference groups cannot
be used to automatically reflect structural model changes (adding, remov-
ing, renaming, moving classes) in the elucidative document. This is where
dynamic reference groups come into play.

5.3.4 Dynamic Reference Group

The structure of a formal document corresponds to the structure of the doc-
umented model, as illustrated in Fig. 5.1. Usually, if the document structure
differs from the model structure, the document is regarded inconsistent. For
example, if a chapter of the document describes a package of a class diagram,

Chapter 5. Model-Driven Elucidative Development 65

and the individual sections describe the package’s classes, it is necessary that
there is one section in the chapter for each class. If the author has to add
an active reference group or an active reference for each class by himself, he
might miss a class or add some classes multiple times.

Furthermore, maintaining the elucidative document after a change in the
class diagram would be difficult. The author would have to check each pack-
age for new classes and add the corresponding active reference groups or
active references to the document. Similarly, he would have to check for
incomputable active references and remove them if they refer to a deleted
class. This approach is both time-consuming and error-prone. Therefore,
model-driven ED offers the possibility to generate a whole list of active ref-
erence groups or active references and add them to the elucidative document
automatically. Changes in the model can be automatically applied to the
generated document content. Manually written content within the descrip-
tion of the individual classes is retained. This can be achieved by dynamic
reference groups.

Definition 24 (Dynamic Reference Group). A dynamic reference group is
an active reference group whose children are determined dynamically from the
model structure. If the model structure changes, the children of the dynamic
reference group are automatically adapted. All children have an identical
structure because they are computed from the same computation instruction.
Dynamic reference groups cannot contain manually written content.

Our running example contains a model package named Shape, which con-
tains the the four classes Shape, Circle, Line and Rectangle. A dynamic
reference group for the Shape package would generate four static reference
groups, one for each class of the package.

A dynamic reference group comprises the following data:

e changeListing: A list of changes to the model artefact since it was last
updated. The change listing is used for the computation of guidance
hints.

e content: The list of generable document content that the dynamic
reference contains. This includes other active reference groups and
active references.

e groupExpander: The dynamic group expander, which is responsible for
the computation of the content, i.e., the child active reference groups
or child active references.

66 Chapter 5. Model-Driven Elucidative Development

Constituents and Structure of Dynamic Reference Groups

The expansion of a dynamic reference group is performed by the dynamic
group expander. In addition to the initial configuration, a dynamic group
expander contains a group expander element and a child enumerator.

Definition 25 (Child Enumerator). A child enumerator is a function that
returns a list of model element names. For each element of the list, a child
will be added to the dynamic reference group during its expansion.

All children of the dynamic reference group have the same structure. The
structure is determined by the computation instruction of the group expander
element. This ensures a uniform appearance of the resulting CDFs or CDF
groups. Figure 5.7 shows an example of a dynamic group expander.

Dynamic Group Expander
(ClassesInPackage)

Computation GroupExpanderElement

Static Group Expander < Instruction
(ClassSpecification) Partial Configuration:

- class: <unset>

ChildEnumerator

Initial Configuration:
- package:

4

Figure 5.7: Dynamic group expander.

Adding Dynamic Reference Groups to the Elucidative Document

We will illustrate the process of adding a dynamic reference group to the
elucidative document with the help of our running example. The following
explanation is very comprehensive because it involves the recursive insertions
of nested active reference groups.

Chapter 5. Model-Driven Elucidative Development 67

Expanding the Package In the example, the author adds a static ref-
erence group with the static group expander from Fig. 5.6. We will call
this static reference group the “Package Specification” group in the following.
The resulting CDF group should be a whole chapter, as shown in Fig. 5.1.
It should contain a heading with the package name and sections with de-
scriptions of the package’s classes. Between the heading and the first class
description, a manually written package description should be added.

In order to add the “Package Specification” group to the elucidative doc-
ument, the author must provide the missing configuration values. The initial
configuration contains an entry with the key “package”. Thus, the EDE que-
ries the author for the name of a package. The selection of the author will be
stored in the configuration. Now, the static reference group can be added to
the elucidative document, referencing the static group expander and the con-
figuration. Afterwards, the static group expander can perform the expansion
using the configuration.

During the expansion, the partial configurations are completed, as ex-
plained in the previous example (see Sect. 5.3.3). That is, the “package”
values in both partial configurations are set. Then, the first group expander
element is processed and the active reference for the heading is added to the
elucidative document. This has also been described in the previous example.

Expanding the List of Classes Afterwards, the second group expander
element is processed. Its computation instruction is the dynamic group ex-
pander from Fig. 5.7. Thus, a dynamic reference group is added to the
elucidative document, which is going to use this dynamic group expander
for its expansion. We will call the dynamic reference group the “Classes in
Package” group.

After the dynamic reference group has been added to the elucidative
document, it is expanded. The expansion consists of three steps. First,
the child enumerator receives the “package” value from the configuration
and computes an alphabetical list of the class and interface names of the
corresponding package. Then, copies of the group expander element are
created, one for each element in the list. The list values are stored in the only
unset entry of the partial configurations (the “class” entry in this example).
Finally, for each group expander element copy, a static reference group is
added to the elucidative document and expanded.

Expanding a Single Class The computation instruction of the group
expander elements is the static group expander from Fig. 5.5. Its expansion
has already been explained in the previous example (see Sect. 5.3.3).

68 Chapter 5. Model-Driven Elucidative Development

The Result All active references and active reference groups have been
recursively computed and added to the elucidative document. It is now
possible to compute a nested CDF group like in Fig. 5.1.

Updating Dynamic Reference Groups

A dynamic reference group must be updated if the children do not correspond
to the values computed by the child enumerator, i.e., there are excess or
missing children, or the order of the children is different from the order
computed by the child enumerator. This situation can occur for two reasons.

The first reason for an update of a dynamic reference group is a change
in the configuration of the dynamic reference group. Imagine, that the dy-
namic reference group contains child active reference groups for all classes
and interfaces of a class diagram package, like in our running example. In
contrast to the running example, imagine that the configuration of the dy-
namic reference group has an additional entry that determines the sort order
of the children. Initially, the value of this entry was set to alphabetical sort-
ing of the dynamic reference group’s children. Later, the configuration was
changed, so that first the interface descriptions appear alphabetically, and
then the class descriptions appear alphabetically. This requires a reordering
of all child reference groups.

The second reason for an update of a dynamic reference group is that
an artefact update event has been fired for the model artefact. The kind of
change determines how the dynamic reference group must be updated:

e If a new model element has been added, a new child must be added to
the dynamic reference group. The position of the new child must corre-
spond to the position of the model element name in the list computed
by the child enumerator.

e If a model element has been deleted, the corresponding child must also
be deleted. This includes the manually written content that has been
added by the author.

e If a model element has been renamed, and the new name appears at a
different position in the list of model element names, the corresponding
child must be moved. This comprises removing the child from its dy-
namic reference group and inserting it again at the new position. The
manually written content must also be moved.

e If a model element has been moved (e.g., a class which has been moved
from one package to another), the corresponding child must be moved.

Chapter 5. Model-Driven Elucidative Development 69

This comprises removing the child from its old dynamic reference group
and inserting it into the new dynamic reference group (if it exists in
the document). The manually written content must also be moved.

Identifying Types of Changes When the model is changed, it is possible
that some model elements (classes, packages) are missing, while others have
been newly inserted. In general, it is difficult to distinguish whether the
changes are “real” removals and additions, or whether some model elements
have in fact been renamed or moved (e.g., a class being moved from one
package to another package). The distinction matters because when model
elements are renamed or moved, the corresponding child active reference
groups or child active references must also be renamed or moved. Manually
written content inside the active reference groups must be preserved. Only
when a model element has really been deleted, it is permitted to remove the
corresponding child, including the manually written content.

The changes performed on the model can be identified by model match-
ing. A model matching algorithm produces a mapping between two models,
stating which model element from one model corresponds to which model
element from the other model. If the “original” and the changed model are
matched, it is possible to deduce the basic changes that have been performed.
Figure 5.8 shows an example. If two matching model elements reside in dif-
ferent places in the model (e.g., classes in different packages), the model
element has been moved. If two matching model elements have a different
name, the model element has been renamed. If a model element from the
first model has no matching model element in the second model, it has been
removed. If a model element from the second model has no matching model
element in the first model, it has been added.

In advanced model matching scenarios, the splitting or joining of model
elements must also be considered. However, for our work it is sufficient to
consider only the basic model changes.

In general, model matching is very challenging and beyond the scope of
this thesis. An overview and references for further reading can be found
in [33]. The approaches presented there can be divided into identity-based
matching and similarity-based matching.

For an identity-based matching approach, the model elements must have
automatically assigned, immutable IDs. The IDs never change, even if the
model elements are renamed or moved. Thus, model elements are mapped
to each other if they have the same ID.

For a similarity-based matching approach, an ID is not necessary. As the
name suggests, matches between model elements are computed according to

70 Chapter 5. Model-Driven Elucidative Development

Old Version New Version
Packagel Packagel
N N I A
Renaming
""' Q‘ .
X— B C ceceara D B| VE
.. - Addition -
‘~~~ B
§‘~
Package2 “~.~ Package2
“‘i;‘ ———————— — P
et e =
P Moving“ b
| x|
R—JQp— 4 | Q
-~
‘Q
.“~... Removal

Figure 5.8: Matching model elements from different artefact versions.

their similarity. While in the identity-based matching approach two model
elements are either matching or not (binary decision), in the similarity-based
matching approach two model elements match to a certain degree. Similarity
is computed from a number of properties. For example, similarity between
two classes is determined by their position in the model (i.e., their pack-
age), their inheritance hierarchy, or their attributes and references (types
and names). The individual properties can be weighted according to their
importance. If the computed similarity value lies above a certain threshold,
the model elements are considered matching and are mapped to each other.
One should be aware that similarity-based matching is a heuristic, which can
produce false positive and false negative results.

In this chapter, we usually assumed that the model is a class diagram.
But as stated in the beginning, the formal document might also be computed
from a completely different model. Different kinds of models have different
properties, which in turn have a different influence on similarity. Therefore,
each kind of model has a different set of optimal similarity weights. Find-
ing optimal similarity weights is often a slow and time-consuming manual
process, but it is necessary to achieve good results.

Chapter 5. Model-Driven Elucidative Development 71

Alternatively, it would be possible to use a general similarity matching al-
gorithm for all kinds of models. Similarity-based matching is based on graph
matching, and many kinds of models can be viewed as graphs. While the
use of a general similarity matching algorithm reduces the implementation
effort, it also reduces the quality of the results. General similarity algorithms
perform weaker than specialised algorithms.

Since it is not possible to guarantee fully correct results, the author should
be given the possibility to intervene. Before the dynamic reference groups
are physically modified (see below), the EDE should present the identified
add, remove, rename and move operations to the author and allow him to
override them if necessary.

Performing Dynamic Reference Group Updates When the neces-
sary modifications are known, they must be executed. Here we present an
algorithm to update the dynamic reference groups. The algorithm is rather
simple and leaves room for improvement if performance is critical.

e Input

— Elucidative Document

— Modification instructions: descriptions of necessary modifications
of the dynamic reference group. There are four kinds of modifica-
tion instructions:

Additions A list of addition instructions, each containing the
dynamic reference group and the new child.

Removals A list of removal instructions, each containing the dy-
namic reference group and the child to remove.

Renamings A list of renaming instructions, each containing the
child to be renamed, and the new name of the child.

Moves A list of move instructions, each containing the source
dynamic reference group, the target dynamic reference group,
and the child to be moved. The source and target dynamic ref-
erence groups must be compatible, i.e., their group expander
element must have the same computation instruction.

e Execution

— For all move instructions: remove the child from the source dy-
namic reference group and add it to the target dynamic reference
group (including all its content).

72 Chapter 5. Model-Driven Elucidative Development

— For all renaming instructions: change the configuration of the
affected child, i.e., set the new name.

— For all removal instructions: remove the child from the dynamic
reference group (including all its content).

— For all addition instructions: add the new child to the dynamic
reference group.

— For all dynamic reference groups where the computed order of
the model element names is different from the actual order of the
children: remove the wrongly ordered child and insert it in the
right order (including all its content).

e Result

— All dynamic reference groups contain all children and the order is
the same as specified by their child enumerators.

In this basic algorithm, the manually written content of a child active
reference group is lost if the child active reference group is deleted. In gen-
eral, this is the desired behaviour. But it is possible that deleted classes of
the model are restored and must therefore appear again in a dynamic refer-
ence group. Then, the author would also like to get the manually written
text back, which has previously been deleted. An advanced algorithm could
achieve this by maintaining a history of deleted children.

Summary

Dynamic reference groups are a powerful concept to automatically match
the structure of a model in the elucidative document. They can also be
automatically updated if structural changes have been applied to the model
or if the configurations have been changed. If the model has changed, it is
necessary to identify the types of changes that occurred. We proposed to use
model matching to derive the changes and presented an algorithm to apply
the model changes or the configuration changes to the dynamic reference
groups. As a result of this section, Requirement 7 is fulfilled.

5.4 Guidance

When the author applies the update of an artefact, potentially many parts
of the elucidative document are changed. For each update, there must be
a notification message, so that the author can systematically proofread the

Chapter 5. Model-Driven Elucidative Development 73

changed document. The notifications are provided by the guidance system.
Guidance is necessary in one of the following cases:

e A model element has been changed, such that a CDF must be recom-
puted. Guidance concerning the changes of CDFs has already been
explained in Sect. 4.5 and will not be discussed here again.

e The structure of the model has been changed, such that dynamic ref-
erence groups have been modified. The rest of this section will discuss
this case.

As shown in Sect. 5.3.2, active reference groups have an update state,
which is evaluated by the guidance system, similar to active references. We
extend the formal definition of the guidance system from Sect. 4.5.1 to include
active reference groups. We call the result Frtended Guidance System.

EGS = (GS,refgroupssiat, ve f groupsqyn, statesiqar, stateqyn), where

e (G5 is the guidance system for basic elucidative development.
o refgroupsg. is the set of static reference groups.

o refgroupsgyy is the set of dynamic reference groups.

o statesqr 1 refgroupssar — SCA states 15 a function that returns the
state of a static reference group. SC}y stares 15 the set of possible states
defined by the state chart SCj4.

o stateqy, : refgroupsgy, — SCAstates 15 a function that returns the
state of a dynamic reference group. SCy staes is the set of possible
states defined by the state chart SCy.

In the context of this thesis, state chart SC4 comprises the states normal,
modified, incomputable and the final state (see Sect. 4.5.3).

5.4.1 Hierarchical Guidance Messages

The update state of active reference groups is mostly determined by the
update states of their children. Consequently, the EDE should group the
guidance messages according to the hierarchy of the active reference groups.
Figure 5.9 shows an example.

74 Chapter 5. Model-Driven Elucidative Development

[=] Dynamic Content Group "Shapes" has automatically been updated.

Static Content Group "Rectangle" has automatically been updated.
Content "Attributelisting" generated from artefact "Shapes.ecorediag"
has automatically been updated.

Content "ReferenceslListing" generated from artefact "Shapes.ecorediag"
has automatically been updated.
— Static Content Group "Line" has been moved here from "2D"

Figure 5.9: Hierarchical guidance messages.

5.4.2 Guidance for Static Reference Groups

When the CDFs or CDF groups inside a static reference group are in the
modified, incomputable or the final state, the guidance system should also
display a message that something has happened to the static reference group.
This can be achieved by setting the state of the static reference group de-
pending on the state of its children.

A static reference group is in the normal state if all its children are in the
normal state. As long as the static reference group is in the normal state,
no guidance messages are necessary.

A static reference group is in the modified state if one or more of its
children are in the modified state and no children are in the incomputable
or final state. When a static reference group is in the modified state, a
corresponding message must be presented to the author. This message must
also include all child active references and child active reference groups which
are in the modified state. The message should display the children in a
hierarchical fashion, according to the concept presented in Fig. 5.9.

A static reference group is in the incomputable state if one or more of its
children are in the incomputable state and no children are in the final state.
When a static reference group is in the incomputable state, a corresponding
message must be presented to the author. This message must also include all
child active references and child active reference groups which are in the in-
computable and the modified state. The message should display the children
in a hierarchical fashion.

A static reference group is in the final state when the artefact has been
deleted. Like the final state of an active reference, the final state of a static
reference group cannot be left. The static reference group with all its children
must eventually be deleted. A corresponding message must be presented to
the author.

Chapter 5. Model-Driven Elucidative Development 75

5.4.3 Guidance for Dynamic Reference Groups

When child active reference groups or child active references inside a dynamic
reference group have been added, removed, renamed or moved, the guidance
system must display a corresponding message. This can be achieved by
recording the executed addition, removal, renaming or move instructions in
the so-called change listing. It contains an entry for all changed children,
together with the type of change (added, removed, renamed, moved here,
moved away). The state of the children and the entries in the change list-
ing both influence the state of a dynamic reference group, which in turn
determines the guidance messages to be displayed.

A dynamic reference group is in the normal state if all children are in the
normal state and there is no entry in the change listing, i.e., there were no
additions, removals, renamings or moves. As long as the dynamic reference
group is in the normal state, no guidance messages are necessary.

A dynamic reference group is in the modified state if one of the following
conditions are true:

e One or more of its children are in the modified state and no children
are in the incomputable or final state.

e There is at least one entry in the change listing and no children are in
the incomputable or final state.

When a dynamic reference group is in the modified state, a corresponding
message must be presented to the author. For all children which are in
the modified state, the guidance system must display their standard guid-
ance messages as child of the dynamic reference group message, as shown
in Fig. 5.9. Additionally, the guidance system must provide a message for
each entry in the change listing and display it as child of the dynamic refer-
ence group message, too. If a child has been added or removed, the message
should mention that. If a child has been renamed, the message should men-
tion both its old and its new name. If a child has been moved away, the
message should mention its name and its new parent. If a child has been
moved to the dynamic reference group, the message should mention its name
and its old parent.

A dynamic reference group is in the incomputable state if one or more of
its children are in the incomputable state or if the child enumerator could
not compute a result. No child must be in the final state. When a dynamic
reference group is in the incomputable state, a corresponding message must be
presented to the author. The message must also include all children which
are in the ncomputable and the modified state. The messages for added,

76 Chapter 5. Model-Driven Elucidative Development

removed, renamed and moved children should be the same as described above
in the modified state.

A dynamic reference group is in the final state when the artefact has
been deleted. Like the final state of an active reference, the final state of a
dynamic reference group cannot be left. The dynamic reference group with
all its children must eventually be deleted. A corresponding message must
be presented to the author.

5.5 Conclusion

In this section, we discussed the application of model-driven ED to formal
documents. We identified four requirements that extend the basic ED re-
quirements and presented solutions that fulfil the requirements:

e Logical groups of CDFs and manually written text between them should
be treated as a unit (Requirement 5). This has been achieved by the
introduction of the reference group concept.

e Formal documents are often structured hierarchically (Requirement 6)
because they reflect the structure of models. This has been addressed
by the possibility to nest active reference groups.

e Changes in the model sometimes require structural changes in the doc-
ument (Requirement 7). This has been addressed by the possibility to
add, remove, rename or move active reference groups.

e Formal documents need additional kinds of guidance (Requirement 8).
This has been addressed by the introduction of states and a discussion
of guidance messages for active reference groups.

With the solutions presented in this section, model-driven ED is suited for
the creation and maintenance of formal documents which describe models.

Chapter 6. Extensions of Elucidative Development 7

Chapter 6

Extensions of Elucidative
Development

In this chapter, we present two extensions of Elucidative Development (ED)
that provide additional value. The extensions address very different problems
and are not related to each other.

First, we motivate the need to validate structured elucidative documents.
We show how tree grammars can be used for the validation of Extensible
Markup Language (XML)-based elucidative documents.

Then, we show how Round-Trip Engineering (RTE) can be used together
with ED. We allow the author to make changes in the Computed Docu-
ment Fragment (CDF) and use backpropagation-based RTE to propagate
the changes to the corresponding view or the configuration.

6.1 Validating XML-based Elucidative Docu-
ments

Many document formats, such as IXIEX, or XML dialects like Extensible
Hypertext Markup Language (XHTML), explicitly describe the structure of
documents. These documents are therefore called structured documents. If
the structure of a document conforms to certain syntactic rules, it is said
to be walid. Tt is important to know whether a document is valid because
validity is the precondition for correctly displaying the document and for
correct automatic processing, such as outline generation or conversion to
other document formats. For example, documentation written in the XML-
based DocBook format can be transformed to XHTML or Portable Document
Format (PDF). But the transformation works only reliably if the document
structure conforms to the syntactic rules of the DocBook document format.

78 Chapter 6. Extensions of Elucidative Development

Otherwise, the output might be flawed or the transformation might even fail.
A document could additionally contain non-structural errors, but these are
beyond the scope of this thesis.

Advanced editing environments automatically take care of validity. What
You See Is What You Get (WYSIWYG) editors, such as Microsoft Word or
OpenOffice, only allow edit operations that result in valid documents, i.e.,
it is not possible to create invalid documents. XML editors and other text
editors cannot prevent the insertion of invalid content. However, they can
inform the author when invalid content has been entered.

Validity is also important for structured elucidative documents, but the
validation is performed differently because active references require special
treatment. In this section, we will show how XML-based elucidative docu-
ments can be checked for validity with the help of so-called tree grammars.
We will explain the difference between XML and ¥TEX documents and why
the latter cannot be validated with tree grammars. Then we will present the
formal concepts of structured documents and validity. Based on those, we
will develop the formal concepts of structured elucidative documents and va-
lidity. Finally, we give an overview under which conditions existing validation
tools can be used for the validation of structured elucidative documents.

6.1.1 Difference between XML and BETEX documents

We use the term structured documents to denote files which contain hierar-
chically structured textual information, possibly enriched with media, such
as images (either embedded or referenced). We focus on hierarchically struc-
tured documents because many modern document formats have an explicit
hierarchical structure.

Document structure is often represented by XML trees. The trees are
finite, ordered and unranked [17].

e A tree is finite if the number of its nodes is finite. This means that a
document cannot be infinitely long or infinitely deeply nested.

o A tree is ordered if the order of tree nodes’ children is important. This
means, for example, that the order of paragraphs of the document must
be retained.

e A tree is unranked if the number of child nodes of a node type is not
fixed. For example, different section nodes of a document may have a
different number of paragraph child-nodes.

Finite, ordered, unranked trees can be described and validated by means
of tree grammars, as we will see below.

Chapter 6. Extensions of Elucidative Development 79

While XTEX documents are also hierarchically structured, BTEX is based
on TEX, a macro processor. A IXTEX document is transformed into a print-
able format, such as PDF, by expanding macros and typesetting text. The
macro language is a small programming language and it allows the definition
of user-defined macros. Whether a IXTEX document is valid or not can only
be discovered after the macros have been expanded. The macro syntax rules
are hardcoded in the macro processor and thus not easily accessible. Con-
sequently, KTEX documents cannot be validated by means of tree grammars
and will not be considered further in this section.

6.1.2 Structured Documents and Validity

In the following, we will show how structured documents are validated. Be-
fore we can do that, it is necessary to formally define structured documents.

Definition 26 (Structured Document). A structured document D =
(N, O, type, children,root) is a tree of document nodes (or nodes, for short),
where:

(i) N =SUC is the set of nodes of D such that

e S is the set of structural nodes (s-nodes), which define the tree (hierarchy)
structure of the document.

e C is the set of content nodes (c-nodes), which carry actual document content,
such as text or images.

(i3) © is a set of labels which represent the types of document nodes.
(iii) type : N — O is a function that assigns a type label to a node.

(i) children : S — N* is a function that assigns a sequence of (child) nodes to an
s-node.

(v) root € S is the root node of the document.

This definition does not only apply to a structured document D as a
whole, but also to any subtree of D. This means, that subtrees of D can also
be treated as structured documents.

In terms of XML, we only consider elements and ignore the attributes
because we do not need them for the discussion of structured elucidative
documents later.

Example 1. Figure 6.1 shows an example structured document. It is an
excerpt of the document from Fig. 4.1. Listing 6.1 shows the XHTML struc-
ture of the document. Listing 6.2 shows the formal document definition. The
definition uses the terminal “text” to denote arbitrary text content.

80 Chapter 6. Extensions of Elucidative Development

@ Shape [7
(from Shape)
H Rectangle [#] H Line [H Circle @
(from Shape) (from Shape) (from Shape)
o color o color o color

Figure II: Shapes

This diagram shows the Shape interface.

The Circle class has a color attribute (see Fig. II), which
can be set.

Figure 6.1: Example document with cross reference.

<html>
<body>
<div id="fig_id">

<p>Figure II: Shapes</p>
</div>
<p>This diagram shows the Shape
interface.</p>
<p>The Circle class has a
color attribute (see
Fig. II), which can be set.</p>
</body>
</html>

Listing 6.1: Example document as HTML.

Chapter 6. Extensions of Elucidative Development 81

S ={htmly, body,, divs,imgs, p2a, P25, Daz, SPan33, SPanss, Spanss, a2

C ={"Figure II: Shapes","This diagram...", "Shape",
" interface.","The ", "Circle",
" class has a ","color"," attribute (see ",

"Fig. II","), which can be set."}
© ={html, body, div, p, a,img, span, text}
type ={(htmly, html), (bodyy, body), (dive, div), (paa, p), (D25, D), (Pa2,D),

(a12,a), (imgs, img), (spanss, span), (spanza, span), (spanss, span),
("Figure II: Shapes",text),("This diagram...", text),
("Shape", text), (" interface.", text),("The ", text),
("Circle", text), (" class has a ",text),("color",text),
(" attribute (see ",text),("Fig. II"text),
("), which can be set.", text)}

children ={(htmly, body:), (bodyi, dive P25 Pa2),
(diva, imgs paa), (24, "Figure II: Shapes"),

(p2s, "This diagram..." spangs " interface."), (spanss,"Shape"),
(pa2, "The " spansy " class has a " spangs " attribute (see " ajs
"), which can be set."),

(spangy, "Circle"), (spanss, "coloxr"), (a1e, "Fig. II")}

root =html,

Listing 6.2: Formal definition of the example document.

The permitted structure of a document tree can be described by a Reg-
ular Tree Grammar. Regular tree grammars are tree grammars where the
nonterminals have arity 0 and the production rules have a certain form [17],
as we will see in Definition 27 below. Similar to string grammars, which
describe permissible strings [35|, tree grammars describe permissible trees.
Regular tree grammars are the formal foundation of schema languages, such
as Document Type Definition (DTD) and XML Schema.

Definition 27 (Regular Tree Grammar [35]). A regular tree grammar is a
4-tuple G = (N, T, S, P), where:

(i) N is a finite set of nonterminals
(i1) T is a finite set of terminals
(iii) S is a set of start symbols, where S C N

(iv) P is a finite set of production rules of the form X — a r, where X € N, a € T,
and r is a reqular expression over N. X is called the left-hand side, a r is called the
right-hand side, and r is called the content model of the production rule.

82 Chapter 6. Extensions of Elucidative Development

Example 2. Listing 6.3 shows a reqular tree grammar of a small subset of
XHTML.

N ={Html, Body, Div, Img, P, Span, A, PCDAT A}

T ={html, body, div,img, p, span, a, text}

S ={Html}

P ={Html — html (Body), Body — body ((Div | P)*)
Div — div (Div | Img | P | Span | A | PCDAT A)x),
P —p((Img| Span | A| PCDAT A)x),
Span — span ((Img | Span | A | PCDAT A)x),
A — a ((Img | Span | PCDAT A)x),
Img — img e, PCDAT A — text €}

Listing 6.3: Tree grammar of XHTML subset.

If a document can be mapped to a regular tree grammar, it is said to
conform to the grammar, or to be valid. For XML documents, this mapping
is called schema wvalidation. Schema validation is performed by so-called
schema validators.

Definition 28 (Document validity (based on [35])). A document D is valid
w.r.t. a reqular tree grammar G if there exists a mapping M, such that:

(i) M : Dy — Gy is a function that assigns a nonterminal of G to a document node.
(i) M (nroot) is a start symbol, and n,.o is the root node of D.

(iii) for each node n and its children ng,ny,...,n; there exists a production rule X — ar
such that
o M(n)is X
o the terminal of n is a

e M(ng) M(ny) ... M(n;) matches r, i.e., it can be specified/recognised by the
content model (see Definition 27), which is a regular expression.

Example 3. Figure 6.2 shows the mapping of the structured document from
Listing 6.1 to the XHTML grammar from Listing 6.3. This means, that the
document is valid w.r.t. the grammar.

Chapter 6. Extensions of Elucidative Development 83

Html

Body

S T

/\ N //\

P PCDATA Span PCDATA PCDATA Span PCDATA Span PCDATA PCDATA

PCDATA PCDATA PCDATA PCDATA PCDATA

Figure 6.2: Mapping from document to XHTML grammar.

6.1.3 Structured Elucidative Documents and Validity

A structured elucidative document is a structured document with slots (see
Sect. 4.3.5), which represent dynamic content. Slots can be inserted at any
position in the document.

Slots are physically represented in the document either as active references
or as CDFs (see Sect. 7.3). If slots are represented as CDFs, the structured
elucidative document can be validated like a normal structured document.
However, if slots are physically represented as active references, validation
becomes more difficult because tree grammars defined for normal structured
documents do not contain rules for active references.

There are two possibilities to enable validity checking of structured elu-
cidative documents with active references:

1. Extend the tree grammar.

2. Use a modified validity checking method.

Extending the Tree Grammar

The first possibility, extending the tree grammar, is straightforward. Ex-
isting rules of the tree grammar (i.e., the XML schema language) must be
modified and new rules added, so that active references can appear at all
desired positions. This approach is possible if the tree grammar is available
for modifications. However, sometimes the grammar is hardcoded into edi-
tors or subsequent processing tools (e.g., an Extensible Stylesheet Language
Transformations (XSLT) processor with a DocBook stylesheet, which expects
a standard conformant DocBook document as input).

84 Chapter 6. Extensions of Elucidative Development

Modifying the tree grammar, even if possible, might be too expensive,
though. This is the case if the tree grammar is very big, or if grammar
modifications require further changes, e.g., in related XSLT stylesheets.

Using a Modified Validity Checking Method

For the case where the extension of the tree grammar is not possible or fea-
sible, we present a slightly modified validation approach. In the following,
we will present a definition of structured elucidative documents, which is
based on the definition of structured documents (Definition 26). Then, we
will define validity of structured elucidative documents, similar to the defini-
tion of validity of normal structured documents. Finally, we will discuss the
feasibility of this alternative validity checking approach.

The difference between structured documents and structured elucidative
documents are slot-nodes.

Definition 29 (Slot-Node). A slot-node is a structural node in a structured
elucidative document, which represents both an active reference and the cor-
responding CDF. A slot-node is empty, i.e., it has neither child nodes nor
content. A slot-node has a type, which equals the type of the CDF root node.

Definition 30 (Structured Elucidative Document). A structured elucidative
document is defined as ED = (N, O, type, children,root), where
(i) N =SUC is the set of nodes of ED such that

e S is the set of structural nodes (s-nodes), which define the tree (hierarchy)
structure of the document.

e C is the set of content nodes (c-nodes), which carry actual document content,
such as text or images.

e Slot C S is the set of slot-nodes.

(i3) © is a set of labels which represent the types of document nodes.
(i5i) type : N — O is a function that assigns a type label to a node.

(iv) children : S — N* is a function that assigns a sequence of (child) nodes to an
s-node.

(v) root € S is the root node of the document.

Example 4. Lelt us now assume that Fig. 6.1 is a structured elucidative
document. The class diagram figure and the identifiers are CDFs, like in
the original Fig. 4.1 on page 21. Listing 6.4 shows an excerpt of its formal
definition and Figure 6.3 shows the XHTML document tree. Slot-nodes are
marked as circles. The corresponding CDFs are marked with blue background.

Chapter 6. Extensions of Elucidative Development 85

S ={htmly, bodyx, pas, paz; a12, diva1, spanas, spanqds, spanqgs}
C ={"This diagram..."," interface.",
"The "," class has a ",
" attribute (see ","Fig. II",
"), which can be set."}
Slot ={diva1, spang1, spangz, spangs}
© ={html, body, div, p, a, span, text}
type ={(htmly, html), (body1, body), (divey, div), (p2s,p), (P42, D),
(spang1, span), (spangs, span), (spangs, span), (ai2, a), ...}
children ={...}

root =html,

Listing 6.4: Excerpt of the formal definition of the elucidative document.

@ Shape [#

(from Shape)

L

—/|> htmly
g Rectangle [H Line & H circle [#
(from Shape) (from Shape) (from Shape)

= color = color = color

\\ ",
" attribute which
span,
P 9 (see " a12 can be
set."

Shape Circle color "Fig. II"

) "This
1MYal Pal diagram

" interface." "The "

"Figure II:
Shapes"

Figure 6.3: Elucidative document as tree.

Like a normal structured document, an elucidative structured document
is valid if it can be mapped to a regular tree grammar. But as said before,
we cannot use Definition 28 to decide if an elucidative structured document
is valid, because the definition does not take the characteristics of slot-nodes
into account. Therefore, we extend the definition. It covers two cases:

86 Chapter 6. Extensions of Elucidative Development

e The slot-nodes are represented as active references. The CDFs are
unknown.

e The slot-nodes are represented as CDFs. The structured elucidative
document looks like a normal structured document.

We define that a slot-node can be mapped to the grammar if it appears
at a valid position in the tree, i.e., if the grammar permits a node of that
type at that position, irrespective of whether the grammar requires child
nodes. This covers the case that the slot-nodes are physically represented
as active references and the CDFs are not available. Additionally, we define
that if CDFs are available, they must be validated against the grammar. The
grammar for the CDF validation is almost the same as for the validation of
the whole document. The only difference is that the start symbol is the type
of the CDF root node.

Definition 31 (Document Validity for Structured Elucidative Documents).
An elucidative document ED is valid w.r.t. a reqular tree grammar G if there
exists a mapping M, such that:

(i) M : EDNn — Gy is a function that assigns a nonterminal of G to a document node.
(1)) M (Nroot) s a start symbol, and n .ot is the root node of ED.
(#i) for each slot-node s, there exists a production rule X — a r such that
o M(s)is X
o the terminal of s is a

(iv) for each slot-node s, for which a CDF' can be computed, the CDF is valid w.r.t. Gy.
Gy is identical to G, except that M (s) is a start symbol.

(v) for each non-slot-node n and its children ng,ny,...,n; there exists a production rule
X — ar such that
e M(n)is X
o the terminal of n is a

e M(ng) M(ny) ... M(n;) matchesr

Example 5. Figure 6.4 shows the mapping of the elucidative document from
Fig. 6.3 to the XHTML grammar from Listing 6.3. This includes the mapping
of the dtv and span CDFs. The elucidative document is valid w.r.t. the
XHTML grammoar.

We have shown how a structured elucidative document can be theoreti-
cally checked for validity, but how does it work in practice? One possibility
is the implementation of a schema validator that can validate documents

Chapter 6. Extensions of Elucidative Development 87

Html

Body

./P > | \
PCDATA PCDATA PCDATA @ PCDATA @ PCDATA A PCDATA

PCDATA
Div Span Span Span

N

PCDATA PCDATA PCDATA

PCDATA

Figure 6.4: Mapping from elucidative document to XHTML grammar.

according to Definition 31. In general, the implementation of a schema val-
idator is viable, but it costs some effort and it should be evaluated whether
the benefit outweighs the effort. In [35], DTD validation and some variations
are presented, which can serve as a starting point for a realisation.

There are also cases where structured elucidative documents can be vali-
dated with existing validators.

o If all slots are physically represented as CDFs, the structured elucida-
tive document can be validated like a normal structured document.

e The concept of the nillable property in XML Schema! allows us to
mimic the concept of typed empty slot-nodes using standard validators.
This requires a few minor tweaks to the schema, but the changes do
not affect the actual tree grammar defined by the schema. That is, the
used schema language must be XML Schema and the schema must be
available for minor modifications.

We will revisit both cases in Sect. 7.4, where we present possible technical
realisations of validity checking.

'http://www.w3.org/TR/xmlschema-1/#Element_Declaration_details

http://www.w3.org/TR/xmlschema-1/#Element_Declaration_details

88 Chapter 6. Extensions of Elucidative Development

6.2 Backpropagation-Based Round-Trip Engi-
neering for Computed Text Document
Fragments

Until now we have only considered unidirectional operations. The operations
take an input, such as a software artefact, and compute a CDF. Changes in
the input are noticed and trigger a recomputation of the CDF.

If the author wants to change a CDF, he can either ask a developer to
change the corresponding view, or he can change the configuration. While
this approach is usually feasible, there are cases, where it is cumbersome, for
example, if the change comprises only the correction of a typing error. It
would be useful to allow the author to make simple changes directly in the
CDF and apply them to the artefact and/or the configuration automatically.
This is an application of Round-Trip Engineering (RTE).

In this section, we will present a possible application of RTE to elucidative
development. First, we will give a short introduction to backpropagation-
based RTE. Afterwards, we demonstrate the application of backpropagation-
based RTE with a specific example.

6.2.1 Introduction to Backpropagation-Based Round-
Trip Engineering

In Sect. 3.3, we introduced RTE as a means of synchronisation using inverse
transformations. Backpropagation-based RTE [48] follows a different idea.
Modifications of generated artefacts are not propagated back by means of
inverse transformations. Instead, the changes performed on the generated
artefacts are transformed and applied to the source artefacts.

In many cases, there are multiple possibilities to propagate target arte-
fact changes to source artefacts. In order to find the best possibility, a pro-
cedure called Propagate Replay Evaluate Pick (PREP) has been developed.
Backpropagation-based RTE with PREP is depicted in Fig. 6.5. Due to lim-
ited space, the figure shows only one source artefact and one target artefact.
But the approach also works with multiple source and target artefacts.

First, all possible propagations are individually applied to the source
artefacts (Propagate). Then, for each updated set of source artefacts the
transformation is executed (Replay). The result of the replay transformation
is called echo artefact. All propagations must be examined in order to find
the best one (Evaluate). The propagations which result in echo artefacts that
are different from the modified target artefacts are considered invalid. The
remaining propagations are rated according to the “quality” of the modified

Chapter 6. Extensions of Elucidative Development 89

source artefacts. Finally, the change propagation with the best evaluation
result is chosen for the actual execution of the round trip (Pick).

Source E> Target

/a\

Propagate A
& Target' Pick

' ﬁ>
Replay Evaluation

Source,,’ |::> Target," Result

Figure 6.5: Backpropagation-based round-trip engineering.

Source;' Target,"

ajenjeny

—» Source,' Target,"

X

RTE becomes easier if the artefacts to be synchronised are small. In
many synchronisation scenarios, it is possible to concentrate on an excerpt
of the artefacts and ignore the rest because only parts that share information,
i.e., which are redundant, are relevant for RTE. In [48|, the artefact parts
which share information are called skeletons, the rest is called clothing. If
the artefacts can be automatically divided into skeleton and clothing before
the synchronisation and combined again after the synchronisation, as shown
in Fig. 6.6, the synchronisation can be simplified.

6.2.2 Application to Elucidative Development — An Ex-
ample

In the following, we will present an example of the applicability of
backpropagation-based RTE to elucidative development. The CDF in this
example is a code listing, i.e., the following explanations focus on the modi-
fication of source code. RTE for other kinds of CDFs require different algo-
rithms for the propagation of changes.

90 Chapter 6. Extensions of Elucidative Development

Source Target

. Clothing

Synchronisation

Clothing

Clothing

Skeleton

Skeleton

Figure 6.6: Skeletons and clothings of source and target artefacts.

The concepts of backpropagation-based RTE and elucidative development
can be mapped to each other.

e The RTE transformation corresponds to the operation of an active
reference. In this example, the transformation transforms source code
into a code listing.

e The RTE source artefacts correspond to an artefact and a configuration.
In this example, the artefact contains source code.

e The RTE target artefact corresponds to a CDF. In this example, it
represents a code listing.

The way a code listing CDF can be synchronised with its artefact and
the configuration depends on how it is computed, i.e., how the operation is
implemented. Therefore, we will first sketch the basic functionality of the
operation. An excerpt of the source code that should be transformed into a
code listing is shown in Listing 6.5.

The operation starts with parsing the code file and creating a syntax
tree. The configuration contains a query expression that denotes a node of
the syntax tree. In our example, this is the root of the createLine method.
This node and its descendants are used for the computation of the code
listing CDF. In other words, the query expression is a filter that selects an
excerpt of the code file. The selected createLine method is a skeleton in
this synchronisation scenario, whereas the rest of the code file is clothing.

Chapter 6. Extensions of Elucidative Development 91

public class ShapeFactory {

public Line createline(Point pl, Point pEnd) {
Logger.log("Creating line");
Line line = new Line();
//the order of the points does not matter
line.setStartPoint (pl);
line.setEndPoint (pEnd);
return line;

}

public Circle createCircle(Point center, int radius)

{
}

public Rectangle createRectangle(Point pl, Point p2,
Point p3, Point p4)
{

}

Listing 6.5: Source code artefact.

Furthermore, the configuration can contain a mapping from query ex-
pressions to strings which describe replacements of syntax tree nodes. The
operation removes for each query expression the corresponding node (if a
node is found by the query) and replaces it by a token that contains the re-
placement text. The configuration is shown in Listing 6.6, and the resulting
modified syntax tree is shown in Fig. 6.7.

[Filter Query]
//MethodDeclaration[@name=’createline ’]

[Replacement]
Body/ExprStmt [1] — "..."
Body/Comment [1] — €

Listing 6.6: Configuration.

Finally, the syntax tree is serialised and leading spaces are removed. The
resulting string is the CDF content, as shown in Listing 6.7. It contains
content from the code file and replacement strings from the configuration.
The meaning of the highlighted code parts will be explained soon.

92 Chapter 6. Extensions of Elucidative Development

O

MethodDeclaration

Modifiers SimpleType Identifier = Parameters Body

{ X Variable CMnt Expr Expr Return }

DeclStmt Stmt Stmt Stmt
n".u 8

[Filter Query]
//MethodDeclaration[@name='createLine']

[Replacement]
Body/ExprStmt[1] > "..."
Body/Comment[1] > €

Configuration

Figure 6.7: Configuration determines replacement of syntax tree nodes.

public Line createline(Point pl, Point pEnd) {

Line line = new Line();
line.setStartPoint ((pl);

line.setEndPoint (pEnd);
return line;

Listing 6.7: Resulting code listing.

In our example, the author notices that the parameters in the code list-
ing are not uniformly named. They should either be called p1 and p2 or
pStart and pEnd. Furthermore, the author thinks that the replacement of
the logging statement with an ellipsis was not sufficient. He wants to replace
the parameter pl with pStart and add the comment //some logging after
the ellipsis. The corresponding locations in the code listing are highlighted
in Listing 6.7.

Chapter 6. Extensions of Elucidative Development 93

The author decides to modify the code listing CDF directly. The changes
that he performs are saved. We call them string modification records in the
following. A string modification record contains the type and the location of
the change, for example “replaced 2 characters at offset 29 with pStart”.

The string modifications must be propagated to the code file or to the con-
figuration. This is similar to the approach presented in [14], where changes
in a program with woven aspects must be propagated either to the program
core or to the correct aspect. In order to decide whether the code file or
the configuration is affected by a certain string modification, the code listing
CDF is divided into a set of ranges. A range is a consecutive set of characters
which either stem from the code file (normal range) or the configuration (re-
placement range). The ranges are computed from the syntax tree, as shown
in Fig. 6.8. A normal range knows the start and end offset of its origin in
the code file. A replacement range knows the query expression that was
responsible for its creation.

A modification of the CDF can now be related to a certain range by com-
paring the offsets of the string modification record to the offsets of the ranges.
Changes in an original range must be propagated to the code file, whereas
changes in a replacement range must be propagated to the corresponding
replacement rule in the configuration.

The actual change application is straightforward. If the configuration is
affected, the replacement text of the corresponding query expression must be
replaced by the modified content of the range. If the code file is affected, the
offset of the modified original range must be translated to the corresponding
position in the code file. Then that part of the code file can be replaced by
the modified content of the range. A modification of the code file could cause
syntactic or semantic errors in the code file, e.g., if a variable declaration is
renamed, but the variable uses are not. An advanced implementation could
identify this and similar cases and perform a refactoring. If a refactoring is
not possible, or not implemented, the syntactic or semantic errors will be
identified in the replay and evaluate phase of the PREP approach and the
modification will be discarded.

In the example, both changes from pl to pStart take place inside a
normal range. The changes are therefore applied to the code file. The new
comment string is meant to be added after the ellipsis, which belongs to
the first replacement range. However, the modification takes place at the
end of the replacement range, which is the same as the beginning of the
subsequent normal range. Therefore, it is not clear whether the change should
be propagated to the configuration or to the code file.

The PREP approach described above can handle this ambiguity by per-
forming both possible propagations. For the first propagation, the configura-

94 Chapter 6. Extensions of Elucidative Development

O

MethodDeclaration

O~ O O O

Modifiers SimpleType Identifier ~ Parameters

Body

O 0 00

X Variable CoMnt Expr Expr Return }
DeclStmt Stmt Stmt Stmt
W ow l €
d | |
Normal Replacement|| Normal ||Replacement Normal
Range Range Range Range Range

public Line createline (Point pl, Point pEnd) ({

Line line = new Line();

QUline.setStartPoint (pl);
line.setEndPoint (pEnd) ;
return line;

Figure 6.8: Computing ranges from the syntax tree.

tion is changed to produce the replacement "... //some logging" instead
of "...". The identifiers p1 in the source code are changed to pStart, and
the changed source code of the skeleton (the method) is added to the clothing
(i.e., the rest of the code file) again. Then, the operation is replayed.

For the second propagation, the string "//some logging" is added to the
corresponding position in the skeleton (the method). The identifiers p1 in
the source code are changed to pStart, like in the first propagation. Then,
the changed skeleton is added to the clothing. Depending on how deeply the
Elucidative Development Environment (EDE) and the round-trip system are
integrated into the development tool landscape of the software project, the
compilation of the code file could be triggered in order to verify that it is
syntactically and static-semantically valid.

In our example, both propagations are valid. Therefore, the operation is
replayed on both updated sets of source artefacts (source code artefact and

Chapter 6. Extensions of Elucidative Development 95

configuration) to compute the echo artefacts. It turns out that in both cases
the echo artefact is equal to the modified CDF. Therefore, the RTE system
asks the author which change should be picked?. The author decides that
the change should be applied to the configuration. Finally, the change is
committed and the code listing CDF is recomputed.

6.3 Conclusion

In this chapter, we presented two extensions of ED. The first extension allows
for the validation of structured elucidative documents. First, we motivated
the need for the validation of structured documents in general. We identi-
fied XML documents as a family of documents, which can be easily checked
against schemas. Since schemas are based on tree grammars, we presented
the definition of tree grammars from the literature, together with a defini-
tion of validity. Afterwards, we extended the definition of validity, so that it
applies to structured elucidative documents, which contain slots. For a prac-
tical realisation of validity checking for structured elucidative documents we
refer the reader to Sect. 7.4.

The second extension is the use of RTE in ED. We explained
backpropagation-based RTE and how it can be related to ED. We presented
a possibility to modify textual CDFs and propagate the modifications to
the corresponding artefact or the configuration. With the help of a running
example, we showed how backpropagation-based RTE can be used for the
modification of source code CDFs.

2Had both propagations been invalid, the RTE system would have informed the author
that the desired change could not be applied.

96

Chapter 6. Extensions of Elucidative Development

Chapter 7. Tool Support for an Elucidative Development Environment 97

Chapter 7

Tool Support for an Elucidative
Development Environment

In Chap. 4, we presented Elucidative Development (ED) in a conceptual, im-
plementation independent way. In this chapter, we cover issues related to the
implementation of ED tool support, based on our experience with our own
Elucidative Development Environment (EDE), called Development Environ-
ment For Tutorials (DEFT)! [4,7,59,60]. First, we present implementation
relevant issues concerning the management of active references. Then, we in-
vestigate under which circumstances existing editors can be used in an EDE
and how Computed Document Fragments (CDFs) can actually be added to
an elucidative document. Based on this, we introduce CDF caching, a way
to realise transconsistency efficiently. Finally, we explain a possibility to
validate elucidative documents with standard Extensible Markup Language
(XML) Schema validation tools.

The problems and solutions presented in this chapter apply to a single
user environment. We do not examine multi-user scenarios.

7.1 Managing Active References

Active references are a part of elucidative documents and are the source
of CDFs. There are two ways to store active references physically: either
directly inside the document file or externally, for example in a database.
We will show why the database solution is preferable, what the challenges
are, and how they can be addressed. The term document file is used to denote
an individual file of an elucidative document, in contrast to the concept of
an elucidative document as a logical unit as described in Chap. 4.

'http://deftproject.org

http://deftproject.org

98 Chapter 7. Tool Support for an Elucidative Development Environment

If active references are stored directly in the document file, they can
be easily managed. If the author moves a CDF from one document file to
another, it is only necessary to move the physical active reference correspon-
dingly. A disadvantage is, that active references are difficult to search for.
For example, finding all active references which depend on a certain artefact
requires searching in all documents files. An even bigger disadvantage is that
CDF caching is not possible (see Sect. 7.3).

Therefore, we recommend to store active references outside the document
file, for example, in a database. Each active reference in the database has a
unique ID. The document files contain placeholders with those IDs instead
of the actual active references. Storing active references inside the database
makes it easier to search and manipulate them, but it also requires some
implementation effort. First of all, the active references in the database must
additionally store their origin, i.e., the document file to which they belong.
Secondly, copying, moving and deletion of active references becomes more
complicated because the document files and the information in the database
must be kept synchronised. Imagine, for example, that the author selects a
CDF in the editor, cuts it out, and saves the document file. Even though
the active reference is not used in any document file at the time of saving,
it must not be deleted from the database, because the author might insert it
into the same or a different document file later. In the following, we discuss
one possibility to implement this behaviour.

In order to keep the document files and the active reference information
in the database synchronised, it is necessary to update the active references
in the database when a document file is saved. This requires comparing
every active reference ID in the document file with the corresponding active
reference in the database. Active references must not be deleted from the
database when they are removed from a document file, because the removal
might be undone by the author. Instead, an active reference needs a deletion
status?, which can have the values deleted and normal.

In the following, we will present four basic scenarios that can occur when
the author removes and copies CDFs and then saves the document file.

e There is an active reference ID in the database without a corresponding
ID in the document file. This can happen if a CDF has been deleted or
moved to another document file. The active reference’s deletion status
must be set to deleted.

2The deletion status has nothing to do with the update state, which is used for guidance
(see Sect. 4.5).

Chapter 7. Tool Support for an Elucidative Development Environment 99

8= @

Figure 7.1: Scenario 1 — Active reference ID missing in document.

e There is an active reference ID in the document file whose correspon-
ding active reference in the database has the deletion status deleted.
This can happen if a CDF has been deleted, the document file has
been saved, and then the CDF has been added again. The deletion
status of the active reference in the database must be set to normal.

AN AN
=8 = e

Figure 7.2: Scenario 2 — Inconsistent deletion status.

e There are two or more identical active reference IDs in the document
file. This can happen if a CDF has been duplicated (copied and pasted)
multiple times inside the same document file. The active reference 1Ds
in the document file must be replaced by new IDs. The active reference
information in the database must be duplicated, and each duplicate
must get one of the new IDs.

Figure 7.3: Scenario 3 — Identical active reference IDs in document.

100 Chapter 7. Tool Support for an Elucidative Development Environment

e There is an active reference ID in the document file which exists in
the database, but the active reference information says it belongs to a
different document file. This can happen if a CDF has been copied or
moved from one document file to another. The active reference ID in
the document file must be replaced by a new ID. The active reference
information from the database must be duplicated. The duplicate must
get the new ID and the origin of the duplicate must be set to the new
document file.

AN N\

> D1 — 3 ID1
rl
ID1 D2 r2

Figure 7.4: Scenario 4 — Inconsistent active reference location.

Special care must be taken when combinations of the above cases are en-
countered. For example, a document file might contain an ID multiple times.
The corresponding active reference information in the database has the dele-
tion status deleted, and the origin is a different document file. This can
happen if a CDF has been removed from another document file and copied
into to the new document file multiple times. Then each ID in the document
file must be replaced by a new ID and the active reference information must
be duplicated. The duplicates must then be assigned a new origin and their
deletion status must be set to normal.

7.2 Inserting Computed Document Fragments

Until now, we have only examined the creation and updating of CDFs. The
purpose of this section is to discuss the insertion and the removal of the
created CDFs into and from the elucidative documents. First, we present
two possible ways to insert and remove CDFs: modifying the document file
directly or scripting the editor. Then, we discuss the problem that different
document formats need different CDFs. Finally, we explain how to handle
CDFs which contain media, such as images.

7.2.1 Document File Manipulation vs. Editor API

The editor of the EDE must be able to display CDFs. This requires that
the presentation layer of the EDE removes the active references and inserts

Chapter 7. Tool Support for an Elucidative Development Environment 101

CDFs. The removal of CDFs must also be handled by the presentation layer.
There are two possibilities to insert a CDF, either by changing the document
file directly or by controlling the editor (scripting). In both cases, the used
editor must have certain capabilities, otherwise it is not suited for integra-
tion into the EDE. In the following, we will compare the two possibilities
and the required Application Programming Interface (API), based on our
experience with our EDE DEFT. The results of this comparison can be used
to decide whether a certain editor is suited for integration into an EDE (see
Requirement 4).

Common Editor API Requirements

The editor API must provide basic operations. These are needed regardless of
whether the document file should be modified directly or via editor scripting.
The editor API must allow:

e the retrieval of the current cursor position.
e the retrieval of the currently selected document content range.
e the scrolling of the document to a certain position.

These capabilities allow for the realisation of essential EDE features.
Firstly, the cursor position is necessary to insert and edit CDFs.

e New CDFs/active references are usually added at the cursor position.
If the document format of the elucidative document can be validated
(see Sect. 6.1), it is even possible to check where a certain CDF may be
inserted in the document. This enables features such as highlighting
valid positions or prohibiting the insertion of the active reference at
wrong positions.

e If the cursor is known to be inside a CDF and the editor API supports
the creation of context menus, CDF specific context menus can be
provided. CDF context menus can contain menu items for the editing
of the configuration or the change of the CDF update state.

e If the cursor is inside a CDF and the editor can intercept editing com-
mands (such keystrokes and mouse events), it is possible to notice when
the author tries to change a CDF manually. An error message could
be presented telling the author that editing CDFs directly in the docu-
ment is not supported. Alternatively, the changes could be propagated
to the artefact (see Sect. 6.2).

102 Chapter 7. Tool Support for an Elucidative Development Environment

Secondly, document selections must be recognised, so the EDE can keep
track of copied, moved or deleted CDFs. When the author copies and pastes
a CDF, the EDE must internally copy and paste the corresponding active
reference or active reference ID in the document file (see Sect. 7.1). When
the author has selected only a part of a CDF and tries to copy and paste it,
the EDE must either perform a full CDF copy or reject the copy operation
altogether. If the copy operation is performed, the active reference or active
reference ID must be copied to the new location in the document, so that
the CDF can be created there. If the copy operation is rejected, nothing
happens. Similar issues must be considered if the author tries to delete a
partially selected CDF.

Thirdly, scrolling in the editor is necessary, so the author can navigate
to specific CDFs. This is useful in conjunction with guidance, for example,
when a CDF has changed and the author is required to proofread it.

Editor API Requirements for Document File Manipulation

If CDFs should be added, removed or modified by manipulating the docu-
ment file directly, there are only few additional requirements for the editor.
Most importantly, the editor must not lock the document file while it is
displayed, so it can be modified. Afterwards, the editor must reload the
modified document file.

The difficulty of manipulating the document file directly depends on the
selected document format. Some document formats are easy to process, for
example Extensible Hypertext Markup Language (XHTML). Other docu-
ment formats are very complex and difficult to work with, for example Open
Document Format (ODF). Fortunately, there are libraries for some docu-

ment formats, which make the processing of complex documents, such as
ODF, easier?.

Editor API Requirements for CDF Processing by Scripting

If CDFs should be added, removed or modified by controlling the editor
(scripting), the editor must have an API that allows the creation and removal
of document content. We differentiate between text editors and What You
See Is What You Get (WYSIWYG) editors.

The API for text editors can be rather simple. It must support:

e the insertion of text at a certain position.

e the removal of text from a certain range.

3http://incubator.apache.org/odftoolkit/

http://incubator.apache.org/odftoolkit/

Chapter 7. Tool Support for an Elucidative Development Environment 103

The required API for WYSIWYG editors is more comprehensive:

e It must allow the direct processing of formatted text, images, tables,
and other document content that the CDF consists of.

e [t should be possible to modify the undo stack. Unlike text editors,
WYSIWYG editors usually do not allow the insertion of a CDF in
one atomic step. If the CDF is added in multiple steps (e.g., first an
image, then an image caption), the author could partially undo the
CDF insertion and end up with an inconsistent document state. If the
undo stack can be modified, the intermediate steps could be removed,
so that an undo operation would undo the complete CDF insertion.

We have integrated three editors into DEFT, which fulfil the mandatory
requirements. 7TeXlipse* is an Eclipse®-based text editor for BTEX docu-
ments. It is open source, so we could modify it to fit into DEFT, which is
also based on Eclipse. We were able to use the standard Eclipse editor APIs
for getting and setting the cursor, scrolling, selecting text, getting selected
text, and modifying text.

OpenOffice and its successor LibreOffice® are office suites, which include
the WYSIWYG word processor Writer. The office tools have an APT called
Universal Network Objects (UNO), so they can be controlled from external
programs, including Java programs. This allowed us the integration of Writer
into DEFT. The basic API requirements are fulfilled, it is possible to get and
set the cursor position, scroll to a certain document position, select document
content and get selected document content. It is possible to automatically
create, delete and modify CDFs which contain text, images, tables, or listings.
There is no API for the modification of the undo stack, though. Thus, if a
CDF is inserted in multiple steps, it is possible for the author to undo a part
of the CDF insertion and provoke an inconsistent state.

Vexr™ is an XML editor for Eclipse. It hides the XML tags from the author
and displays its content similar to WYSIWYG editors. At the same time,
it enforces the compliance with an XML grammar specified by a Document
Type Definition (DTD). Like TeXlipse, Vex is open source and allowed us
after some modifications full control for adding, removing and modifying
CDFs. We used Vex to write elucidative documents in the XHTML and
DocBook format.

‘http://sourceforge.net/projects/texlipse/
Shttp://eclipse.org/
Shttp://www.libreoffice.org/
"http://www.eclipse.org/vex/

http://sourceforge.net/projects/texlipse/
http://eclipse.org/
http://www.libreoffice.org/
http://www.eclipse.org/vex/

104 Chapter 7. Tool Support for an Elucidative Development Environment

7.2.2 Unifying CDF Insertion with Integrators

The structure of CDFs depends on the document format of the elucidative
document. For example, a CDF for an XHTML document must consist of a
tree of XHTML nodes. The same CDF for a ETEX document must consist of
text and IXTEX macros. If a CDF should be available for multiple document
formats, the CDF operation must be implemented multiple times, once for
each document format. Depending on the number of document formats that
the EDE should support, this requires much effort.

Therefore, we recommend to separate the CDF computation into a docu-
ment format-independent and a document format-specific part. As explained
in Sect. 4.3.4, operations can consist of several stages. The first stages of the
operation should compute an intermediate representation of the CDF, which
contains no document format-specific properties. Based on our evaluations,
we propose that the intermediate CDFs support at least the following docu-
ment structures:

e Styled Text, i.e., text with style information, such as font family or
size.

e Styled Code, which is a special type of styled text, used for code listings.
It has a monospace font.

e (Bullet point) listings, which are usually a collection of (styled) text.

e Definition Listings, which are special listings with words or phrases,
which are then described. The listings in the Cool Software specifi-
cation (see Sect. 9.1) and in the Unified Modeling Language (UML)
specification (see Sect. 9.2) are definition listings.

e Images.
e Tables.

The last stage of the operation should compute the final document format-
specific CDF from the intermediate representation. Since the operation re-
quires knowledge of the document format, it can additionally contain the
code to perform the actual integration into the document. Therefore, we call
the last stage of such an operation integration. An integration is performed
by a so-called integrator |41].

Similar to operations, integrators can be configured. Configurations can
be used to determine representation-specific attributes, such as the scaling
factor of an image or the background colour of a table heading. Figure 7.5

Chapter 7. Tool Support for an Elucidative Development Environment 105

Media
Artefact Operation Independent Integrator = CDF
CDF of

A A

‘ Configuration ‘

Figure 7.5: Using an integrator to insert a CDF into a document.

shows how an operation and an integrator transform an artefact and integrate
the resulting CDF into a document.

If the integrator concept is used, there must be integrators for each sup-
ported document format. Furthermore, there must be an integrator respon-
sible for the integration of error messages (see Sect. 4.4.2). All integrators
must be able to handle arbitrary intermediate CDFs.

Depending on how CDFs are added to the elucidative documents (by
file manipulation or via editor API, see Sect. 7.2.1), the integrators must
work differently. Integrators that add CDFs by direct file manipulation are
called File Integrators. Integrators that use the editor API are called Editor
Integrators. The two types of integrators work differently, but they share a
lot of similarities. Both must be able to insert and remove CDFs.

Add a new CDF When an active reference, or CDF, is newly added to
the elucidative document, the editor will already be opened and the
CDF is expected to appear at the cursor position. An editor integrator
can query the current cursor position and add the CDF there. A file
integrator must be told the current cursor position. It must then find
the corresponding place in the document file and add the CDF there.
The integrator must also add an ID to the CDF (see Sect. 7.3), so the
CDF can be identified in the future.

Remove a CDF Since an integrator contains knowledge of the CDF it has
previously added, it should also be responsible for CDF removal. Given
an active reference ID, the integrator must find the range in the docu-
ment where the CDF is located. For example, in an XHTML document
it could search for an element with an id attribute that matches the
active reference ID. In a XTEX document it could search for comments
with the artefact ID, which mark the beginning and the end of the

106 Chapter 7. Tool Support for an Elucidative Development Environment

CDF. After the CDF has been found, the integrator removes it. Fi-
nally, it returns the original start position of the removed CDF. The
position is needed if a new CDF version must be added (see below).

Integrate a new CDF version After a CDF has been removed during an
update, it is necessary to integrate a new version of the CDF or, if it
cannot be computed, an error message. This works like the integration
of a new CDF as described above. The only difference is that the
position of the CDF is now determined by the location of the removed
CDF instead of the cursor position.

7.2.3 Handling Images

CDFs which contain media, such as images, must be specially handled. First,
the image must be computed. If the CDF is processed by direct file manip-
ulation, there are two alternatives. If the document format is plain text or
markup, such as XML or ETEX, the image must be stored outside the doc-
ument and a link must be added to the document, pointing to the image.
If the document format is more powerful, such as ODF, the image can be
embedded in binary form inside the document.

If the CDF is processed via the editor API, there are also two alternatives.
If the editor is a text editor, the approach is the same as if the CDF is added
to a plain text file: the image is stored outside the document and a link to
the image is added to the document. If the editor is a WYSIWYG editor,
the image can be added to the document via the API. Storing, retrieving and
deleting the image is all handled internally by the editor.

7.3 Caching the Computed Document Frag-
ments

In the discussion of Requirement 1, we stated that a presentation layer is
responsible for hiding active references and the presentation of CDFs. A
naive implementation of an EDE might actually store an active reference
or an active reference ID in the elucidative document and replace it with
the CDF when the document is opened or published. While this would
theoretically work, it is very inefficient, especially if there are many active
references. Therefore, we propose an implementation that relies on caching.
It has been successfully tested with DEFT.

CDF caching means, that CDFs are not only logically displayed by a
presentation layer, but they are physically embedded in the elucidative doc-

Chapter 7. Tool Support for an Elucidative Development Environment 107

ument instead of active references. With CDF caching, it is not necessary
to execute operations and insert CDFs every time an elucidative document
is opened in the EDE. The corresponding active reference IDs are stored to-
gether with the CDFs in the document. The IDs must not be visible, i.e.,
they must be stored in a way that they do not appear in the final published
output. The actual active references are stored in a database (see Sect. 7.1).
Concrete implementations depend on the chosen document format. In Hyper-
text Markup Language (HTML) and XML documents, the ID can be stored
in an element’s id attribute. In ODF documents, the ID can be stored in
named frames or bookmarks. In IXTEX documents, the ID can be stored in
comments or dedicated macros®.

When an artefact has been updated, or when referenced document content
has been modified, the affected CDFs must be updated. For document files
which are currently opened in the editor, the CDF updates must be performed
instantly. For all other document files, the update can either be performed
instantly, too, or when the corresponding document is opened the next time.
In the following, we will compare both possibilities.

7.3.1 Instant Update

During an instant update, the EDE replaces all outdated CDFs in all docu-
ment files. CDFs within document files which are not opened in the editor
must be updated with file integrators. CDFs within opened document files
can be either updated with file integrators or editor integrators.

7.3.2 Deferred Update

Alternatively, it is possible to defer the update of outdated CDFs until the
corresponding document file is opened in the editor. In theory, every time a
document is opened, each CDF must be checked if it is up to date. But with
little effort a more efficient solution is possible.

Every artefact and every document file must have a revision number.
An artefact revision number is increased when an artefact update has been
accepted (see Sect. 4.5.1). A document file revision number is increased every
time the document file is saved.

Additionally, each active reference in the database must have a revision
number. The revision number of an active reference indicates the revision

8This exposes technical details of the ED implementation to the author, which slightly
violates Requirement 1. However, the intention of that requirement was to show the author
the CDFs during editing, which is still the case. The active reference IDs inside the CDFs
are usually unobtrusive and we consider them an acceptable tradeoff.

108 Chapter 7. Tool Support for an Elucidative Development Environment

of the artefact or document from which the currently cached CDF has been
computed. If the active reference revision number equals the artefact or
document revision, the CDF' is up to date. If the active reference revision
number is smaller than the artefact or document revision, the CDF might
have to be updated. In that case, it is necessary to compute the CDF from
the current artefact or document file and compare it to the cached CDF in
the document. If they differ, the CDF in the document must be replaced
by the new CDF. After the check and the possible CDF update, the active
reference revision number in the database must be set to the current artefact
or document revision. This indicates, that the CDF needs not be checked
anymore when the document is opened the next time. If no CDF can be
computed, the CDF in the document must be replaced with an error message
(see Sect. 4.4.2).

7.3.3 Discussion

Instant and deferred update both have their advantages and disadvantages.
In the following, we present a comparison.

Efficiency During an instant update, all affected CDFs are checked and, if
necessary, updated. Depending on the number of affected document
files and CDFs, this can take some time. The document format also
influences the update time. More complex document formats need more
time for an update.

The deferred update only updates the document files that are opened
in the editor. If the editor API is used to perform the update, the
speed of the editor determines the update time. In general, complex
editors with styling capabilities, such as OpenOffice, need more time
to insert CDFs than text editors. Some editors require that the cursor
position be set to the location where content is updated. This results
in scrolling to all affected CDFs, which is another performance penalty.

Consistency After an instant update, all document files are consistent
again. They can be further processed, such as being edited in the
editor or being published, without special consideration.

The deferred update might leave document files in an inconsistent
state. Therefore, care must be taken that the document is updated
(i.e., opened in the editor) before it is published.

In general, instant update is more robust and faster than deferred up-
date. However, the final choice depends on the chosen document format and
possible restrictions of the editor.

Chapter 7. Tool Support for an Elucidative Development Environment 109

7.4 FElucidative Document Validation with

Schemas

In Sect. 6.1, we showed how elucidative (XML) documents with active refer-
ences can be validated against a tree grammar. The basic idea was to view
active references as tree nodes, whose type corresponds to the root node type
of their CDF'. If the EDE displays the CDFs instead of the active references,
as described in Requirement 1, and CDF caching is used, then there is actu-
ally no need to resort to the methods from Sect. 6.1. Elucidative documents
with CDFs are expected to conform to the “original” tree grammar and can
be validated with standard tools. However, if the author chooses to display
the active reference placeholders (see Sect. 7.1) instead of the CDFs, this
does not work. In that case, it is necessary to actually validate elucidative
documents with active references.

In the following, we present three ways to implement validity checking for
elucidative XML documents, according to Sect. 6.1. At the same time, we
attempt to not reinvent the wheel and try to use standard XML tools and
schemas as much as possible (see Requirement 4).

7.4.1 Restricting the Possible Active Reference Types

In Sect. 6.1.3, we stated that slot-nodes (which correspond to active ref-
erences) must have a type. In Sect. 7.1, we stated that the actual active
reference information should be stored in a database and the elucidative doc-
ument should only contain a placeholder with an ID. Thus, the div element
in Listing 7.1 can be considered an active reference (placeholder). Further-
more, the listing as a whole constitutes a valid document (according to the
simplified XHTML tree grammar from Example 2 at page 82). That is, the
validity of the elucidative document with the active reference can be checked
with standard XML tools against a normal schema.

<html>
<body>
<div id="ref -001" />
</body >
</html>

Listing 7.1: Div element in an XHTML document.

However, there is a limitation. As shown in the listing, the active reference
placeholder in the document is represented by an empty XML element. Thus,

110 Chapter 7. Tool Support for an Elucidative Development Environment

only types which can be empty, according to the schema, can be used as
active reference placeholders. Additionally, only types with attributes that
can store the active reference ID are feasible. Types which require children,
such as table in XHTML, or which do not allow attributes, would cause a
validation error if they are used as shown in the listing.

This can be avoided by restricting the possible active reference-, and
correspondingly, CDF-types to the ones that can be empty and have an
attribute for the active reference ID. In XHTML, for example, this would
include the div and span element types, which are very flexible containers for
arbitrary content. And as all XHTML types, they can have an id attribute.

This solution has another great advantage: the handling of error message
CDFs is greatly simplified. In Sect. 4.4.2 we said that an error message should
be displayed in case a CDF cannot be computed. However, the structure of
the document file should still be valid. This is clearly possible if the type of
the CDF root element (i.e., the active reference type) is a flexible container
like div. It would usually contain the actual CDF content, but in case of an
error could contain an error message.

This is the preferred solution in many cases. It simplifies the validation
by encoding active references as valid elements of the original tree grammar.
However, for cases where this is not possible, we present two alternatives.

7.4.2 Using Subtrees as Active References

There may be cases where it is not desirable to restrict the possible active
reference types. If the active reference type cannot be empty according to
the schema, it must be represented by a minimal valid tree. Listing 7.2 shows
an example of a table active reference.

<html>
<body >
<table id="ref-001"><tr><td/></tr></table>
</body >
</html>

Listing 7.2: Table element in an XHTML document.

While this solution provides more flexibility concerning the possible CDF
types, it also has drawbacks. First, it is necessary to define a minimal valid
tree for each allowed type. Second, element types which do not allow an 1D
attribute can still not be used as active reference types. Third, handling the
display of error messages would be more complex. It would be necessary to
define error message operations for all possible types. For example, a CDF

Chapter 7. Tool Support for an Elucidative Development Environment 111

of type table would have to produce a complete table with rows (tr), data
(td), and finally the message. A CDF of type ul (unordered list) would have
to produce a list with a list item (11) and then the message.

7.4.3 Nillable Active References

The following elucidative document validation approach is recommended for
the special case that the possible active reference types should not be re-
stricted, but at the same time the active references should be represented by
an empty XML element. This approach works only under certain conditions:

e XML Schema must be used for validation.
e The XML Schema must be available for modification®.

XML Schema has a special property called nillable. The XML Schema
specification'? says: “If nillable is true, then an element may also be valid if it
carries the namespace qualified attribute with local name nil from namespace
http://www.w3.0org/2001 /XMLSchema-instance and value true [...] even if
it has no text or element content despite a content type which would other-
wise require content.” In other words, nillable is a switch that makes it
possible to set a nil attribute to an element, which in turn allows the ele-
ment to be empty (without child elements or text) even though that would
otherwise violate the schema. Listing 7.3 shows a simplified XML Schema
declaration of an XHTML table with nillable set to true.

<xs:element name="table" nillable="true">
<xs:complexType>
<xs:choice>
<xs:element maxOccurs="unbounded" ref="tbody"/>
<xs:element maxOccurs="unbounded" ref="tr"/>
</xs:choice>
<xs:attribute name="id" type="xs:ID"/>
</xs:complexType>
</xs:element >

Listing 7.3: Nillable table element declaration.

This declaration allows the use of the xsi:nil attribute on table ele-
ments. If xsi:nil is set to true, the table element will be considered valid

9We noted in Sect. 6.1.3 that modifications of the tree grammar are usually not feasible.
However, the changes we propose here are minor and do not affect the actual grammar.
Onttp://www.w3.org/TR/xmlschema-1/#Element_Declaration_details

http://www.w3.org/TR/xmlschema-1/#Element_Declaration_details

112 Chapter 7. Tool Support for an Elucidative Development Environment

if it is empty. If xsi:nil is missing or set to false, the element will be
considered invalid if it is empty because it requires a list of tbody or tr child
elements. Listing 7.4 shows an XHTML document with a nil table as active
reference.

<html xmlns:xsi="http://www.w3.o0rg/2001/XMLSchema-instance">
<body>
<table id="ref-001" xsi:nil="true"/>
</body>
</html>

Listing 7.4: Nil table in an XHTML document.

Unfortunately, this approach has the same problems as the one from
Sect. 7.4.2 w.r.t. error message handling. Additionally, nillable is usually
not set in the XML Schemas, because it is a concept to represent null
values for data-centric XML files, as opposed to document-centric XML files.
Consequently, the xsi:nil attribute cannot be set in the document files.

The only solution is to modify the XML Schema. If the schema is hard-
coded into the editor, we cannot use the nillable-approach for validity check-
ing. However, if the schema can be accessed, the modification should be
considered. Adding the nillable attribute to the element declarations causes
only little effort and it does not affect the underlying tree grammar.

The attributes of an element must always conform to the schema, even if
xsi:nil is set to true. That is, as in the solutions presented before, element
types which do not permit an ID attribute cannot be used as active refer-
ence types. However, it might be worth considering adding an appropriate
attribute. As the schema (probably) has to be modified anyway to add the
nillable attributes, it is not much extra effort to add missing ID attribute
declarations. Again, the underlying tree grammar is not affected.

7.5 Conclusion

In this chapter, we presented recommendations and issues regarding the im-
plementation of the theoretic concepts from the previous chapters. First, we
proposed to store active references as records in a database and let elucida-
tive documents only contain a pointer to these records. We also discussed
the necessary effort to keep elucidative documents and the active references
in the database synchronised.

Then, we examined how CDFs can be inserted into an elucidative docu-
ment. We identified document file manipulation and editor scripting as pos-

Chapter 7. Tool Support for an Elucidative Development Environment 113

sibilities and explained the APIs that are necessary for an editor to be used
as EDE editor. The motivation to reuse existing editors in the EDE came
from Requirement 4. We also showed, how operation implementations can
be reused if the EDE should support multiple document formats. An opera-
tion should be divided into a document format-independent and a document
format-specific part, the so-called integrator. Additionally, we discussed how
images can be handled by integrators.

Afterwards, we introduced CDF caching to keep expensive CDF compu-
tations to a minimum. We presented two caching strategies, instant update
and deferred update, and discussed their advantages and disadvantages.

Finally, we showed that elucidative XML documents can be validated
with standard tools if active references are specified as XML elements. We
presented three similar approaches with different advantages and disadvan-
tages. The first approach allowed us a very simple validation and good error
message handling. This came at the cost of having only a restricted num-
ber of XML element types available as active reference types. In the second
approach, validation was similarly simple and there were fewer restrictions
concerning the active reference types. However, it requires more develop-
ment effort and the error message handling is more cumbersome. The third
approach had almost no restrictions w.r.t. the possible active reference types.
However, it only works if the document is validated against XML Schema,
and it even requires modifications of the Schema. Moreover, it suffers from
a cumbersome error message handling. Like the editor reuse, the use of
standard validation tools has been motivated by Requirement 4.

114 Chapter 7. Tool Support for an Elucidative Development Environment

Chapter 8. Related Work 115

Chapter 8

Related Work

In this chapter, we present and compare work that is related to Elucidative
Development (ED). We start with documentation approaches which have
highly influenced ED, namely Literate Programming, Literate Modelling and
Elucidative Programming. Then, we introduce consistency approaches used
for ED, namely transclusion and transconsistency. Afterwards, we take a look
at compound document technologies, such as OpenDoc and Object Linking
and Embedding (OLE).

8.1 Related Documentation Approaches

There are several documentation approaches in the literature which had a
great influence on ED. They shared the idea to reduce redundancy by reusing
software views for documents. The general concept is shown in Fig 8.1. For
each concrete documentation approach that we introduce in the following, we
will present a similar figure. Figure 4.3, the overview figure of the Elucidative
Development chapter, is also based on Fig. 8.1.

In the following, we will review the related documentation approaches,
highlight their most important properties and compare them to ED. An
overview of the comparison is shown in Table 8.1.

8.1.1 Literate Programming

Knuth presents in his paper about Literate Programming (LP) [31] an ap-
proach to improve program documentation significantly by considering pro-
grams work of literature. The idea is to explain to humans what a program
should do instead of instructing the computer directly. A so-called literate
program consists of a series of sections (sometimes called chunks [26,27,43]).

116 Chapter 8. Related Work
0010110110001
SeimETR | ————— .|01 Executable 11
develops Views are transformedto |01 Program 00
1010010010010
A
Developer
contains
o Document Publishable
writes
is transformed to Document
Author
Figure 8.1: Related documentation approaches: general overview.
documenta- view view operations software
tion support location dev. phases
format
Literate typesetting homogenous integrated weave, tangle implementa-
Program- language (e.g. | (source code) tion
ming TEX)
(LP)
Literate WYSIWYG homogenous separate embed analysis,
Modelling format (UML design
(LM) diagrams)
Elucidative typesetting homogenous separate embed implementa-
Program- language (source code) tion
ming
(EP)
Elucidative WYSIWYG heterogeneous | separate transconsis- analysis,
Develop- format or (models, tency, weak design,
ment typesetting source code, transconsis- implementa-
(ED) language) tency tion

Table 8.1: Comparison of advanced documentation approaches (from [59]).

Each section can have a commentary, i.e., documentation text, and program
text, i.e., a small fragment of source code. The text is written in a docu-
ment markup language, such as TEX. Knuth introduced the WEB system,
which consists of two tools, Weave and Tangle. They are used to postprocess
and transform the literate program. Weave produces a document for human
readers, for example a Portable Document Format (PDF) file. Tangle ex-

Chapter 8. Related Work 117

tracts the code snippets from the literate program and produces a compilable
program. Figure 8.2 shows a graphical overview.

0010110110001
Compilable | ——— |0 Executable 1

Source Code is compiledto |9 Program 0
1010010010010
Tangle

Literate Documentation

i +
writes I program Code

Author and
Developer Weave Documentation
with embedded

Code Snippets
(e.g., TeX file)

Publishable
Documentation
(e.g., PDF)

is transformed
to

Figure 8.2: Literate Programming overview.

LP enables the programmer to write programs in an order that is best
for human understanding, which can be different from the order of tangled
code. Knuth found that the time to write and debug a literate program is
not greater than the time to write and debug an Algol or Pascal program.
Extra time spent for documentation was saved during debugging due to the
higher quality of the program.

Literature Overview

In the following, we will present a literature overview about LP.

Literate Programming in an Industrial Setting [51] This paper de-
scribes the experience with LP for large programs. Development started
using the noweb tool. Several improvements and extensions were made as
needed, which finally resulted in the dotNoweb tool. The literate programs
written in dotNoweb often used several programming languages and even the
graph description language dot. dotNoweb automatically produces diagrams
from dot graph descriptions.

Literate programs can have multiple authors, which makes collaboration
tools necessary. In order to get an overview of changes, it is possible to render
revision marks into the documentation.

Many programmers do not want to write text in a markup language,
such as BTEX. The authors recognise the importance of easy-to-use tools for

118 Chapter 8. Related Work

widespread success, which includes What You See Is What You Get (WYSI-
WYG) word processors, such as Microsoft Word. While Noweb does not
provide a real integration, there are scripts, which convert Noweb source files
into Rich Text Format (RTF) and vice versa. This allows authors to write
literate programs with Microsoft Word. For developers who prefer a more
technical environment there is also support for Emacs.

The reported results contained both positive and negative points. It
was easy to use multiple programming languages in parallel in the literate
program. Small code changes could easily be made and their reason be ex-
plained. When a bug was found, it was possible to include a warning and a
reference to a workaround. This easiness to update code and documentation
in parallel made it unlikely for the documentation to become inconsistent.
Similar to Knuth [31], the authors felt that the initial effort to write a lit-
erate program is compensated by reduced debugging time. One identified
shortcoming was that it is not possible to rearrange a literal program by
weave, which prohibits the generation of multiple different documents from
one literate program. The best way to organise the text for a tutorial is
not necessarily good for a reference manual. Another finding was that the
amount and quality of low level documentation was very good because source
code was being described. More abstract design documentation without code
was comparatively sparse in contrast. Much effort was put into the devel-
opment of the dotNoweb tool and the related editor support. The lack of
standard tools is seen as one major obstacle for the spreading of LP.

Theme-Based Literate Programming [26,27] The WEB system and
subsequent systems gained interest, but they were not spared from criticism.
A major drawback of LP was that one literate program could only be wo-
ven to one documentation. As already mentioned above, the order of the
documentation was determined by the order of the chunks (models) of the
literate program. However, depending on their goals, people need documen-
tation with different focuses and levels of granularity.

Theme-based literate programming is proposed to solve this problem. It
supports the definition of new kinds of chunks, e.g., for diagrams or unit
tests. Furthermore, it allows the definition of theme models, which define
navigation paths through the chunks. Thus, theme models allow the creation
of multiple documentations from a set of chunks, providing “multiple views
of a given system”.

There are more problems with LP, which have been identified. These
problems are not conceptual, but merely show that tool support is insuffi-
cient. Among the mentioned problems were the following:

Chapter 8. Related Work 119

Little Extensibility Knuth’s WEB system was written for the Pascal pro-
gramming language. Before it could be used for other languages, it
was necessary to define language-specific details. Ramsey presented
the simpler, language agnostic tool noweb [42]. While it is easier to
use new languages, some of WEB’s power is lost. Language-dependent
features, such as prettyprinting or the generation of identifier indexes,
are not supported.

Debugging If the literate program contains compile-time errors, the com-
piler reports error locations for the tangled code (i.e., the code extracted
and assembled from the literate program), but not for the actual liter-
ate program. This requires the developer to examine the tangled code
and then find the corresponding location in the literate program. There
are some implementations of literate programming environments, such
as noweb, which can add location information, such as the #1line direc-
tive in C, to the tangled program. This information can be used by the
compiler to produce error messages which match the literate program.
However, not all compilers can deal with this information.

Three-Syntax-Problem The literate programmer has to deal with three
languages simultaneously: the programming language, the documenta-
tion language, and the interconnection language. This causes a lot of
effort and might distract from the actual problem solving [39].

Object-Oriented Limitations Most literate programming tools were de-
veloped for structured programming languages. Object-oriented con-
cepts, such as overloading and overriding, are not supported. Meth-
ods are identified by name only, there are no means to state that one
method belongs to a specific class and overrides another method.

A Hypertext for Literate Programming [12] After the advent of hy-
pertext, there were endeavours to use it as a publishing medium for LP.
Chunks of a literate program have relationships to other chunks, so a di-
rect navigation in a browser is a natural improvement. Object-orientation
introduced another aspect that called for an improvement over the fixed se-
quential documentation of LP, which had originally been developed to docu-
ment structured programs. In object-oriented programming, it is important
to understand how different objects work together [40]. It is therefore often
necessary to assign multiple code fragments to a single piece of text. sterbye
describes a hyperlink-based LP tool for Smalltalk. Code and documentation
are written independently and connected by hyperlinks. Hyperlinks can also
be used to connect documentation of different abstractions. The tool also

120 Chapter 8. Related Work

supports management of the hyperlinks because a purely manual manage-
ment, would be impractical.

Literate Smalltalk Programming [40] It has been pointed out that LP
can be inappropriate in some stages of the software development process, such
as in initial experiments. If the code changes drastically and frequently, it
is cumbersome to always rewrite the whole documentation [44|. A proposed
solution is to document the changes and the rationale behind them. But
while this approach helps to understand evolution of the program, it is hard
to get a concise view of the current state.

Comparison with Elucidative Development

ED shares the main idea of LP that documentation and code should be close
to each other. However, ED only focuses on the resulting documentation, not
the way of programming. In contrast to LP, ED does not mix documentation
and code in one document. Source code does not contain any documenta-
tion besides Application Programming Interface (API) documentation and
comments. Documentation and code reside in different documents. They
are logically connected by active references, which are embedded in the doc-
umentation and reference the code. This means, that code and documenta-
tion need not necessarily be written in parallel. Therefore, the quality of the
resulting documentation is likely not as good as the quality of a real literate
program. But on the other hand, developers need not change their way of
programming. The LP way of programming, which is substantially different
from “normal” programming, has always been an obstacle for wide adoption.

Consequently, a postprocessing tool such as tangle is not necessary for ED,
because the software views need not be extracted from the documentation.
An advanced version of weave, integrated into the Elucidative Development
Environment (EDE), is necessary, though. It must make sure that Computed
Document Fragments (CDFs) can be displayed instead of the active references
when the documentation is edited (see Requirement 1). Furthermore, it is
responsible for the transformation of the active references into CDFs when
the documentation is published. The published result looks like a weaved
literate program.

8.1.2 Literate Modelling

Inspired by LP, the goal of Literate Modelling (LM) is to explain the results
of object-oriented analysis and design to different audiences. It has been
observed that object-oriented analysis and design diagrams, such as UML

Chapter 8. Related Work 121

diagrams, are often not suitable for both business experts and developers [2].
For example, use case diagrams might be not understandable by non-domain
experts, because they seem arbitrary without business context. Without deep
knowledge about legal rules, collaborations with partners, legacy systems and
similar factors, it is hard to grasp the importance of a certain requirement.
On the other hand, technical models, such as UML class diagrams or sequence
diagrams, are suited for developers, but not for stakeholders.

Many stakeholders do not understand UML diagrams. One problem is
that they do not know the syntax of those diagrams. Additionally, many
diagram types, such as class diagrams, have no narrative structure, which
makes them hard to access.

Developers, on the other hand, understand how a class diagram relates
to the implementation of a system, but they will probably not see the under-
lying requirements and their importance. This is because the requirements
cannot be explicitly expressed, so that mission-critical requirements are pre-
sented only as boxes with lines between them. They are often hidden between
dozens of others with little importance. The effect is called “trivialisation of
requirements” [2]. So the models’ value for communication between stake-
holders is limited, and therefore they are not sufficient for documentation.

Literature Overview

In the following, we will present the most notable work about L.M.

Capturing Business Knowledge with the UML [2] LM stresses
the importance of documentation and a common understanding about the
project among all stakeholders. It proposes the creation and maintenance of
so-called Business Context Documents. A business context document con-
sists of explanatory text and a UML diagram. The text gives background
information, which cannot be encoded in the diagram. The goal is to have
documentation that gives both a business view and a technical view on the
system. It is important, that text and model complement each other. Both
use the same vocabulary and must always be consistent. If the model changes,
the text has to be updated and vice versa.

LM in its basic form is purely conceptual and does not require the use of
specific tools like LP or Elucidative Programming (EP). However, the syn-
chronisation between the UML diagrams and the text can be very complex.
Figure 8.3 shows a graphical overview of LM.

Literate Modeling Editor (LiMonE) [46] There exists a research pro-
totype called the Literate Modelling Editor (LiMonE), which supports the

122 Chapter 8. Related Work

UML | Software
develops Model describes System

Developer
explains
with diagram
and text

Business

— writes ™ Context

writes
Document

Author

Figure 8.3: Literate Modelling overview.

synchronisation between models and text. Using natural language processing,
sentences with references to model elements are mapped to Object Constraint
Language (OCL) constraints. These constraints are checked against the doc-
umented UML diagram. If conflicts are found, they can be mapped back to
the original sentences and highlighted in the LiMonE editing environment.
There are many ways to express a certain model property in natural
language and it is not possible to provide an OCL constraint for every possi-
bility. However, rules for a set of common expressions and phrases have been
implemented. If the documentation author restricts himself to this limited
set of expressions and phrases, automatic validation is possible. Detected
inconsistencies are either resolved automatically or by the author.

Comparison with Elucidative Development

The goals of LM with LiMonE are similar to those of ED. Both want to keep
a documented view and explanatory text consistent. But while ED aims for
generality, i.e., the support for a multitude of views, LiMonE (and LM in
general) are specialised solutions for the documentation of UML diagrams
with the possibility to check consistency on sentence level. If the text does
not correspond to the model, it is either automatically fixed or marked as
error. In ED, text content is not analysed. Heuristics, such as the proximity
of CDFs, are used to determine whether text might be outdated. If a CDF has

Chapter 8. Related Work 123

been updated, the author is requested by the guidance system to proofread
the changed CDF and the surrounding text. But ultimately, the author must
decide whether the text is correct or not. In summary, while LiMonE and
the concept of ED have some differences, they also share a lot of similarities
and complement each other very well.

8.1.3 Elucidative Programming

EP [39] has been introduced as variant of LP, which addresses some of its
limitations. The focus of EP is internal software documentation. EP has been
defined indirectly by a number of requirements that a documentation process
and the corresponding tooling must fulfil [39]. These requirements were very
narrow in the beginning, but were broadened over the years. Figure 8.4 shows
a graphical overview of EP.

0010110110001

Source | —————— |01 Executable 11

develops Code is compiled to 01 Program 00
1010010010010

J
Developer

has
relations
to

Interlinked
HTML
Documentation

 rites A Documentation

writes
is synthesised to

Author

Figure 8.4: Elucidative Programming overview.

EP is very closely related to ED. In fact, it can be seen as the predecessor
of ED. In the following, we will highlight some properties of EP and compare
them to their ED counterparts.

Application Area

EP was originally targeted at internal documentation of software. Docu-
mentation and code should be written in parallel, so that the program un-
derstanding at the time of implementation could be recorded [39]. Future

124 Chapter 8. Related Work

developers of a software were the intended audience of the documentation.
However, it was soon discovered “that the ideas behind the approach can be
used in most situations where there is a need to write about a program. This
includes program tutorials, program reviews, and student reports which need
to address various program details” [38]. Later works covered tutorials for
frameworks and libraries [55,57].

ED continues the way towards more general documents. The ideas behind
ED can be used in most situations where there is a need to write about views
of a software system. No assumptions regarding the purpose of the documents
are made.

Documentation and Relations

An elucidative program is organised in a so-called documentation bundle [39).
The documentation bundle consists of programs, the documentation unit and
a setup description. In existing EP implementations, the programs consist
of one or many source code files, and the documentation unit consists of
structured text files with sections and subsections. It is possible to add
relations from the documentation to parts of the program files. There are
four kinds of relations. So-called weak and strong relations point from the
documentation to source code. A weak relation is used when a program
entity is only mentioned, whereas a strong relation is used for explanations
of a program entity. There can also be relations between different parts of
the documentation. These are basically cross references. Finally, there are
relations in the source code, namely from variable and method occurrences
to their definitions. However, these are not defined by the documentation
author. They are automatically found by a static program analysis and
rendered in the final output. The relations from documentation to source
code are language-specific. Figure 8.5, inspired by a figure from [39], shows
an example of various relations in documentation and programs.

Source code is addressed by named abstractions, such as class, method,
or variable names. While it is forbidden to change source code for the doc-
umentation, special comments, so-called source markers, are allowed. They
allow the addressing of arbitrary code sections while keeping the source code
syntactically valid.

An elucidative document also consists of document files and relations to
the views to be documented. Relations are called active references in ED.
Unlike an EP relation, an active reference has an operation, which transforms
the view (via an artefact, see Sect. 4.3.1) into a CDF. Additionally, ED does
also have a concept of cross references. In summary, an elucidative document

Chapter 8. Related Work 125

Program 1

T
Ly

A4

Documentation |£| |

O |

O |

| I
| I
Program 2 |

O |

< > I}I |

I

T<— .

) . <«——>» documentation-program-relation
Documentation Unit

— — — P documentation-documentation-relation

Program Unit
— — —p» applied-defined name relation

Figure 8.5: Relations of an elucidative program.

is very similar to an elucidative program. The main difference is that the
active references of ED are more powerful and flexible.

Language and Tool Support

EP environments must be language-specific. For example, it is necessary
to parse the documented source code in order to create relations to named
abstractions, such as classes and methods. The parse tree can also be used to
provide editing support with code completion during the creation of relations.
The language-specific parts of an EP environment can be collected in one
component, the so-called abstractor [38]. If the abstractor is exchanged,
other languages can be documented.

Similarly, ED must also be language-specific. In order to add active ref-
erences to a certain type of view, that view type must be known to the

126 Chapter 8. Related Work

development environment. Unlike in existing elucidative programming envi-
ronments, it is not necessary to exchange an abstractor in order to document
another language. All views can be supported at the same time by provid-
ing the necessary operations. This makes it possible to use CDFs computed
from different types of views, e.g., UML diagrams, Java code and Extensible
Markup Language (XML) configuration files, in the same document.

Synthesised Output

An elucidative program can be synthesised (published) to a Hypertext
Markup Language (HTML) documentation. The HTML documentation has
a 3-frame layout with overall navigation on the top, documentation on the
left, and the source code on the right [38]. In early realisations of EP, there
were only hyperlinks from the documentation to the code frame and vice
versa, which allowed navigation and exploring. Different kinds of relations,
so-called weak and strong relations, were rendered differently, so the reader
could see whether some part of the code would be explained in detail or
merely mentioned. This was an explicit alternative to the documentation
created by LP, where code is embedded in the text. However, it was dis-
covered that following hyperlinks distracts the reader [57]. Therefore, later
EP approaches imitated the look of LP documentation. Relations to code
were synthesised as embedded code listings, allowing the reader to read doc-
umentation and documented code together [54,56|. The hyperlinks were still
added, so that the reader could see the code in its context if he wanted.
The rendering is performed by a so-called synthesiser, which is part of the
elucidative programming environment.

An elucidative document can also be published as a standalone docu-
ment. But in contrast to EP, CDFs can be computed and displayed as soon
as active references are added to the document (see Requirement 1). This
approach is more flexible than the synthesising in EP because each CDF is
computed individually by its operation instead of a common postprocessing
step. Additional postprocessing is still possible, though. For example, creat-
ing an EP-like multi-frame output with a documentation frame and a code
frame, which are mutually hyperlinked (see Fig. 8.6), is only possible with an
explicit synthesising step. In summary, ED improves the concepts of existing
EP implementations by adding flexibility without sacrificing their power.

Consistency

When a documented program evolves, the documentation ages and loses
value. The relations of an elucidative program can help identify inconsistent

Chapter 8. Related Work 127

= fume [genera

1 Introduction 2 The solution 3 Post Scriptum
Grenerated: 22, Jund 2000, 10:23:01
-
O e
;; Fived second counts and calendar fants
0 &
(define seconds-in-a-nowmal —year 21526000)
0 &
(define seconds-in-a-leap-ypaaxr 2LE22400)
O
(define seconds-in-a-wesk £04300)
1.1 Time systems and functions O e
1.2 The plan of attack {dafine szoonde-in-a-day S6400)
O
(define seconds-dn-an-houxr 2E00)
0O & <]
[define base-pear 19701
There are several different standards for 0 a3
. . [define monkh-Length-nommal —year
representation of time on a Computer. Thniversal - {wector 21 23 21 20 21 20 21 21 20 21 20 21)) -
« | » « | 3

Figure 8.6: Synthesised elucidative program with three frames.

parts of the documentation. Dead relations between program and documen-
tation can be found and reported [57]. Similarly, changes in the program can
be translated into suggestions, where to update the documentation. Some
defects can be fixed with heuristics. For example, relations to methods which
have been removed or renamed can possibly be identified. Changes within
methods cannot easily be detected by default, according to [55]. With source
markers, this is possible, though. EP also supports versioning, which allows
for the documentation of program evolution [58]. If versioning is used, rela-
tions automatically point to an old version of the source code if their target
is missing in the latest version. It is also possible to explicitly set a relation
to a specific version.

ED puts much emphasis on documentation consistency during software
evolution. Ideas from EP are reused and extended. For example, checking if
active references have missing targets is easy. But it is also possible to identify
active references whose CDFs are outdated. Every change in the referenced
view causing a CDF update is a potential source of inconsistency. In many
cases, only the author can decide if such a change results in an inconsistency
or not, so all changes must be clearly marked for the author to check (see
Requirement 3). As mentioned above, it was stated in |55| that arbitrary
changes could not be easily detected. However, this is merely a matter of
tool implementation. Changes between an old and a new version of a view can
easily be identified if the tool keeps a version history. Another improvement

128 Chapter 8. Related Work

w.r.t. consistency is the possibility to create CDFs from document content,
including other CDFs. A versioning approach like in EP would be possible,
but has not been further investigated.

8.2 Consistency Approaches

If the same information is stored multiple times in different locations, in-
consistencies are possible (see Sect. 2.1). This also counts for documents,
such as software documentation. LP solves this problem by using the same
document for code and documentation so that both are perceived as a whole.
EP and ED use a reference mechanism to automatically reuse information
from views in documents. The underlying approaches are transclusion and
transconsistency, which we will present in the following.

8.2.1 Transclusion

Transclusion is the embedding of document parts into other documents in-
stead of duplicating them. “Transclusion means that part of a document may
be in several places — in other documents beside the original — without ac-
tually being copied there”. The term has been coined by Theodor H. Nelson
in [36]. A prerequisite for transclusion is the ability to address portions of
a document. This can be done by queries, or by explicit links, to document
content. In [36], such links are called quote-links because they are used to
quote parts of other documents.

The document with the quote-link to another document can be displayed
in different ways. If the referenced content is displayed directly instead of the
link, we speak of transclusion. Nelson compares this with a “window in the
new document [through which| we see a portion of the old”. The document
with the window (i.e., the quote-link) is called compound document because
it seemingly contains content from other documents. Compound documents
can be arbitrarily nested if the referenced document content has quote-links
itself. Compound documents are always up to date because at all times the
current state of a linked document is seen through the “windows”. Figure 8.7
shows this approach graphically. The images are inspired by [36].

However, sometimes an author might not want the transcluded content to
be updated without his consent. In this case, he can specify a quote-link to
a specific revision. Later he can check “What has this passage become?” [36]
and set the quote link to a more current revision.

The transclusion mechanism proposed in [36] is flexible enough to trans-
clude any part of a document, but it cannot handle more advanced scenarios.

Chapter 8. Related Work 129

= N\
IS =)=

(a) (b)

Figure 8.7: Transclusion — (a) shows a document (left) with nested windows
to other documents (centre and right), (b) shows how changes are
propagated along the documents to achieve immediate updates.

For example, it is not possible to filter or sort items of an enumeration. Fil-
tering or sorting would require to transclude each item of the enumeration
individually in the correct order into the compound document.

Transclusion was only one of the concepts that Nelson had in mind for
the future of documents. His goal was and still is to overcome the limitations
of paper. He envisioned a multi-user system that would electronically store
and deliver media, e.g., text, images, music, and interconnections between
them: in other words, a worldwide hypertext system. Documents could
have multiple alternative versions and historical revisions, which could be
compared. There was even a micropayment concept for transcluded content.
The implementation of this system was called Xanadu. However, there were
only few prototypes. They all took very long to develop and were ultimately
not sufficient to attract enough funding for further development. In the 90s,
the Xanadu approach lost ground to the conceptually simpler World Wide
Web (WWW). While Xanadu had no big success, the project is still alive!.
In 2007, Holm presented XanaduSpace [37], a program which allows a 3D-
visualisation of documents and their links. However, as of 2013, the web
presence has been closed down. It is still archived, though?.

The idea of transclusion was also followed outside Xanadu. One system
for transclusion in HTML is presented in [32]. The Uniform Resource Locator
(URL) and the offsets of the transcluded text are stored and reevaluated
whenever the document is displayed. However, this approach is not robust
against changes in the transcluded document. The authors propose to inform
the author of the document when transcluded documents change.

'http://www.xanadu.com/
2http://web.archive.org/web/20130615044618/http://xanarama.net/

http://www.xanadu.com/
http://web.archive.org/web/20130615044618/http://xanarama.net/

130 Chapter 8. Related Work

[Frames in HTML are a lightweight version of transclusion. It is possible
to embed other documents in a website, but it is always the complete docu-
ment that is transcluded. Tt is not possible to choose a finer granularity, such
as a paragraph or a sentence. Furthermore, it is not explicitly stored which
documents are transcluded by which documents, which was an important
factor in Nelson’s concept.

ED uses some parts of the transclusion approach. It allows the inclusion
of document content or views. The concept of nested compound documents
has not been adopted, though. In ED, the active reference to a view auto-
matically points to a copy of the view, i.e., the artefact. If the view changes,
the affected CDFs are not automatically updated. But like in Nelson’s ap-
proach, it is possible to have the change reported to the author. He can then
update the artefact, so that it contains the new content of the view. This
causes a recomputation of the CDFs.

Transclusion in its pure form is not suited to document software views,
because transclusion can only handle displayable content. For ED, many
views, such as database content, must be transformed into a displayable
representation first.

8.2.2 Transconsistency and Active Documents

Transconsistency |3] is an extension of transclusion, which goes beyond sim-
ple text inclusion. It has been introduced together with the concept of active
documents. An active document is defined as “a component-based document
with a set of derived components that is computed from a set of base com-
ponents. To this end, it contains or is tightly associated with software.”

The associated software can either be physically embedded within the
document, such as a macro inside a Microsoft Word document, or it can
be outside the document, such as a Java Server Pages (JSP) script, which
produces an HTML page. Active documents have an implicit form, which
contains so-called template components. The software can expand the tem-
plate components to their explicit form, the so-called derived components.

If the document components depend on each other and the software of
the document forms an acyclic data-flow graph of operations, the document
is called active document with data-flow architecture. Examples of such de-
pendencies are images or tables, which are computed from other parts of the
document or some external data sources.

Whenever a source changes, the corresponding components must imme-
diately be recomputed and updated. In an active document with data-flow
architecture, the components form a so-called transconsistent dataflow graph,
which has a set of inputs, a number of arbitrary operations that modify the

Chapter 8. Related Work 131

data, and results. The results are derived components, which can serve as in-
put for other components and/or which are actually displayed in a document.
Figure 8.8 shows an example.

| Class Diagram | Source Code

A
Filter

Y
| Filtered Diagram | (Extract)

-

\J

Document

Figure 8.8: Transconsistent dataflow graph.

Elucidative documents are active documents. This relationship is the
main reason for our choice of the terms active reference and operation in the
scope of ED.

The template components of active documents correspond to active refer-
ences of elucidative documents. The operations, which compute the explicit
form of the active document, correspond to the operations in ED. Finally,
the expanded templates of active documents correspond to CDFs.

ED uses transconsistency for document references. This means, that
changes in the referenced document parts are immediately reflected in the
corresponding CDFs. This is necessary to maintain local consistency.

However, transconsistency in its pure form is not used for artefact refer-
ences. The changes in a view of the software system must not be applied
immediately to the document (see Requirement 2). Instead, the update must
be delayed until the author explicitly triggers it. We call this new concept
weak transconsistency.

132 Chapter 8. Related Work

8.3 Compound Documents

There exist several approaches to embed documents or some of their parts
into another document. Documents which contain embedded documents are
called compound documents. Many of these approaches origin from the 1990s,
the time when component oriented development gained momentum. Thus,
many compound document approaches were not only able to put document
content together, but also to embed application parts which could edit this
document content. In the following, we present some of them.

8.3.1 Object Linking and Embedding

OLE is a technology from Microsoft for the creation of compound docu-
ments [15,16]. Tt is based on Microsoft’s Component Object Model (COM).
COM is a software component architecture which allows the definition of
components, which have interfaces with methods. COM objects are imple-
mented within a server. A server contains the actual code that the component
executes when one of its methods is called.

A compound document is a document that allows the inclusion of other
documents. An example of an OLE compound document is a Microsoft Word
document with an embedded Excel table. The “parent” document is called
container (Word). The included “child” document content is provided by a
different program, the server (Excel).

When the user inserts a child document into the container, the container
displays a graphical representation of the child document. That graphical
representation is created by the server. The container does neither know the
content of the child document, nor how it should be rendered.

The inserted document can be activated. When an inserted document is
activated, the corresponding server application is started (if it is not already
running) and the document content can be edited. The server can either
start as an independent application in its own window, or inside the container
application. If the server application starts as an independent application,
all performed changes are forwarded to the graphical representation in the
container. Thus, the graphical representation always reflects the current state
of the edited document. If the server application starts inside the container
application, it is displayed in place of the graphical representation. This gives
the user the impression of a single document being edited, e.g., an Excel table
that can be edited in Word, as shown in Fig. 8.9.

There are two possibilities to include a document in a container: by
embedding or by linking. If documents are embedded, they are physically
stored inside the container file. This is implemented by the structured stor-

Chapter 8. Related Work 133

Hellg, this is an Excel-Test.
Hello, this is an Excel-Test.

A B cC [E
1 |First Second Sum I‘j
First Second Sum 2 2 3 7
2 5 7 3 3 17 20 =
3 17 20 W4 r | Tablel Tabiea L1]]
(a) Excel table: graphical (b) Excel table: activated.

representation.

Figure 8.9: Excel table in Word: normal and activated.

age model of COM. It allows multiple COM objects to store their information
in a single file. In case of an embedded OLE document, the stored informa-
tion comprises the actual document data (e.g., an Excel table), its graphical
representation, and management information. Saving the graphical repre-
sentation in the structured storage makes it possible to load and display the
whole compound document even if the servers of the embedded documents
are not running.

If documents are linked, a reference to the included document is saved,
together with the graphical representation. The reference contains data that
describes the location of the included document. In the case of Excel, this
comprises the Excel-file, the worksheet, and the cell range on that worksheet.
When the referenced document is activated, the reference information is used
to initialise the server application, e.g., make Excel load the right file and
highlight the cell range.

8.3.2 OpenDoc

OpenDoc was a compound document framework developed by Apple and In-
ternational Business Machines Corporation (IBM) in the 1990s, that aimed
at compatibility and interoperability of components, written on different
platforms and in different programming languages®. It was based on Sys-
tem Object Model (SOM), a Common Object Request Broker Architecture
(CORBA)-compliant object request broker from IBM. The development of
OpenDoc was stopped in 1997.

OpenDoc documents were containers that could contain components, so-
called parts, including other containers. The embedded parts of an OpenDoc
document would allow both editing and displaying of contents. Parts include,
for example, whole word processors, but also smaller parts, such as fonts or

3http://web.archive.org/web/19961225115239/http://www.software.ibm.com/
clubopendoc/standish.html

http://web.archive.org/web/19961225115239/http://www.software.ibm.com/clubopendoc/standish.html
http://web.archive.org/web/19961225115239/http://www.software.ibm.com/clubopendoc/standish.html

134 Chapter 8. Related Work

spellcheckers. There were also implementations to provide Java applets and
HTML documents from the Internet as parts®.

Components were not only logically embedded, but physically®. The data
storage mechanism, called Bento (named after the compartmentalised Japa-
nese lunch box), enabled data and documents to be stored within a document.
Containers had to provide rendering support for their embedded components,
taking care of layout and visual representation.

OpenDoc did not specify how document components had to be displayed
or modified via a user interface, making documents portable in theory. Actual
multi-platform support was complex, though. It required the usage of cross-
platform Graphical User Interface (GUI) libraries or a re-implementation of
the components on every supported platform.

OpenDoc also supported linking®. Whenever linked data was updated,
the component was automatically updated, too. In order to keep a certain
revision of linked data, it was possible to store drafts of a document and
review them later.

8.3.3 The W3C Compound Document by Reference
Framework

The Compound Document by Reference Framework was a World Wide Web
Consortium (W3C) standard specification under development”. Compound
documents were documents that combine multiple document formats. Docu-
ments could be combined by reference, by inclusion, or both. The hierarchy
of nested documents could be arbitrarily deep.

If documents were combined by reference, the child documents existed
only logically in the parent document. In order to reference child documents,
existing elements of the parent document should be used, e.g., the object
element in Extensible Hypertext Markup Language (XHTML) documents,
the foreignObject element in Scalable Vector Graphics (SVG) or the ref
element in Synchronized Multimedia Integration Language (SMIL). That is,
references to child documents could appear anywhere in the document where
the corresponding reference elements were allowed. It was possible to add
parameters to the references. The specification allowed child documents to
be either XML-based or native, i.e., have binary content®.

‘http://web.archive.org/web/19961225075631/http://www.software.ibm.com/
clubopendoc/partpaks/webpak.html

Shttp://www.scoug.com/0S24U/1996/scougb08.2.opdoc201.html

Shttp://www.scoug.com/0S24U/1996/scougb07.2.opdoc102.html

"http://www.w3.org/2004/CDF/

8http://www.w3.org/TR/WICD/

http://web.archive.org/web/19961225075631/http://www.software.ibm.com/clubopendoc/partpaks/webpak.html
http://web.archive.org/web/19961225075631/http://www.software.ibm.com/clubopendoc/partpaks/webpak.html
http://www.scoug.com/OS24U/1996/scoug608.2.opdoc201.html
http://www.scoug.com/OS24U/1996/scoug607.2.opdoc102.html
http://www.w3.org/2004/CDF/
http://www.w3.org/TR/WICD/

Chapter 8. Related Work 135

If documents were combined by inclusion, the child documents existed
physically in the parent document. XML elements from different document
formats (e.g., XHTML and SVG) were distinguished by different namespaces.
A compound document profile was used to define which tags from which
namespace were allowed as child elements of an element?®.

The standard also covered hyperlinking, focus handling for keyboard nav-
igation and media synchronisation, such as video and audio streams. The
development of the standard was discontinued in 2010.

8.3.4 HotDoc

HotDoc is a SmallTalk framework for the construction of editors for com-
pound documents [13]. A HotDoc document can contain parts, which are
like “windows to applications”, for example text editors or video players.
Thus, HotDoc documents are at the same time documents in the classical
sense and user interfaces.

Parts can contain other parts. The part developer has to specify, which
part types can be inserted into the part he developed. Parts can be inserted
at a certain position inside the document or another part, or they can be
automatically layouted, using a layout policy.

Two or more parts of a document can share the same data model. This
is achieved by “linking” them together. For example, a chart part may be
linked to a spreadsheet part. When the spreadsheet data is changed, the
chart is updated. Parts must be “link compatible” in order to link them.

8.4 Conclusion

In this chapter, we gave an extensive overview about work related to ED.
First, we presented a number of documentation approaches. We described
their basic idea, presented a literature overview, and compared them to ED.
LP, the earliest of the related documentation approaches, requires a program
and its documentation text being written side by side in the same document,
the so-called literate program. There are tools to postprocess the literate
program and extract a running program and human-readable documentation.
LM, which has been introduced as an extension of LP, is an approach to
keep UML models and their documentation consistent. Tool support is not
necessary, but useful and encouraged. EP is also an extension of LP. It is
used to keep source code and its documentation consistent. Documentation

http://web.archive.org/web/20121025121059/http://www.ibm.com/
developerworks/library/x-mdcdd/

http://web.archive.org/web/20121025121059/http://www.ibm.com/developerworks/library/x-mdcdd/
http://web.archive.org/web/20121025121059/http://www.ibm.com/developerworks/library/x-mdcdd/

136 Chapter 8. Related Work

is partly generated from source code, using generation directives. Thus, it
can be seen as a special case of ED.

Then, we introduced consistency approaches which are used in ED. Trans-
clusion is the simple inclusion of a document or some of its parts into another
document. The transcluded document content is not only a copy of the other
document content. Changes in the transcluded document are immediately
reflected in the transcluding document. Transconsistency is similar to trans-
clusion. The difference is, that the transcluded content can be modified by
a transformation. Thus, transconsistency is more flexible than transclusion.

Finally, we presented a short overview of the history and the functionality
of compound documents. Compound documents are practical applications
of transclusion and transconsistency. The most prominent example is OLE,
which, among others, allows the linking and embedding of Microsoft Office
documents into other Microsoft Office documents.

Chapter 9. Evaluation 137

Chapter 9

Evaluation

In this chapter, we present the evaluations of Elucidative Development (ED),
that we performed with our Elucidative Development Environment (EDE)
Development Environment For Tutorials (DEFT). The evaluations comprise
both case studies, which measure the improvements that come with ED, and
feasibility studies, which show the versatility of ED.

First, we describe our efforts and the results of turning a handwritten
model specification into an elucidative document. We list the inconsistencies
that we found in the original specification and examine how the situation
improved with the use of DEFT.

Then, we show how ED can be used to create the Unified Modeling Lan-
guage (UML) specification document, assuming that there exists a machine-
readable UML metamodel. This section is based on [59].

Finally, we show several examples where we successfully used ED. This
includes a part of a requirements specification, a programming tutorial for
a Business Process Modelling Notation (BPMN) library, and the writing of
this thesis.

9.1 Creating and Maintaining the Cool Com-
ponent Specification

The CoolSoftware project! is a research project with the aim to optimise
software w.r.t. energy consumption. A part of the project is the develop-
ment and modelling of Energy Auto-Tuning (EAT) software systems. Such
systems can utilise or turn off underlying resources to finish computations

'http://www.cool-software.org/

http://www.cool-software.org/

138 Chapter 9. Evaluation

as energy-efficiently as possible. EAT systems are explicitly modelled by the
CoolSoftware architecture.

One part of the CoolSoftware architecture is the Cool Component Model
(CCM). The CCM is described in a specification, the Cool Component Model
Specification. The specification is written in E'TEX. There exists also an
Ecore implementation of the CCM metamodel.

In the past, the specification was written and maintained manually by
multiple authors. This was both very time-consuming and error-prone. The
Ecore metamodel allowed us to use ED with DEFT for the further evolution
of the specification.

The case study had two purposes:

e Find out which errors occurred in the manually written specification
and how often they occurred.

e Find out to what extent the errors are mitigated with ED.

9.1.1 Rewriting the Specification with ED

The purpose of the first part of the case study was the identification of
inconsistencies in the manually created specification. This was achieved by
creating a consistent version of the specification with DEFT and comparing
it to the manually created specification. However, there were inconsistencies
between the specification and the metamodel, so we modified the metamodel
to match the specification as closely as possible (see Appendix A).

The manually written specification had 441 metamodel identifiers (class
names, attribute names, reference names) in the running text. Further-
more, there were 52 listings with metaclass characteristics, one listing for
each metaclass. Metaclass characteristics listings are formal listings of meta-
class properties, such as being abstract, the list of superclasses or the list
of attributes. Object Constraint Language (OCL) constraints were specified
for 13 metaclasses, and a textual constraint was defined for one metaclass.
The metamodel contained 6 enumerations, which had listings similar to the
metaclass characteristics listings in the specification, too. Finally, there were
13 figures with model diagram images, showing the relationship of the meta-
classes graphically. Figure 9.1 shows the documentation of the Workload
metaclass of the CCM metamodel.

In order to rewrite the specification with DEFT, we implemented opera-
tions for most of these contents.

e Ecore model to Metaclass Characteristics listing: Creates a metaclass
characteristics listing.

Chapter 9. Evaluation 139

4.5.7 Workload
A Workload defines a load for a hehavior template and is used to estimate costs
associated by a certain scenario of behavior usage. The hehavior is represented
by a BehaviorTemplate where CostParameters are substituted with concrete
values. A Workload defines a set of workload items, which are Occurrences.
Meta class characteristics

e Abhstract class: false

e Inherited from: NamedElement (see Sect. 4.1.1)

e Known subclasses: —
Attributes: none

Associations:

e items : Occurrence [1..*] (containment reference)

A set of Occurences that defines the workload.

e resource : Resource [1]

Figure 9.1: Excerpt of the Cool Component Model specification.

e Ecore model to Identifier: Creates a marked up identifier (metaclass,
attribute or reference name) in the running text.

e Ecore diagram to Image: Creates an image from an Ecore diagram and
the corresponding IXTEX figure directives.

We did not implement operations for OCL constraints, because we did
not have the necessary tools to perform consistency checks against the meta-
model. Besides, we did not have enough detail knowledge of the metamodel
to repair broken OCL constraints. We also did not implement operations for
enumerations, because there were only few of them, they contained no errors
and there were no changes from the old version of the metamodel to the new
version. However, if the specification is going to be maintained with DEFT
beyond the evaluation scope of this thesis, it would be useful to also support
OCL constraints and enumeration listings.

After the operations were added to DEFT, we imported the first version
of the CCM metamodel. We copied the running text from the manually
written specification and replaced all diagram images, metaclass characteris-
tics listings and metamodel identifiers from the running text with Computed

140 Chapter 9. Evaluation

Document Fragments (CDFs). The result was a specification that looked like
the original specification, except that it contained fewer inconsistencies.

For this case study, we added all active references individually. Active
reference groups, as presented in Chap. 5 were not used, because active ref-
erence group support was not implemented in DEFT.

9.1.2 Finding Inconsistencies in the Manual Specifica-
tion

We searched for inconsistencies in the manually written specification by com-
paring it to the specification written with DEFT. We performed the compar-
ison manually and made detailed notes?. An automatic comparison was not
feasible. The TEX source code of the two specification documents was too
different because the CDFs had to be enriched with additional markup.

The comparison yielded a number of consistency issues. Most of them
were minor, but we also found serious errors. The issues could be classified
as follows:

Convention errors The structure of the specification should be uniform.
This includes using always the same pattern for metaclass character-
istics listings, the use or omission of cross references, capitalisation,
abbreviations, and similar things. Deviations in the uniformity of the
document are convention errors. Convention errors are minor and do
not convey wrong information. However, they lower the perceived qual-
ity of the document. The convention errors we identified were not
evenly distributed over the specification. The vast majority appeared
uniformly throughout certain sections or subsections. This indicates
that different authors used different conventions during different times
of writing.

Misspelled and wrong identifiers Sometimes, the specification mentions
identifiers which do not exist. In some cases, this is due to obvious typ-
ing errors, for example Visibilty instead of Visibility. They are
minor and do not pose problems, but they lower the perceived quality
of the document. In other cases, the wrong names are not easy to spot
on first sight, for example UserType instead of User. Wrong identi-
fiers convey wrong information and are actual errors. They are either
originating from oversights or they are outdated, i.e., they result from
metamodel changes that have not been applied to the specification.

2The detailed notes can be downloaded from http://bartho.net/phdthesis. A sum-
mary is presented in Appendix A.

http://bartho.net/phdthesis

Chapter 9. Evaluation 141

Wrong metaclass properties Each metaclass is described by various
properties, such as a list of superclasses and subclasses, attributes with
type and multiplicity, and others. Missing or wrong properties are a se-
rious problem and a severe error. The most probable reasons for wrong
metaclass properties are oversights and missing specification updates
after metamodel changes.

Wrong model diagrams Diagrams display the metaclasses and enumer-
ations graphically, together with their interrelations, attributes and
associations. The diagrams must contain the same information as the
metaclass descriptions. They have originally been generated from the
metamodel. Errors indicate that the used diagram images have been
created for an earlier version of the specification and have not been
updated since then.

Appendix A contains more detailed information about these errors.

9.1.3 Updating the Specification to a new Metamodel
Version

The purpose of the second part of the case study was the evaluation of DEFT
for a specification update. We updated the artefacts in the DEFT repository
(metamodel and diagram files) to the latest available version. As a result,
DEFT reported several changes in the CDFs of the specification.

The changes between the old and the new metamodel were rather com-
prehensive. The datatypes package and the expressions package were
considerably revised, which made us replace the corresponding specification
sections with completely new sections. We only added the metaclass charac-
teristics listings to the new sections because our knowledge of the metamodel
was not detailed enough to write the accompanying running text. Writing
the text is left to the original authors of the specification.

The OperationCallExpression from the expressions package had 20
subclasses, such as AdditiveOperationCallExpression, SubtractiveOp-
erationCallExpression and similar. We decided that these subclasses did
not require subsections of their own. Therefore, we had to modify the op-
eration for metaclass characteristics listings a little. We changed it so that
metaclass characteristics listings only contain cross references if the corre-
sponding metaclasses are in the specification.

142 Chapter 9. Evaluation

9.1.4 Discussion

The evaluation showed that ED is well suited for ETEX based specifica-
tions with textual CDFs. The corresponding operations can be implemented
quickly and pay off immediately. Even the required modification of the meta-
class characteristics listing operation was simple?.

The vast amount of identifiers in the running text forced us to improve
the usability of DEFT. We implemented keyboard shortcuts and an autocom-
pletion mechanism for the insertion of identifier CDFs. This turned out to
be very useful. Afterwards, the identifier CDFs could be added very quickly
and the flow of writing was hardly impaired.

Operations to create images from Ecore diagrams could also be imple-
mented easily. Unfortunately, Ecore diagrams turned out to be unsuitable
for ED. Ecore diagrams contain references to Ecore models. Therefore, they
do not need to store information such as attributes or references themselves.
However, when they are opened (or transformed into an image), the attri-
butes and references are not always displayed. There is no status flag indi-
cating whether the attribute and reference sections within the Ecore classes
should be expanded or not. Therefore, the Ecore diagrams added with ED
are not reliable. We were not able to solve this problem.

The notification of changed CDFs is very useful, but in DEFT we only
used a simple list, which was not very convenient. The number of CDF
changes was very high, and it turned out that a list view is not suited to
present such a large number of changes clearly. A hierarchical presentation,
possibly grouped by sections and subsections, would be beneficial. Another
useful improvement would be the availability of a diff-view that shows the
exact CDF changes.

Apart from the minor, implementation-specific shortcomings, the specifi-
cation creation and maintenance worked well.

9.2 Creating and Maintaining the UML Speci-
fication

Since its first version, the UML specification has undergone a lot of revisions
and has received many changes. Due to a high degree of interdependencies
between the chapters of the UML specification and a lack of automatic con-
sistency checks, current versions contain many inconsistencies. This problem

3Tt involved use of the labelcas package, which allows the specification of different
output, depending on whether a label exists or not.

Chapter 9. Evaluation 143

has been pointed out in various papers, e.g. [9,61]. In [61], it was discov-
ered that almost 50% of the OCL rules from the UML 2.3 superstructure
specification® contain errors.

Most inconsistencies could be resolved if the UML specification did not
only consist of a specification document, but also comprised an implementa-
tion of the metamodel and the OCL rules. Tools could check the model and
the OCL rules for syntactic and some semantic errors. An additional benefit
would be that the checked models and OCL rules could be used to partially
generate the specification document with ED.

As a proof of concept, we rewrote the “Package” section (Sect. 7.3.37)
of the UML 2.0 superstructure specification® with DEFT. Afterwards, we
examined how well specification updates can be performed. We did this by
updating the “Package” section to UML 2.3. Figure 9.2 shows an excerpt of
the result.

Associations

* /nestedPackage: Package [*] - References the packaged elements that are Packages.
Subsets PackageableElement::owningPackage. This is derived.

* /nestingPackage: Package [0..1] - References the Package that owns this Package.
Subsets NamedElement: :namespace. This is derived.

* ownedType: Type [*] - References the packaged elements that are Types. Subsets
Package: :packagedElement.

* packageMerge: PackageMerge [*] - References the PackageMerges that are owned by
this Package. Subsets Flement::ownedFElement.

+ /packagedElement: PackageableElement [*] - Specifies the packageable elements that
are owned by this Package. Subsets Namespace. :ownedMember. This is derived.

Constraints
[1] If an element that is owned by a package has visibility, it is public or private.

context Package
inv:
self.packagedElement->forAll (¢ | e.visibility->notEmpty ()
implies e.visibility = VisibilityKind::public
or e.visibility = VisibilityKind::private)

Additional Operations

[1] The query mustBeOwned() indicates whether elements of this type must have an owner.

context Package::mustBeOwned () : Boolean
body: false

Figure 9.2: Excerpt of the UML specification.

‘http://www.omg.org/spec/UML/2.3/Superstructure/PDF/
Shttp://www.omg.org/spec/UML/2.0/Superstructure/PDF/

http://www.omg.org/spec/UML/2.3/Superstructure/PDF/
http://www.omg.org/spec/UML/2.0/Superstructure/PDF/

144 Chapter 9. Evaluation

We used the Ecore-based UML 2.3 metamodel, which came with the
Eclipse Modelling Tools®. The contents of the metamodel and the UML
specification were slightly different. We did not investigate the reasons for
these differences because that was not the goal of this evaluation. We wanted
to show that, given a proper metamodel, the UML specification could be
created with ED. Therefore, we chose to modify the metamodel slightly, so
that it matches the UML 2.3 specification. Afterwards, we created a modified
copy, that corresponds to the UML 2.0 specification. The OCL constraints
and operations have been copied and pasted from the specification, from both
version 2.0 and version 2.3. They contained syntactic and semantic errors
which were fixed, so they could be parsed with the Dresden OCL toolkit” and
successfully applied to the Ecore-UML metamodel®. All identified differences
between the specification and the artefacts used for our evaluation are listed
in Appendix B.

9.2.1 Preparing DEFT for UML

Before we could write the “Package” section, we had to configure DEFT
accordingly. First, we made it recognise the necessary artefacts. Support
for the Ecore-UML metamodel could be easily added because DEFT already
supports Ecore out of the box. We also integrated the EMFText’-based
Dresden OCL toolkit into DEFT. As DEFT already comes with built-in
EMFText support, the integration posed no problems.

Then, we implemented the necessary operations, which transform the
Ecore-UML metamodel and the OCL code to textual representations. These
operations included

e Ecore Model to Generalizations Listing: Creates a listing of all super-
classes of a metaclass.

e Ecore Model to Attributes Listing: Creates a listing of all attributes of
a metaclass.

e Ecore Model to Associations Listing: Creates a listing of all associations
(references) of a metaclass.

e OCL to Styled Code: Creates a formatted OCL code listing from an
OCL constraint or operation.

Shttp://www.eclipse.org/downloads/packages/eclipse-modeling-tools/junor

"http://www.dresden-ocl.org

8The fixed OCL has been created by Claas Wilke for [61]. It has been reused for the
joint publications [59,60], on which this section is based.

http://www.emftext.org/

http://www.eclipse.org/downloads/packages/eclipse-modeling-tools/junor
http://www.dresden-ocl.org
http://www.emftext.org/

Chapter 9. Evaluation 145

9.2.2 Writing and Updating the Package Section

After support for all artefact types and operations was provided, we imported
the UML 2.0 metamodel as well as the corresponding OCL constraints and
operations into DEFT. We copied the running text from the specification.
The listings of generalisations, attributes and associations and the OCL code
listings were added as CDFs. The result was a section that looked like the
original specification, except for the OCL errors, which had been fixed.

Then we updated all artefacts from the DEFT repository to UML 2.3.
This caused changes in the associations listing and some OCL code listings.
These changes were reported by DEFT, which allowed us to double-check
and explicitly accept them.

The result was the “Package” section of the UML 2.3 superstructure spec-
ification with consistent metaclass and OCL code listings. We did not check
the running text for consistency in our proof of concept example. This task
must still be performed manually and is not directly influenced by ED.

9.2.3 Discussion

The evaluation showed that ED is well suited for the presentation of class
diagrams and OCL code as textual CDFs, such as listings or code listings.
The corresponding operations can be implemented quickly and pay off imme-
diately. The notification of changed CDFs is useful, but similar to the Cool
Component evaluation in Sect. 9.1 a diff view would have been beneficial.
This is especially the case for small changes. But all in all, the “Package”

section of our proof of concept example could be quickly written and updated
with DEFT.

9.3 Feasibility Studies

In this section, we show three examples of useful ED scenarios. They describe
different types of views of a software system. First, we show a part of a
requirements specification, created from formalised requirements stored in
an ontology. Then, we show a programming tutorial that teaches how to
use a Java-based BPMN refinement library. Finally, we show how we used
DEFT to write this thesis as an elucidative document.

9.3.1 Visualising Requirements

In the following, we describe the results of our experiments with formalised
requirements. These experiments were a feasibility study to show that even

146 Chapter 9. Evaluation

requirements can be documented with ED. First, we will shortly introduce
the research work from which we received the formalised requirements. Then,
we describe how we visualised the requirements.

Background

Requirements Engineering is “the process of eliciting, evaluating, specifying,
consolidating, and changing the objectives, functionalities, qualities, and con-
straints to be achieved by a software-intensive system” [34]. The result of
requirements engineering is a requirements specification. Requirements spec-
ifications are frequently used as basis for the contract between customers and
software developers, and as starting point for the analysis and design of the
software product to be developed.

Inconsistent or incomplete requirements lead to software which does not
meet the demands of the customers. However, requirements specifications
can be very complex, which makes manual consistency checking tedious and
error-prone. Furthermore, requirements can evolve. Therefore, Ontology-
Driven Requirements Engineering (ODRE) has been developed as a means
to automatically check requirements specifications for consistency [50]. It
focuses on goal-oriented requirements engineering.

The central element of ODRE is the Requirements Ontology (RO). The
T-Box of the RO formalises requirements engineering knowledge. It can be
considered the metamodel of goal oriented requirements engineering. The
A-Box of the RO contains the actual requirements specification of a con-
crete project. This comprises goals, requirements, problems, challenges, and
others, including relationships between them. Additionally, there are rules,
which describe when the RO A-Box is complete or consistent. Violation
of these rules means that the RO contains incomplete or inconsistent data.
Figure 9.3 shows an architecture overview of ODRE, inspired by [49].

Using the Requirements Ontology for Elucidative Development

When a requirements specification should be checked for completeness and
consistency, it must be formalised and encoded in the RO. Such a formalised
requirements specification is well suited for ED. The reasoning facilities of
ODRE are not needed for the writing of the specification, because we assume
that the RO is checked for completeness and consistency before it is used
for document creation. In [10], we investigated possible ways to represent
requirements and their interdependencies. We found tree representations
and traceability matrixes the most useful.

Chapter 9. Evaluation 147

Requirements

s N
Metamodel Requirements Ontology
Ty
TBox
‘/
Concrete
ABox Requirements
Specification
N\ J

Completeness
Checking Queries

Consistency
Checking Queries

Figure 9.3: The Requirements Ontology in
Ontology Driven Requirements Engineering.

Trees can be used to display hierarchies, for example a hierarchy of goals
and subgoals. Traceability matrixes are tables, which can be used to display
relationships between different elements of the requirements specification.
Row headings contain source elements and column headings contain target
elements, or vice versa. The actual table columns indicate whether the ele-
ments have a certain relation. Figures 9.4 and 9.5 show examples from [10].

Traceability matrixes can easily become very large. The layout of large
matrixes, or tables, is usually difficult. If the document format is page-based,
for example Open Document Format (ODF), a table might not fit on a page.
In that case, a traceability matrix must be split into multiple matrixes. This
could be achieved by a CDF that comprises several tables. The corresponding
operation would have to take layout information into account, such as the
available page width, font sizes, or table cell margins.

Chapter 9. Evaluation

148

L]

(RIS

~ [e &

'E-I

T T T T T T T T -
.m.n”._.r.._”._.m.._”._.N._”._..n_”._”._.%._.m_._.m._.h._.m._.m._.v._.m,._.N._.H._.E _M_

%0 | @ ——8 0| Daaga] | =] Q5| 99NIS| (Pueppsinad) WpsInaa| prepuEls | 7/ eS|
V]

IJ

[

PO SERI2E) -

o]uon mng _u.u

R e e Ty OdOqJ=ERI25[) oy

E Z

TEISPIHTE 5] =

ajuon Surdesmagy -

e et e L LT L | wn

IR p H

EoLAqEEERaY B

2 &

moifas JI0]as57)0 mRIog uogE TRIOP B Sursjio . -

JASETS[MUIOPE]] (JERJ0] fFR3aYIE] | ruonaSmeTp Xy (IR EDogdojasa g H

pus B

UEpUg R SULISRII SEUTS U St S[ET7 SRR HAIgIRq) vRwE 18R Ry 2pusEog 2 ng =

B =a =T

£~ =a =1I

=E=ny4d[E 9

LBWOY M3IN mmE_._._ _ﬂ

PN A A-EH® -O-Gle-0

LwEmﬁxm._._ m

meVERE A2

3JH J=Eu=4 senX3 3jRgel jeuucd usbmyul sy U=)RqUEsE 1=9Eq

kie|

|euany @
JUSWIMIOP WoY 3ouziyay mwf :
GurjionapeRos & TUoSREA Oy _M__m_
vepy §-E
£ TUIS/EA Oy 0 20U3tagay .ﬁ
wawroop £-5
J=deyn Dm
suaWaJnbay m..m

H = O o -~ ﬁﬂu_._v = *mm Rinjdxg 13lesd [
& & -]
dEf pigas - up3 3
Rar

Figure 9.4: A generated traceability matrix in DEFT.

149

Chapter 9. Evaluation

— 0| oy | x| @S| 9ANE| (PuEpsInad) WPSINaa | PIEpUElS | €/ 3RS | [« | IC
A P
H [pu uzpuagrza spuETE g ‘Sunisp sozsaeIey URRRUSE J29 B
e uoa st S (O SEUNET) DSIRIEITS]SNOSUETIEY, #1p 5240 SyR[E A SRERLY S[E IRy I o
m " WHIOINE] S FIORTER] [FRY, ol SEp My usydel S[EpOwElZ URUE E1ET Funpnqqy 21 I..
- 5
FSEQEIEQ m
LR :
Buispy @
azs N
=
aseqeieg abeg @
ul EITLIF -
meq wo n
4250 Juswasaaspy .Iln
OIS nerrhms agemrthas oresorfes =
b
noke a
usjyewsnu) Asuop M
pafuciy B1015 useg —-
(L1 .||.
aresnskes arewuskes -
=
suofusag fm
dod z
=0 UCIjEWIa U] ssa2ang _H_
amo._. afueyang [GEIET T -
e3 -r._
=l xa z
uwape|d N o [EUGINL (=}
E JUIWMI0P WOl ALY _m.v
q E‘..._.m._”._.m._.n._.¢._”.._._.m._n..._..N._n._..nn._”._.c.—.n._.m._._.w.._..h._.wm...m._.¢4_.M.4.N._4H._.E _M_ ngigvﬁcgb:uwwnmwm
ﬂ =l = = = m_ nyi4 _” N._”_ _” UBWoY Map muE_._._ _” ._wn_ﬁﬁxu._._ E FTUOISIRATOY 03 B0URI4aY ./h-ﬂ_
E B e] : JUSWMop _M_..._m_
few~.E-0-ale-8° “([Fa0T8(d «Rg-8 ! e G
3YH J=Eus4 senX3 B[RgEl jeuwuod usbyUF JPsUE umeqesd =g sjUBWaINbay mm
O 3 0o~ an_.uV = 57 Juodx33a3loud]
~ | &[]
deR piEes 1T 313
4=l T |

Figure 9.5: A generated requirements hierarchy tree in DEFT.

150 Chapter 9. Evaluation

9.3.2 Documenting a BPMN Refinement Library

Business processes can be very complex. Often multiple people are involved
in the definition of a business process, working at different levels of detail.
A common technique to transform an abstract process into a more concrete
one is refinement [8,45].

Business process refinement is mostly a manual task. However, there are
many pitfalls when refining a process, and tool support which helps validat-
ing a refinement is crucial. In the context of the Marrying Ontology and
Software Technology (MOST) project'®, a BPMN refinement library was de-
veloped, which can check, whether a BPMN process is a valid refinement
of another process. The refinement library is a Java library that allows for
the specification of two processes and a mapping between them, written in
Java code. Additionally, it has an evaluation engine that finds and reports
refinement errors. For debugging purposes, the refinement library outputs
the BPMN models and their mapping as dot graph description files!!,

We wrote an example-based introductory documentation for the refine-
ment library with DEFT. In the tutorial, we showed how to model the pro-
cesses and the mappings in Java and how to invoke the evaluation engine.
The tutorial contained mainly CDFs with code listings. In the tutorial in-
troduction, we motivated the use of the refinement library with a refinement
scenario. This scenario was illustrated by CDFs, which showed processes
graphically. These image CDFs were computed from the above-mentioned
debug dot files. Figure 9.6 shows an excerpt of the final documentation.

19An archived copy of the project homepage can be found at http://web.archive.
org/web/20120130051840/http://most-project.eu/about.php
Uhttp://www.graphviz.org

http://web.archive.org/web/20120130051840/http://most-project.eu/about.php
http://web.archive.org/web/20120130051840/http://most-project.eu/about.php
http://www.graphviz.org

Chapter 9. Evaluation 151

The first step contains only one task, called HR-Process. This task is expanded in the next
refinement step.

ProcessB

O—{HR—AppmvaD—)Qmewiew-AppruvaD—{ Hiring)‘O

Now the task HR-Approval will be refined:

ProcessC (transformed)

Select Applicant1

However, the process modeller will get a warning here because this refinement is not valid.
According to ProcessB, the task HR-Approval MUST be followed by Interview-Approval and
Hiring. This is not the case in ProcessC. After Select Applicant, which is a refinement of HR-
Approval, it is possible to bypass Interview-Approval and Hiring.

(Assign Appliant to Vacancyl Interview-Approvall Hiring1

Modelling the Processes

The BPMN refinement library provides all the necessary constructs to find inconsistencies in
process refinement steps. Those constructs are rather low-level though. Therefore we create another
abstraction layer in this example. One member of that layer is the process, defined by the interface
IProcess. It defines 2 methods. Method getProcess() returns the underlying Process object which
stems from the refinement library.

The question arises, why we introduce a process class if the refinement library already provides
one. The answer is: convenience. The processes from the library do not offer methods to retrieve the
individual tasks that the process consists of. We will wrap the process with an IProcess and
implement the according getters ourselves. Similarly, we use method setupProcess() to have a place
where we create and configure the tasks of the process and their connections. Details will be given
below when we look at the concrete examples.

public interface IProcess {

/**
* Returns the bpmn.flowObjects.Process.
* @return the bpmn.flowObjects.Process
*/

public Process getProcess|();

/-k*

* Sets up the bpmn.flowObjects.Process. This includes
* creating start and end events, tasks, gates, and the
* connections between them.

*/

public void setupProcess|();

Figure 9.6: Excerpt of the BPMN Refinement Library tutorial.

152 Chapter 9. Evaluation

We did not encounter any problems or unforeseen issues during the cre-
ation of the tutorial. After we finished writing the tutorial, we examined,
whether the guidance works for both the code and the image CDFs. We
renamed a state in one of the processes. Then, we invoked the evaluation
engine on the modified process in order to have the dot files updated. The
guidance system of DEFT worked as expected. The modified code file and
all dot files which contained the renamed state were reported by the guid-
ance system. We updated the artefacts, which caused the affected CDFs to
be recomputed. All CDFs, both code listings and images, which somehow
displayed the renamed state, were correctly updated.

9.3.3 Writing a PhD thesis about Elucidative Develop-
ment with DEFT

The goal of all evaluations presented before was to demonstrate the appli-
cability and versatility of ED. The quality and usability of DEFT, our EDE
implementation, was not examined. Therefore, we chose to write this thesis
in DEFT. We wanted to discover how well DEFT is suited for the creation of
an extensive document, which is spread across multiple files. Since the thesis
should be written in TEX, we configured DEFT to use KTEX.

The thesis is not a document that describes a software system. Therefore,
it contains only few active references. We chose to create the example Figures
4.1 and 4.13, which show excerpts of an elucidative document, with real active
references and CDFs. All identifiers from the figures (framed by a black box)
are CDFs. We did not generate the diagram images of the examples for the
reasons explained in Sect. 9.1.4.

Additionally, CDFs appear at the following locations:

as identifiers in Sect. 4.5.5

e as attributes and references listing for artefact metaclass (Sect. 4.3.1)
and active reference metaclass (Sect. 4.3.2)

e as identifiers in the description below the attributes and references
listing for artefact metaclass

e as attributes and references listing for active reference group metaclass
(Sect. 5.3.2), static reference group metaclass (Sect. 5.3.3) and dynamic
reference group metaclass (Sect. 5.3.4)

e as identifiers in Sect. 5.3.4

Chapter 9. Evaluation 153

In summary, this thesis contains 35 references and CDFs. All CDFs in
DEFT are cached (see Sect. 7.3). Listing 9.1 shows generated IXTEX CDFs
inside manually written text.

The colour of the circles can be changed.

The \fbox{\deftreferenceecore{ref-R-4YAALOIotr}{Circlel}} class
has a \fbox{\deftreferenceecore{ref-Tck-gALOEe0Q}{color}}
attribute (see~Fig.~II), which can be set.

After the colour has been set, the circle can be drawn.

Listing 9.1: Cached ETEX CDFs.

The writing of the thesis with DEFT went smoothly. The IXTEX mode of
DEFT is based on TeXlipse'? and is suited to write extensive documents.

As a result of the evaluation, we identified several possibilities for im-
provement. Some were programming errors, which could be corrected imme-
diately. Others turned out to be more extensive. They must be addressed
before DEFT can be used productively beyond academic evaluations.

e The management of document files is still immature. It is possible to
sort document files in folders and to move files and folders via drag and
drop. However, inclusions such as the IXTEX directive
\input{evaluation/feasibilitystudies} are not yet automatically
updated when the referenced files are moved.

e [t is not sufficient to present guidance hints as a simple list. The author
must have the possibility to filter and group guidance hints.

e It was not possible to move references or CDFs from one document file
into another. CDFs are not recognised by DEFT any more if they are
removed from the document file to which they were originally added.
This issue motivated the writing of Sect. 7.1.

e DEFT was implemented using the deferred update approach, which
was described in Sect. 7.3.2. The deferred update approach works well
if there is only one document file. If there are multiple document files,
like in the case of this thesis, not all CDFs are properly updated when
an artefact change is applied (see Sect. 7.3.3). The instant update
approach would be preferable.

None of the identified issues prevented the writing of the thesis with
DEFT. At no time it was necessary to resort to other BKTEX editors.

2http://sourceforge.net/projects/texlipse/

http://sourceforge.net/projects/texlipse/

154 Chapter 9. Evaluation

9.4 Conclusion

In this chapter, we presented the experiments that we performed to evaluate
the ED approach and our EDE DEFT. First, we described how we turned a
manually written model specification into an elucidative document and the
errors that the we found in the process. We also measured, how well ED
performs during an automatic update of the specification.

Then, we presented a similar scenario, using the UML specification. We
turned a section of the UML 2.0 specification into an elucidative document
and updated it to UML 2.3. The underlying artefact for this experiment was
an Ecore implementation of the UML metamodel. We listed the errors in
the analysed sections of the official UML specifications and stated that ED
can prevent them.

Finally, we showed the versatility of ED by introducing a number of elu-
cidative documents that we wrote with DEFT. This included requirements
documents, where the requirements were formalised by an ontology, a pro-
gramming library tutorial, where source code was described, and this thesis.

Chapter 10. Conclusion 155

Chapter 10

Conclusion

We started this thesis by highlighting that redundancy is an integral part of
software development. While redundancy is not a bad thing per se, it is the
basis for inconsistency. Resolving inconsistencies is a necessary, but time-
consuming and unpopular part of software development. In the thesis, we
focused on inconsistencies between documents and other views of a software
system, and how to minimise or resolve them.

Our main contribution was the introduction of Elucidative Development
(ED) as a possible solution to the inconsistency problem. ED is an approach
to create and maintain so-called elucidative documents by partial generation.
The main idea is to generate as much document content as desired and write
the remaining content manually. Content can be generated from various
views of the software system, such as code or models. If the document
becomes inconsistent because the views have been changed, the generated
parts of the document can be regenerated. The manually written content is
not affected by the regeneration and remains intact.

This contribution can be divided into several sub-contributions.

e In Sect. 2.2 we defined the formality of documents. Later, we showed
that the concrete requirements of ED depend on the formality of the
document to be created.

e In Chap. 4, we introduced ED for semi-formal documents. We pre-
sented important challenges that must be solved and turned them into
requirements for ED. These requirements were the foundation for the
explanation of:

— the concepts that allow for the coexistence of generated and man-
ually written content in one document,

156 Chapter 10. Conclusion

— the presentation layer, which hides technical details of the above-
mentioned concepts from the document author,

— a guidance system, which informs the author about actual and
potential inconsistencies.

e In Chap. 5, we extended ED for use with formal documents. We
call this extension model-driven elucidative development. Formal doc-
uments have a uniform structure, which reflects the structure of the
described model. Thus, there are more possibilities for generation than
in semi-formal documents. Again, we identified several challenges and
requirements. Based on those, we explained the nesting and the auto-
matic addition, removal, renaming and moving of generated content.
The guidance system has also been extended.

e In Chap. 6, we presented two extensions of ED, which provide addi-
tional value. In the first extension, we examined how elucidative doc-
uments can be structurally validated. We started by explaining how
normal, tree structured documents are validated against a tree gram-
mar. Then, we modified these concepts for elucidative documents.

In the second extension, we showed that ED can be combined with
backpropagation-based round-trip engineering. This allows the modifi-
cation of generated document content and the propagation of these
modifications to the underlying software artefacts. We explained
the concepts of backpropagation-based round-trip engineering, aligned
them to ED, and presented an example to illustrate the applicability.

Our second big contribution was the evaluation of ED and the confir-
mation of its versatility. In Chap. 9, we described our evaluation and its
results.

We performed two case studies. In Sect. 9.1, we described the transition
from a manually maintained model specification to ED and showed that
the quality of the specification had improved. In Sect. 9.2, we showed that
it is even possible to use ED for the Unified Modeling Language (UML)
specification. ED would ease the maintenance of the specification and resolve
many of its inconsistencies.

After the case studies, we described several feasibility studies in Sect. 9.3.
They show that ED can be applied to a wide range of documents, which can
describe a wide variety of software views.

Our third big contribution was the comparison of ED with related work
from different fields. The comparison shows, on which existing ideas our
work is based, and how we progressed beyond them.

Chapter 10. Conclusion 157

Additionally, there were two minor contributions worth mentioning.

e The concepts of active documents and transconsistency were not suffi-
cient for ED. Therefore, we extended them and introduced weak trans-
consistency in Sect. 4.4.3.

e In Chap. 7, we examined possible implementations of tool support for
ED. There are usually multiple possibilities to achieve a certain goal, so
we often presented alternative solutions and compared their advantages
and disadvantages.

158 Chapter 10. Conclusion

Appendix A. Cool Component Specification 159

Appendix A

Cool Component Specification

Here we present data from the experiment with the Cool Component Model
(CCM) specification described in Sect. 9.1. This includes the steps we per-
formed to create the first version of the metamodel, the errors we found in
the specification, and the changes that were automatically performed when
we updated the specification.

All revisions of the specification and the metamodel were retrieved from
the Cool Software Subversion (SVN) repository. Since the Cool Software SVN
is a project internal repository, the revisions relevant for this evaluation have
been made available for download from http://bartho.net/phdthesis.

A.1 Metamodel Preparation

The starting point of the evaluation was the version of the specification from
November 1, 2011. We needed both the metamodel and the BTEX source of
the specification. The XTEX source code was available in the Cool Software
repository (revision 806). The Cool Software metamodel was also taken from
the repository.

Unfortunately, the specification document did not cover one single SVN
revision of the metamodel, but rather a range of revisions. For example, the
specification described for class CoolEnvironment an association called be-
havior, but this association had already been removed from the metamodel
in SVN revision 761. On the other hand, the specification did not mention
a class IdentifyableElement, but the class had been present in the meta-
model starting from SVN revision 565. We believe this is due to oversights
during the manual evolution of the specification.

Lacking an exact revision of the metamodel, we used the same revision as
the specification (revision 806). We then added missing elements from older

http://bartho.net/phdthesis

160 Appendix A. Cool Component Specification

metamodel revisions and deleted superfluous elements, so the structure of
the metamodel was as close to the specification as possible. This caused the
structure of the Elucidative Development (ED) specification to be the same
as the structure of the original specification, resulting in more subsections
that we could compare with each other. Finally, we added the attribute and
association documentation text from the specification directly to the meta-
model via documentation annotations!. This allowed us to have attribute
and association listings generated together with their documentation. Addi-
tionally, we believe that this is the best place to store the documentation.

A.2 Inconsistencies in the Manual Specifica-
tion

In the following, we explain the expected content of the specification and the
deviations we found.

A.2.1 Convention Errors in Running Text Cross-
References

Each CCM metaclass is described in detail in a dedicated subsection. These
subsections have an introductory text and a formal listing of the metaclass
properties (called metaclass characteristics in the specification), such as a
list of superclasses or a list of attributes. In many cases, the introductory
text mentions other metaclasses in order to explain their interaction. When
a metaclass is mentioned for the first time in such an introductory text, it
has a cross-reference to its own defining subsection.

The metaclasses are grouped in packages. All metaclasses of one package
are described in the same section. Each section has introductory text, too.
It describes the aim of the package and the interaction of its classes on a
more abstract level. In contrast to the subsections, the section text does not
contain cross-references.

In the manually written specification we found cases where the expected
cross-references were not provided in the subsections. We also found cases
where the section text contained cross-references, even though they should
not be there.

'We used the tool EMFDoc (http://reuseware.org/index.php/EMFText_Concrete_
Syntax_Zoo_EMFDoc).

http://reuseware.org/index.php/EMFText_Concrete_Syntax_Zoo_EMFDoc
http://reuseware.org/index.php/EMFText_Concrete_Syntax_Zoo_EMFDoc

Appendix A. Cool Component Specification 161

Expected cross-references 121
Correct cross-references 107
Missing cross-references 14
Unexpected cross-references 9

The existing (and expected) cross-references have the form “(Sect. x.y.z)”,
where x.y.z is the referenced subsection. Some cross-references have a wrong
formatting, for example “(see Sect. x.y.z)“ or “(sect. x.y.z)".

Cross-references with incorrect formatting 10 of 107

A.2.2 Convention Errors in Metaclass Characteristics
Listings

There are 52 metaclass characteristics listings. Each metaclass character-
istics listing describes one metaclass formally. We identified the following
convention errors.

Cross-references with incorrect formatting 5 of 94
Metaclass characteristics heading missing 8 of 52
Inherited from has multiple entries, but is not printed as list lofl
Known subclasses has multiple entries, but is not printed as list 1of 12
Known subclasses has only one entry, but is printed as list lofl
Known subclasses is empty and says none instead of — 9 of 13

A.2.3 Misspelled and Wrong Identifiers

Both running text and metaclass characteristics listings contain wrong or mis-
spelled identifiers. Misspelled identifiers are identifiers with a typing error,
e.g. Transistion instead of Transition. Wrong identifiers are identifiers
which have no typing errors, but which do not exist in the metamodel.

162 Appendix A. Cool Component Specification

Misspelled identifiers in running text 7 of 441
Wrong identifiers in running text 6 of 441
Misspelled identifiers in metaclass characteristics listings 1 of 176
Wrong identifiers in metaclass characteristics listings 7 of 176

A.2.4 Wrong Metaclass Properties

Each metaclass has various properties, such as a list of superclasses and
subclasses, attributes with type and multiplicity, and others. Missing or
wrong properties are a serious problem and a severe error.

Wrong attribute or association multiplicity 15 of 82
Missing attribute or association 6 of 82
Missing or wrong subclasses 9 of 48
Wrong superclasses 5 of 46
Wrong Abstract class definition 3 of 52
Normal association defined as containment 1 of 62
Association defined as attribute 1 of 62

A.2.5 Wrong Model Diagrams

5 of 13 diagrams contain one or two errors. These errors comprise a missing
class, a missing attribute and the use of a meanwhile changed class name.

A.3 Update of the Specification

The artefacts in the Development Environment For Tutorials (DEFT) re-
pository (metamodel and diagram files) have been updated to the latest
revision from the SVN repository (revision 2367). The metamodel changes
from SVN revision 806 to revision 2367 were rather big. The metamodel has
evolved considerably and has undergone a comprehensive refactoring. The

Appendix A. Cool Component Specification 163

datatypes package and the expressions package have been completely re-
designed. Therefore, we decided to abandon the corresponding subsections
in the specification and recreate them from scratch. This resulted in the
deletion of 18 subsections with metaclass descriptions.

The remaining parts of the specification were surprisingly stable. Besides
the metaclasses in the redesigned packages, 2 metaclasses have been deleted.
Their corresponding subsections have been removed from the specification.
Throughout the whole specification, there were only 9 identifiers in the run-
ning text which referred to one of the 20 deleted metaclass subsections.

The new metamodel contained 48 changes in 17 metaclasses. Those
changes were, for example, different multiplicities, added or removed attri-
butes and associations, or changes in the class hierarchy. The changes were
automatically identified and reported by DEFT. We accepted the artefact
changes and they were applied to Computed Document Fragments (CDFs)
of the specification. All diagram images were automatically updated, too.

164 Appendix A. Cool Component Specification

Appendix B. UML Specification 165

Appendix B
UML Specification

Here, we present data from the experiment with the Unified Modeling Lan-
guage (UML) specification described in Sect. 9.2. This includes the changes
we made to the Ecore-based UML metamodel and the Object Constraint
Language (OCL) code.

We used the Ecore-based UML 2.3 metamodel from the Eclipse Modelling
Tools as artefact for Development Environment For Tutorials (DEFT). How-
ever, the metamodel and the specification did not completely match. We
did not investigate the reasons for this mismatch. As our goal was to repro-
duce the contents of the specification with Elucidative Development (ED),
we modified the Package class of the metamodel so that it matched the spec-
ification. From the metamodel we created a UML 2.0 metamodel afterwards.
The necessary steps were also performed manually. All changes we made are
listed in this appendix.

In contrast to the metamodel, the errors in the OCL constraints and
operations have been fixed because otherwise it would not have been possible
to parse and import them into DEFT. The errors have been fixed by Claas
Wilke for [61].

B.1 Metamodel Changes

In order to make the Package metaclass of the Ecore-based UML 2.3 meta-
model match the specification, we changed the following:

e Removed superclass TemplateableElement.
e Removed reference profileApplication.

e Changed the documentation text of reference nestedPackage.

166 Appendix B. UML Specification

e Changed the type of reference packageMerge from PackageMerge to
Package.

e Marked reference nestingPackage as not derived.
o Marked reference packagedElement as derived.

After the content of the Package metaclass matched the specification,
we created a copy of the metamodel and changed it to receive a metamodel
which corresponds to the UML 2.0 specification. We changed the following:

e Renamed reference packagedElement to ownedMember.

Changed property subsets of reference ownedMember to redefines.

Changed the documentation text of reference ownedMember.

Marked reference ownedMember as not derived.

Changed the documentation text of reference ownedType.

Marked reference ownedType as not derived.

Added reference package.

B.2 OCL Changes

First, we present the OCL constraints and operations as they are printed
in the UML 2.0 specification. We list the errors and say how they must be
fixed. Afterwards, we list the changes that must be made for the transition
to the UML 2.3 specification.

B.2.1 OCL errors

Constraint

self .ownedElements ->forAll(e | e.visibility->notEmpty ()
implies e.visbility = #public
or e.visibility = #private)

Appendix B. UML Specification 167

The constraint contains these errors:

e The association ownedElements does not exist, it should be ownedMem-
ber instead.

e In one place the code says visbility instead of visibility.

e The literals #public and #private are not allowed in OCL 2.0 and
above. Visibilities must be expressed as VisibilityKind: :public and
VisibilityKind: :private.

Operation mustBeOwned

Package::mustBeOwned () : Boolean
mustBeOwned = false

The operation contains these errors:
e The body starts with mustBeOwned = ..., but it must start with body
. instead.

Operation visibleMembers

Package::visibleMembers () : Set(PackageableElement);
visibleMembers = member->select(m | self.makesVisible(m))

The operation contains these errors:
e The context declaration ends with a semicolon.

e The body starts with visibleMembers = ..., but it must start with
body : ... instead.

e The association member requires either a cast to PackageableElement
or must be changed to ownedMember.

Operation makesVisible

Package::makesVisible(el: Namespaces::NamedElement) : Boolean;
pre: self .member->includes(el)
makesVisible =
-- case: the element is in the package itself
(ownedMember
->includes (el)
) or
-- case: it is imported individually with public visibility
(elementImport
->select(eilei.importedElement = #public)

168 Appendix B. UML Specification

->collect(eilei.importedElement)
->includes (el)

) or

-- case: it is imported in a package with public visibility

(packagelImport
->select (pilpi.visibility = #public)
->collect(pilpi.importedPackage.member->includes(el))
->notEmpty ()

)

The operation contains these errors:
e The context declaration ends with a semicolon.

e The body starts with makesVisible = ..., but it must start with
body : ... instead.

e The literal #public is not allowed. Visibilities must be expressed as
VisibilityKind: :public.

e In case 1, it says ownedMember->includes (el), but it must say owned-
Member->collect (oclAsType (NamedElement))->includes(el)

e In case 2, it says ei.importedElement = ..., but it must say ei.
importedElement.visibility =

e In case 2, it says collect(eilei.importedElement)->includes(el),
but it must say collect(eilei.importedElement)->collect (ocl-
AsType (NamedElement))->includes(el).

B.2.2 Changes for UML 2.3

The following changes were made to create UML 2.3 OCL code from the
fixed UML 2.0 OCL code:

o All references to ownedMember have been changed to packagedElement.

e Removed ->collect(oclAsType(NamedElement)) from operation
makesVisible in case 1.

Bibliography 169

Bibliography

1]

2]

3]

4]

[5]

(6]

7]

Michal Antkiewicz and Krzysztof Czarnecki. Framework-Specific Mod-
eling Languages with Round-Trip Engineering. In MoDFELS, pages 692—
706, 2006.

Jim Arlow, Wolfgang Emmerich, and John Quinn. Literate Modelling
— Capturing Business Knowledge with the UML. In Jean Bézivin and
Pierre-Alain Muller, editors, The Unified Modeling Language. UML’98:
Beyond the Notation, volume 1618 of Lecture Notes in Computer Sci-
ence, pages 189-199. Springer Berlin / Heidelberg, 1999.

Uwe Afmann. Architectural styles for active documents. Science of
Computer Programming, 56(1-2):79-98, 2005.

Uwe Afmann, Andreas Bartho, Christoff Biirger, Sebastian Cech, Bir-
git Demuth, Florian Heidenreich, Jendrik Johannes, Sven Karol, Jan
Polowinski, Jan Reimann, Julia Schroeter, Mirko Seifert, Michael Thiele,
Christian Wende, and Claas Wilke. DropsBox: the Dresden Open Soft-
ware Toolbox. Software € Systems Modeling, pages 1-37, 2012.

Uwe Afmann, Andreas Bartho, Falk Hartmann, Ilie Savga, and Barbara
Wittek. Trustworthy Instantiation of Frameworks. In Ralf H. Reuss-
ner, Judith A. Stafford, and Clemens A. Szyperski, editors, Architecting
Systems with Trustworthy Components, volume 3938 of Lecture Notes
wn Computer Science, pages 152-168. Springer Berlin Heidelberg, 2006.

Lars Bak, Jgrgen Lindskov Knudsen, Ole Lehrmann Madsen, Claus Ngr-
gaard, and Elmer Sandvad. An overview of the Mjglner BETA system.
Technical report, Aarhus University, Computer Science Department,
1991.

Andreas Bartho. Creating and maintaining tutorials with DEFT. In
ICPC, pages 309-310, 20009.

170

Bibliography

8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Andreas Bartho, Gerd Groner, Tirdad Rahmani, Yuting Zhao, and Srd-
jan Zivkovic. Guidance in Business Process Modelling. In Schahram
Dustdar and Fei Li, editors, Service Engineering, pages 201-231.
Springer, 2011.

Hanna Bauerdick, Martin Gogolla, and Fabian Gutsche. Detecting
OCL Traps in the UML 2.0 Superstructure: An Experience Report.
In Thomas Baar, Alfred Strohmeier, Ana Moreira, and Stephen Mellor,
editors, UML 2004 - The Unified Modeling Language. Modelling Lan-
gquages and Applications, volume 3273 of Lecture Notes in Computer
Science, pages 188-196. Springer Berlin / Heidelberg, 2004.

Tom Beger. Visualisierung von Softwareanforderungen. Master’s thesis,
Technische Universitit Dresden, 2011.

Aaron Bohannon, Benjamin C. Pierce, and Jeffrey A. Vaughan. Re-
lational Lenses: A Language for Updatable Views. In Proceedings of
the twenty-fifth ACM SIGMOD-SIGACT-SIGART symposium on Prin-
ciples of database systems, PODS 06, pages 338-347. ACM, 2006.

M. Brown and B. Czejdo. A Hypertext for Literate Programming. In
S. Akl, F. Fiala, and W. Koczkodaj, editors, Advances in Computing
and Information — ICCI 90, volume 468 of Lecture Notes in Computer
Science, pages 250-259. Springer Berlin / Heidelberg, 1990.

Jiirgen Buchner. HotDoc: A Framework for Compound Documents.
ACM COMPUTING SURVEYS, 32, 2000.

Mikhail Chalabine and Christoph Kessler. A Formal Framework for
Automated Round-Trip Software Engineering in Static Aspect Weaving
and Transformations. In Software Engineering, 2007. ICSE 2007. 29th
International Conference on, pages 137-146, 2007.

David Chappell. ActiveX und OLE verstehen. Microsoft Press Deutsch-
land, 1996.

David Chappell. Understanding ActiveX and OLE. Microsoft Press,
1996.

Hubert Comon, Max Dauchet, Rémi Gilleron, Florent Jacquemard, De-
nis Lugiez, Christof Léding, Sophie Tison, and Marc Tommasi. Tree
Automata Techniques and Applications. Available on: http://www.
grappa.univ-1ille3.fr/tata, 2008.

http://www.grappa.univ-lille3.fr/tata
http://www.grappa.univ-lille3.fr/tata

Bibliography 171

[18]

[19]

[20]

21]

22]

23]

[24]

[25]

[26]

Umeshwar Dayal and Philip A. Bernstein. On the Correct Translation
of Update Operations on Relational Views. ACM Trans. Database Syst.,
7(3):381-416, 1982.

Zinovy Diskin, Yingfei Xiong, and Krzysztof Czarnecki. Specifying Over-
laps of Heterogeneous Models for Global Consistency Checking. In 1st
Workshop on Model Driven Interoperability, pages 42-51. ACM Press,
10/2010 2010.

Alexander Franz Egyed. Heterogeneous View Integration and its Au-
tomation. PhD thesis, University of Southern California, 2000.

Andrew Forward and Timothy C. Lethbridge. The relevance of software
documentation, tools and technologies: a survey. In Proceedings of the
2002 ACM symposium on Document engineering, DocEng ’02, pages
26-33, New York, NY, USA, 2002. ACM.

J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Ben-
jamin C. Pierce, and Alan Schmitt. Combinators for Bi-Directional
Tree Transformations: A Linguistic Approach to the View Update Prob-
lem. In Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, POPL 05, pages 233-246. ACM,
2005.

Joel Greenyer and Ekkart Kindler. Reconciling TGGs with QVT. In
Gregor Engels, Bill Opdyke, DouglasC. Schmidt, and Frank Weil, edi-
tors, Model Driven Engineering Languages and Systems, volume 4735 of

Lecture Notes in Computer Science, pages 16-30. Springer Berlin Hei-
delberg, 2007.

Florian Heidenreich, Jendrik Johannes, Sven Karol, Mirko Seifert, and
Christian Wende. Derivation and Refinement of Textual Syntax for Mod-
els. In Richard F. Paige, Alan Hartman, and Arend Rensink, editors,
Proceedings of the 5th European Conference on Model Driven Architec-
ture - Foundations and Applications (ECMDA-FA 2009), volume 5562
of LNCS, pages 114-129. Springer, 2009.

Jakob Henriksson. A Lightweight Framework for Universal Fragment
Composition - with an application in the Semantic Web. PhD thesis,
Technische Universitdt Dresden, 2008.

Andreas Kacofegitis. Theme-Based Literate Programming. Master’s
thesis, University of Canterbury, 2002.

172 Bibliography

[27] Andreas Kacofegitis and Neville Churcher. Theme-Based Literate Pro-
gramming. Asia-Pacific Software Engineering Conference, 0:549, 2002.

[28] Arthur Michael Keller. Updating Relational Databases Through Views.
PhD thesis, Stanford University, 1995.

[29] Ekkart Kindler, Vladimir Rubin, and Robert Wagner. An Adaptable
TGG Interpreter for In-Memory Model Transformation. In Proc. of the
2nd International Fujaba Days 2004, Darmstadt, Germany, 2004.

|30] Ekkart Kindler and Robert Wagner. Triple Graph Grammars: Concepts,
Extensions, Implementations, and Application Scenarios. Technical re-

port, Software Engineering Group, Department of Computer Science,
University of Paderborn, 2007.

|31] Donald E. Knuth. Literate Programming. In The Computer Journal,
volume 27(2), pages 97-111, May 1984.

|32] Josef Kolbitsch and Hermann Maurer. Transclusions in an HTML-Based
Environment. In Journal of Computing and Information Technology
(CIT), volume 14, pages 161-174, 6 2006.

[33] Dimitrios S. Kolovos, Davide Di Ruscio, Alfonso Pierantonio, and
Richard F. Paige. Different Models for Model Matching: An analy-
sis of approaches to support model differencing. In Comparison and
Versioning of Software Models, 2009. CVSM’09. ICSE Workshop on,
pages 1-6. IEEE, 2009.

[34] Axel Lamsweerde. Reasoning About Alternative Requirements Options.
In Alexander T. Borgida, Vinay K. Chaudhri, Paolo Giorgini, and Eric S.
Yu, editors, Conceptual Modeling: Foundations and Applications, pages
380-397. Springer-Verlag, 20009.

[35] Makoto Murata, Dongwon Lee, and Murali Mani. Taxonomy of XML
Schema Languages using Formal Language Theory. In Eztreme Markup
Languages, 2001.

|36] Theodor Holm Nelson. Literary Machines. Mindful Press, 3rd edition,
1993.

|37] Theodor Holm Nelson, Robert Adamson Smith, and Marlene Mallicoat.
Back to the future: hypertext the way it used to be. In Proceedings of

the eighteenth conference on Hypertext and hypermedia, HT 07, pages
227-228. ACM, 2007.

Bibliography 173

[38] Kurt Ngrmark. Elucidative Programming. Nordic J. of Computing,
7:87-105, June 2000.

[39] Kurt Negrmark. Requirements for an Elucidative Programming Envi-
ronment. In Fight International Workshop on Program Comprehension,
June 2000.

|[40] Kasper Osterbye. Literate Smalltalk Programming Using Hypertext.
IEEFE Transactions on Software Engineering, 21:138-145, 1995.

[41] Sebastian Patschorke. Konzeption und Implementierung eines Tutorial-
werkzeugs fiir Modelle. Master’s thesis, TU Dresden, 2009.

[42] Norman Ramsey. Literate Programming Tools Need Not Be Com-
plex. Technical Report CS-TR-351-91, Department of Computer Sci-
ence, Princeton Univ., Princeton, NJ, 1991.

|43] Norman Ramsey. Literate Programming Simplified. IFEE Software,
11(5):97-105, 1994.

[44] T. Reenskaug and A. L. Skaar. An Environment for Literate Smalltalk
Programming. In Conference proceedings on Object-oriented program-
ming systems, languages and applications, OOPSLA ’89, pages 337345,
New York, NY, USA, 1989. ACM.

[45] Yuan Ren, Gerd Groner, Jens Lemcke, Tirdad Rahmani, Andreas
Friesen, Yuting Zhao, Jeff Z. Pan, and Steffen Staab. Validating Pro-
cess Refinement with Ontologies. In the Proc. of the 22nd International
Workshop on Description Logics (DL2009), 2009.

[46] Gunnar Schulze. Synchronization of UML Models and Narrative Text
using Model Constraints and Natural Language Processing. Master’s
thesis, University of Innsbruck, 2011.

|[47] Andy Schiirr. Specification of Graph Translators with Triple Graph
Grammars. In ErnstW. Mayr, Gunther Schmidt, and Gottfried Tin-
hofer, editors, Graph-Theoretic Concepts in Computer Science, volume
903 of Lecture Notes in Computer Science, pages 151-163. Springer,
1995.

|48] Mirko Seifert. Designing Round-Trip Systems by Change Propagation
and Model Partitioning. PhD thesis, Dresden University of Technology,
2011.

174

Bibliography

[49]

[50]

[51]

[52]

[53]

[54]

[55]
[56]

[57]

[58]

[59]

[60]

Katja Siegemund, Edward J. Thomas, Yuting Zhao, Jeff Z. Pan, and
Uwe Afmann. Towards Ontology-driven Requirements Engineering. In
The 10th International Semantic Web Conference (ISWC2011), 2011.

Katja Siegemund, Yuting Zhao, Jeff Z. Pan, and Uwe Afsmann. Mea-
sure Software Requirement Specifications by Ontology Reasoning. In
Proceedings of the 8th International Workshop on Semantic Web En-
abled Software Engineering (SWESE 2012), 2012.

Alexandre Valente Sousa. Literate Programming in an industrial setting.
Technical report, Instituto Superior da Maia, 2005.

George Spanoudakis and Andrea Zisman. Inconsistency Management
in Software Engineering: Survey and Open Rresearch Issues. In in
Handbook of Software Engineering and Knowledge Engineering, pages
329-380. World Scientific, 2001.

Thomas Stahl and Markus Volter. Model-Driven Software Development.
John Wiley & Sons, Ltd, 2003.

Thomas Vestdam. Elucidative program tutorials. Nordic J. of Comput-
ing, 9:209-230, September 2002.

Thomas Vestdam. Generating Consistent Program Tutorials, 2002.

Thomas Vestdam. Elucidative Programming — Tools, Patterns, and Fz-
periments. PhD thesis, Aalborg University, 2004.

Thomas Vestdam and Kurt Ngrmark. Aspects of Internal Program Doc-
umentation — an Elucidative Perspective. In Program Comprehension,
2002. Proceedings. 10th International Workshop on, pages 43-52, 2002.

Thomas Vestdam and Kurt Ngrmark. Toward Documentation of Pro-
gram Evolution. [EEE International Conference on Software Mainte-
nance, pages H05-514, 2005.

Claas Wilke, Andreas Bartho, Julia Schroeter, Sven Karol, and Uwe
Afmann. Elucidative Development for Model-Based Documentation. In
TOOLS (50), pages 320335, 2012.

Claas Wilke, Andreas Bartho, Julia Schroeter, Sven Karol, and Uwe Af-
mann. Extended Version of Elucidative Development for Model-Based
Documentation and Language Specification. Technical Report TUD-
FI12-01-Januar 2012, TU Dresden, 2012.

Bibliography 175

[61] Claas Wilke and Birgit Demuth. UML is still inconsistent! How to
improve OCL Constraints in the UML 2.3 Superstructure. ECEASST,
44, 2011.

	Contents
	List of Figures
	List of Tables
	List of Listings
	Acronyms
	Introduction
	Contributions
	Scope of the Thesis
	Organisation

	Problem Analysis and Solution Outline
	Redundancy and Inconsistency
	Improving Consistency with Partial Generation
	Conclusion

	Background
	Grammar-Based Modularisation
	Model-Driven Software Development
	Round-Trip Engineering
	Conclusion

	Elucidative Development
	General Idea and Running Example
	Requirements of Elucidative Development
	Structure and Basic Concepts of Elucidative Documents
	Artefact
	Active Reference
	Configuration
	Operation
	Elucidative Development, Grammar-Based Modularisation and Slots

	Presentation Layer
	Updating Computed Document Fragments
	Displaying Incomputable References
	Chaining Slots

	Guidance
	Formal Definition of the Guidance State
	Artefact State Chart
	Artefact Reference State Chart
	Document Reference State Chart
	Example

	Conclusion

	Model-Driven Elucidative Development
	General Idea and Running Example
	Requirements of Model-Driven Elucidative Development
	Structure and Basic Concepts of Elucidative Documents in Model-Driven Elucidative Development
	The Unison of Active Reference Groups and CDF Groups
	Active Reference Group
	Static Reference Group
	Dynamic Reference Group

	Guidance
	Hierarchical Guidance Messages
	Guidance for Static Reference Groups
	Guidance for Dynamic Reference Groups

	Conclusion

	Extensions of Elucidative Development
	Validating XML-based Elucidative Documents
	Difference between XML and LaTeXdocuments
	Structured Documents and Validity
	Structured Elucidative Documents and Validity

	Backpropagation-Based Round-Trip Engineering for Computed Text Document Fragments
	Introduction to Backpropagation-Based Round-Trip Engineering
	Application to Elucidative Development – An Example

	Conclusion

	Tool Support for an Elucidative Development Environment
	Managing Active References
	Inserting Computed Document Fragments
	Document File Manipulation vs. Editor API
	Unifying CDF Insertion with Integrators
	Handling Images

	Caching the Computed Document Fragments
	Instant Update
	Deferred Update
	Discussion

	Elucidative Document Validation with Schemas
	Restricting the Possible Active Reference Types
	Using Subtrees as Active References
	Nillable Active References

	Conclusion

	Related Work
	Related Documentation Approaches
	Literate Programming
	Literate Modelling
	Elucidative Programming

	Consistency Approaches
	Transclusion
	Transconsistency and Active Documents

	Compound Documents
	Object Linking and Embedding
	OpenDoc
	The W3C Compound Document by Reference Framework
	HotDoc

	Conclusion

	Evaluation
	Creating and Maintaining the Cool Component Specification
	Rewriting the Specification with ED
	Finding Inconsistencies in the Manual Specification
	Updating the Specification to a new Metamodel Version
	Discussion

	Creating and Maintaining the UML Specification
	Preparing DEFT for UML
	Writing and Updating the Package Section
	Discussion

	Feasibility Studies
	Visualising Requirements
	Documenting a BPMN Refinement Library
	Writing a PhD thesis about Elucidative Development with DEFT

	Conclusion

	Conclusion
	Cool Component Specification
	Metamodel Preparation
	Inconsistencies in the Manual Specification
	Convention Errors in Running Text Cross-References
	Convention Errors in Metaclass Characteristics Listings
	Misspelled and Wrong Identifiers
	Wrong Metaclass Properties
	Wrong Model Diagrams

	Update of the Specification

	UML Specification
	Metamodel Changes
	OCL Changes
	OCL errors
	Changes for UML 2.3

	Bibliography

