503 research outputs found

    Artificial Intelligence Application in Machine Condition Monitoring and Fault Diagnosis

    Get PDF
    The subject of machine condition monitoring and fault diagnosis as a part of system maintenance has gained a lot of interest due to the potential benefits to be learned from reduced maintenance budgets, enhanced productivity and improved machine availability. Artificial intelligence (AI) is a successful method of machine condition monitoring and fault diagnosis since these techniques are used as tools for routine maintenance. This chapter attempts to summarize and review the recent research and developments in the field of signal analysis through artificial intelligence in machine condition monitoring and fault diagnosis. Intelligent systems such as artificial neural network (ANN), fuzzy logic system (FLS), genetic algorithms (GA) and support vector machine (SVM) have previously developed many different methods. However, the use of acoustic emission (AE) signal analysis and AI techniques for machine condition monitoring and fault diagnosis is still rare. In the future, the applications of AI in machine condition monitoring and fault diagnosis still need more encouragement and attention due to the gap in the literature

    Online Condition Monitoring of Electric Powertrains using Machine Learning and Data Fusion

    Get PDF
    Safe and reliable operations of industrial machines are highly prioritized in industry. Typical industrial machines are complex systems, including electric motors, gearboxes and loads. A fault in critical industrial machines may lead to catastrophic failures, service interruptions and productivity losses, thus condition monitoring systems are necessary in such machines. The conventional condition monitoring or fault diagnosis systems using signal processing, time and frequency domain analysis of vibration or current signals are widely used in industry, requiring expensive and professional fault analysis team. Further, the traditional diagnosis methods mainly focus on single components in steady-state operations. Under dynamic operating conditions, the measured quantities are non-stationary, thus those methods cannot provide reliable diagnosis results for complex gearbox based powertrains, especially in multiple fault contexts. In this dissertation, four main research topics or problems in condition monitoring of gearboxes and powertrains have been identified, and novel solutions are provided based on data-driven approach. The first research problem focuses on bearing fault diagnosis at early stages and dynamic working conditions. The second problem is to increase the robustness of gearbox mixed fault diagnosis under noise conditions. Mixed fault diagnosis in variable speeds and loads has been considered as third problem. Finally, the limitation of labelled training or historical failure data in industry is identified as the main challenge for implementing data-driven algorithms. To address mentioned problems, this study aims to propose data-driven fault diagnosis schemes based on order tracking, unsupervised and supervised machine learning, and data fusion. All the proposed fault diagnosis schemes are tested with experimental data, and key features of the proposed solutions are highlighted with comparative studies.publishedVersio

    A novel faults detection method for rolling bearing based on RCMDE and ISVM

    Get PDF
    The rolling bearing is an essential element widely used in the rotating machinery. Bearing failures are among the main reasons for breakdown of rotating machinery. Therefore, fault detection of bearing is necessary to reduce the probability of breakdown and safety accidents. A novel fault diagnosis method for rolling bearing based on Refined Composite Multiscale Dispersion Entropy (RCMDE) and Improved Support Vector Machine (ISVM) is presented in this paper. The RCMDE is a new irregular index in biomedical signal analysis, which has lower computational cost and more stable results. Therefore, the RCMDE is introduced as fault feature to represent the bearing fault characteristics. After feature extraction, an improved support vector machine based on whale optimization algorithm (WOA) and support vector machine (SVM) is proposed as a fault classifier, which has the advantages of less training samples and good classification effect. The effectiveness of the proposed method in bearing fault diagnosis is verified by using bearing fault experimental data

    A Study on Comparison of Classification Algorithms for Pump Failure Prediction

    Get PDF
    The reliability of pumps can be compromised by faults, impacting their functionality. Detecting these faults is crucial, and many studies have utilized motor current signals for this purpose. However, as pumps are rotational equipped, vibrations also play a vital role in fault identification. Rising pump failures have led to increased maintenance costs and unavailability, emphasizing the need for cost-effective and dependable machinery operation. This study addresses the imperative challenge of defect classification through the lens of predictive modeling. With a problem statement centered on achieving accurate and efficient identification of defects, this study’s objective is to evaluate the performance of five distinct algorithms: Fine Decision Tree, Medium Decision Tree, Bagged Trees (Ensemble), RUS-Boosted Trees, and Boosted Trees. Leveraging a comprehensive dataset, the study meticulously trained and tested each model, analyzing training accuracy, test accuracy, and Area Under the Curve (AUC) metrics. The results showcase the supremacy of the Fine Decision Tree (91.2% training accuracy, 74% test accuracy, AUC 0.80), the robustness of the Ensemble approach (Bagged Trees with 94.9% training accuracy, 99.9% test accuracy, and AUC 1.00), and the competitiveness of Boosted Trees (89.4% training accuracy, 72.2% test accuracy, AUC 0.79) in defect classification. Notably, Support Vector Machines (SVM), Artificial Neural Networks (ANN), and k-Nearest Neighbors (KNN) exhibited comparatively lower performance. Our study contributes valuable insights into the efficacy of these algorithms, guiding practitioners toward optimal model selection for defect classification scenarios. This research lays a foundation for enhanced decision-making in quality control and predictive maintenance, fostering advancements in the realm of defect prediction and classification

    Gear fault diagnosis using vibration signals based on decision tree assisted intelligent controllers

    Get PDF
    Gears are one of the most widely used elements in rotary machines for transmitting power and torque. The system is subjected to variable speed and torque which leads to faults in gears. This paper presents two different online condition monitoring systems using fuzzy and artificial neural network (ANN) controller for the fault diagnosis of spur gear. This work is conceived as pattern recognition problem and it consists of four main phases: viz. feature extraction, feature selection using C4.5 algorithm, training of fuzzy and ANN controllers with the selected features. Under feature extraction, statistical features like skewness, standard deviation, variance, root mean square (RMS) value, kurtosis, range, minimum value, maximum value, sum, median and crest factor are considered as features of the signal in the fault diagnostics. These features are extracted from vibration signals of time domain obtained from the experimental setup through a piezoelectric sensor. The vibration signals from the sensor are captured for normal tooth, wear tooth, broken tooth and broken tooth under loading conditions. The controllers are built and tested with representative data and the performance is also discussed

    Review of Machine Learning Approaches In Fault Diagnosis applied to IoT System

    Get PDF
    International audienceWith increasing complex systems, low production costs, and changing technologies, for this reason, the automatic fault diagnosis using artificial intelligence (AI) techniques is more in more applied. In addition, with the emergence of the use of reconfigurable systems, AI can assist in self-maintenance of complex systems. The purpose of this article is to summarize the diagnosis research of systems using AI approaches and examine their application particularly in the field of diagnosis of complex systems. It covers articles published from 2002 to 2018 using Machine Learning tools for fault diagnosis in industrial systems

    Machine learning and deep learning based methods toward Industry 4.0 predictive maintenance in induction motors: Α state of the art survey

    Get PDF
    Purpose: Developments in Industry 4.0 technologies and Artificial Intelligence (AI) have enabled data-driven manufacturing. Predictive maintenance (PdM) has therefore become the prominent approach for fault detection and diagnosis (FD/D) of induction motors (IMs). The maintenance and early FD/D of IMs are critical processes, considering that they constitute the main power source in the industrial production environment. Machine learning (ML) methods have enhanced the performance and reliability of PdM. Various deep learning (DL) based FD/D methods have emerged in recent years, providing automatic feature engineering and learning and thereby alleviating drawbacks of traditional ML based methods. This paper presents a comprehensive survey of ML and DL based FD/D methods of IMs that have emerged since 2015. An overview of the main DL architectures used for this purpose is also presented. A discussion of the recent trends is given as well as future directions for research. Design/methodology/approach: A comprehensive survey has been carried out through all available publication databases using related keywords. Classification of the reviewed works has been done according to the main ML and DL techniques and algorithms Findings: DL based PdM methods have been mainly introduced and implemented for IM fault diagnosis in recent years. Novel DL FD/D methods are based on single DL techniques as well as hybrid techniques. DL methods have also been used for signal preprocessing and moreover, have been combined with traditional ML algorithms to enhance the FD/D performance in feature engineering. Publicly available datasets have been mostly used to test the performance of the developed methods, however industrial datasets should become available as well. Multi-agent system (MAS) based PdM employing ML classifiers has been explored. Several methods have investigated multiple IM faults, however, the presence of multiple faults occurring simultaneously has rarely been investigated. Originality/value: The paper presents a comprehensive review of the recent advances in PdM of IMs based on ML and DL methods that have emerged since 2015Peer Reviewe
    • 

    corecore