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Abstract: This paper presents a comparative study of two artificial intelligent systems, namely; Multi- 
layer Perceptron (MLP) and Support Vector Machine (SVM), to classify six fault conditions and the 
normal (non-faulty) condition of a centrifugal pump. A hybrid training method for MLP is proposed for 
this work based on the combination of Back Propagation (BP) and Genetic Algorithm (GA). The two 
training algorithms are tested and compared separately as well. Features are extracted using Discrete 
Wavelet Transform (DWT), both approximations, details, and two mother wavelets were used to 
investigate their effectiveness on feature extraction. GA is also used to optimize the number of hidden 
layers and neurons of MLP. In this study, the feature extraction, GA based hidden layers, neurons 
selection, training algorithm, and classification performance, based on the strengths and weaknesses of 
each method, are discussed. From the results obtained, it is observed that the DWT with both MLP-BP and 
SVM produces better classification rates and performances.

Keywords: Back Propagation (BP), Discrete Wavelet Transform (DWT), Centrifugal pump, Genetic 
Algorithm (GA), Multilayer Perceptron (MLP)

1. Introduction

Rotating machines, including centrifugal pumps, are dynamic machines that produce vibrations. Such 

vibrations can be monitored and analyzed for the purpose of condition monitoring of the machine, and 

diagnosing of faults [1-4]. Fault detection using vibration analysis in any rotating machinery requires two 

main steps: data acquisition and data analysis. For data acquisition, an accelerometer is commonly used to 

measure vibrations [5-11]. In data analysis, three main analysis methods have been applied in time domain 

[6, 10, 12], frequency domain [9-12], and time-frequency domain [14-17].  Fast Fourier Transform (FFT) is 

a frequency domain algorithm that has been used successfully for extracting statistical parameters, as it is 

able to present physical characteristics of frequency domain data [18]. However, a centrifugal pump is a 

complex machine that consists of many different parts and its vibration signals contain many non-stationary 
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signals, for which FFT is not well suited [14-16, 19]. On the other hand, Wavelet Transform (WT) which 

analyses the time-frequency domain has been proposed as an alternate method for non- stationary signals 

[16, 20].

Artificial Intelligent (AI) systems have been applied to centrifugal pumps as automatic fault diagnosis and 

classification systems in references [10, 21-23]. Automatic fault classification has been implemented and 

investigated using many machinery fault diagnostic methods, in order to improve precision and reduce 

mistakes caused due to human misinterpretation [10]. Previously, Discrete Wavelet Transform (DWT) has 

been applied by many researchers for applications of rotating machinery, accountability diagnosis 

combined with AI systems [7, 24-26]. Srinivas et al. in reference [27] proposed MLP and DWT based on 

Daubechies wavelet function to diagnose faults on rotor unbalance and shaft bent. The results showed the 

following classification success rates: unbalance at 99.78%, shaft bent at 99.81%, and combined faults of 

unbalance with shaft bent at 99.45%. Muralidharan and Sugumaran in reference [5] presented the 

application of the decision tree (J48 algorithm) in fault diagnosis of centrifugal pump with the features that 

were extracted using DWT families. In the literature, different families of DWT have been applied for 

fault classifications and it was observed that reverse biorthogonal wavelet (rbio1.5), is an appropriate 

scheme, as the best accuracy rate is 99.84%. DWT is tested with db4 and rbio1.5 wavelet functions for 

their popularity and effectiveness [28, 29] to investigate their impact on the classifiers' performance.

Genetic Algorithm (GA) has been used for the selection of input features for machinery components 

like bearings and gears [30-32] and the number of neurons in the hidden layers [30-31 and 33] of Multilayer 

Perceptron Artificial Neural Network (MLP-ANN). Application of GA based number of hidden layers  and 

neurons selection for  the centrifugal pump have been applied using the traditional Continuous Wavelet 

Transform (CWT) based feature extraction with the best classification rates of 99.5% using (Multilayer 

Perceptron Back Propagation (MLP-BP) and 88.5% using (Multilayer Perceptron Genetic Algorithm (MLP-

GA) combined with Back Propagation (BP)  based  training [34].
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This paper investigates the classification performance of two artificial intelligent methods: MLP-BP 

along with GA based selection and Support Vector Machine (SVM) for different conditions of a centrifugal 

pump. The procedure consists of three main stages, namely, data collection, pre-processing and extraction, 

and fault classification. The feature extraction is implemented using DWT, where both the approximation 

and detail coefficients are extracted separately and then classification using the two forms is compared.  Two 

mother wavelet functions are selected and tested with DWT, namely, db4 and rbio1.5 to investigate their 

ability and impact on feature extraction. Classification and diagnosis of the centrifugal pump condition is 

implemented using two artificial intelligent classifiers, namely, MLP and SVM. MLP is implemented 

along with its traditional learning algorithm (Back-Propagation) and is also compared with a hybrid 

training algorithm (MLP-GABP). The network hidden layers and neurons are selected manually and also 

optimized using GA with comparable results. The flow chart of the diagnosis methods and training 

algorithm is shown in Figure 1. The data sets used for the evaluation under GA are the same as those used 

for the MLP training. The performance of the system is determined in terms of the number of hidden 

layers and neurons in the neural network, number of features, and the training and kernel methods. This 

paper is divided into six parts including this introduction. Section 2 presents a brief review of artificial 

intelligent systems including MLP-NN, SVM classifiers and GA. Section 3 illustrates the experimental 

setup. Section 4 outlines the method applied and procedures using DWT for feature extraction, while, 

section 5 presents the results and discussions. Finally, a conclusion with remarks and recommendations is 

given in section 6.

Fig. 1 Flow chart of diagnosis methods and training algorithm
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2. Artificial Intelligent Systems

Automatic fault detection methods make use of AI which seeks to replicate mental capabilities with 

support of computational systems [35]. An Artificial Neural Network (ANN) was first introduced by 

McCulloch and Pitts [36], and Fuzzy Logic was first introduced by Zadeh [37]. ILott and Griffiths [38] 

proposed ANN with BP algorithm to diagnose pump faults. Then, Zouari et al. [39] applied ANN and a 

fuzzy neural network to diagnose centrifugal pump faults; statistical methods of time and spectral analysis 

were used for the feature extraction.

There are many types of AI that have been applied as automatic fault diagnosis systems for different 

rotating machines and components in the literature. Some of these are Back Propagation-Artificial Neural 

Network (BP-ANN) or MLP [30-33, 40-46] and Support Vector Machine (SVM) [30, 42, 44-47].

This section briefly discusses the basic principle and implementation of the MLP, SVM classifiers 

and GA based optimization and training.

A. Multilayer perceptron with back propagation

Multilayer perceptron consists of three layers, namely, input, hidden, and output layer of neurons. 

There may be several hidden layers between the input and output layers. The number of neurons in each 

section affects the general behaviour of the system, while the number of neurons and hidden layers affects 

the efficiency. With a larger number, there is a possibility of over-fitting the training of the data and weak 

generalization of new data. Therefore, some methods might be used to select the appropriate number of 

hidden layers and neurons such as Genetic Algorithm [31]. The output layer can be more than one layer 

according to the required fault classifications. Each hidden layer has a number of neurons; the role of each 

is to calculate the weighted sum of its inputs and apply the sum as the input to an activation function that is 

usually a sigmoid. 

           Back propagation is a training algorithm that was developed by Rumelhart [48] and it has become a 

popular training method for MLP. The basic training principle of BP is based on the gradient decent method 
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that adjusts the weights to minimise Mean Square Error (MSE). The training process of BP can be initiated 

by multiplying the input vectors with the weights, as the biases and weights are summed in order to calculate 

the actual outputs. The desired outputs have to be determined and then compared with the actual outputs, 

continuing evaluation and weight modification until the process approaches the desired MSE value. MSE is 

also known as training or network error and represented mathematically as:

(1)𝐸 =
1
𝑛∑𝑛

𝑖 = 1(𝑡𝑖 ― 𝑦𝑖)2

Where n is the total number of inputs, i is known as the index of summation,  is the desired (target) output 𝑡𝑖

from the output layer, and  is the actual output in the output layer.𝑦𝑖

       Comparative studies have demonstrated the efficiency of MLP over other ANN types [31, 33]. However, 

a drawback of MLP is that, it is slow in training and needs longer computational time than other methods 

[31, 33, 43, 46]; but such weakness can be minimized by reducing the number of input features [40, 41].

B. Support Vector Machine

      Support Vector Machine (SVM) was initially introduced by Corinna Cortes and Vladimir Vapnik [49] 

where it was used as a new approach for pattern recognition, employing non-linear projections of input 

features to a greater dimensional pattern area. The working principle of SVM is illustrated in Figure 2. 

      The SVM working principle is based on separating (classify) two different classes (conditions); class A 

and class B as shown in Fig.2. From Fig. 2, the optimal hyper-plane can separate the two classes (A and B) 

with a wider margin compared to the non-optimal hyper-plane. The support vectors of both classes (A “+” 

& B “*”) indicates the margins. The optimal hyper plane (separator) is separating the two classes with a 

maximum width (margin), as the larger margin (width) between the two classes gives more generalization 

and eventually better linear classification. The support vectors indicate the margins and they are located 

beside the classes’ boundaries, where they have all the essential information of the classification. The linear 

classifier (hyper plane) is expressed as:
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       WTX+b=0                                                         (2)

If class A is assumed to be above the hyper plane, then it is > 0, indicated as +1 and given by

      WTX+b = +1                                                  (3)

and if class B is < 0, indicated as -1 and given by

WTX+b = -1                                                  (4)

where W is the weight vector, X is the input and b is the bias.

A decision function can be used to separate two different classes (i.e. A and B) and given by

                                 (5)𝑓(𝑓(𝑥) = 𝑠𝑖𝑔𝑛 ((𝑊.𝑋) + 𝑏)

The decision function can be given by

(6)𝑓(𝑓(𝑥) = 𝑠𝑖𝑔𝑛 (∑𝐿
𝑖 = 1𝑣𝑖(𝑋.𝑋𝑖) + 𝑏)

Where L is the number of training data and  is applied as weighting factor to identify the suitable support 𝑣𝑖

vectors from the given inputs.

However, it is not always guaranteed that linear boundary is able to classify the two different classes. 

Therefore, in order to classify the two classes with better margin, SVM can map the non-linear training data 

into a higher dimension level which is known as the feature space s using a transformation Φ (  with s X),

given by [30]

          Ss s = Φ (                                                              (7)X)

Where  and . Based on the above, the decision function can be defined as𝑋 ∈  𝑅𝑁  𝑠 ∈  𝑅𝑄

             (8)𝑓(𝑓(𝑥) = 𝑠𝑖𝑔𝑛(∑𝐿
𝑖 ― 1𝑣𝑖(𝛷 (𝑋).𝛷 (𝑋𝑖)) + 𝑏)

Moreover, to provide such transformation into non-linear classification, a kernel function is used  𝑘(𝑋.𝑌)

which is given by

(9)         𝑘(𝑘(𝑋.𝑌) =  𝛷 (𝑋). 𝛷 (𝑌)

where k indicates the kernel function.

The decision function for the non-linear classification can be given by
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) +b)     (10)𝑓((𝑥) = 𝑠𝑖𝑔𝑛(∑𝐿
𝑖 = 1𝑣𝑖 𝑘 (𝑋.𝑋𝑖

There are different kernel functions which can be employed with SVM for the purpose of non-linear 

classification, and such kernel functions like;

Polynomial kernel function is given by

𝑘(𝑋.𝑌) =  𝑘(𝑋.𝑌)𝑑 (11)

Where d indicates the dimension.

The Radial Basis Function (RBF) is given by

 𝑘(𝑋.𝑌)      = exp ( ―
‖𝑋 ― 𝑌‖2

2𝜎2 ) (12)

Where the width parameter of RBF kernel function, and the Sigmoid is given by𝜎 

)                         (13)𝑘        𝑘(𝑋.𝑌) = tanh (𝜅 (𝑋.𝑌) + Θ

Where  is known as gain parameter and  is offset parameter of sigmoid kernel function.𝜅 Θ

      SVM has been widely recommended for rotating machinery fault diagnosis as it has proved its high 

efficiency and outstanding performance over other AI classifiers like MLP (ANN-BP) [27, 31, 40, 42, 45] 

and RBF [42].  

Fig. 2 Working principle of support vector machine 
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          In this work, SVM is used as a classifier and its performance is compared with MLP. MATLAB 

software is used to implement the classification stage, for the development of the codes. Classifiers consist 

of two main processes: training of data, and testing, where an automatic classification is implemented for 

the different conditions. The performance of the AI classifier is measured according to the classification 

accuracy rates (%). Polynomial kernel function is selected for SVM.

C. Genetic Algorithm

   Genetic Algorithm was introduced by John Holland [50]. It is based on the concept of a Darwinian-

type fitness for survival that it is used to produce better individuals for the desired problem, as different 

possible solutions compete and match with each other. It is essentially a form of optimization, which can be 

applied to complex functions. GA has a similarity with chromosomes, in that individual terms are 

represented by means of a linear string [51]. GA starts its process by initiating individual populations which 

are known as chromosomes where they would be computed and evaluated individually based on fitness and 

then they would be ranked according to the higher fitness after which selection are based on the top survival 

individuals (their fitness). GA has two main operators, namely, crossover and mutation, and they operate to 

produce a new generation of individuals (chromosomes) and then would be sent to the first step of the 

process as the improper individuals are replaced with the new and good ones [51].

        In this work, GA is used to optimize the number of hidden layers and neurons to select the optimal 

architecture of the neural network using MATLAB software. The GA based selection and optimization has 

been developed as a MATLAB code where the range of constraints and parameters are exploring a parameter 

space ranging from 1 to 4 layers, with up to 30 neurons per layer, 20 generations, and population size is 10 

individuals to avoid long computational time. GA is also used to train MLP along with BP using 1000 

generations and 1000 population size. The parameters of the GA based training and optimization are 

illustrated in Table 1.
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3. GA and GABP-Artificial Neural Network Training Methods

GA is used to train MLP along with BP by optimising the connection weights of MLP, and there are
number of points to be considered while using GA in training MLP:

• Coding: the main purpose of coding is to encoding the weights into chromosomes, and there are 

two methods to encode the weights and threshold of a neural network. First one is binary encoding 

which presents each weight by coding them into fixed length of 1 and 0 string. There is a drawback 

using this method that the weights are within a predefined and fixed range of string. The second 

method is known as a real encoding which has shown better ability than the first methods [52, 53], 

as it presents weights with a real number in which the precision is increased, compared to the binary 

method. It also has more flexibility in using various operators (crossover and mutation) methods.

• Fitness function: fitness function of each chromosome has to be identified during the processing of 

GA. Using the real coding method, each individual weight of the neural network has to be restored 

from the chromosome. Then the neural network is totally identified, and the outputs to each of the 

test set is calculated and compared to the targets. Hence, the fitness value can be calculated through 

the training error on the test set. A low calculated error means better performance, and eventually a 

higher fitness value.

• Finding the GA-parameters and operators: in GA, there are number of parameters to be identified 

prior to optimisation. Such parameters like the population size, fitness normalisation, and selection 

operator (reproduction). In selection, two main operators are used; crossover and mutation to 

reproduce new populations for the next generation by selecting two chromosomes randomly and 

consider them as parents.

GA based training
No. of generations Size of population TolFun Mutation & 

crossover options
1000 1000 1E-60 Mutation-Gaussian

Crossover-scattered
GA based optimization

No. of generations Size of population TolFun Mutation & 
crossover options

40 10 1E-60 Mutation-Gaussian
Crossover-scattered

Table 1 Genetic Algorithm based training and optimization architecture parameters 
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• Crossover: there are two chromosomes which act as parents, and then other chromosomes are 

produced from the parents. Therefore, the main purpose of crossover operator is to find and 

reproduce new chromosomes for the next generation. The number of chromosomes to be exchanged 

depends on the given crossover probability which is usually given in the range of 0.5 to 1 [54]. 

There are number of crossover operators like: single point crossover which is identified randomly 

by number like 1,1L, where 1L represents the length of chromosome, N-point crossover, and 

uniform crossover.

• Mutation: this is an essential operator that allows new genetic material to be added to a population. 

A mutation probability can be varied in the range of 0.001 to 0.01, which controls the random 

mutation for the chromosomes. The main purpose of mutation is to give a limited random search to 

provide a possibility of no zero probability during the random search.

4. Neural Network Training with Forward Propagation

       The calculation of error determines if the calculated output is acceptable or not which eventually 

decides the neural network training completion. Therefore, the error cannot be sufficiently minimised, and 

it has to be further minimised by adjusting the weights which can be done using a traditional method 

which is also known as Forward Propagation (FP) given by:

Where 𝑊𝑖(𝑛𝑒𝑤) represents the new adjusted weights, 𝑊𝑖(𝑜𝑙𝑑) represents the current weights, and  is the 

learning rate. The steps of FP are shown in Figure 3.

Fig. 3 Neural network training with Forward Propagation

(14)
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      However, FP has a drawback of being not able to give an accurate prediction and justification on why 

the updated weights can be better than the old ones, and on the impact of each weight over the calculated 

error. Hence, using Back Propagation (BP) provides more ability to understand the impact of weights over 

the error; to control the adjustment of the weights as shown in Figure 4.

From Equation (1), the derivative of the error shows how BP adjusts the weights which is given by [53]:

momentum term  is introduced into the training Equation (15), in order to improve the training 

process, and it is given by [53]:

Where 𝑊𝑗𝑖 = weight from the 𝑗𝑡ℎ unit to the 𝑖𝑡ℎ unit.

It is also possible to apply another training rule-based BP to adjust the weights and this is given by [53]:

  is introduced to avoid any termination for the learning rate  as the momentum Where the factor 

term  is increased.

5. Experimental Setup for the Study

(15)

(16)

             (17)

Fig. 4 Neural network training with Back Propagation by taking the reverse procedures of Forward

            Propagation method
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       The centrifugal pump experiment has been designed and assembled where it consists of several parts 

including: centrifugal pump which is coupled with a motor (Saer company, Italy, model: NCBZ-2P-50-

125C, 2.2 kW, 3-phase, 420 V, head 8-17 m and flow rate 500-1000 L/min), control panel with speed 

controller (Schneider model Variable Frequency Drive (VFD) with speed controller and display screen, 

switch (OFF/ON) and emergency shutdown), digital turbine flow meter (USA-TM model, 2 inch diameter), 

pressure gauges, vacuum pump and clear PVC pipes; and spare parts: a rolling element bearing, mechanical 

seal, gasket and impeller. A Data Acquisition System (DAQ) and accelerometers from National Instruments 

(NI) are used. The DAQ system comprises SCXI-1000 and SCXI-1530 models with 4 input channels. The 

accelerometer model is IMI 621B40 with sensitivity of 10 mV/g and frequency range from 3.4 to 18 kHz 

for (±10%) and 1.6 to 30 kHz for (±3 dB). Figure 5 shows the centrifugal pump experimental setup.

The vibration signals are measured under healthy and faulty conditions. Firstly, the signal of normal 

condition is acquired when the pump is healthy, without any faults. The faulty conditions are divided into 

two main categories: five mechanical faults (bearing, misalignment, unbalance, impeller, and looseness), 

and a hydraulic fault (cavitation). These faults are created and simulated one by one. Signals are acquired 

from the pump using an accelerometer which is mounted on its bearing housing. A DAQ is used to read the 

signals, where the signals are amplified and noise filtered out before digitization and filtering is used with a 

Fig. 5 Model system for experimental test rig
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bandwidth of 2.5 kHz; and then transmitted to a computer which is equipped with a digital/analogue 

converter card (D/A) in order to convert the analogue signals to digital. Data are acquired for a period of 

2.4s at a sampling rate of 16 kHz, resulting in acquisition of 38400 samples. Averaging is applied with 10 

as number of averages. Finally, these signals are captured via LabVIEW software where raw signals are 

saved in order to use them in the second stage for further processing. All data of the pump conditions are 

acquired at a speed of 20 Hz (1200 RPM).

6. Feature Extraction

The purpose of feature extraction is to extract some characteristics from the vibration signals to be 

implemented in a neural network. It is important to ensure good feature extraction and selection otherwise 

weak classification performance might result [55]. A reduced number of features can result in higher rates 

of successful classification when only relevant and non-redundant features are used [56, 57]; and also 

helps to reduce memory usage, network size and processing time [58]. Application of a feature selection 

algorithm specifically to reduce the number of features has indeed been observed to achieve higher 

accuracy rates compared to non-reduced feature sets [59, 60].

Wang and Chen [7] recommended that the extracted features have to be strongly relevant to the 

machine faults. However, they stated that feature extraction methods have difficulty with vibration signals 

that contain strong noise which conceals the important information [7]. This difficulty has driven researchers 

to apply wavelet transform analysis in order to perform noise cancellation for the feature extraction [61]. 

Reference [62] proposed CWT for the feature extraction from the vibration signals of a centrifugal pump.

   DWT was first introduced and developed by Mallat [63], where DWT is the discretization of CWT 

[16] which is given by:

                                                         (18)𝐷𝑊𝑇(𝑗,𝑘) = 1/( 2𝑗)∫∞
―∞𝑠(𝑡)𝜑 ∗ ((𝑡 ― 2𝑗𝑘)/2𝑗)𝑑𝑡    

  Where j and k are integers that represent scale and translation processes respectively, and  and  2𝑗 2𝑗𝑘

are scale and time parameters. DWT also differs from CWT in terms of selection of values for scale (a) and 
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time (b) parameters; there are no constraints in selection with CWT [64], but with DWT, restrictions apply 

for the selection of (a, b) parameters [65]. 

  In this work, DWT is applied with decomposition to 6 levels for the feature extraction, where the 

approximation and detail coefficients are extracted from DWT from seven different pump cases. In each 

case, a signal of length 34800 samples was recorded. These signals were each divided into 10 segments, of 

length 3840 samples. From each of the 10 segments, a signal is decomposed using DWT into 6 levels and 

produced 60 approximation features and 60 detail features. From these 60 features, 6 parameters (Kurtosis, 

RMS, Peak, Crest Factor, Shape Factor and Impulse Factor) are computed for the signal from each case. 

Feature extraction is implemented once with db4 mother wavelet and also with rbio1.5 function. Figure 6 

(a-d), shows the detailed (left) and approximated (right) sixth levels of decomposed signals including the 

original signal of each condition using db4 function, where the general sinusoidal pattern of the signals has 

better representation with the approximation decomposition, and it is also preserved in successive 

approximation levels (but not the detail levels), as this prominently illustrated in signals like imbalance, 

cavitation and misalignment. It is also remarked that approximation reveals successively less noisy signals 

by reducing the high-frequency information which could be resulting in extracting better features than the 

ones from detail. The main methodology of DWT in this work is depicted in Figure 7. The 60 features of 

both approximation and detail are used separately to train the MLP-BP. In addition, 30 approximation 

features are also considered to train the MLP-BP.

For the SVM, two cases are considered; first using 2 parameters and 60 features; and then with the 

number of features reduced to just 30. The effectiveness (sensitivity) of each parameter against all conditions 

are plotted in Figure 8. Normally, when healthy (blue +) is the lowest, it indicates good effectiveness of the 

parameter. Therefore, peak and RMS are selected for SVM due to their ability in distributing and 

distinguishing the conditions effectively.
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Fig. 6a Detail and approximation decomposed 6 level signals of the 7 pump conditions (db4 mother wavelet)
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Fig. 6b Detail and approximation decomposed 6 level signals of the 7 pump conditions (db4 mother wavelet)
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Fig. 6c Detail and approximation decomposed 6 level signals of the 7 pump conditions (db4 mother wavelet)
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Fig. 6d Detail and approximation decomposed 6 level signals of the 7 pump conditions (db4 mother wavelet)

Fig. 7 DWT working processes for feature extraction based on decomposition procedure (6 levels) 
to produce two type of coefficients, namely, approximation (low frequency), and detail (high 
frequency). Features are extracted as approximations and also details using 6 different parameters.
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7. Classification Methods

The extracted features were used as input vectors that were forwarded to the neural network classifier 

and SVM. In this work, MLP consists of three layers, namely, input layer, hidden layer, and output layer. 

The input layer consists of 6 neurons which represent the extracted and normalized features for each 

parameter that are pre-processed using DWT. The number of hidden layers and neurons is optimized and 
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Fig. 8 The effectiveness of each parameter against all conditions (db4 mother function). RMS and Peak 
parameters show better distribution of the samples (features) compared to the other parameters.
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then selected using GA. The output layer consists of 7 neurons; one for each tested pump condition; one 

neuron for a healthy condition, and six neurons for six different fault conditions. The network is trained 

using Levenberg-Marquardt (LM) function which is a back propagation algorithm to update weights and 

biases. Two cases are considered, 60 and 30 features (normalized and non-normalized) per condition with a 

total of 420 and 210 input features for all conditions per parameter and forwarded to the MLP-ANN which 

results in a matrix of size [6 × 420] and [6 × 210] respectively. The input vectors are divided into three 

datasets (training has 70%, test has 15% and validation has 15% [66]. The target for training was a Boolean 

matrix of size [7x420] (60 features) and [7x210] (30 features); with the rows corresponding to the 7 

conditions: (cases) in which seven digits-coding and each digit represents a block of size (1x60) and (1x30) 

given as: 

Healthy [1  0  0  0  0  0  0], Bearing fault [0  1  0  0  0  0  0], Cavitation [0  0  1  0  0  0  0], Impeller 

fault [0  0  0  1  0  0  0], Misalignment [0  0  0  0  1  0  0], Looseness [0  0  0  0  0  1  0], Imbalance [0  0  0  

0  0  0  1].   

The neural network details and structure are shown in Table 2.

MLP-ANN details
Transfer Function No. of input 

neurons
No. of hidden 

layers and 
neurons (GA 

based selection)

No. of output 
neurons

Hidden Layer Output 
Layer

Sigmoid Linear 6 4 layers: [24 21 
24 23]

7

ANN Training Parameters
Training Algorithm Learning Rate Training Stop Criteria

LM (BP) 
&

GA

0.56 Max. epoch MSE
1000 10E-20

Table 2 Multilayer Feed-Forward Perceptron neural network architecture
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  SVM classification has been applied using two cases which are 60 features and 30 

(normalized and non-normalized) ones with approximation features and again with detail 

features. For the two cases, all the seven conditions were tested and classified against each other, 

and all results are compared.   

 The SVM has been investigated using polynomial kernel. The parameter C (width) set to 3. 

A randomly selected input dataset is divided into a training set and a test set. Two parameters 

(RMS and Peak) are used for both conditions, since both parameters are found to be most 

effective for distinguishing between the conditions.

8. Results and Discussions

The results of using these AI methods (MLP-BP, MLP-GABP and SVM) show the strengths and 

drawbacks of each method including the impact of mother wavelet selection and using normalized or non-

normalized features. Alternatives and improvements are proposed to enhance the classification accuracy 

rates. The results obtained using these three AI methods are discussed as follows.

A. MLP-BP

Classification rates are remarked for all cases with db4 mother wavelet function using GA based 

selection which suggested four hidden layers containing [24 21 24 23] neurons. The overall classification 

rates using 60 normalized approximation features of 99.8%, 60 non-normalized approximation features of 

99.5%, 60 normalized detail features of 92.1%, and 60 non-normalized detail features of 85%. Therefore, 

the best accuracy rate is achieved using 60 normalized approximation features, as the overall confusion 

matrix and best performance graph for training, testing, and validation are illustrated in Figure 9. 

The lower right blue square shows the overall classification rates, where overall, 99.8% of the 

classifications are correct and 0.2% are incorrect classifications. Based on the accuracy rate of each class 

(pump conditions) the following results were observed; healthy (case 1) 100%, bearing fault (case 2) 

100%, 
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cavitation (case 3) 98.4%, impeller fault (case 4) 96.8%, misalignment (case 5) 100%, mechanical 

looseness (case 6) 100% and imbalance (case 6) 100%. On the other hand, classification rates with rbio1.5 

mother functions, using 60 normalized approximation features presented the same overall classification 

accuracy rate as db4 of 99.8%. Therefore, using the 60 approximation normalized features based db4 and 

rbio1.5 mother wavelets would give the same overall performance rate. However, the overall test 

performance rates using the two mother wavelets would achieve 100% with rbio1.5 and 98.4% with db4 as 

illustrated in Figure 10.

Although, with the use of 30 normalized approximate features, the overall classification rates present 

better performance compared to using 60 features, where MLP-BP using both wavelet functions of db4 and 

rbio1.5 performed 100%.

Fig. 9 (a) The overall confusion matrix of classification accuracy rate and (b) performance MLP-BP using 
60 normalized features (db4 mother wavelet)

(a) (b)
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B. MLP-GABP

  MLP-GABP is implemented for two cases of 60 normalized approximation features with db4 mother 

wavelet and also rbio1.5. MLP-GABP illustrated lower performance compared to MLP-BP in terms of 

computational time and overall classification accuracy rate which is 84.3% for db4 and 89% for rbio1.5. 

Four hidden layers containing [24 21 24 23] neurons are used in MLP as per selection of GA and weights 

of neural network have been adjusted and selected using GA. GA based optimization and training using db4 

and rbio1.5 is terminated after 600 and 424 generations with best fitness function of 0.157143 and 0.109524 

as shown in Figures 11-14 respectively. The best fitness function denotes the best minimized Mean Square 

Error (MSE).  Table 3 shows a comprehensive MLP performance of both BP and GA for all cases.
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Fig. 10 (a) The test confusion matrix of classification accuracy rate and (b) performance MLP-BP 60 
normalized features (rbio1.5 mother wavelet)
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(a) (b)

Fig. 11 (a) The confusion matrix of overall classification accuracy rate and (b) performance of MLP-GABP (db4 
mother wavelet)

Fig. 12 Best score value and mean score versus generation (db4 function)
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Fig. 14 Best score value and mean score versus generation (rbio1.5 function)
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C. SVM

Classification accuracy rates using polynomial kernel function of the cases of db4 mother 
wavelet (approximation features) 60 normalized, 60 non-normalized, 30 normalized, and 30 
non-normalized features are 96%, 88.39%, 99.8% and 98.8% respectively. The case of using 30 
normalized features achieved 99.8% and it is found to be the best in terms of hyper-plane with wider 
margin and better classification accuracy rates as shown in Table. 4. On the other hand, Classification 
rates using rbio1.5 mother wavelet for the same 4 cases are 96.96%, 90%, 100%, and 99.8%. 
The best overall classification rate among both mother wavelets is 100% and is achieved with 
30 normalized features using rbio1.5. Table 5 shows the SVM classification performance rates 
of all cases. 

Table 3 MLP overall performance based DWT
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MLP-BP & GA 
selection (db4)

30 approx. 
(normalised) [24 21 24 23] 00:00:17 100 100 100 100

MLP-BP & GA 
selection(rbio1.5)

30 approx. 
(normalised) [24 21 24 23] 00:01:15 100 100 100 100

MLP-BP & GA 
selection(rbio1.5)

60 approx. 
(normalised) [24 21 24 23] 00:00:43 100 98.4 100 99.8

MLP-BP & GA 
selection (db4)

60 approx. 
(normalised) [24 21 24 23] 00:01:27 98.4 100 100 99.8

MLP-BP & GA 
selection (db4)

60 approx. (non-
normalised) [24 21 24 23] 00:01:00 98.4 98.4 100 99.5

MLP-BP & GA 
selection (rbio1.5)

60 approx. (non-
normalised) [24 21 24 23] 00:00:40 98.4 98.4 100 99.5

MLP-BP & GA 
selection (db4)

60 detail 
(normalised) [24 21 24 23] 00:00:58 74.6 84.1 97.6 92.1

MLP-GABP & 
GA selection 

(rbio1.5)
60 approx. 

(normalised) [24 21 24 23]

MLP: 
00:00:51, 

GA: 
15:00:00

90.5 88.9 88.8 89

MLP-BP & GA 
selection (db4)

60 detail (non-
normalised) [24 21 24 23] 00:00:39 77.8 61.9 91.5 85

MLP-GABP & 
GA selection (db4) 60 approx. 

(normalised) [24 21 24 23]

MLP: 
00:01:36, 

GA: 
22:00:00

81 85.7 84.7 84.3
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9. Conclusion

       The feature extraction and classification of the pump conditions based on MLP-BP, MLP-GABP and 

SVM are conducted successfully using DWT considering features extraction with two mother wavelet 

functions (db4 and rbio1.5). In MLP-BP, it has been observed that the best classification rate in terms of 

the overall classification rates are achieved using both mother wavelets, but in terms of the overall test 

classification rate, rbio1.5 outperformed db4, where 100% accuracy rate is performed using rbio1.5 and 

98.4% using db4. However, with reduced number of features (30), the performance of MLP-BP is 

improved, and 100% is achieved with both wavelet functions (db4 and rbio1.5).

      For the SVM, it has been also found that rbio1.5 using reduced number of features (30 normalized 

features) resulted in better classification rate than MLP-BP of an overall classification rate 100%. Peak and 

Classification 
(%)

Imbala
nce

Beari
ng

Cavitat
ion

Impel
ler

Loosen
ess

Misalign
ment

Healthy 100 100 100 100 100 100
Imbalance — 100 100 100 100 100

Bearing — — 98 100 100 100
Cavitation — — — 100 100 100
Impeller — — — — 100 100

Looseness — — — — — 98

Table 4 The SVM classification accuracy rates with 30 normalized features (db4 mother function)

Method Features Overall 

classification rate 

(%)

SVM (rbio1.5) 30 approx. (normalised) 100
SVM (db4) 30 approx. (normalised) 99.8

SVM (rbio1.5) 30 approx. (non-normalised) 99.8
SVM (db4) 30 approx. (non-normalised) 98.8

SVM (rbio1.5) 60 approx. (normalised) 96.96
SVM (db4) 60 approx. (normalised) 96

SVM (rbio1.5) 60 approx. (non-normalised) 90
SVM (db4) 60 approx. (non-normalised) 88.39

Table 5 The SVM classification accuracy rates with 30 and 60 normalized 
features (db4 & rbio1.5 wavelet mother functions)
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RMS have been identified as the best parameters for SVM due to the good distribution of the features 

between the different conditions.  

         It is remarked that rbio1.5 mother wavelet provided better results compared to db4 mother wavelet for 

both MLP-BP and SVM, as shown with the first case of 60 features. Extracted features as approximations 

provided better classification rates than detail features. Also, it was reported that MLP-BP and SVM 

performed better using normalized fewer parameters and features. GA has shown a good ability in 

optimizing and selecting the number of hidden layers and neurons, as the best performance was scored using 

4 hidden layers containing 24, 21, 24 and 23 neurons, respectively. However, GA needs longer 

computational time and the risk of getting stuck in a local minimum. On the other hand, GA along with BP 

based MLP training, presented lower performance compared to MLP-BP with the case of 60 normalized 

features, as MLP-BP achieved a performance rate of 99.8%, with both wavelet functions and MLP-GABP 

achieved 89% and 84.3% with rbio1.5 and db4 respectively. In terms of computational time, MLP-BP 

outperformed MLP-GABP, as the longest time with MLP-BP using db4 is 1 minute and 27 seconds, but 

with MLP-GABP, 22 hours.       

      Finally, this work can be further investigated in future by implementing different architecture 

parameters to the GA for the optimization of MLP-BP.  This would help to determine the best options to 

improving  the classification  accuracy rates, other optimization methods  and  more  suitable  mother  

wavelet functions  for  wavelet  transform  based  feature extraction. Moreover, other AI methods would 

be applied and compared with MLP and SVM. In addition, as part of future work, different speeds for the 

pump will be considered for the experiments.
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