2,282 research outputs found

    Adaptive Airborne Separation to Enable UAM Autonomy in Mixed Airspace

    Get PDF
    The excitement and promise generated by Urban Air Mobility (UAM) concepts have inspired both new entrants and large aerospace companies throughout the world to invest hundreds of millions in research and development of air vehicles, both piloted and unpiloted, to fulfill these dreams. The management and separation of all these new aircraft have received much less attention, however, and even though NASAs lead is advancing some promising concepts for Unmanned Aircraft Systems (UAS) Traffic Management (UTM), most operations today are limited to line of sight with the vehicle, airspace reservation and geofencing of individual flights. Various schemes have been proposed to control this new traffic, some modeled after conventional air traffic control and some proposing fully automatic management, either from a ground-based entity or carried out on board among the vehicles themselves. Previous work has examined vehicle-based traffic management in the very low altitude airspace within a metroplex called UTM airspace in which piloted traffic is rare. A management scheme was proposed in that work that takes advantage of the homogeneous nature of the traffic operating in UTM airspace. This paper expands that concept to include a traffic management plan usable at all altitudes desired for electric Vertical Takeoff and Landing urban and short-distance, inter-city transportation. The interactions with piloted aircraft operating under both visual and instrument flight rules are analyzed, and the role of Air Traffic Control services in the postulated mixed traffic environment is covered. Separation values that adapt to each type of traffic encounter are proposed, and the relationship between required airborne surveillance range and closure speed is given. Finally, realistic scenarios are presented illustrating how this concept can reliably handle the density and traffic mix that fully implemented and successful UAM operations would entail

    UAV or Drones for Remote Sensing Applications in GPS/GNSS Enabled and GPS/GNSS Denied Environments

    Get PDF
    The design of novel UAV systems and the use of UAV platforms integrated with robotic sensing and imaging techniques, as well as the development of processing workflows and the capacity of ultra-high temporal and spatial resolution data, have enabled a rapid uptake of UAVs and drones across several industries and application domains.This book provides a forum for high-quality peer-reviewed papers that broaden awareness and understanding of single- and multiple-UAV developments for remote sensing applications, and associated developments in sensor technology, data processing and communications, and UAV system design and sensing capabilities in GPS-enabled and, more broadly, Global Navigation Satellite System (GNSS)-enabled and GPS/GNSS-denied environments.Contributions include:UAV-based photogrammetry, laser scanning, multispectral imaging, hyperspectral imaging, and thermal imaging;UAV sensor applications; spatial ecology; pest detection; reef; forestry; volcanology; precision agriculture wildlife species tracking; search and rescue; target tracking; atmosphere monitoring; chemical, biological, and natural disaster phenomena; fire prevention, flood prevention; volcanic monitoring; pollution monitoring; microclimates; and land use;Wildlife and target detection and recognition from UAV imagery using deep learning and machine learning techniques;UAV-based change detection

    Autonomous aircraft initiative study

    Get PDF
    The results of a consulting effort to aid NASA Ames-Dryden in defining a new initiative in aircraft automation are described. The initiative described is a multi-year, multi-center technology development and flight demonstration program. The initiative features the further development of technologies in aircraft automation already being pursued at multiple NASA centers and Department of Defense (DoD) research and Development (R and D) facilities. The proposed initiative involves the development of technologies in intelligent systems, guidance, control, software development, airborne computing, navigation, communications, sensors, unmanned vehicles, and air traffic control. It involves the integration and implementation of these technologies to the extent necessary to conduct selected and incremental flight demonstrations

    Comparative Study of Indoor Navigation Systems for Autonomous Flight

    Get PDF
    Recently, Unmanned Aerial Vehicles (UAVs) have attracted the society and researchers due to the capability to perform in economic, scientific and emergency scenarios, and are being employed in large number of applications especially during the hostile environments. They can operate autonomously for both indoor and outdoor applications mainly including search and rescue, manufacturing, forest fire tracking, remote sensing etc. For both environments, precise localization plays a critical role in order to achieve high performance flight and interacting with the surrounding objects. However, for indoor areas with degraded or denied Global Navigation Satellite System (GNSS) situation, it becomes challenging to control UAV autonomously especially where obstacles are unidentified. A large number of techniques by using various technologies are proposed to get rid of these limits. This paper provides a comparison of such existing solutions and technologies available for this purpose with their strengths and limitations. Further, a summary of current research status with unresolved issues and opportunities is provided that would provide research directions to the researchers of the similar interests

    Design of a swarm of Unmanned Aerial Vehicle for the exploration of Mars

    Get PDF
    Mars has been a main target for exploration over the last decades, due to its closeness and similarity to Earth. Exploration landers and rovers have laid the foundation for the understanding of the planet, however, they exhibit some limitations that Unmanned Aerial Vehicles (UAVs) would overcome. Thus, this report consists of the design of a swarm of UAVs for the exploration of the red planet, which coordinates with a swarm of rovers and a constellation of orbiters that are briefly described. Firstly, the mission is preliminarily designed to define its location, architecture, objectives, and requirements. Secondly, the single UAV overview is presented, illustrating a preliminary design of all the subsystems involved in order to perform successfully. Thirdly, the swarm of UAVs is defined, introducing pre-flight check procedures. Then, two flight formation algorithms for the swarm of UAVs are suggested, although only one of them is implemented. Fourthly, there is a brief introduction to the multiplatform architecture, focused on communication and connectivity. Finally, conclusions are drawn and and the foundation for future work related to the different chapters of this thesis is included

    Aerial Vehicles

    Get PDF
    This book contains 35 chapters written by experts in developing techniques for making aerial vehicles more intelligent, more reliable, more flexible in use, and safer in operation.It will also serve as an inspiration for further improvement of the design and application of aeral vehicles. The advanced techniques and research described here may also be applicable to other high-tech areas such as robotics, avionics, vetronics, and space

    Survey of computer vision algorithms and applications for unmanned aerial vehicles

    Get PDF
    This paper presents a complete review of computer vision algorithms and vision-based intelligent applications, that are developed in the field of the Unmanned Aerial Vehicles (UAVs) in the latest decade. During this time, the evolution of relevant technologies for UAVs; such as component miniaturization, the increase of computational capabilities, and the evolution of computer vision techniques have allowed an important advance in the development of UAVs technologies and applications. Particularly, computer vision technologies integrated in UAVs allow to develop cutting-edge technologies to cope with aerial perception difficulties; such as visual navigation algorithms, obstacle detection and avoidance and aerial decision-making. All these expert technologies have developed a wide spectrum of application for UAVs, beyond the classic military and defense purposes. Unmanned Aerial Vehicles and Computer Vision are common topics in expert systems, so thanks to the recent advances in perception technologies, modern intelligent applications are developed to enhance autonomous UAV positioning, or automatic algorithms to avoid aerial collisions, among others. Then, the presented survey is based on artificial perception applications that represent important advances in the latest years in the expert system field related to the Unmanned Aerial Vehicles. In this paper, the most significant advances in this field are presented, able to solve fundamental technical limitations; such as visual odometry, obstacle detection, mapping and localization, et cetera. Besides, they have been analyzed based on their capabilities and potential utility. Moreover, the applications and UAVs are divided and categorized according to different criteria.This research is supported by the Spanish Government through the CICYT projects (TRA2015-63708-R and TRA2013-48314-C3-1-R)

    Towards the development of a smart flying sensor: illustration in the field of precision agriculture

    Get PDF
    Sensing is an important element to quantify productivity, product quality and to make decisions. Applications, such as mapping, surveillance, exploration and precision agriculture, require a reliable platform for remote sensing. This paper presents the first steps towards the development of a smart flying sensor based on an unmanned aerial vehicle (UAV). The concept of smart remote sensing is illustrated and its performance tested for the task of mapping the volume of grain inside a trailer during forage harvesting. Novelty lies in: (1) the development of a position-estimation method with time delay compensation based on inertial measurement unit (IMU) sensors and image processing; (2) a method to build a 3D map using information obtained from a regular camera; and (3) the design and implementation of a path-following control algorithm using model predictive control (MPC). Experimental results on a lab-scale system validate the effectiveness of the proposed methodology

    An analysis of human causal factors in Unmanned Aerial Vehicle (UAV) accidents

    Get PDF
    MBA Professional ReportHuman error has been identified as the major contributor in many severe aviation mishaps, even for accidents involving Unmanned Aircraft (UA) systems. The Department of Defense (DOD) has used the Human Factors Analysis and Classification System (HFACS) taxonomy successfully for ten years to discover the human error in UA mishaps. It is important not to ignore the indisputable human presence in UA and the possible human-related causal factors in UA mishaps so we might be better able to reduce and prevent possible incidents. HFACS with its four main and 19 subcategories is a useful framework for identifying which factors have arisen historically, and which of them should have priority. The results of this study reveals that among 287 causal factors attributed to 68 accidents, 65 percent of the factors were associated with humans. Moreover, this study also discloses that the rater who categorizes the factors can differently observe, understand, and interpret the findings of mishap investigation; thus, human error may even impact the categorization phase due to the rater’s perception. The research concluded that even though HFACS carried out its functionality well, further study is needed to conduct intense statistical analysis with unlimited data and to validate HFACS with more case studies and various raters.http://archive.org/details/annalysisofhumca1094544637Captain, Turkish Air Force1st Lieutenant, Turkish ArmyApproved for public release; distribution is unlimited
    • …
    corecore