10 research outputs found

    An operator view on alliances in politics

    Full text link
    We introduce the concept of an {\em operator decision making technique} and apply it to a concrete political problem: should a given political party form a coalition or not? We focus on the situation of three political parties, and divide the electorate into four groups: partisan supporters of each party and a group of undecided voters. We consider party-party interactions of two forms: shared or differing alliance attitudes. Our main results consist of time-dependent decision functions for each of the three parties, and their asymptotic values, i.e., their final decisions on whether or not to form a coalition.Comment: In press in SIAM J. of Applied Mathematic

    First results on applying a non-linear effect formalism to alliances between political parties and buy and sell dynamics

    Full text link
    We discuss a non linear extension of a model of alliances in politics, recently proposed by one of us. The model is constructed in terms of operators, describing the \emph{interest} of three parties to form, or not, some political alliance with the other parties. The time evolution of what we call \emph{the decision functions} is deduced by introducing a suitable hamiltonian, which describes the main effects of the interactions of the parties amongst themselves and with their \emph{environments}, {which are }generated by their electors and by people who still have no clear {idea }for which party to vote (or even if to vote). The hamiltonian contains some non-linear effects, which takes into account the role of a party in the decision process of the other two parties. Moreover, we show how the same hamiltonian can also be used to construct a formal structure which can describe the dynamics of buying and selling financial assets (without however implying a specific price setting mechanism).Comment: arXiv admin note: text overlap with arXiv:1502.0173

    A model of adaptive decision making from representation of information environment by quantum fields

    Full text link
    We present the mathematical model of decision making (DM) of agents acting in a complex and uncertain environment (combining huge variety of economical, financial, behavioral, and geo-political factors). To describe interaction of agents with it, we apply the formalism of quantum field theory (QTF). Quantum fields are of the purely informational nature. The QFT-model can be treated as a far relative of the expected utility theory, where the role of utility is played by adaptivity to an environment (bath). However, this sort of utility-adaptivity cannot be represented simply as a numerical function. The operator representation in Hilbert space is used and adaptivity is described as in quantum dynamics. We are especially interested in stabilization of solutions for sufficiently large time. The outputs of this stabilization process, probabilities for possible choices, are treated in the framework of classical DM. To connect classical and quantum DM, we appeal to Quantum Bayesianism (QBism). We demonstrate the quantum-like interference effect in DM which is exhibited as a violation of the formula of total probability and hence the classical Bayesian inference scheme.Comment: in press in Philosophical Transactions

    Quantum field inspired model of decision making: Asymptotic stabilization of belief state via interaction with surrounding mental environment

    Get PDF
    This paper is devoted to justification of the quantum-like model of the process of decision making based on theory of open quantum systems: decision making as decoher- ence. This process is modeled as interaction of a decision maker, Alice, with a mental (information) environment R surrounding her. Such an interaction generates “dissipation of uncertainty” from Alice’s belief-state ρ ( t ) into R and asymptotic stabilization of ρ ( t ) to a steady belief-state. The latter is treated as the decision state. Mathematically the problem under study is about finding constraints on R guaranteeing such stabilization. We found a partial solution of this problem (in the form of sufficient conditions). We present the corresponding decision making analysis for one class of mental environments, so-called “almost homogeneous environments”, with the illustrative examples: a) behavior of electorate interacting with the mass-media “reservoir”; b) consumers’ persuasion. We also comment on other classes of mental environments

    Modeling interactions between political parties and electors

    Full text link
    In this paper we extend some recent results on an operatorial approach to the description of alliances between political parties interacting among themselves and with a basin of electors. In particular, we propose and compare three different models, deducing the dynamics of their related {\em decision functions}, i.e. the attitude of each party to form or not an alliance. In the first model the interactions between each party and their electors are considered. We show that these interactions drive the decision functions towards certain asymptotic values depending on the electors only: this is the {\em perfect party}, which behaves following the electors' suggestions. The second model is an extension of the first one in which we include a rulerule which modifies the status of the electors, and of the decision functions as a consequence, at some specific time step. In the third model we neglect the interactions with the electors while we consider cubic and quartic interactions between the parties and we show that we get (slightly oscillating) asymptotic values for the decision functions, close to their initial values. This is the {\em real party}, which does not listen to the electors. Several explicit situations are considered in details and numerical results are also shown.Comment: To appear in Physica

    Dynamics for a quantum parliament

    Get PDF
    In this paper we propose a dynamical approach based on the Gorini-Kossakowski-Sudarshan-Lindblad equation for a problem of decision making. More specifically, we consider what was recently called a quantum parliament, asked to approve or not a certain law, and we propose a model of the connections between the various members of the parliament, proposing in particular some special form of the interactions giving rise to a {\em collaborative} or non collaborative behaviour

    An Operator View on Alliances in Politics

    No full text
    corecore