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Quantum field inspired model of decision making:
Asymptotic stabilization of the belief state via

interaction with surrounding mental environment
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Abstract

This paper is devoted to justification of the quantum-like model of the process of

decision making based on theory of open quantum systems: decision making as decoher-

ence. This process is modeled as interaction of a decision maker, Alice, with a mental

(information) environment R surrounding her. Such an interaction generates “dissipation

of uncertainty” from Alice’s belief-state ρ(t) into R and asymptotic stabilization of ρ(t)

to a steady belief-state. The latter is treated as the decision state. Mathematically the

problem under study is about finding constraints on R guaranteeing such stabilization.
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We found a partial solution of this problem (in the form of sufficient conditions). We

present the corresponding decision making analysis for one class of mental environments,

so-called “almost homogeneous environments”, with the illustrative examples: a) behav-

ior of electorate interacting with the mass-media “reservoir”; b) consumers’ persuasion.

We also comment on other classes of mental environments.

keywords: decision making; quantum-like model; mental (information) environment; open

quantum systems; dissipation of uncertainty; voters’ behavior; consumers’ persuasion

1 Introduction

The recent years were characterized by explosion of interest in applications of the mathematical

formalism of quantum theory to studies in cognition, decision making, psychology, economics,

finance, and biology, see, e.g., the monographs [1]-[6] and a few representative papers [7]-[33]

(the first steps in this direction were done long time ago, see, e.g., [34]).

The approach explored in such mathematical modeling is known as quantum-like. In this

approach an agent (human, animal, or even cell) is considered as a black box processing infor-

mation in accordance with the laws of quantum information and probability theories. Thus the

quantum-like modeling is basically quantum informational modeling (although this character-

istic feature of such modeling is typically not emphasized, cf., however, with [35]).1

The quantum-like models have to be sharply distinguished from genuinely quantum physical

models of cognition which are based on consideration of quantum physical processes in the brain,

cf. with R. Penrose [38] and S. Hameroff [39]. Although the quantum physical models have

been criticized for mismatching between the temperature and space-times scales of the quantum

physical processes and neuronal processing in the brain, see especially Tegmark [40], they cannot

be rejected completely and one may expect that the quantum-like model of cognition would be

(soon or later) coupled with real physical processes in the brain, see [41]-[47] for some steps in

this direction.

The quantum-like approach generated a variety of models of cognition and decision mak-

ing. In the simplest model [34], [1], the mental state (the belief state) of an agent, Alice, is

represented as a quantum state ψ and questions or tasks as quantum observables (Hermitian

operators). Probabilities of answers are determined by Born’s rule. For Hermitian operator A

1See, e.g. D’ Ariano [36] and Plotnitsky [37] for the information approach to quantum mechanics.
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with the purely discrete spectrum, Born’s rule can be written as

p(A = αk) = ‖Pαkψ‖2 = 〈Pαkψ, ψ〉, (1.1)

where αk is an eigenvalue of A and Pαk is the projector on the eigenspace corresponding to this

eigenvalue.

This model does not describe the dynamics of the belief state in the process of decision

making. This dynamics was invented in the works of Khrennikov [7, 8], and Pothos and

Busemeyer [10]. In this dynamical model, an observable A corresponding to a question (task)

to Alice is also represented as a Hermitian operator. Then Hamiltonian H generating the

unitary dynamics

ψ(t) = U(t)ψ0, U(t) = e−itH (1.2)

of the initial belief state ψ0 is introduced, and Alice’s decision is represented as measurement

of the observable A at some instant of time. The authors of [10] presented cognitive arguments

supported by experimental studies to determine the instant tm of measurement. Here the

probability of an answer is also determined by the Born rule, but for the belief state ψ(tm). Of

course, this is an essential issue, since different values ot tm can give rise to completely different

results. In spite of the partial progress in determination of tm in the article of Pothos and

Busemeyer [10], this complex problem cannot be considered as solved completely. Moreover,

to solve this problem Pothos and Busemeyer have to go beyond the quantum theory and to

appeal to psychological theoretical and experimental studies. It would be attractive to solve

this problem entirely in the quantum framework.

We remark that the Schrödinger equation describes the dynamics of an isolated system. In

the presence of an environment, the dynamics of the system is non-unitary. Approximately

(under some sufficiently natural conditions) it is described by Gorini-Kossakowski-Sudarshan-

Lindblad (GKSL) equation (often called simply Lindblad equation), the simplest version of the

quantum master equation. One of the main distinguishing features of such dynamics is that it

does not preserve the pure state structure: it transforms (immediately) the pure initial state

ψ0 into a mixed state given by the density operator:

ρ(t) = U(t)ρ0, U(t) = e−itL, (1.3)

where L is the generator of the GKSL-evolution and the ρ0 = |ψ0〉〈ψ0|. This dynamics is

in general non-unitary. This equation describes the process of adaptation of a system to the

surrounding environment. This is the complex dynamical process combining the internal state

dynamics of a system with adaptation to signals received from the environment. If the dynamics
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is discrete with respect to time, then it can be represented as a chain of unitary evolutions and

(generalized) quantum Bayesian updates.2 In this paper we cannot discuss this interesting

issue in more detail, see [16] for detailed consideration of the two dimensional example with

application to the evolution theory.

In fact, the GKSL-dynamics does not contradict to the Schrödinger equation structure of

the quantum evolution. Let S denote a system and let R denote the surrounding environment

(“reservoir” for S.) Suppose that the initial state of the compound system S +R is pure and

that it is separable. The dynamics in the state space of S+R is still unitary and it is given by

the Hamiltonian of S+R. The main distinguishing feature of this unitary dynamics is that (in

the presence of the interaction between S and R) it induces entanglement and the state of the

compound system is not more separable. This Hamiltonian is very complex, since it includes

in general the infinite number degrees of freedom of R. Typically it is impossible to solve the

Schrödinger equation for the state of S+R. (Although in some special cases, as those considered

in this paper and others discussed in [4] analytic solutions can be found.) Therefore studies

are typically restricted to the dynamics of the state ρ(t) of S described (approximately) by the

GKSL-equation. But even if one were able to solve the Schrödinger equation for S + R, its

solution is a very complex infinite-dimensional state vector. Since we are interested in behavior

of S, it is natural to take the trace with respect to all degrees of freedom of R and obtain

the state of S. The simple mathematical theorem implies that in the presence of entanglement

this trace-state cannot be pure. One has to consider the dynamics of the density operator.

This dynamical process is known as decoherence: decreasing of state’s purity in the process of

interaction with an environment.

Since consideration of an isolated cognitive system is even a higher degree idealization than

consideration of an isolated physical system, it is natural to modify the dynamical scheme

of decision making based on the unitary Schrödinger dynamics [7, 8, 10] and consider the

general dynamics of the belief-state, either by using the approximative GKSL-dynamics or by

tracing the state of the compound system. Roughly speaking there is no choice: either one

2As was quickly understood in quantum physics, the Lüders projection postulate describes only one very

special class of the quantum state updates resulting from measurements. We remark that already von Neumann

accepted applicability of this straightforward form of the state update only for observables with non-degenerate

spectra. Generally, for an observable with degenerate spectrum, a pure pre-measurement state can be transferred

into a mixed state [48]. Later these considerations of von Neumann were elaborated in the form of the theory of

quantum instruments, see [49] for non-physicist friendly presentation. The most consistent justification of this

theory is obtained in the framework of the theory of open quantum systems, see [50] for non-physicist friendly

presentation.
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has to ignore the presence of environment or consider non-unitary dynamics, e.g., (1.3). Of

course, such non-unitary dynamical model of decision making is essentially more complicated

mathematically. However, it has one very important advantage. Here the aforementioned

problem of determination of tm is solved automatically, although not in the straightforward

way.

For a natural class of quantum master equations, in the limit t → ∞ system’s state ρ(t)

approaches the steady state ρout. The diagonal elements of this operator with respect to the

“pointer basis” corresponding to the observable A under measurement give the probabilities of

the outputs of measurements. The model of decision making as decoherence was represented in

a series of papers of Asano et al., see, e.g., [51], [52] [13], [6]. The model is purely informational.

Both a “quantum-like system”, Alice, and her mental (or information) environment (“bath”,

reservoir”) are represented by quantum states, ψ and φ. (It can be assumed that initially

these states are pure.) We are not interested in their physical or neurophysiologic realizations.

Asano et al. [51] applied the theory of open quantum systems and the GKSL-equation to model

experimental data collected in decision making experiments. The initial belief state is typically

represented as a pure state of complete uncertainty,

ψ = (|0〉+ |1〉)/
√

2, (1.4)

where |i〉, i = 0, 1, are eigenstates of the dichotomous observable A representing a “yes”/“no”

question. A proper decision making dynamics should asymptotically (t → ∞) drive the belief

state of Alice ρ(t) to the output (mixed) state represented by the density operator ρout. Its

diagonal elements in the basis of eigenvectors of the operator A give probabilities of possible

decisions.

We remark that the open quantum systems approach to decision making can be considered

as a possible realization of the contextual treatment of cognition, cf. Khrennikov [1], [2] and

Dzhafarov et. al. [12], [17]. The surrounding mental environment represents a measurement

context for decision making.

Of course, Alice cannot wait for t→∞ to make a decision. And, as we know in physics, a

quantum system relaxes to a steady state very quickly. Here we have to point to the difference

between a mathematical model and its applications to real phenomena. The notion of limit is a

mathematical abstraction. Of course, it is not applicable to real physical or cognitive systems.

In practice, the limit procedure encodes the process of approaching of some quantity. The

existence of a limit for the density operator ρ(t) guarantees that its fluctuations decrease. If

the magnitude of fluctuations becomes smaller than some ε > 0, then such ρ(tε) can be selected
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as a good approximation of the steady state (the latter is also a mathematical abstraction,

in real physical processes it is never approached exactly). This tε plays the role tm from the

unitary dynamical model of decision making. Moreover, more complicated considerations based

on theory of decoherence demonstrate that this instant of time tε can be identified with the

relaxation time T. The latter is determined by the structure of interactions between a system

and its environment. Typically in quantum physics the time interval [0, T ] is very short and a

system relaxes very quickly to its steady state. Since such considerations would make the paper

even more complex mathematically, we shall not proceed in this direction. (See, e.g., [53] for

derivation of an analytical expression for the relaxation time as a function of the heat-bath and

interaction parameters.) The main message of these considerations to a reader is that limt→∞

is just an abstraction (at t = ∞ all fluctuations disappear completely). In reality a system

relaxes very quickly to its steady state.

The main problem of the quantum(-like) decision theory is to construct an operator repre-

sentation of Hamiltonians and “Lindbladians” (the latter represents interactions of Alice with

her mental reservoir). In contrast to quantum physics, there is no analog of the classical phase

formalism for cognition and decision making, i.e., we cannot use the quantization procedure to

transform functions on the classical phase space into operators - the procedure of Schrödinger’s

quantization is not applicable.

In quantum theory one can also use the quantization procedure based on the algebra of

operators of creation and annihilation. It is especially useful for second quantization (quantum

field theory), see appendix 1 for brief presentation of its basics. This sort of quantization can be

successfully applied to quantum-like modeling. Consider again a dichotomous question A, with

the values “no”/ “yes”. Creation operator a? creates “yes” from “no, annihilation operator

a transforms “yes” to “no”. Then we can compound Hamiltonians and observables with the

aid of creation and annihilation operators (similarly e.g. to quantum optics) . This approach

to construction of operators for problems of decision making was pioneered by Bagarello [4]

and coauthors who applied it, see, e.g., [28], [26], [27], to a variety of problems. Bagarello et

al. were interested in the time dynamics of averages; in particular, probabilities were treated

statistically. In series of works [28], [26], [27], a system was interpreted as an agent and the

reservoir had a purely information interpretation, see especially [54] for a discussion.

The same approach based on creation-annihilation operators can be explored to model

decision making at individual level (with the subjective interpretation of probabilities). Here

one can explore the scheme which was approved in the works of Asano et al. [6]: consideration

of the asymptotic dynamics of the belief state and using the asymptotically output state (for
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t → ∞) as the basis of decision making. The first step in this direction was done in paper

[51]. The aforementioned decision making scheme (based on asymptotic stabilization of the

mental (belief) state of an agent, Alice) generates interest to study the asymptotic dynamics of

a system interacting with reservoir. This is a nontrivial mathematical problem and its partial

solution (for specially designed information reservoirs) is presented in this paper.

In section 2 we discuss several aspects of the process of decision making for a dichotomous

question A through belief-state stabilization is considered. Then, in section 3, the mathematical

problem is discussed in details. More explicitly, in section 3.1 we prove stabilization of the

belief state in the case of the “almost homogeneous mental environment” of Alice. We start

with the case of a question’ A having the infinite number of possible outcomes labeled as

na = 0, 1, ..., n, ... . Then in section 3.3 we consider the case of a “dichotomous question” A

having two possible outcomes, na = 0, 1. In section 3.2 we generalize our theory to the case

of environments having a more complex structure. Section 4 contains our conclusions, while

appendices 1 and 2 are devoted to few introductory remarks on canonical anti-commutation

relations (CAR) and to some extra mathematical details.

2 Decision making as decoherence

Consider the case of a dichotomous questions asked to Alice, A = 0, 1 (“no”, “yes”) and mental

environmentR combined as well of dichotomous degrees of freedom, in section 3.3 this situation

will be modeled by using operators a, a† (Alice’s operators) and b, b† (R’s operators) satisfying

the CAR:

{a, a†} = I, {b, b†} = I, {a, b} = 0, (2.1)

where the anti-commutator of two operators x, y is defined as {x, y} = xy + yx. Moreover,

a2 = b2 = 0. In quantum field theory, see appendix 1, these operators are known as the

operators of creation and annihilation.3 The operators related to R can depend on some

parameter k (discrete or continuous) representing degrees of freedom of R, b = b(k), b† = b†(k).

Typically environment R has a huge number of degrees of freedom and it is represented by

infinite-dimensional Hilbert state space K. In the case of dichotomous questions asked to Alice,

it can be assumed that her state space H has the dimension two, the qubit space of quantum

information theory.

In quantum field theory the terminology “creation-annihilation operators” has coupling to

real physical systems, they represent the processes of creation-annihilation of quantum particles

3In physics these operators represents the processes of creation and annihilation of fermions, e.g., electrons.
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(e.g., photons or electrons), see appendix 1. As was emphasized in introduction, our model is

of the purely informational nature. Therefore the operators a, a† and b, b† have to be treated

as the formal representation of the processes of “creation” and “annihilation” of information

states.4

Consider, e.g., Alice’s operators a, a†. Let φ0 = |0〉, φ1 = |1〉 be the orthonormal basis

in Alice’s state space H corresponding to the answers “no”/“yes” to the question A. As a

consequence of the CAR, the operators a, a† act to these basis vectors in the following way:

a†|0〉 = |1〉, a†|1〉 = 0; a|1〉 = |0〉, a|0〉 = 0.

The operators a and a† modify Alice’s attitude to selection of alternatives. In this framework

these operators are considered as the reflection operators [54]. We represent the question A as

the number operator of Alice, n̂a = a†a. The eigenvalues of this operator, na = 0, 1, correspond

to the choices operated by Alice at t = 0. Therefore it is natural to name n̂a the decision

operator.5

Consider the simplest situation which can be modeled in this framework: Alice is asked a

question A and she is surrounded by a populationR whose members are asked the same question

A. Alice interacts with this population R and she gets to know behavior of its members with

respect to this question. Of course, she cannot “scan” R completely to know the concrete

answers of people to A. She just gets to know a sort of average nb of answers to A. In the

simplest case of a homogeneous population this average is a constant. In the general case

average nb can non-trivially depend on the parameter k encoding various population clusters

R(k) : nb = nb(k). Here Alice (through interaction with this population) obtains information

about averages for the answers to A corresponding to different clusters R(k) of R.
In principle, R needs not be combined of physical agents. As was emphasized in introduc-

tion, our model is of the purely informational nature. The environment R can, for example,

represent mass-media’s image of the question under consideration: the image created in TV-

debates and shows, web-blogs, newspapers. For example, A can be a referendum question:

“vote for Brexit or against?” (or the recent USA-election question: “vote for Trump or not?”).

By analysing (generally unconsciously) mass-media’s output Alice estimates the average nb (or

in general the averages nb(k)) and she makes her decision.

In a more general situation the members ofR express their attitude with respect to a variety

of dichotomous questions and A, the question asked to Alice, can be among them, but need not.

4In principle, we can simply call these operators ladder operators as is done in formal mathematical theory.
5In quantum field theory the number operator has the meaning of the number of physical particles, see

appendix 1. In our model it represents states indexed by numbers.

8



In the latter case Alice makes her decision based on behavior of the surrounding environment R
(physical or informational) without even understanding that her answer is elaborated through

influence of R.
Now we consider the dynamics of decision making. In section 3 we shall use the Heisenberg

picture, i.e., the dynamics of operators. We are interested in the dynamics of the reflection op-

erators, a†(t), a(t), with the initial conditions a†(0) = a†, a(0) = a. By knowing those dynamics

we can find the dynamics of the decision operator n̂a(t) = a†(t)a(t) and, hence, its average

na(t) :=< n̂a(t)⊗ I >=< a†(t)a(t)⊗ I > (2.2)

with respect to some initial state of the compound system, Alice interacting with her mental

environment, see section 3 for details.

In the case of dichotomous questions the average na(t) has the straightforward probabilistic

meaning. To see this, we rewrite expression (2.2) with more details. Denote the state space

of the compound system, Alice and her mental environment, by the symbol H ⊗ K and the

operator of Heisenberg evolution of this system by Ut. For an arbitrary initial state 〈., .〉R,

formula (2.2) reads as

na(t) =< Ut(a
† ⊗ I)U †t Ut(a⊗ I)U †t >R= TrUt(a

†a⊗ I)U†tR.

By using the cyclic property of the trace we get:

na(t) = Tr(a†a⊗ I)U†tRUt = TrR(t)(a†a⊗ I) =< a†a⊗ I >R(t),

where R(t) = U †tRUt represents the state dynamics (so we transferred the operator dynamics

into the the state dynamics, from the Heisenberg picture to the Schödinger picture).6 Consider

now the partial trace of R(t) with respect to the environmental degrees of freedom, ρ(t) =

TrKR(t). It represents the dynamics of Alice’s belief-state in the process of her interaction with

the environment. Consider the average of the decision operator n̂a = a†a = a†(0)a(0) with

respect to this belief-state:

< n̂a >ρ(t)= Trρ(t)n̂a.

This average has direct coupling with probability. Since the decision operator n̂a has two

eigenvalues, na = 0, 1, the average coincides with the probability:

Pt(A = 1) =< n̂a >ρ(t)=< ρ(t)φ1, φ1 > . (2.3)

6The Schrödinger picture providing the belief-state dynamics is basic for the probabilistic interpretation.

However, the equations in the Heisenberg picture are easier for analytic treatment. Therefore in section 3 we

shall work in the Heisenberg picture.
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We recall that here the question A is represented by the operator n̂a. The eigenvector φ1

corresponds to the answer “yes” to this question. Pt(A = 1) is the subjective probability

in favor of this answer which Alice assigns at the moment of time t. We remark that this

assignment can be done unconsciously. Alice will consciously report only her final decision, see

considerations below.

Now we make a very general remark about the partial trace. For any operator M acting in

H, the following equality holds:

TrρM = TrR(M⊗ I), where ρ = TrKR.

Therefore the average na(t) equals to the average of Alice’s decision operator:

na(t) =< n̂a >ρ(t) . (2.4)

In section 3 we obtain the averages of the decision operator n̂a(t) for its eigenstates φna (for

operators satisfying CAR, we have: na = 0, 1). Thus initially Alice has the definite belief about

a possible answer to the question A.

In section 3.1 we consider the case of the “almost homogeneous reservoir” - a mental (in-

formation) environment R which is behaviorally almost homogeneous in the following sense

(see section 3.1 for the mathematical formalization). The basic parameter characterizing R is

deduced by < b†(k)b(q) >= nb(k)δ(q − k), the average for the agents of the k-type. In the

almost homogeneous R, nb(k) is constant. In general, however, it can vary with k 7. It must

be stressed that the reservoir considered in section 3.1 is not completely homogeneous. Its

members are not all identical. They have different internal dynamical scales represented by the

function ω(k) = ωbk which really depends on k, even if this dependence is relatively mild (ω(k)

is linear in k, so that ω(k1) ' ω(k2) if k1 ' k2), see again section 3.1.

For such environmentR, the average na(t) of the decision operator n̂a was found, see formula

(3.7) section 3.1 (with the corresponding generalization to the CAR-case in section 3.3). This

formula in combination with equalities (2.3), (2.4) gives the probabilistic dynamics:

Pt(A = 1) = na(t) = na e
− 2λ2π

ωb
t
+ nb

(
1− e

2λ2π
ωb

t

)
= nb + (na − nb) e

− 2λ2π
ωb

t
, (2.5)

where λ is the constant of interaction between Alice and R, see (3.1). As we will see in the

7In the simplest model all agents in R are asked the same question A as Alice and nb(k) is the average of

their answers to A. In a more complex environment R each cluster R(k) of agents labeled by the parameter k

is asked its own question A(k) and nb(k) is the average of their answers to A(k).
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next section, this is the result of a reasonable choice of the Hamiltonian operator, where the

interactions between Alice and her reservoir are included8.

Consider, e.g., the case na = 1, e.g., initially Alice was for Brexit. Suppose that her

surrounding environment is almost homogeneous9 and nb = 1/3, i.e., its members express

sufficiently strong anti-Brexit attitude. Then Alice following the dynamics expressed by (2.5)

would lose her interest to vote for Brexit and finally she will will accept the surrounding attitude

to vote against Brexit. It is interesting to notice that the rapidity of the decision process is

directly related to the strength of the interaction between Alice and her environment, and

inversely connected to ωb. This is in agreement with the fact, see [4], that ωb describes a sort

of inertia of the system.

The “decision probability” is given by the expression:

P (A = 1) = lim
t→∞

Pt(A = 1) = nb. (2.6)

We remark that dependence on the initial belief-state of Alice disappeared. It does not matter

whether she was in the belief-state φ0 (she was firmly determined to reply “no”) or in the belief-

state φ1 (she was firmly determined to reply “yes”). Finally, she set the subjective probability

P (A = 1) = nb to reply “yes”. Moreover, as we will discuss later, even if initially Alice was in

superposition belief-state (i.e., she started with a belief-state of uncertainty), it would lead to

setting of the same probability in favor to reply “yes”. This behavior of Alice is natural: she

interacts with a homogeneous reservoir, an ensemble of agents, where all agents have the same

probability to favor of the “yes” answer; Alice simply follows them.

In spite of its simplicity, the dynamics of a decision maker interacting with an almost

homogeneous information environment can have non-trivial applications. It describes well not

only the modern mass-media campaigns at the political arena, but it can also be used in

economics and finance.

8This approach, which is used everywhere in [4], is the standard way in which the dynamics of any system,

micro- or macroscopic, is deduced in classical and in quantum mechanics. What we are doing, in fact, is to

adapt the same basic idea also to decision making processes.
9The latter assumption is not so unusual. Although the modern information (mental) environment represents

huge variety of information flows, an individual is typically coupled to the concrete flow, e.g., she has the custom

to see only special TV-channels and follow only specially selected Internet information resources. Even her

physical human environment is typically homogeneous. A professor of a university is surrounded by rather

homogeneous population with liberal views, including Brexit, Trump or Putin. One of the authors of this paper

was visiting USA just before the second Bush-vote. The university environment expressed generally the belief

that Bush would not be elected once again. For such R, the average nb could be estimated as approximately

equal to one.
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For example, in this framework we can model the process of persuasion of consumers. A

firm wants to persuade consumers to buy some commodity C. So the question A is “to buy

or not to buy? To approach this aim, this firm creates an information environment R (almost

homogeneous) with the parameter nb ≈ 1. 10 Then our model shows that, for consumers, it is

possible to approach the same level of confidence to buy C as in the surrounding information

environment R. As was already remarked, the information structure of R need not include

directly the question A, i.e., the information campaign need not be straightforwardly oriented

to advertising of the commodity C. The R can be combined of other questions, may be quite

different from A. Then the main task of this firm driving the persuasion campaign is to es-

tablish interaction of consumers with R which can be formally represented by the interaction

Hamiltonian considered in this paper.

Persuasion of consumers need not be reduced to the concrete commodity C. A group of

corporations can perform persuasion of a class of commodities, e.g., a new generation of mobile

phones, or wind energy, or electric cars. The strategy is the same: creation of an informa-

tion environment and coupling of people to it which would generate stabilization of subjective

probabilities Pt(A = 1) (in a long run campaign) to the desired value of nb.

3 The stabilizing procedure

This section is devoted to justification of the model of decision making as decoherence, stabi-

lization of the belief-state ρ(t) of the Alice. In the Heisenberg picture this problem can be trans-

ferred to the problem of stabilization of reflection (creation-annihilation) operators a(t), a†(t)

and consequently the decision operator n̂a(t) = a†(t)a(t) (the number operator). Of course,

such stabilization is possible only for special classes of information (mental) environments and

interactions between a decision maker and the surrounding environment. Mathematically the

problem is very complicated and we were able to solve it only partially. This section is of the

purely mathematical (and quantum physical) nature.

If S is a closed quantum system with time-independent, self-adjoint, hamiltonian H, it is

natural to suspect that only periodic or quasi-periodic effects can take place, during the time

evolution of S. This is because the energy of S is preserved, and this seems to prevent to have

any damping effect in S. For instance, if we work in the Schrödinger representation (SR), the

time evolution Ψ(t) of the wave-function of the system is simply Ψ(t) = e−iHtΨ(0) and, since

10Typically through a massive campaign in mass-media. However, the information content of R is not reduced

to direct advertising of C, see considerations below.
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the operator e−iHt is unitary, we do not expect Ψ(t) to decrease (in some suitable sense) to

zero when t diverges. Nevertheless, we will show that a similar decay feature is possible if S is

coupled to a reservoir R, but only if R is rather large as compared to S, or, more explicitly, if

R has an infinite number of degrees of freedom.

To see this in details, we start by considering a first system, S, interacting with a second

system, S̃, and we assume for the time being that both S and S̃ are of the same size: to be

concrete, this means here that S describes a single particle and, analogously, S̃ describes a

second particle. To model dynamics, we introduce the operators a, a† and n̂a = a†a (for the

first particle) and the operators b,b† and n̂b = b†b (for the second particle).11 These operators

obey the following canonical commutation relations (CCR):

[a, a†] = [b, b†] = I,

while all the other commutators are assumed to be zero.

A natural choice for the Hamiltonian of compound system S ∪ S̃ is the following:

h = ωan̂a + ωbn̂b + µ
(
a†b+ b†a

)
,

where ωa, ωb and µ must be real quantities for h to be self-adjoint. Recall that loosing self-

adjointness of h would produce a non unitary time evolution, and this is out of the scheme

usually considered in ordinary quantum mechanics. The hamiltonian h contains a free part

plus an interaction which is such that, if the eigenvalue of n̂a increases of one unit during the

time evolution, then the eigenvalue of n̂b must decrease of one unit, and viceversa. This is

because [h, n̂a + n̂b] = 0, so that n̂a + n̂b is an integral of motion.

Consider dynamics of the operators in the Heisenberg representation. The equations of

motion for a(t) and b(t), can be easily deduced and turn out to be

ȧ(t) = i[h, a(t)] = −iωaa(t)− iµb(t), a(0) = a,

ḃ(t) = i[h, b(t)] = −iωbb(t)− iµa(t), b(0) = b,

whose solution can be written as a(t) = aαa(t) + bαb(t) and b(t) = aβa(t) + bβb(t), where the

functions αj(t) and βj(t), j = a, b, are linear combinations of eλ±t, with λ± = −i
2

(ωa + ωb −√
(ωa − ωb)2 + 4µ2). Moreover αa(0) = βb(0) = 1 and αb(0) = βa(0) = 0, in order to have

a(0) = a and b(0) = b. Hence we see that both a(t) and b(t), and n̂a(t) = a†(t)a(t) and

11The cognitive meaning of these operators in the quantum-like model of decision making will be discussed

in section 2.
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n̂b(t) = b†(t)b(t) as a consequence, are linear combinations of oscillating functions, so that no

damping is possible within this simple model.

Suppose now that the system S̃ is replaced by an (infinitely extended) reservoir R, whose

particles are described by an infinite set of CCR-operators b(k), b†(k) and n̂(k) = b†(k)b(k),

k ∈ R. Each k labels one of the elements of the reservoir surrounding S. Hence, for k1 6= k2,

we are considering two different elements which may have different characteristics. This is why,

in (3.1), we are introducing two k-depending functions, ω(k) and f(k). The hamiltonian of

S ∪R extends h above and is now taken to be

H = H0 + λHI , H0 = ωn̂a +

∫
R
ω(k)n̂(k) dk, HI =

∫
R

(
ab†(k) + a†b(k)

)
f(k)dk, (3.1)

where [a, a†] = I, [b(k), b†(q)] = Iδ(k − q), while all the other commutators are zero. It could

be useful to notice that here, rather than the CAR used in section 2, we are assuming CCR.

We will see later, in section 3.3, that this does not affect our main conclusions. The reason for

these different choices is to show that the output of the model does not really depend on the

commutation rules adopted. All the constants appearing in (3.1), as well as the regularizing

function f(k), are real, so that H = H†. Notice that an integral of motion exists also for S ∪R,

n̂a+
∫
R n̂(k) dk, which extends the one for S∪S̃, n̂a+ n̂b. With this choice of H, the Heisenberg

equations of motion are{
ȧ(t) = i[H, a(t)] = −iωa(t)− iλ

∫
R f(k) b(k, t) dk,

ḃ(k, t) = i[H, b(k, t)] = −iω(k)b(k, t)− iλf(k) a(t),
(3.2)

which are supplemented by the initial conditions a(0) = a and b(k, 0) = b(k). In particular, the

last equation can be rewritten in integral form as

b(k, t) = b(k)e−iω(k)t − iλf(k)

∫ t

0

a(t1)e
−iω(k)(t−t1) dt1. (3.3)

3.1 An almost homogeneous reservoir

In this section we fix f(k) = 1 and ω(k) = ωbk, where ωb ∈ R+. This is a standard choice in

quantum optics, [55]. We now insert b(k, t) in (3.3) in the first equation in (3.2), we change the

order of integration, and we use the integral expression for the Dirac delta
∫
R e
−iωbk(t−t1) dk =

2π
ωb
δ(t− t1), as well as the equality

∫ t
0
g(t1)δ(t− t1) dt1 = 1

2
g(t) for any test function g(t). Then,

we conclude that

ȧ(t) = −
(
iω +

πλ2

ωb

)
a(t)− iλ

∫
R
b(k) e−iωbkt dk. (3.4)
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This equation can be solved, and the solution can be written as

a(t) =

(
a− iλ

∫
R
dk η(k, t)b(k)

)
e
−
(
iω+πλ2

ωb

)
t
, (3.5)

where η(k, t) = 1
ρ(k)

(
eρ(k)t − 1

)
and ρ(k) = i(ω−ωbk)+ πλ2

ωb
. Using complex contour integration

it is possible to check, see appendix 2, that [a(t), a†(t)] = I for all t: this means that the natural

decay of a(t), described in (3.5), is balanced by the reservoir contribution. This feature is

crucial since it is a measure of the fact that the time evolution is unitarily implemented in our

approach, even if a(t) apparently decays for t increasing.

Let us now consider a state over S ∪R, 〈XS ⊗XR〉 = 〈ϕna , XSϕna〉 〈XR〉R, in which ϕna is

the eigenstate of the number operator n̂a and <>R is a state of the reservoir, which is assumed

to satisfy, among other properties (see [55, 4]),〈
b†(k)b(q)

〉
R = nb(k)δ(k − q). (3.6)

This is a standard choice, see for instance [55], which extends the choice we made for S. Here

XS ⊗ XR is the tensor product of an operator of the system, XS , and an operator of the

reservoir, XR. Then, if for simplicity we take the function nb(k) to be constant in k we get,

calling na(t) :=< n̂a(t) >=< a†(t)a(t) >,

na(t) = na e
− 2λ2π

ωb
t
+ nb

(
1− e

2λ2π
ωb

t

)
, (3.7)

which goes to nb as t → ∞. Hence, if 0 ≤ nb < na, the value of na(t) decreases with time.

If, on the other hand, nb > na, then the value of na(t) increases for large t. This is the

exponential rule which, as discussed before, cannot be deduced if R has not an infinite number

of degrees of freedom. Notice that, in particular, if the reservoir is originally empty, nb = 0,

then na(t) = na e
− 2λ2π

ωb
t

decreases exponentially to zero: the system becomes empty. On the

other hand, since n̂a +
∫
R n̂(k) dk is a constant of motion, the reservoir starts to be filled up.

Remark 1. The continuous reservoir considered here (k ∈ R) could be replaced by a

discrete one, describing again an infinite number of particles, but labeled by a discrete index.

In this case, to obtain a Dirac delta distribution, which is the crucial ingredient in the derivation

above, we have to replace the integral
∫
R e
−ik(t−t1) dk = 2πδ(t− t1) with the Poisson summation

formula, which we write here as
∑

n∈Z e
inxc = 2π

|c|
∑

n∈Z δ
(
x− n2π

c

)
, for all non zero c ∈ R.

In the above model we see that the bath is essentially characterized by three functions:

f(k), ω(k) and nb(k). In particular, in what we have done so far, we have taken f(k) = 1,
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ω(k) = ωb k and nb(k) = nb. This choice can be interpreted as follows: the bath is almost

homogeneous, meaning with this that the functions f(k) and nb(k), which in principle could

depend on k (remember that each k labels an element of the bath), are constant in k: different

members of the bath all share the same values of f(k) and of nb(k). However, these members

are not all completely identical, since ω(k) really depends on k, as we have already observed in

section 2.

3.2 Changing reservoir

To keep the situation under control, as much as possible, we now discuss what happens if we

fix again f(k) and ω(k) as before, but we allow for a different dependence of nb(k) on k. In

other words, we do not assume that nb(k) is constant in k, while we still take f(k) = 1 and

ω(k) = ωb k. With this choice, a(t) is given again as in (3.5), and we conclude, in the same way,

that [a(t), a†(t)] = I. The function na(t) is the one in (4.5) but, this time, we cannot use (4.4)

since nb(k) is no longer a constant function. The computation of
∫
R nb(k)|η(k, t)|2dk is quite

similar to that of
∫
R |η(k, t)|2dk, with the obvious difference due to the presence of nb(k) inside

the integral. What is essential for us is that the integral is real-valued for all real choice of

nb(k). To use again complex integration techniques, it is useful to assume that nb(k) is analytic

in k, and that |nb(k)| does not diverge when |k| diverges. For concreteness, we take

nb(k) =
nb

k2 + α2
, (3.8)

for some positive nb and for some α > 0. Notice that we could safely take α < 0; our choice

is needed only to fix the ideas. On the other hand, nb > 0 is forced from the origin of nb(k),

which came from an essentially positive operator. The computation of
∫
R nb(k)|η(k, t)|2dk is

performed again with the same techniques discussed in details in appendix 2, with the only

difference that we have two singularities of the integrating functions both in the upper and in

the lower complex semi-planes, so the result of the integral is the sum of two residues.

The computation can be performed in details, and the analytic form of na(t) could be given

for all t. However, in view of our interest for stabilization, what is more relevant for us is the

large time limit of na(t), which turns out to be

na(∞) := lim
t,∞

na(t) =
nb(αω

2
b + πλ2)

αλ2ω2
b

(
ω2

ω2
b

+
(
α + πλ2

ω2
b

)2) . (3.9)

Notice that this result makes sense only if α and λ are not zero. This suggests that the role of

the complex pole in nb(k), and of the interaction between Alice and her bath, is really essential
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to get some stabilization. We observe also that the asymptotic value of the decision function

na(t) strongly depends on the various parameters of the model, which could be adjusted to fit

experimental data, if needed.

Notice that the nb(k) in (3.8) describes a bath which is far from being uniform, or even

almost uniform. Here, in particular, nb(k) → 0 for |k| → ∞. Hence not all the parts of the

bath interact with Alice in the same way: serious differences arise, in fact.

Remark 2. In this section we have considered a bath which goes to zero as k−2, see (3.8).

In fact, we could think of a function nb(k) decreasing like k−1, but this is not compatible with

the reality of the function nb(k), at least if we still want to use complex integration techniques

to compute na(t). The reason is that, to avoid singularities in the real axis, we are forced to

choose nb(k) = µ
k−iα , for some complex µ and for some α > 0. This produces na(∞) = γωb,

at least if µ is chosen as follows: µ = γ
(
ω − i

(
αωb + πλ2

ωb

))
, for some real γ. So we see that,

with this peculiar choice of nb(k), we still get a real na(∞), but what we cannot exclude, and

it is possibly true, is that for finite time na(t) could be complex.

Remark 3. Both (3.7) and (3.9) suggest that the asymptotic limit of na(t) does not really

depend on the fact that, at t = 0, the system is in a pure state or in a combination of states.

This was already anticipated in section 2. Please notice that our approach does not give directly

information on the output state, essentially because we are using the Heisenberg representation.

This means that the state does not change, while the observables depend, in general, on time.

3.2.1 A remark on f(k) and ω(k)

So far we have fixed f(k) = 1 and ω(k) = ωb k. This, in principle, is not the only natural choice,

in particular if we want to stress the difference between different parts of the reservoir. What is

technically useful, for us, is that a Dirac’s delta function appears when deducing the differential

equation for a(t), see appendix 2. In fact, this is possible also under other conditions. For that,

let us suppose that the two functions f(k) and ω(k) are such that:

ω(k)→ ±∞ for k → ±∞, and
dω(k)

dk
=

1

β
f 2(k),

for some real β 6= 0. These assumptions are satisfied if f(k) = 1 and ω(k) = ωbk, but also in

many other situations. Hence∫
R
f 2(k)e−iω(k)(t−t1) dk = β

∫
R
e−iω(k)(t−t1) dω(k) = 2πβδ(t− t1),
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and we can simplify significantly the equation for a(t), which now becomes

ȧ(t) = −
(
iω + βπλ2

)
a(t)− iλ

∫
R
f(k)b(k) e−iω(k)t dk. (3.10)

This is the equation which replaces (3.4) in this new situation. The solution can be found as

before, and we get

a(t) =

(
a− iλ

∫
R
dk η̃(k, t)b(k)f(k)

)
e−(iω+βπλ2)t, (3.11)

where η̃(k, t) = 1
ρ̃(k)

(
eρ̃(k)t − 1

)
and ρ̃(k) = i(ω − ω(k)) + βπλ2. So we see that, at a first

sight, the situation is not particularly different from those discussed so far, and in appendix

2. However, a serious technical problem now arises: to find [a(t), a†(t)] and na(t), we need

to compute integrals and the poles of the integrating functions are strongly dependent on the

analytic expression of ω(k): in particular, if ω(k) is not linear, the computations become rather

hard!

3.3 What if we use CAR?

In the Hamiltonian (3.1) the operators a and b(k) are assumed to satisfy CCR. However, from

the point of view of a DM procedure, it might be more interesting to consider the case in which

Alice is described by CAR-operators. This means that, first of all {a, a†} = a a†+a†a = I, with

{a, a} = 0. It is then natural to consider a CAR-bath as well, i.e. to assume that the operator

b(k) satisfy now the following rules:

{b(k), b†(q)} = δ(k − q) I, {b(k), b(q)} = 0, {a], b](k)} = 0,

x] being either x or x†. Assuming the same Hamiltonian (3.1), the differential equations of

motion for the annihilation operators a(t) and b(k, t) can be deduced and they turn out to be

the same as in (3.2), except that λ must be replaced by −λ. In other words, we get{
ȧ(t) = i[H, a(t)] = −iωa(t) + iλ

∫
R f(k) b(k, t) dk,

ḃ(k, t) = i[H, b(k, t)] = −iω(k)b(k, t) + iλf(k) a(t).
(3.12)

As in the CCR-case, we assume that in (3.6) the function nb(k) is constant, nb(k) ≡ nb ≥ 0.

The CAR-setting implies that this constant cannot exceed one, 0 ≤ nb ≤ 1 (this is the average

of the CAR-number operator).

As we can see from (3.7), for the almost homogeneous reservoir, that na(t) depends on λ2

and not on λ. The same is true also for the choice (3.8) of the reservoir. This is evident from
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(3.9) for large values of t, but can also be checked for any finite t. In other words, even with this

different choice of nb(k), we observe that na(t) depends on λ2 and not on λ. The conclusion,

therefore, is clear: the CCR-CAR nature of our model does not affect the main results we have

deduced. One choice or the other should be related to the nature of the decision we want to

model: in case of a binary question (yes or not), the natural settings is probably the CAR-

one. But if we assume that several possible answers (normally infinite!) are possible, then we

should use a CCR-version of the model. In this case, the existence of a quadratic integral of

motion can limit the number of possible answers to the original questions, giving rise to a sort

of finite-dimensional Hilbert space, similarly to what is discussed in details in [24].

4 Concluding discussion

For modeling of the process of decision making, the main output of this paper is the description

of the properties of an information reservoir (environment) R which lead to the asymptotic

stabilization. In other words, this is the description of a context surrounding an agent, Alice,

which guaranties that she would make some decision, i.e., her mind would not fluctuate for ever

between a variety of alternative answers to a question (solutions of a problem) A.

The asymptotic stabilization results obtained in this paper can be used to support mathe-

matically the model of decision making as decoherence - in its quantum field version. Here the

theory of open quantum systems is applied straightforwardly in the Hamiltonian framework.

The decision making dynamics is given by the Heisenberg equations for operators describing re-

flections of an agent, Alice, and the operators representing the information reservoir. The most

interesting for decision making are constraints imposed on information reservoirs, environments,

guaranteeing asymptotic stabilization. Our present study is only the first step in this direction;

further studies of sufficient and necessary conditions of asymptotic stabilization are needed.12

We hope that this paper would attract attention of experts in mathematical physics (especially

working on mathematical problems of quantum field theory) to the problem of asymptotic sta-

bilization. Novel applications, to social science, microeconomics, finance, generate new laws for

functions f(k), nb(k), ω(k) which were not considered in physical applications.

12We also remark that applications of quantum field formalism to modeling of decision making generate new

dynamical models based on algebras of qubit creation-annihilation operators [57]. These operators satisfy the so

called qubit commutation relations which combine both CAR and CCR-features. To the best of our knowledge,

there are no results about asymptotic stabilization for such dynamical processes and this is an interesting topic

for research.
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To extend the readership of this paper, the calculations in section 3 were done at the

“physical level of rigor”. The complete mathematical treatment of the problem should involve

consideration of operator-valued distributions (generalized functions). Such treatment has def-

initely to be done at some stage of further development of the quantum field inspired model of

decision making.

In general the great success of quantum field theory of physics rises the expectations that this

formalism will contribute essentially to modeling of decision making and cognitive processes.

Appendix 1: Second quantization: CAR

We briefly review some basic facts on the so–called canonical anti-commutation relations (CAR),

which were originally introduced in connection with what in quantum physics is called sec-

ond quantization for identical particles with half-integer spin. We say that a set of operators

{a`, a†`, ` = 1, 2, . . . , L} satisfy the CAR if the conditions

{a`, a†n} = δ`nI, {a`, an} = {a†`, a
†
n} = 0 (4.1)

hold true for all `, n = 1, 2, . . . , L. Here, I is the identity operator and {x, y} := xy + yx is the

anticommutator of x and y. These operators are those which are used to describe L different

modes of fermions. From these operators we can construct n̂` = a†`a` and N̂ =
∑L

`=1 n̂`, which

are both self–adjoint. In particular, n̂` is the number operator for the `–th mode, while N̂ is the

number operator of S. compared with bosonic operators, the operators introduced here satisfy

a very important feature: if we try to square them (or to rise to higher powers), we simply get

zero: for instance, from (4.1), we have a2` = 0. This is related to the fact that fermions satisfy

the Fermi exclusion principle.

The Hilbert space of our system is constructed as follows: we introduce the vacuum of

the theory, that is a vector ϕ0 which is annihilated by all the operators a`: a`ϕ0 = 0 for all

` = 1, 2, . . . , L. Then we act on ϕ0 with the operators a†` (but not with higher powers, since

these powers are simply zero!):

ϕn1,n2,...,nL := (a†1)
n1(a†2)

n2 · · · (a†L)nLϕ0, (4.2)

n` = 0, 1 for all `. These vectors give an orthonormal set and are eigenstates of both n̂` and N̂ :

n̂`ϕn1,n2,...,nL = n`ϕn1,n2,...,nL and N̂ϕn1,n2,...,nL = Nϕn1,n2,...,nL , where N =
∑L

`=1 n`. Moreover,

using the CAR, we deduce that

n̂` (a`ϕn1,n2,...,nL) = (n` − 1)(a`ϕn1,n2,...,nL)
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and

n̂`

(
a†`ϕn1,n2,...,nL

)
= (n` + 1)(a†lϕn1,n2,...,nL),

for all `. Then a` and a†` are called the annihilation and the creation operators. In fact, they

transform the vector ϕn1,n2,...,n`,...,nL into a different vector, proportional to ϕn1,n2,...,n`±1,...,nL ,

annihilating or creating one particle in the `-th mode. However, in some sense, a†` is also an

annihilation operator since, acting on a state with n` = 1, we destroy that state.

The Hilbert space H is obtained by taking the linear span of all these vectors. Of course,

H has a finite dimension. In particular, for just one mode of fermions, dim(H) = 2. This also

implies that, contrarily to what happens for bosons, the fermionic operators are bounded.

The vector ϕn1,n2,...,nL in (4.2) defines a vector (or number) state over the algebra A as

ωn1,n2,...,nL(X) = 〈ϕn1,n2,...,nL , Xϕn1,n2,...,nL〉, (4.3)

where 〈 , 〉 is the scalar product in H.

Appendix 2: Explicit computations

In this appendix we give some details of our computations just sketched in Section 3.1, useful

for those readers which are not familiar with this kind of interacting open systems.

Our starting point is b(k, t) in (3.3), with f(k) = 1 and ω(k) = ωb k. Hence

b(k, t) = b(k)e−iωbkt − iλ
∫ t

0

a(t1)e
−iωbk(t−t1) dt1.

When we replace this expression in the equation for a(t), ȧ(t) = −iωa(t) − iλ
∫
R b(k, t) dk, we

have to compute, in particular, the double integral∫
R

(∫ t

0

a(t1)e
−iωbk(t−t1) dt1

)
dk =

∫ t

0

a(t1)

(∫
R
e−iωbk(t−t1) dk

)
dt1 =

=
2π

ωb

∫ t

0

a(t1)δ(t− t1)dt1 =
π

ωb
a(t),

and (3.4) now follows. The easy way to solve (3.4) consists in using the change of variable

a(t) = A(t) exp
{
−
(
iω + πλ2

ωb

)
t
}

since, in terms of A(t), (3.4) can be rewritten as

Ȧ(t) = −iλ
∫
R
b(k) e−iωbkt dk, ⇒ A(t) = A(0)− iλ

∫ t

0

(∫
R
b(k) e−iωbkt1 dk

)
dt1,
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which returns, after few simple computation, the solution in (3.5).

To check now that the CCR are preserved during the time evolution, i.e. that [a(t), a†(t)] = I
for all t, we observe that the operators in the right hand side of (3.5) are the initial (t = 0)

operators, so that they satisfy the commutation rules [a, a†] = I, [b(k), b†(q)] = δ(k − q), while

[a, b(k)] = [a†, b(k)] = ... = 0. Therefore

[a(t), a†(t)] = e
− 2πλ2

ωb
t

(
1 + λ2

∫
R
|η(k, t)|2dk

)
I.

In our case, after some simple algebra, we deduce that∫
R
|η(k, t)|2dk =

∫
R

dk

ω2
b (k − k+)(k − k−)

[(
e

2πλ2

ωb
t
+ 1

)
− e(−iω+

πλ2

ωb
)t
eiωbkt − e(iω+

πλ2

ωb
)t
e−iωbkt

]
,

where k± = ω
ωb
± iπλ2

ω2
b

. Using complex integration we can compute each contribution here and

we conclude that ∫
R
|η(k, t)|2dk =

1

λ2

(
e

2πλ2

ωb
t − 1

)
, (4.4)

so that our claim easily follows.

To prove now (3.7), we first observe that the mean values of contributions like a†b(k) and

ab†(k) on our states are zero. Therefore, using (3.5), we get

na(t) = e
− 2πλ2

ωb
t

(〈
ϕna , a

†aϕna
〉
〈 IR〉R + λ2 〈ϕna , Iϕna〉

∫
R

∫
R
η(k, t)η(q, t)

〈
b†(k)b(q)

〉
R dk dq

)
=

= e
− 2πλ2

ωb
t

(
na + λ2

∫
R
nb(k)|η(k, t)|2dk

)
. (4.5)

Then, if nb(k) = nb, we can use the result in (4.4) and recover the result in (3.7).
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