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Abstract
In this paper, we propose a dynamical approach based
on the Gorini–Kossakowski–Sudarshan–Lindblad equa-
tion for a problem of decisionmaking. More specifically,
we consider what was recently called a quantum par-
liament, asked to approve or not a certain law, and we
propose a model of the connections between the vari-
ous members of the parliament, proposing in particular
some special form of the interactions giving rise to a
collaborative or noncollaborative behavior.
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1 INTRODUCTION

As it is well established sincemany centuries, the role of mathematics is relevant not only in pure,
but also in applied sciences. Classical mechanics is a prototypical example of this claim:We know
very well that mathematics, and mathematical modeling in particular, is essential if we want to
describe the motion of macroscopic systems, like pendulums, bullets, spinning tops, and so on.
And, mathematics is essential also in quantummechanics, which is all based on some basic facts
in functional analysis, Hilbert spaces, and operator theory.
Quantummechanics is usually associated to the microscopic world, like atoms and molecules,

for instance. However, it is now well diffused the feeling that quantum tools, and quantum ideas,
can be relevant also for describing some macroscopic systems. Nowadays, there are hundreds of
papers that explore these connections, and severalmonographs:We only cite the latter here,where
several other references can also be found1–6:

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and
reproduction in any medium, provided the original work is properly cited.
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2 BAGARELLO and GARGANO

In relation with our paper, quantum techniques have been applied to political systems with
different problems in mind: For instance, in Refs. 8, 9, the problem of alliances was considered,
while in Ref. 10, competition and cooperation were analyzed in a “coalition” equilibrium model.
In other papers,11–15 the role of quantum protocols in a voting process has been discussed, while in
Ref. 16, 17, the attitude of people elected in one party to move to a different one has been analyzed.
Recently,18 the interest was more focused on the behavior of two or three groups of legislators,

members of what the authors have nicely called a quantum parliament. They need to vote for a
given law, which should be accepted or refused, and, while taking their decision, they follow their
leader’s suggestions. But not completely. In other words, they have a sort of free will, which each
legislator experiences while producing their own decision.
In this paper, we consider the same problem as in Ref. 18, but we adopt a different, dynam-

ical, strategy based on the use of the Lindblad operators. We suppose that each legislator 𝑗 ,
𝑗 = 1, 2, … ,𝑁, where𝑁 is the total number of the members of the parliament 𝜋, is described by a
quantum state, and we give a time dependence to the state by means of a master equation simu-
lating the interaction of𝑗 with the other members of 𝜋, using both a suitable Hamiltonian and a
Lindblad operator to model the possible influences of a leader’s party and other effects. The result
of these interactions is reflected in the time evolution of the state, and consequently in the final
decision of 𝑗 . As in Ref. 18, we consider in our treatment a sort of free will in 𝜋. This introduces
some alea in the final decision of each 𝑗 , which, for this reason, is not obvious a priori, so that
the acceptance of the law is not granted. Our interest is mainly in the derivation of the outcome
of the vote, using a minimal set of working assumptions.
The paper is organized as follows: In Section 2, we introduce the problem and discuss some

of the essential aspects of the framework used all along the paper. In Section 3, we discuss the
dynamics of our quantum parliament, considering different simplifying situations, from a single
party with its leader, to the case of three parties with different peculiarities. The case of more
leaders of the same party is also considered. Section 4 contains our conclusions and some plans
for the future.

2 STATING THE PROBLEM

Let𝜋 be thewhole parliament. FollowingRef, 18, we consider three groups of legislators (or agents)
in 𝜋, , , and . These are Alice’s party, made of 𝑛 agents, Bob’s party, made of 𝑛 legis-
lators, and the mixed group, consisting in 𝑛 legislators. We have 𝑛 + 𝑛 + 𝑛 = 𝑁, the total
number of members of 𝜋. We call 𝑝(𝑗) the 𝑗-th member of the group , where  = ,,
and 𝑗 = 1, 2, … , 𝑛 . The difference between the parties is as follows: Suppose 𝜋 have to decide
whether to accept or refuse a law, Λ. Alice wants Λ to be accepted: She says yes to Λ. On the other
side Bob, and its group  can in principle vote “yes” or “no” depending on the interaction with
. However, we will assume later that Bob is against Λ. The case with no interaction is almost
trivial, since in this case  is essentially a copy of , and we could simply double the analysis
given in Section 3.1 below where the influence of the leader, Alice or whoever, on its party has
been analyzed in detail. More interesting is the case in which  and  interact. And evenmore
interesting is the introduction of a third party, , which we suppose to have no leader and no a
priori position to follow.
Since the only possible choices forΛ are “yes” and “no,” it is natural to imagine that each 𝑝(𝑗)

is described by a linear combination of two orthogonal vectors, one representing the choice “yes,”
the vector 𝑒

0
(𝑗), and the vector 𝑒

1
(𝑗), corresponding to the choice “no.” These two vectors form an
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BAGARELLO and GARGANO 3

orthonormal (o.n.) basis in the Hilbert space
𝑗
= ℂ2, endowed with its standard scalar product⟨., .⟩𝑗 . The general vector of 𝑝(𝑗) can be written as

𝜓
𝑗
= 𝛼

𝑗
𝑒
0
(𝑗) + 𝛽

𝑗
𝑒
1
(𝑗), (1)

with |𝛼
𝑗
|2 + |𝛽

𝑗
|2 = 1. Here, as before, 𝑗 = 1, 2, … , 𝑛 and  = ,,. |𝛼

𝑗
|2 and |𝛽

𝑗
|2 can be

seen, respectively, as the probability of 𝑝(𝑗) to vote “yes” or “no.” We can naturally associate a
composite Hilbert space to each of the parties in 𝜋, made of copies of ℂ2. In particular, we put

 = ⊗
𝑛
𝑗=1

𝑗
,  = ⊗

𝑛
𝑗=1

𝑗
,  = ⊗

𝑛
𝑗=1

𝑗
,

and

 =  ⊗ ⊗. (2)

An o.n. basis of  is clearly consisting of tensor products of states 𝑒
0
(𝑗) and 𝑒

1
(𝑗) for various 𝑗

and different , that is, of the vectors of the set

 =
{
𝑒
0
(1), 𝑒

1
(1), … , 𝑒

0
(𝑛), 𝑒


1
(𝑛), 𝑒


0
(𝑗), 𝑒

1
(1), … , 𝑒

0
(𝑛), 𝑒


1
(𝑛)

}
. (3)

For instance, a vector describing a situation in which all the legislators of  and  vote
“yes,” while all those of  vote “no” is

(𝑒
0
(1) ⊗⋯⊗ 𝑒

0
(𝑛)) ⊗ (𝑒


1
(1) ⊗⋯⊗ 𝑒

1
(𝑛)) ⊗ (𝑒


0
(1) ⊗⋯⊗ 𝑒

0
(𝑛)).

Of course the dimensionality of increases with 𝑁. In fact, we have dim() = 2𝑁 . An operator
𝑋 acting on, say, 

1
, is identified with the tensor product 𝑋 ⊗ 2 ⊗⋯2, that is, the tensor

product of 𝑋 with 𝑁 − 1 copies of the identity operator 2, acting on all the other Hilbert spaces.
However, see Sections 2 and 3, in our applications, we shall consider some simplifications that
reduce significantly the dimensionality of the Hilbert space. In particular, we will suppose that
all the members of a specific party are indistinguishable, that is, they all feel the same interactions
and are described by the same parameters, with the same values, so that it is reasonable to restrict
to 𝑛 = 𝑛 = 𝑛 = 1, and the various ,, have dimension 2, while  has dimension
8. This is why, in the rest of the paper, we will often focus on a single legislator of 𝜋,, or, at most,
on a single representative member for each party.
We consider now the vector

𝜓 = 𝛼 𝑒0 + 𝛽 𝑒1, (4)

with |𝛼|2 + |𝛽|2 = 1. This 𝜓 is, of course, analogous to the one in (1) adopting a simplifying nota-
tion, which is sufficient now since we are only focusing on . We should also mention that, in
the following, sometimes we will use |𝑒𝑗⟩ rather than simply 𝑒𝑗 , 𝑗 = 0, 1. This is useful when,
see, for instance, 𝜌𝜓 below, rather than to the vectors, we deal with density matrices. A possible
parameterization of the vector 𝜓, adopted in particular in Ref. 18, is the following: 𝛼 = cos(𝜃∕2)
and 𝛽 = sin(𝜃∕2) 𝑒𝑖𝜑, with 𝜃 ∈ [0, 𝜋] and 𝜑 ∈ [0, 2𝜋[.
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4 BAGARELLO and GARGANO

We can now define a density matrix 𝜌𝜓 as an operator acting on  = ℂ2 as follows: 𝜌𝜓𝑓 =⟨𝜓, 𝑓⟩𝜓, ∀𝑓 ∈ . In the bra-ket language, 𝜌𝜓 is often written as 𝜌𝜓 = |𝜓⟩⟨𝜓|. More explicitly, 𝜌𝜓
is the two-by-two matrix

𝜌𝜓 =

(|𝛼|2 𝛼 𝛽

𝛼 𝛽 |𝛽|2
)
, (5)

which is manifestly self-adjoint and with unit trace. In particular, if  is in a “yes” or in a “no”
mood, 𝑒0 or 𝑒1, the related density matrices are

𝜌0 =

(
1 0

0 0

)
, 𝜌1 =

(
0 0

0 1

)
, (6)

with obvious notation. In Ref. 18, the main idea was to measure the distance of the density
matrix of the various legislators with those corresponding to Alice (𝜌0) and Bob (𝜌1). This is
a way to check which is the final decision of each legislator. Moreover, as already observed, a
free will parameter was introduced in Ref. 18 for  and . For instance, let 𝑟 be this param-
eter for . Then, it is not required that 𝜌𝜓 = 𝜌0 to conclude that  is going to vote “yes.”
It is sufficient that the difference between 𝜌𝜓 and 𝜌0 is less than 𝑟 or, more explicitly, that
𝑑(𝜌𝜓, 𝜌0) ≤ 𝑟. Here, 𝑑(., .) is a distance between density matrices. Like any distance, 𝑑(., .)must
satisfy some constraints: It must be symmetric, 𝑑(𝜌𝜓, 𝜌𝜑) = 𝑑(𝜌𝜑, 𝜌𝜓), nonnegative, 𝑑(𝜌𝜓, 𝜌𝜑) ≥ 0,
with in particular 𝑑(𝜌𝜓, 𝜌𝜑) = 0 if and only if 𝜌𝜓 = 𝜌𝜑, and it must satisfy the triangular inequal-
ity: 𝑑(𝜌𝜓, 𝜌𝜑) ≤ 𝑑(𝜌𝜓, 𝜌𝜂) + 𝑑(𝜌𝜂, 𝜌𝜑), for all densitymatrices 𝜌𝜓, 𝜌𝜂, and 𝜌𝜑. In Ref. 18, the explicit
expression for the distance was the following:

𝑑(𝜌𝜓, 𝜌𝜑) =
1

2
Tr|𝜌𝜓 − 𝜌𝜑|,

where Tr|𝐴| is the trace and |𝐴| =√
𝐴†𝐴, 𝐴 ∈2, the set of all two-by-two matrices. Here, we

just want to briefly comment that, in our opinion, this choice of distance does not always perform
well, at least if we still want to give a full meaning to the previous parametric representation for 𝛼
and 𝛽. In fact, using this parameterization, we get 𝑑(𝜌𝜓, 𝜌0) = sin(𝜃∕2) and 𝑑(𝜌𝜓, 𝜌1) = cos(𝜃∕2),
which are both independent of 𝜑. This is reasonable when we use density matrices, but not so
much when we adopt vectors, which is also a natural choice, used several times in the literature
in similar situations. In this latter case, the distance 𝑑𝑛(𝜓, 𝜙) = ‖𝜓 − 𝜙‖, ∀𝜓, 𝜙 ∈ , could be a
good alternative, having no drawback of the kind shown for 𝑑(., .).
Our approach is based on the derivation of suitablemean values of some observables describing

the final decision of the legislator . In particular, using the density matrices defined in (6), their
mean values are obtained through

⟨𝜌0⟩𝜓 = Tr
[
𝜌𝜓𝜌0

]
, ⟨𝜌1⟩𝜓 = Tr

[
𝜌𝜓𝜌1

]
. (7)

As we shall see, the above expressions can be straightforwardly extended to take into account the
presence of multiple members belonging to different parties (see, for instances, (25) below). The
meaning of (7) is quite evident: ⟨𝜌0⟩𝜓 is the mean value of the operator |𝑒0⟩⟨𝑒0|, which represents
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BAGARELLO and GARGANO 5

the pure state corresponding to “ votes yes,” whereas ⟨𝜌1⟩𝜓 is themean value of |𝑒1⟩⟨𝑒1|, the pure
state representing, this time, “ votes no.” Both these mean values are computed on the density
matrix 𝜌𝜓 describing . Using the properties Tr[𝜌𝜓] = 1 and 𝜌0 + 𝜌1 = 11, one can easily obtain⟨𝜌0⟩𝜓 = 1 − ⟨𝜌1⟩𝜓. Hence, the time evolution of ⟨𝜌0⟩𝜓 and ⟨𝜌1⟩𝜓 can be phenomenologically
interpreted as a measure of the legislator’s decision to vote “yes” or “no.”

3 THE DYNAMICS OF THE SYSTEM

Ourmain effort consists in proposing a plausible dynamics for the genericmember of the group .
Thismeans thatwe are supposing that themember’s decision can change in time due, for instance,
to the parties’ influence or to the presence of one or more leaders, not necessarily belonging to
different parties. The original vector (4)𝜓 becomes now time dependent,𝜓(𝑡), and this new vector
still belongs to the same Hilbert space  in (2): Again we omit the label of the party since the
mechanisms we shall describe are essentially the same for each legislator, and we are focusing on
just one of them, .
It is well known that the dynamics of thewave function of a closed quantum system is governed

by the Schrödinger equation:

𝑖
𝑑

𝑑𝑡
𝜓(𝑡) = 𝐻𝜓(𝑡), (8)

where 𝐻 = 𝐻† is the self-adjoint Hamiltonian operator containing all mechanisms acting in the
closed system. Given the initial condition 𝜓(0), the evolution 𝜓(𝑡) is completely determined.
Formally, we have 𝜓(𝑡) = 𝑒−𝑖𝐻𝑡𝜓(0).
However, our system can be seen as open, where the small closed subsystem ismade by the var-

ious members of the parties, while their reservoirs are nothing but the parties themselves. This is
because the parties can influence the single legislator, while the opposite is quite less plausible.
Stated differently, Alice (resp. Bob) influences what each single 𝑝(𝑗) (resp. 𝑝(𝑗)) decides, but
𝑝(𝑗)’s (resp. 𝑝(𝑗)’s) opinion is not relevant for Alice (resp. Bob). This kind of one-directional
flow of influence suggests that the dynamics in (8) is not the most appropriate, then. The reason
is twofold: First of all, self-adjointness of 𝐻 does not allow, by itself, to avoid identical strength
of interactions between, say, Alice and 𝑝(𝑗): if 𝐻 = 𝐻†, then if Alice communicates with 𝑝(𝑗)
with a given strength, then 𝑝(𝑗) communicates back with Alice with the same strength. Sec-
ond, it has been proved in recent years, see Ref. 6, for instance, that 𝐻 = 𝐻† is only compatible,
if 𝑑𝑖𝑚() < ∞, as in our case, with periodic or quasi-periodic dynamics. But such an oscillating
dynamics, of course, is not really what one expects in a decision-making process, where one imag-
ines to find some limiting value, corresponding to the final decision. Hence, we need to include
some non-Hermitian effect, that we mimic here through the Gorini-Kossakowski-Sudarshan-
Lindblad (GKSL) equation, see, for instance, Refs. 19, 20, for open quantum systems, and21–24
for applications outside the quantum realm.

Remark. The GKSL equation below is not the only possibility to analyze the time evolution of
a given open quantum system. Other possibilities are also well known, as a purely Hamiltonian
approach inwhich theHamiltonian includes also terms of the reservoir,5,6,20 or using the so-called
(𝐻, 𝜌)-induced dynamics.25
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6 BAGARELLO and GARGANO

In particular, considering the density operator 𝜌(𝑡) = |𝜓(𝑡)⟩⟨𝜓(𝑡)|whose matrix representation
is (5), but with time-dependent parameters, the resulting differential equation for the evolution
of 𝜌 is the well-known GKSL equation:

𝑑

𝑑𝑡
𝜌(𝑡) = −𝑖[𝐻, 𝜌(𝑡)] +

𝑁∑
𝑗=1

(
𝐿𝑗𝜌(𝑡)𝐿

†
𝑗
−
1

2

{
𝐿
†
𝑗
𝐿𝑗, 𝜌(𝑡)

})
, (9)

where the various 𝐿𝑗 are the Lindblad operators, generally taken traceless and connected to the
influence of the larger system (the parties) on the small system (the various members of 𝜋),
and where {𝑋, 𝑌} = 𝑋𝑌 + 𝑌𝑋 is the anticommutator between two generic operators 𝑋 and 𝑌.
In writing this equation, we have assumed that the dynamics of the system is Markovian, and the
Lindblad operators (which describe the way the Leader influences the various members of his
party) are independent of the current state of the system. This can be simply understood under
the assumption that the leader is not influenced in any way by the reaction of the members. This
requirement is a natural way of interpreting an environment that is negligibly perturbed by a small
system.Of course this is a strong hypothesis that however is plausible in a dynamics ruled by some
leadership.We notice that when the interaction with the larger system is not included, we recover
the Von Neumann equation:

𝑑

𝑑𝑡
𝜌(𝑡) = −𝑖[𝐻, 𝜌(𝑡)],

which could be easily deduced from (8), since 𝜌(𝑡) = |𝜓(𝑡)⟩⟨𝜓(𝑡)|.
For the interpretation of our model, it is useful to remind that the interaction between the

small system with the environment produces a mixture of states from a generic pure state.26 In
fact, adopting a standard perturbative approach for small times and neglecting for a moment the
action of the Hamiltonian1 𝐻 in (9), the evolved density operator of a pure state 𝜌 = |𝜓⟩⟨𝜓| = 𝜌(0)
in a small time step 𝑑𝑡 can be rewritten, to the leading order in 𝑑𝑡, as

𝜌(𝑑𝑡) ≈ 𝜌 −
1

2
𝑑𝑡

𝑁∑
𝑗=1

(
𝐿
†
𝑗
𝐿𝑗𝜌 + 𝜌𝐿

†
𝑗
𝐿𝑗

)
+ 𝑑𝑡

𝑁∑
𝑗=1

𝐿𝑗𝜌𝐿
†
𝑗
≈  𝜌† +

𝑁∑
𝑗=1

𝑗 𝜌
†
𝑗
, (10)

where

 = 11 −
𝑑𝑡

2

𝑁∑
𝑗=1

𝐿
†
𝑗
𝐿𝑗, 𝑗 =

√
𝑑𝑡 𝐿𝑗, 𝑗 = 1,… ,𝑁. (11)

In other words, the evolved state is amixture of the pure states defined by|𝜓⟩ and by the various
𝑗|𝜓⟩. In particular, we have

 𝜌† =  |𝜓⟩⟨𝜓|† = 𝑝̃ |𝜓⟩⟨𝜓|̃†,
1 We are assuming that its effect is negligible with respect to the Lindbladian part, so that the Markovian process
is highlighted.
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BAGARELLO and GARGANO 7

with ̃ = 1‖|∰⟩‖. Here,𝑝 = ‖ |𝜓⟩‖2 ≃ (1 − 𝑑𝑡∑𝑁

𝑗=1
‖𝐿𝑗|𝜓⟩‖2) can be seen as the probability

that the vector𝜓 evolves in ̃ |𝜓⟩. This vector for 𝑑𝑡 → 0 tends to the initial vector |𝜓⟩, and follows
the so-called continuous drift-type evolution.26
With similar computations, we have

𝑗 𝜌
†
𝑗
= 𝑗 |𝜓⟩⟨𝜓|†𝑗 = 𝑝𝑗 ̃𝑗 |𝜓⟩⟨𝜓|̃†𝑗 , ∀𝑗 = 1,… ,𝑁, (12)

where ̃𝑗 =
1‖𝑗|𝜓⟩‖𝑗 and 𝑝𝑗 = ‖𝑗 |𝜓⟩‖2 = 𝑑𝑡‖𝐿𝑗|𝜓⟩‖2 is the probability that the vector 𝜓

evolves in ̃𝑗 |𝜓⟩.2 The process of evolving in such a state is called evolutionary jumps as for𝑑𝑡 → 0,
the vector ̃𝑗 |𝜓⟩ does not tend to the original |𝜓⟩. This is the key process that produces mixed
states as a consequence of the interaction of the system with the large environment. As it is well
known, this process can be detected by looking at the so-called purity,  = Tr(𝜌2), and at the Von
Neumann entropy

 = −Tr(𝜌 log 𝜌), (13)

that, for amixed state, satisfy the inequalities < 1,  > 0, while = 1 and = 0 for pure states.

3.1 A single party: The role of the leader

After this general introduction, we want to analyze next how the choice of a single agent is influ-
enced by its own party, and from its leader in particular. Assuming that all the members of the
party are indistinguishable, it is natural to focus on a single member, , so to that the dimension
of the problem reduces, and the relevant Hilbert space is just = ℂ2. The vector representing’s
choice is simply 𝜓 = 𝛼|𝑒0⟩ + 𝛽|𝑒1⟩, as we already discussed before. The only effects we consider
here are the free will (or its uncertainty) of  and the leader’s influence.
In this case, the Hamiltonian governing the various processes occurring for  is assumed to be

𝐻 = 𝐻𝑓 + 𝐻𝑣,

𝐻𝑓 = 𝜔𝑎̂
†𝑎̂, 𝐻𝑣 = 𝜆(𝑎̂

† + 𝑎̂), (14)

where 𝜔, 𝜆 are nonnegative parameters. Here, we have introduced the (fermionic) ladder opera-
tors 𝑎̂ and 𝑎̂†. These operators are very well known and used originally in quantum mechanics,
see Refs. 27, 28 for instance, but then adopted also in other contexts.5,6 For our purposes, it is
sufficient to say that these operators are defined on the o.n. basis {𝑒0, 𝑒1} of ℂ2 as follows:

𝑎̂𝑒0 = 0, 𝑎̂𝑒1 = 𝑒0, 𝑎̂†𝑒0 = 𝑒1, 𝑎̂†𝑒1 = 0.

They satisfy the canonical anti-commutation relations (CAR) {𝑎̂, 𝑎̂†} = 𝑎̂ 𝑎̂† + 𝑎̂† 𝑎̂ = 2 and
𝑎̂2 = 0.
Aswidely discussed in the literature, see Refs. 5, 6 for an overview, the term𝐻𝑓 is responsible for

an inertial mechanism, which somehow forces to maintain its initial choice, whereas𝐻𝑣 works

2 Notice that due to (10), here we simply have ̃𝑗 =
1‖𝑗 |𝜓⟩‖𝑗
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8 BAGARELLO and GARGANO

in the opposite way by inducing some change in  while forming its final decision. This can be
understood as follows: Suppose that  is described, at 𝑡 = 0, by the vector 𝜓 = 𝑒𝑗 . Then, 𝜓 is an
eigenstate of𝐻𝑓 , so that 𝜓 is not modified when acting on it with𝐻𝑓 . On the other hand, suppose
that 𝜓 = 𝑒0. Then, using (14), we see that 𝐻𝑣𝜓 = 𝜆𝑒1, while, if 𝜓 = 𝑒1, we find that 𝐻𝑣𝜓 = 𝜆𝑒0:
The action of 𝐻𝑣 on 𝜓 changes drastically the state of the system. Notice that, so far, there is no
reason for  to change his status toward “no” or “yes.” In other words, there is no reason for  to
move from its original state 𝜓 to a new state 𝜓𝑛𝑒𝑤, which is either 𝑒1 or 𝑒0 (or close to them). The
way this task can be achieved is by introducing in the model the two Lindblad operators

𝐿,1 = 𝜏1𝑎̂, 𝐿,2 = 𝜏2𝑎̂
†, (15)

which represent the action of ’s leader on  itself. In particular, under the action of 𝐿,1,  is
influenced by its leader to vote “yes,” since it is forced to the vector 𝑒0, whereas 𝐿,2 does the oppo-
site forcing to the vote “no,” that is, to the vector 𝑒1: The real parameters 𝜏1 and 𝜏2 fix the strengths
of these actions, and having 𝜏1 and 𝜏2 both nonzero can be seen as the simultaneous presence of
two different leaders of the same party proposing the two opposite final choice “yes” and “no,”
respectively. Of course, the more influent is the leader, the higher the value of its parameter 𝜏𝑗 .
Looking at the action of the operators on a pure state identified by |𝜓⟩ = 𝛼|𝑒0⟩ + 𝛽|𝑒1⟩, for a small
time 𝑑𝑡, according to (10) the pure state becomes the mixed state

𝜌(𝑑𝑡) = 𝑝𝐴̃|𝜓⟩⟨𝜓|̃† + 𝑝𝐵1 |𝑒0⟩⟨𝑒0| + 𝑝𝐵2 |𝑒1⟩⟨𝑒1| (16)

with

̃ =
1√
𝑝𝐴

(
11 −

𝑑𝑡

2

(|𝛼𝜏2|2|𝑒0⟩⟨𝑒0| + |𝛽𝜏1|2|𝑒1⟩⟨𝑒1|))
and

𝑝𝐴 = (1 − 𝑝𝐵1 − 𝑝𝐵2), 𝑝𝐵1 = 𝑑𝑡|𝛽𝜏1|2, 𝑝𝐵2 = 𝑑𝑡|𝛼𝜏2|2.
Hence, there is a chance that the state is evolved in |𝑒0⟩ (vote “yes”) with probability 𝑝𝐵1 , in |𝑒1⟩
(vote “no”) with probability 𝑝𝐵2 , otherwise it follows the continuous drift-type evolution. It is
expected that as time passes, the mixture of the states becomes a relevant phenomenon.
Some numerical simulations for different values of 𝜏1 and 𝜏2 are shown in Figures 1A,B

and 2A,B, where the mean values ⟨𝜌0⟩𝜓, defined in (7), and the entropy 𝑆, defined in (13), are
shown. Considering the case 𝜏1 ≠ 0, 𝜏2 = 0, that represents the situation where is influenced by
Alice to vote “yes,” we reach an equilibrium that, depending also on the balance with the other
contribution in (9), tends faster to 1 as 𝜏1 increases. We see that the whole dynamics behaves as
one would expect, given that the final choice to vote “yes” turns out to be highly probable.3
We notice that, for moderate low values of 𝜏1, see the cases 𝜏1 = 0.1 and 𝜏1 = 0.5, strong ampli-

tude oscillations are visible in the early-mid phase and tend to be damped for later times. They are
consequences of the member’s indecision mechanism due to the Hamiltonian term𝐻𝑣 which, as
observed in other contexts (Refs. 5, 6), is the main responsible of the oscillatory behavior in the
mean values of the density or number operators. We should consider that, in a real situation,
there could be also (few) members of  reaching a different final choice and therefore voting

3 Even if the long time value of ⟨𝜌0⟩𝜓 is not exactly one, it appears to be almost one. This is a sort of uncertainty in our
model, which replaces the free will in Ref. 18.
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BAGARELLO and GARGANO 9

F IGURE 1 (A) The time evolution of the mean value ⟨𝜌0⟩𝜓(𝑡) for different values of 𝜏1 and with 𝜏2 = 0.
Other parameters: 𝜔 = 1, 𝜆 = 0.25. The initial condition is |𝜓⟩ =√

0.7|𝑒0⟩ +√
0.3|𝑒1⟩. In the small inset the time

evolution for early times. (B) The time evolution of the entropy (𝑡) for the same parameters and initial condition.

F IGURE 2 (A) The time evolution of the mean value ⟨𝜌0⟩𝜓(𝑡) for different values of 𝜏2 and with 𝜏1 = 0.5.
Other parameters: 𝜔 = 1, 𝜆 = 0.25. The initial condition is |𝜓⟩ =√

0.7|𝑒0⟩ +√
0.3|𝑒1⟩. (B) The time evolution of

the entropy (𝑡) for the same parameters and initial condition.

“no.” Hence, from a pure quantum interpretation, the final state is a mixture of states most of
them representing the vote “yes” and few others the vote “no.” The evolution of the entropy 𝑆 can
be seen in this sense as a possible measure of this mixture. In Figure 1B, we observe that 𝑆(𝑡) is
always strictly positive, indicative of the presence of amixture of states, and showing the presence
of a main peak in time followed by a rapid decreasing up to some equilibrium value. This value is
reached more rapidly for increasing values of 𝜏1. We can justify this behavior by imagining that,
in a first phase, the influence of’s leader due to the Lindblad operator 𝐿,1 strongly modifies the
member’s state of mind, also because of the presence of 𝐻𝑣. However, the higher is the strength
of 𝐿,1, that is, the value of 𝜏1, the more rapidly this condition moves toward an equilibrium. The
fact that the final equilibrium value increases for lower 𝜏1 can be interpreted as the lower influ-
ence of ’s leader and hence to a richer mixture of states related in principle to the presence of
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10 BAGARELLO and GARGANO

more members of the party voting “no” (which, however, remain a minority with respect to those
voting “yes”).4

Remark. It is interesting to observe that the graphs of the entropy exhibit a camel-like behav-
ior of the kind discussed in Ref. 7. This behavior involves an initial increase in entropy as the
system adapts to a new environment, followed by a decrease as the system adapts to the environ-
ment and begins improving its order. More specifically, during the initial stage of the interaction
with the leader (i.e., the environment), the members of the party (i.e., the system) undergo a pro-
cess of adaptation to the leader’s requests and search for an appropriate response. During this
stage, the entropy of the systemmay increase because of this search for some appropriate reaction
to the leader. However, after this preliminary stage, the members begin to adapt more and more
to the leader’s influence, increasing the degree of internal order. As a result, the entropy decreases
sensibly, as shown in our plots (and also in those related to the other applications).

Adding the Lindblad operator 𝐿,2 creates a richer dynamics, as shown in Figure 2A,B. The
presence of two Lindblad operators, inducing opposite effects, can be seen as a situation in which
two different leaders of the same party influence the final choice of . As expected when 𝜏1 > 𝜏2,
the final mean value ⟨𝜌0⟩𝜓 is closer to 1 rather than to 0, and it approaches 1 more andmore as the
difference 𝜏1 − 𝜏2 increases. A perfect equilibrium is reached when 𝜏1 = 𝜏2, and in this case, the
final value of ⟨𝜌0⟩𝜓 is equal to 0.5. Finally, for 𝜏2 > 𝜏1, ⟨𝜌0⟩𝜓 is closer to 0, regardless of its initial
value. The variousmechanisms that could lead to this dynamics can be straightforwardly deduced
by the previous discussionmade on the case 𝜏2 = 0. Concerning the time evolution of the entropy
𝑆, we can observe that the case 𝜏1 = 𝜏2 can be considered critical in the sense that the equilibrium
value is log(2) ≈ 0.693, which is the maximum admissible value for 𝑆 (we recall that 𝑆 is bounded
by the value log (𝑑), 𝑑 being the dimension of the Hilbert space in this case). This case represents
a situation of uncertainty in which no clear final choice is achieved, and the state is a perfect
mixture of 𝜌0 and 𝜌1. The other cases show also that adding a second Lindblad operators induces
a stronger mixture as compared to the case where 𝜏2 = 0: Two competing leaders of a single party
create more uncertainty!

3.2 Two parties: The dynamics of alliance

In this section, we want to model a situation in which the members of the first party  interact
with themembers of the second party, assuming however that only themembers of receive
specific indications on the option they should vote (specifically the option “yes”). It is like if Bob’s
influence on his own party is very low, if not completely negligible: This is what is usually called
lack of leadership. We will consider the case in which Bob influences the various 𝑝(𝑗) later on.
Our goal here is to derive the proper model and operators to describe: (i) a collaborative-like atti-
tude of the parties, that is, the secondmembers of are inclined to vote for the same option as the
members of ; (ii) a conflictual dynamics in which the two parties move in different directions
(one votes “yes” while the other votes “no”).
More in details, we suppose here that only the Lindblad operator 𝐿,1 in (15) acts by forcing the

members of  to vote “yes,” and that the behavior of the members of  is only dictated by their

4 This interpretation is based on the assumption that all the members of the various parties are indistinguishable, so that
each member of  behaves as .
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BAGARELLO and GARGANO 11

own interactions with . It follows that the Lindblad operator is simply 𝐿,1 = 𝜏1𝑎̂1, whereas
the Hamiltonian ruling the interactions between the members can be assumed to be

𝐻 = 𝐻𝑓 + 𝐻𝑣 + 𝐻𝑐 + 𝐻𝑛𝑐,

where 𝐻𝑓,𝐻𝑣 here extend those given in the previous section, while 𝐻𝑐, 𝐻𝑛𝑐 are operators
describing the new collaborative or conflictual (noncollaborative) dynamics. To be specific,

𝐻𝑓 = 𝜔1𝑎̂
†
1
𝑎̂1 + 𝜔2𝑎̂

†
2
𝑎̂2, (17)

𝐻𝑣 = 𝜆1

(
𝑎̂
†
1
+ 𝑎̂1

)
+ 𝜆2

(
𝑎̂
†
2
+ 𝑎̂2

)
, (18)

with 𝜔1,2 ≥ 0, 𝜆1,2 ≥ 0, while the new operators are

𝐻𝑐 = 𝛾𝑐

(
𝑎̂
†
1
𝑎̂2 + 𝑎̂

†
2
𝑎̂1

)
, 𝐻𝑛𝑐 = 𝛾𝑛𝑐

(
𝑎̂
†
1
𝑎̂
†
2
+ 𝑎̂2𝑎̂1

)
. (19)

Here, our interest is focused on just two legislators, 1 and 2, as representants of Alice’s and
Bob’s parties, assuming as in Section 3.1 that all the members of a given party share a similar
attitude toward Λ. The operators 𝑎̂𝑗 and 𝑎̂

†
𝑗
obey the following two-dimensional CAR:

{𝑎̂𝑗, 𝑎̂
†
𝑘
} = 𝛿𝑗,𝑘4, {𝑎̂𝑗, 𝑎̂𝑘} = 0, (20)

𝑗, 𝑘 = 1, 2. Here, 4 is the identity operator on ℂ4.
The motivation that leads to these terms in the Hamiltonian is based on the way in which the

Lindblad operator acts on the system. In fact, in view of what we have seen before, 𝐿,1 drives a
generic vector |𝜓̃⟩ = ∑

𝑗,𝑘=0,1
𝛼𝑗,𝑘|𝑒𝑗,𝑘⟩ into a new vector where the components proportional to

𝛼1,0 and 𝛼1,1 tend to disappear.5
Given that, it is interesting to describe how, at least heuristically, the combined action of𝐻 and

𝐿,1 works on the members of  supposing that the initial configuration is represented by the
pure state |𝜓(0)⟩ (with its related density operator 𝜌 = |𝜓(0)⟩⟨𝜓(0)|) given by

|𝜓(0)⟩ = ∑
𝑗,𝑘=0,1

𝛼𝑗,𝑘|𝑒𝑗,𝑘⟩, with ∑
𝑗,𝑘=0,1

|𝛼𝑗,𝑘|2 = 1.
Since the behavior of the members of  is not directly modified by 𝐿,1, and observing that
𝐻𝑓,𝐻𝑣 are not responsible for the interaction, we start describing naively what happens if we
focus for small times on a branch, which is first affected by the action of 𝐻𝑐 and then by 𝐿,1. In
particular, we have

𝐻𝑐|𝜓(0)⟩ = 𝛾𝑐(𝛼1,0|𝑒0,1⟩ + 𝛼0,1|𝑒1,0⟩), (21)

since all the other terms of |𝜓(0)⟩ are annihilated by the action of 𝐻𝑐. Hence, after a small time
𝑑𝑡, we obtain the new vector (up to a suitable normalization)

|𝜓(𝑑𝑡)⟩ ≈ |𝜓(0)⟩ − 𝑖𝑑𝑡 𝛾𝑐(𝛼1,0|𝑒0,1⟩ + 𝛼0,1|𝑒1,0⟩). (22)

5 In fact, the action of 𝐿,1makes these terms in |𝜓̃⟩ disappear. However, the simultaneous effect of𝐻, partly restores them.
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12 BAGARELLO and GARGANO

This vector is different from |𝜓(0)⟩ if 𝛼1,0 or 𝛼0,1 are nonzero. Then, following the same ideas dis-
cussed in the previous sections, and considering the subsequent action of 𝐿,1 only, the obtained
state is induced to jump, with some nonzero probability, to a state expressed by the density
operator

̃1 |𝜓(𝑑𝑡)⟩⟨𝜓(𝑑𝑡)|̃†1,
where ̃1 =

1‖𝑎̂1|𝜓⟩‖ 𝑎̂1 (see (12)). It is clear that, in view of (22), the state following this jump can
only be of the form

|𝜓jump⟩ = ∑
𝑘=0,1

𝛼̃1,𝑘|𝑒0,𝑘⟩ − 𝑖 𝑑𝑡𝛾𝑐𝛼0,1|𝑒0,0⟩, (23)

where 𝛼̃1,𝑘 = 𝛼1,𝑘∕||𝑎̂1|𝜓⟩|| and where as usual the proper normalization should be inserted. It is
now clear that the second populations can have an excitement of the 0 level due to the appearance
of the term −𝑖 𝑑𝑡𝛾𝑐𝛼0,1|𝑒0,0⟩: The two parties are driven to the same decision. This perturbative
analysis reflects our numerical results, as we will show next.
With similar computations, we can derive the approximated state obtained by the action of𝐻𝑛𝑐

first, and the jump induced by 𝐿,1 after. In this case, we get

|𝜓jump⟩ = ∑
𝑘=0,1

𝛼̃1,𝑘|𝑒0,𝑘⟩ − 𝑖 𝑑𝑡𝛾𝑛𝑐𝛼0,0|𝑒0,1⟩, (24)

which, when compared to (23), leads to an excitement of |𝑒0,1⟩, that is the state representing the
two opposite members’ decision.
Numerical results confirming this kind of behavior are shown in Figure 3 for the cooperative

attitude, and in Figure 4 for the noncooperative one. The figures contain the time evolutions of
the legislator’s intention to vote “yes” for both parties, expressed by the mean values

⟨𝜌0⟩(1)𝜓 = Tr
[
𝜌𝜓(𝜌0 ⊗ 2)

]
, ⟨𝜌0⟩(2)𝜓 = Tr

[
𝜌𝜓(2 ⊗ 𝜌0)

]
, (25)

where 𝜌0 =
(
1 0
0 0

)
, 2 =

(
1 0
0 1

)
, and of the entropy (𝑡).

As we can see in Figure 3A,B, for the cooperative case, increasing the value of 𝛾𝑐 leads to a con-
tinuous growth of the asymptotic value of ⟨𝜌0⟩(2)𝜓 (𝑡), showing that the action of 𝐻𝑐 is responsible
for the common attitude of the members of  and . We also notice that, again for increas-
ing 𝛾𝑐, also ⟨𝜌0⟩(1)𝜓 (𝑡) slightly increases its asymptotic value: We can speculate on this effect by
supposing that the members of  reinforce their attitude in voting yes when they interact and
influence the members of  in doing the same. This is also supported by (23) according to which
there is a jump proportional to 𝛾𝑐 toward the state |𝑒0,0⟩, that is all members vote “yes.” Concern-
ing the measure of the entropy (𝑡), Figure 3C, the initial phase (up to 𝑡 ≈ 50) is characterized by
an overall growth of (𝑡), and then by a decreasing behavior and convergence toward an asymp-
totic value, which in general decreases faster for increasing 𝛾𝑐. The peaks in (𝑡) are higher for
larger values of 𝛾𝑐. This could be interpreted by the fact that the cooperative dynamics induced by
𝐻𝑐 creates, together with the action of 𝐿,1, a rapid mixture of states representing the same final
decision taken by the parties, and the rapid decay can be seen as an immediate settlement to the
asymptotic value.
The noncooperative case is shown in Figure 4, where the various time evolutions are shown by

changing the key parameter 𝛾𝑛𝑐, which tunes the strength of 𝐻𝑛𝑐. As expected, and predicted by
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BAGARELLO and GARGANO 13

F IGURE 3 (A) The time evolution of the mean value ⟨𝜌0⟩(1)𝜓 (𝑡) for different values of 𝛾𝑐 (cooperative
attitudes). Other parameters: 𝜔1 = 𝜔2 = 1, 𝜆1 = 𝜆2 = 0.25, 𝛾𝑛𝑐 = 0, 𝜏1 = 0.5. Initial state is such that ⟨𝜌0⟩(1)𝜓 = 0.6,⟨𝜌0⟩(2)𝜓 = 0.4. (B) The time evolution of the mean value ⟨𝜌0⟩(2)𝜓 (𝑡) for the same parameters and initial condition.
(C) The time evolution of the entropy (𝑡) for the same parameters and initial condition.

our perturbative approach, increasing the effect of 𝐻𝑛𝑐 leads to two opposite final choices taken
by the members of  and , even if the behavior of these latter is not as sharp as that of . It
is interesting to note that also the entropy (𝑡) attains its equilibrium to larger values than those
obtained in the cooperative case; this can be explained by the fact that the action of the Lindbla-
dian operator 𝐿,1 together with the action of 𝐻 induces a strong mixture of states increased by
the noncollaborative effect.

3.3 The effects of Bob and 

We conclude the analysis of our quantum parliament 𝜋 by briefly considering the inclusion in our
model of a third party that does not follow a leader’s influence, and the case in which Bob has
some (weak) influence on . We shall perform two different kinds of experiments. In the first
one, we suppose that only  is influenced by its leader, whereas the members of  and 
are left to interact with the members of  but they both have no strong leader to follow. In the
second experiment, we suppose that  has a leader, Bob, weak compared to Alice. The presence
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14 BAGARELLO and GARGANO

F IGURE 4 (A) The time evolution of the expected value ⟨𝜌0⟩(1)𝜓 (𝑡) for different values of 𝛾𝑛𝑐 (noncooperative
attitudes). Other parameters: 𝜔1 = 𝜔2 = 1, 𝜆1 = 𝜆2 = 0.25, 𝛾𝑐 = 0, 𝜏1 = 0.5. Initial state is such that ⟨𝜌0⟩(1)𝜓 = 0.6,⟨𝜌0⟩(2)𝜓 = 0.4. (B) The time evolution of the expected value ⟨𝜌0⟩(2)𝜓 (𝑡) for the same parameters and initial condition.
(C) The time evolution of the entropy (𝑡) for the same parameters and initial condition.

of a third party in our model is interesting because it allows us to consider nontrivial cubic terms
in the Hamiltonian of 𝜋, see (29) below.
For the first experiment, we use the same hypothesis of the previous sections, assuming that the

only Lindblad operator is 𝐿,1 = 𝜏1𝑎̂1. In this case, adding a third agent to our system, the Hilbert
space of the microsystem becomes  = ℂ8, and the vector representing the member’s choice
is given by |𝜓⟩ = ∑

𝑗,𝑘,𝑙=0,1
𝛼𝑗,𝑘,𝑙|𝑒𝑗,𝑘,𝑙⟩ with ∑

𝑗,𝑘,𝑙=0,1
|𝛼𝑗,𝑘,𝑙|2 = 1. Concerning the Hamiltonian

ruling the behavior of the three parties, it is natural to consider the following one:

𝐻 = 𝐻𝑓 + 𝐻𝑣 + 𝐻𝑖, (26)

where, similarly to (17)–(18) we have

𝐻𝑓 =
∑
𝑘=1,2,3

𝜔𝑘𝑎̂
†
𝑘
𝑎̂𝑘, (27)

𝐻𝑣 =
∑
𝑘=1,2,3

𝜆𝑘

(
𝑎̂
†
𝑘
+ 𝑎̂𝑘

)
, (28)
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BAGARELLO and GARGANO 15

F IGURE 5 (A) The time evolution of the expected value ⟨𝜌0⟩(1,2,3)𝜓
(𝑡) for the three parties model. Nonzero

parameters are: 𝜔1 = 𝜔2 = 𝜔3 = 0.1, 𝜆1 = 𝜆2 = 𝜆3 = 0.025, 𝛾1 = 1, 𝜏1 = 0.5. Initial state is such that⟨𝜌0⟩(1)𝜓 (0) = 0.7, ⟨𝜌0⟩(2)𝜓 (0) = 0.6, ⟨𝜌0⟩(3)𝜓 (0) = 0.5. In the inset, the time evolution of the entropy 𝑆. (B) Same plots
as in (A) with 𝛾2 = 1, 𝛾1 = 0, and the same other parameters and initial conditions. (C) Same plots as in (A) with
𝛾3 = 1, 𝛾1 = 0, and the same other parameters and initial conditions. (D) Same plots as in (A) with 𝛾4 = 1, 𝛾1 = 0,
and the same other parameters and initial conditions.

with 𝜔1,2,3 ≥ 0, 𝜆1,2,3 ≥ 0, and where the interaction term𝐻𝑖𝑛𝑡 is assumed to be

𝐻𝑖𝑛𝑡 = 𝛾1 𝑎̂
†
1
𝑎̂2𝑎̂3 + 𝛾2 𝑎̂

†
1
𝑎̂
†
2
𝑎̂3 + 𝛾3 𝑎̂

†
1
𝑎̂2𝑎̂

†
3
+ 𝛾4 𝑎̂

†
1
𝑎̂
†
2
𝑎̂
†
3
+ h.c., (29)

which contains all the possible cubic terms related to the ways the three parties could mutu-
ally interact, and where 𝛾𝑘 ≥ 0, 𝑘 = 1, 2, 3, 4. Here, h.c. stands for hermitian conjugate. This
is needed if we require 𝐻 = 𝐻†. The CAR for the operators involved extend those in (20) to
three dimensions. To clarify the effect of each term in 𝐻𝑖𝑛𝑡, in our numerical simulations, we
always assume that only one of the parameters 𝛾𝑘 is different from zero. Of course, one can eas-
ily relax this assumption to create more complex dynamics considering various terms in 𝐻𝑖𝑛𝑡
acting simultaneously.
Some numerical results for different cases of𝐻𝑖𝑛𝑡 are shown in Figure 5, where the four possible

triple interactions are considered. Here, we plot the functions
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16 BAGARELLO and GARGANO

⎧⎪⎪⎨⎪⎪⎩
⟨𝜌0⟩(1)𝜓 = Tr

[
𝜌𝜓(𝜌0 ⊗ 2 ⊗ 2)

]
,⟨𝜌0⟩(2)𝜓 = Tr

[
𝜌𝜓(2 ⊗ 𝜌0 ⊗ 2)

]
,⟨𝜌0⟩(3)𝜓 = Tr

[
𝜌𝜓(2 ⊗ 2 ⊗ 𝜌0)

]
,

(30)

which extend those in (25), and are a measure of the members’ will to vote “yes.”
We notice that most of the results can be understood by following the same analysis, based on

the perturbative approach, proposed in the previous section for the single-party and the two-party
cases. Hence, for instance, the case𝐻𝑖𝑛𝑡 = 𝛾1𝑎̂

†
1
𝑎̂2𝑎̂3 + h.c corresponds to a dynamics in which all

themembers of the parties tend to vote “yes” (panel (A)), whereas the case𝐻𝑖𝑛𝑡 = 𝛾4𝑎̂
†
1
𝑎̂
†
2
𝑎̂
†
3
+ h.c

implies that themembers of vote “yes,” whereas the others vote “no” (panel (D)). They suggest
a globally collaborative and a partly noncollaborative behavior. Other cases in the other panels
follow straightforwardly.

Remark. It is worth observing that the perturbative approach considered before for one or two par-
ties is much less clear in this case, with three different parties. The presence of too many agents
makes the global dynamicsmuchmore complicated, and the perturbation expansion in, for exam-
ple, (16) is less explicative of the full dynamics, especially when the strength of 𝐿,1 is lower than
that of𝐻, that is, 𝜏1 is smaller as compared to the other parameters of the model.

The second set of experiments is performed by adding a second Lindblad operator that forces
the members of  to vote “no,” opposite to the choice of . In particular, the Lindblad operator
governing this mechanism is

𝐿,1 = 𝜅𝑎̂
†
2
, (31)

with 𝜅 > 0. According to the analysis performed in the previous section, this term forces the
generic member of  to jump in a state representing the vote “no.” We also suppose that the
Hamiltonian is the same defined in (26). Numerical results are shown in Figure 6, for 𝜅 = 0.1,
lower than 𝜏1 = 0.5, which fixes the strength of 𝐿,1, and the other parameters are as in the pre-
vious experiments. The results are in agreement with what is expected, and governed mainly by
the interaction between the parties  and . In all cases, the members of  are forced to vote
“no,” given that ⟨𝜌0⟩(2)𝜓 reaches asymptotic values that are always below 0.5, and most often even
below 0.2. The case 𝛾1 > 0 and 𝛾2 > 0, panels (A) and (B), depict a complete cooperation between
the party  and , in agreement with the previous experiment. The noncooperative attitude
for  and  is instead obtained in the case 𝛾3 > 0 and 𝛾4 > 0, panels (C) and (D).

4 CONCLUSIONS

We have proposed a dynamical approach based on the GKLS equation for the analysis of the
time evolution of a quantum parliament, whose members are asked to approve or not a cer-
tain law. In particular, we have analyzed in some detail those terms in the model that produce
a collaborative and a noncollaborative behavior, to discriminate between the two. Our approach is
deduced from the idea that a small system is influenced by the external environment, and each
state of the system, representing the decision of a generic member of a party, evolves with the
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BAGARELLO and GARGANO 17

F IGURE 6 (A) The time evolution of the expected value ⟨𝜌0⟩(1,2,3)𝜓
(𝑡) for the three parties model with the add

of a second Lindblad operator 𝜅𝑎̂†2 . Nonzero parameters are: 𝜅 = 0.1, 𝜔1 = 𝜔2 = 𝜔3 = 0.1, 𝜆1 = 𝜆2 = 𝜆3 = 0.025,
𝛾1 = 1, 𝜏1 = 0.5. Initial state is such that ⟨𝜌0⟩(1)𝜓 (0) = 0.7, ⟨𝜌0⟩(2)𝜓 (0) = 0.6, ⟨𝜌0⟩(3)𝜓 (0) = 0.5. In the inset the time
evolution of the entropy 𝑆. (B) Same plots as in (A) with 𝛾2 = 1, 𝛾1 = 0, and the same other parameters and initial
conditions. (C) Same plots as in (A) with 𝛾3 = 1, 𝛾1 = 0, and the same other parameters and initial conditions.
(D) Same plots as in (A) with 𝛾4 = 1, 𝛾1 = 0, and the same other parameters and initial conditions.

aforementioned GKLS equation. In particular, the various members (the small-system) can be
influenced by some leaders’ influence (the environment), with the possibility that the members
of different parties can interact between them (in a collaborative/noncollaborative way). We have
supposed that the interactions betweenmembers are described by aHermitianHamiltonian, con-
taining reversible effects, whereas the influence of the leaders is a unidirectional effect described
by Lindblad operators. With this approach, we avoid the use of non-Hermitian methods, like
in Refs. 29, 30 for different macrosystems, allowing for the standard assumptions to derive the
dynamics with operators in quantum mechanics. It is clear that the models proposed here can
be adapted to other systems, of the kind discussed in the past, and a comparison between the
efficiency of the various approaches is surely interesting and worth to be carried out.
We also believe that a strong link between our approach and game theory can be made in the

future. In fact, game theory applied to politics and voting dynamics is known to model well the
strategic decision making of voters, parties, and other political actors (see Refs. 31–33 for recent
results). A game can be defined as a set of rules that describe how voters and parties make deci-
sions and the consequences of those decisions. This is also partially connected with the so-called
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18 BAGARELLO and GARGANO

(𝐻, 𝜌)-induced dynamics, which links our approach to the introduction of a set of rules that adjust
the Hamiltonian and drive the dynamics of the system (Refs. 16, 17). We believe that we can
slightly modify the general ideas of (𝐻, 𝜌)-induced dynamics to the context of GKSL dynamics,
specifically to the Lindblad operators. However, this would raise questions about the Markovian-
ity of the process, opening up the possibility for interesting developments. These are part of our
future plans.
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