451 research outputs found

    Event-triggering architectures for adaptive control of uncertain dynamical systems

    Get PDF
    In this dissertation, new approaches are presented for the design and implementation of networked adaptive control systems to reduce the wireless network utilization while guaranteeing system stability in the presence of system uncertainties. Specifically, the design and analysis of state feedback adaptive control systems over wireless networks using event-triggering control theory is first presented. The state feedback adaptive control results are then generalized to the output feedback case for dynamical systems with unmeasurable state vectors. This event-triggering approach is then adopted for large-scale uncertain dynamical systems. In particular, decentralized and distributed adaptive control methodologies are proposed with reduced wireless network utilization with stability guarantees. In addition, for systems in the absence of uncertainties, a new observer-free output feedback cooperative control architecture is developed. Specifically, the proposed architecture is predicated on a nonminimal state-space realization that generates an expanded set of states only using the filtered input and filtered output and their derivatives for each vehicle, without the need for designing an observer for each vehicle. Building on the results of this new observer-free output feedback cooperative control architecture, an event-triggering methodology is next proposed for the output feedback cooperative control to schedule the exchanged output measurements information between the agents in order to reduce wireless network utilization. Finally, the output feedback cooperative control architecture is generalized to adaptive control for handling exogenous disturbances in the follower vehicles. For each methodology, the closed-loop system stability properties are rigorously analyzed, the effect of the user-defined event-triggering thresholds and the controller design parameters on the overall system performance are characterized, and Zeno behavior is shown not to occur with the proposed algorithms --Abstract, page iv

    Synchronization of multiple rigid body systems: a survey

    Full text link
    The multi-agent system has been a hot topic in the past few decades owing to its lower cost, higher robustness, and higher flexibility. As a particular multi-agent system, the multiple rigid body system received a growing interest since its wide applications in transportation, aerospace, and ocean exploration. Due to the non-Euclidean configuration space of attitudes and the inherent nonlinearity of the dynamics of rigid body systems, synchronization of multiple rigid body systems is quite challenging. This paper aims to present an overview of the recent progress in synchronization of multiple rigid body systems from the view of two fundamental problems. The first problem focuses on attitude synchronization, while the second one focuses on cooperative motion control in that rotation and translation dynamics are coupled. Finally, a summary and future directions are given in the conclusion

    Active-passive dynamic consensus filters: Theory and applications

    Get PDF
    ”This dissertation presents a new method for distributively sensing dynamic environments utilizing integral action based system theoretic distributed information fusion methods. Specifically, the main contribution is a new class of dynamic consensus filters, termed active-passive dynamic consensus filters, in which agents are considered to be active, if they are able to sense an exogenous quantity of interest and are considered to be passive, otherwise, where the objective is to drive the states of all agents to the convex hull spanned by the exogenous inputs sensed by active agents. Additionally, we generalize these results to allow agents to locally set their value-of-information, characterizing an agents ability to sense a local quantity of interest, which may change with respect to time. The presented active-passive dynamic consensus filters utilize equations of motion in order to diffuse information across the network, requiring continuous information exchange and requiring agents to exchange their measurement and integral action states. Additionally, agents are assumed to be modeled as having single integrator dynamics. Motivated from this standpoint, we utilize the ideas and results from event-triggering control theory to develop a network of agents which only share their measurement state information as required based on errors exceeding a user-defined threshold. We also develop a static output-feedback controller which drives the outputs of a network of agents with general linear time-invariant dynamics to the average of a set of applied exogenous inputs. Finally, we also present a system state emulator based adaptive controller to guarantee that agents will reach a consensus even in the presence of input disturbances. For each proposed active-passive dynamic consensus filter, a rigorous analysis of the closed-loop system dynamics is performed to demonstrate stability. Finally, numerical examples and experimental studies are included to demonstrate the efficacy of the proposed information fusion filters”--Abstract, page iv

    Multi Agent Systems

    Get PDF
    Research on multi-agent systems is enlarging our future technical capabilities as humans and as an intelligent society. During recent years many effective applications have been implemented and are part of our daily life. These applications have agent-based models and methods as an important ingredient. Markets, finance world, robotics, medical technology, social negotiation, video games, big-data science, etc. are some of the branches where the knowledge gained through multi-agent simulations is necessary and where new software engineering tools are continuously created and tested in order to reach an effective technology transfer to impact our lives. This book brings together researchers working in several fields that cover the techniques, the challenges and the applications of multi-agent systems in a wide variety of aspects related to learning algorithms for different devices such as vehicles, robots and drones, computational optimization to reach a more efficient energy distribution in power grids and the use of social networks and decision strategies applied to the smart learning and education environments in emergent countries. We hope that this book can be useful and become a guide or reference to an audience interested in the developments and applications of multi-agent systems

    Resilient Output Consensus Control of Heterogeneous Multi-agent Systems against Byzantine Attacks: A Twin Layer Approach

    Full text link
    This paper studies the problem of cooperative control of heterogeneous multi-agent systems (MASs) against Byzantine attacks. The agent affected by Byzantine attacks sends different wrong values to all neighbors while applying wrong input signals for itself, which is aggressive and difficult to be defended. Inspired by the concept of Digital Twin, a new hierarchical protocol equipped with a virtual twin layer (TL) is proposed, which decouples the above problems into the defense scheme against Byzantine edge attacks on the TL and the defense scheme against Byzantine node attacks on the cyber-physical layer (CPL). On the TL, we propose a resilient topology reconfiguration strategy by adding a minimum number of key edges to improve network resilience. It is strictly proved that the control strategy is sufficient to achieve asymptotic consensus in finite time with the topology on the TL satisfying strongly (2f+1)(2f+1)-robustness. On the CPL, decentralized chattering-free controllers are proposed to guarantee the resilient output consensus for the heterogeneous MASs against Byzantine node attacks. Moreover, the obtained controller shows exponential convergence. The effectiveness and practicality of the theoretical results are verified by numerical examples

    Engineering Emergence: A Survey on Control in the World of Complex Networks

    Get PDF
    Complex networks make an enticing research topic that has been increasingly attracting researchers from control systems and various other domains over the last two decades. The aim of this paper was to survey the interest in control related to complex networks research over time since 2000 and to identify recent trends that may generate new research directions. The survey was performed for Web of Science, Scopus, and IEEEXplore publications related to complex networks. Based on our findings, we raised several questions and highlighted ongoing interests in the control of complex networks.publishedVersio

    Self-adaptive multi-agent systems for aided decision-making : an application to maritime surveillance

    Get PDF
    L'activité maritime s'est fortement développée ces dernières années et sert de support à de nombreuses activités illicites. Il est devenu nécessaire que les organismes impliqués dans la surveillance maritime disposent de systèmes efficaces pour les aider à identifier ces activités illicites. Les Systèmes de Surveillance Maritime doivent observer de manière efficace un espace maritime large, à identifier des anomalies de comportement des navires évoluant dans l'espace en question, et à déclencher des alertes documentées si ces anomalies amènent à penser que les navires ont un comportement suspect. Nous proposons un modèle générique de système multi-agents, que nous appelons MAS4AT, capable de remplir deux des différents rôles d'un système de surveillance : la représentation numérique des comportements des entités surveillées et des mécanismes d'apprentissage pour une meilleure efficacité. MAS4AT est intégré au système I2C.The maritime activity has widely grow in the last few years and is the witness of several illegal activities. It has become necessary that the organizations involved in the maritime surveillance possess efficient systems to help them in their identification. The maritime surveillance systems must observe a wide maritime area, identify the anomalies in the behaviours of the monitored ships et trigger alerts when these anomalies leads to a suspicious behavior. We propose a generic agent model, called MAS4AT, able to fulfil two main roles of a surveillance system: the numerical representation of the behaviours of the monitored entities and learning mechanisms for a better efficiency. MAS4AT is integrated in the system I2C

    Optimized state feedback regulation of 3DOF helicopter system via extremum seeking

    Get PDF
    In this paper, an optimized state feedback regulation of a 3 degree of freedom (DOF) helicopter is designed via extremum seeking (ES) technique. Multi-parameter ES is applied to optimize the tracking performance via tuning State Vector Feedback with Integration of the Control Error (SVFBICE). Discrete multivariable version of ES is developed to minimize a cost function that measures the performance of the controller. The cost function is a function of the error between the actual and desired axis positions. The controller parameters are updated online as the optimization takes place. This method significantly decreases the time in obtaining optimal controller parameters. Simulations were conducted for the online optimization under both fixed and varying operating conditions. The results demonstrate the usefulness of using ES for preserving the maximum attainable performance
    corecore