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Increasing research attention has been placed towards distributed dynamic systems
that integrate sensing, computation, communication and physical processes. A promi-
nent feature of such systems is communication among subsystems via network medi-
ums, and distributed estimation and control schemes can enable distributed dynamic
systems to carry out complicated tasks in a cooperative manner. Utilization of net-
works and exposure to the physical environment means that distributed systems are
more vulnerable to adversaries that include attacks, faults, and disturbances. In prac-
tical distributed systems, a wide range of adversaries exist in various forms (such as
deception attack and denial-of-service attack) that affect various channels (such as the
sensor channel, communication channel and actuator channel). This thesis focuses
on the important topic of developing resilient estimation and control schemes for dis-
tributed dynamic systems to improve the safety and performance in the presence of
adversaries.

Firstly, the simultaneous presence of disturbances and attacks on distributed sys-
tems is tackled by a novel three-stage estimation approach which includes anti-disturbance
estimation, optimal attack detection and detection-triggered attack-resilient estima-
tion. This approach effectively decouples the influence of multiple disturbances and
false data injection attacks existing on the same channel.

In some cases, heterogeneous attacks on different channels can be simultaneously
injected to have a joint effect on distributed systems. Utilizing a novel event-based
update scheme, an adaptive term and a distributed disturbance observer, an event-
based distributed estimation approach is introduced to deal with the joint effects
of aperiodic denial-of-service attacks on the communication channel and unknown
deception attacks on the sensor channel.

While the previous works deal with disturbances and attacks through compensa-
tion and attenuation, some attacks, namely the sparse injection attacks on sensors
are potentially unbounded and cannot be dealt with the observer-based compensation
approach. In such cases, it is more desirable to isolate and remove the sensor chan-
nels that are under attack. In the third section, a switching sparse attack detector
based on a monitoring function utilizes the sensing redundancy to identify and remove
the attacked sensor channels, and a backstepping control scheme is designed for the
practical implementation of the proposed algorithm on a robotic manipulator.

In the final section, adversaries on the actuator channel are studied, where the
challenging topic of unknown direction faults on multi-input-multi-output distributed
systems is dealt with novel Nussbaum functions, and a distributed containment control
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scheme is proposed for a network of uncertain nonlinear agents. Moreover, an event-
triggering mechanism is introduced to avoid continuous communication among agents.

The main contribution of this thesis is presenting a framework for the resilient
estimation and control of distributed network systems against a wide range of adver-
saries, including but not limited to injection attacks, denial of service attacks, actuator
faults and disturbances. The approaches introduced in each chapter of this thesis have
compelling features that can be either implemented on their own, or integrated with
other existing control and estimation schemes to enhance the resilience of distributed
systems.
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Chapter 1

Introduction

1.1 Background

Recent years have witnessed rapid development of distributed control systems, which

features communication between sensors, actuators, and controllers across a communi-

cation network [2, 3, 4, 5, 6]. Advantages of distributed systems over their centralised

counterparts include scalability, reduced communication burden, increased area of cov-

erage and ease of maintenance and diagnosis. Distributed control systems have been

applied in a wide range of fields including smart grids, remote monitoring, robotics,

transportation and telecommunications. Through the tight integration of computing,

communication and control technologies, distributed techniques have been utilised to

form cyber-physical systems [7, 8]. From an algorithmic perspective, the main tasks to

be carried out by a distributed control system include distributed estimation, which in-

volves combination of local information from agents in a distributed manner to obtain

the estimation of global information; and distributed control (also known as coopera-

tive control), which is the coordination of agents’ behavior by transmission/reception

of information to/from other controllers.

On the other hand, several factors, including utilization of wireless connection, ex-

posure to the physical environment and wide area of coverage means that distributed

control systems are more vulnerable to various types of adversaries, including but

17



1.1. BACKGROUND 18

not limited to disturbances, faults, and cyber-attacks [8, 9]. Such adversaries can be

applied to various channels (sensor channel, communication channel, actuator chan-

nel, etc.) of the distributed control system in various forms (deceptive signal, false

data, denial-of-service, etc.). The typical adversaries faced by the distributed dynamic

system are depicted in Figure 1.1. It is of great significance to place security and re-

silience against adversaries into consideration in the design of distributed estimation

and control methods. Resilient estimation and control aim to enhance the resilience of

distributed dynamic systems against adversaries through approaches such as detection,

estimation, compensation, isolation, and tolerance. The topic of resilient estimation

and control have garnered considerable research interest in recent years. However,

in spite of the progress, it has been noted that some gaps are still withstanding in

research of resilient estimation and control for distributed dynamic systems.

Figure 1.1: Adversaries in distributed dynamic systems.

The key objective of distributed estimation is for all agents in the distributed

system to acquire full knowledge of the state for the controller to make informed deci-

sions. In a distributed dynamic system, the complete state of the system is not always

accessible to all agents, which makes the distributed estimation problem challenging.

Here, we provide a general formulation of the distributed estimation problem for linear

systems. Consider a linear dynamic system of the following form:

ẋ(t) = Ax(t) +Bd(t), (1.1)

where x(t) ∈ Rnx denotes the state of the system, d(t) ∈ Rnd is the system disturbance

or process noise, and A and B are matrices with appropriate dimensions. Assume that
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the state x is monitored by N sensors, and the N sensors form a cooperative network

whose topology can be described by a digraph G. The measurement model of the ith

sensor can be given by

yi(t) = Cix(t) +Divi(t), ∀i = 1, . . . , N, (1.2)

where yi(t) ∈ Rny denotes the measurement from the ith sensor, vi(t) ∈ Rnv is the

sensor disturbance or communication noise, and Ci and Di are matrices with ap-

propriate dimensions. It should be noted that since sensors in a spatially dispersed

network sometimes only have partial measurements of the state to be estimated, the

measurement matrix Ci may not always be of full rank. Denote by x̂i(t) the estimate

transmitted by the ith sensor, and a typical distributed estimator structure can be

presented as [10, 11, 12, 13]

˙̂xi(t) = Ax̂i(t) +Ki(yi − Cix̂i) +
∑
j∈Ni

aijLij(x̂i − x̂j), (1.3)

whereKi and Lij are the gain matrices on the ith agent. Depending on the performance

requirements and system restrictions, the estimator gain matrices can be selected by

the user to follow some conditions, or solved with linear matrix inequalities. It is shown

in (1.3) that the estimation x̂i is updated by both its own measurement (referred to as

local innovation) and the estimation from neighbouring agents (referred to as global

innovation).

In this thesis, some open research problems will be addressed, including detection

and compensation of false data injection attacks in the presence of multiple distur-

bances, resilient estimation for systems under multiple heterogeneous attacks, detec-

tion and isolation of sparse injection attacks for nonlinear systems, and tolerance of

unknown direction actuator faults for uncertain MIMO agents performing contain-

ment control. In the following section, a systematic overview of the state-of-the-art

in resilient estimation and control for distributed dynamic systems will be given. The

estimation and control approaches will be categorised by the type of adversary (false

data injection, denial-of-service, sparse injection, disturbances and faults) in consider-

ation.
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1.2 Overview of Related Work

1.2.1 Resilient Estimation

1) False Data Injection Attacks

False data injection (FDI) attack, also referred to as deception attack, is a malicious

signal sent by the attacker with the intent of corrupting the integrity of information.

Replay attack is another widely studied type of adversary that can be considered as a

special case of false data injection attack. FDI attacks are typically sent through the

measurement channel of distributed dynamic systems, such as through the sensors in

a monitoring network. As shown in [14], FDI attacks do not require prior knowledge

of the internal model or the network topology. Therefore, false signals could easily

be mixed with the actual sensor measurement and degrade the accuracy of the esti-

mation or even destabilise the state estimator. FDI attacks are shown to be able to

disrupt the integrity of practical distributed systems and cause severe security loss in

numerous real-life incidents [15, 16]. Motivated by information security concerns, it

is of great importance to investigate secure distributed state estimation methods with

enhanced resilience to FDI attacks. In [17], a χ2 failure detector towards FDI attacks

on cyber-physical systems was proposed. In [18], Wang et al. proposed a FDI attack

detection and isolation scheme based on unknown input observers. The authors of [19]

investigated secure state estimation based on satisfiability modulo theory; and a joint

state and deception attack estimator via sliding mode was introduced in [20]. [21]

adopts a detector to partition the agents into sets of attacked/attack-free and designs

a saturation-based innovation to limit the effect of attack signals. Many other effective

methods have been given for FDI attack detection and distributed estimation in recent

literature [22, 23, 24, 25, 26, 27, 28]. In existing works, the attacks are often modelled

as an unknown signal that follows some type of boundedness assumption.

It is well known that disturbances from both internal and external sources ex-

ist in distributed control systems. The phenomenon of disturbances being coupled

with attack signals poses a major challenge to the detection and rejection of attacks.

Attack-resilient estimation in the presence of a single disturbance has been studied in
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recent literature. In [29], Guan et al. proposed a resilient attack detection estimator to

deal with the simultaneous effects of FDI attacks, jamming attacks and norm-bounded

disturbances. In [30], distributed estimation in the presence of FDI attacks on sensor

communication edges and Gaussian disturbances was studied. In [1], Ugrinovskii pro-

posed a novel distributed observer structure that is resilient to biasing attacks in the

presence of norm-bounded disturbances via active feedback control.

2) Denial-of-Service Attacks

Denial-of-service (DoS) attacks are a type of adversary with the intent of blocking

the data transmission in distributed systems. DoS could either be inflicted on the

communication or sensor channel of the distributed control system. From a modeling

perspective, the intervals of DoS attack can be modelled by a time sequence Hj =

[hj, hj + ηj), where hj represents the beginning instant of the attack, and ηj > 0

the duration of the attack. The length of the attack can either be described by a

probability distribution, or an aperiodic set of intervals that is restricted through

some boundedness constraints. It should be noted that the effect of DoS attacks is

completely heterogeneous to the effect of deception attacks and cannot be dealt with

a uniform approach. Existing work on resilient estimation against DoS attacks can be

divided into several lines of work. To highlight a few, [31] proposed a game theoretic

approach to model the decision-making of sensors under DoS attacks with energy

constraint; in [32], based on a unified compensation model for DoS attacks obeying

the Bernoulli distribution, the distributed secure state estimation problem was solved

by using Kalman filters; an estimator with resilience towards DoS attacks was designed

by solving a dynamic game with the reinforcement learning method in [33]. In [34], the

performance of a discrete-time distributed system subject to network-induced delays

and DoS attacks was analysed by placing an upper bound on the number of consecutive

transmissions that are affected by the DoS.

It is noted that most of the works introduced above assume that the DoS attacks

follow a probability distribution, and require continuous data transmission among

the agents. Inspired by distributed estimation approaches using event-based updates

[35, 36, 37], more recently, some works have designed event-based update schemes
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to deal with aperiodic DoS attacks. The covariance intersection method and the

collectively observable condition were utilised in [38] to design resilient distributed

Kalman filters. In [39], a multi-mode switching estimator and a dynamic trigger

threshold were introduced for DoS resilient estimation for nonlinear systems. In [40],

a distributed interval estimator was developed based on an adaptive event-triggered

protocol that is based on the latest update.

3) Sparse Attacks

From the previous sections, it can be concluded that both false data injection and

denial-of-service attacks are required to follow some boundedness constraints. On the

contrary, sparse attacks, also referred to as Byzantine attacks or simply sensor attacks

in some literature, assume that the state/measurement of the attacked agents are

arbitrary, under the condition that the adversary can only target a part of sensors.

In the presence of sparse attacks, it is natural to consider approaches that identify

and isolate the attacked sensors, and reconstruction of the correct state under sparse

attacks is intrinsically a combinatorial problem.

Resilient estimation against sparse attacks has been widely investigated in recent

years. The observability of systems under sparse attacks was analysed in [41], and

a definition called strong observability was further defined in [42]. For discrete-time

linear time-invariant systems, the secure state estimation can be performed by col-

lecting the past τ consecutive measurements and performing static batch optimization

[43, 44, 45, 46]. In addition to the static batch optimization, many effective methods

have been proposed, including the set cover approach [47], satisfiability modulo the-

ory [48], and optimal graph searching [49]. However, the aforementioned results are

computationally demanding, and cannot achieve real time estimation.

For continuous-time linear time-invariant systems, secure state estimation under

sparse attacks has also been studied. To identify sparse attacks, multi-model observers

were designed in [22] and [50]. But the schemes proposed in [22] and [50] suffer from

heavy computational burden because multiple observers are required to run in paral-

lel. With the assumption that the attack signals are bounded, an adaptive switching

mechanism was introduced in [51] to search for the attack mode. In a similar vein,
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a descriptor form sliding mode observer was designed for secure state estimation un-

der sparse attacks, under the conditions that both the attack and its derivative are

bounded [52]. However, for sparse attacks, the boundedness assumptions in [51] and

[52] are unfavorable. In [53], a monitored state observer was introduced for linear

systems under location-varying attacks. The same as in [52], only some sufficient con-

ditions were given in [53] for the existence of estimators in the form of multiple LMIs,

and such LMIs may even have no solutions in some cases.

1.2.2 Resilient Control

Another widely-researched topic in distributed dynamic systems is performing coordi-

nation tasks by designing suitable distributed control strategies. Typical applications

of distributed control include cooperative control of industrial systems such as manip-

ulators [54, 55, 56], formation control for robots [57, 58] and scheduling of smart grids

[59, 60].

In some aspects, the distributed control problem is analogous to that of distributed

estimation. However, some distinctions between distributed estimation and control can

be found in the problem and system formulation. Firstly, the distributed control task

can be categorised based on the number of leaders into leaderless consensus, leader-

following and containment control. Leaderless consensus is the control problem for all

agents in the distributed system to reach an agreement as a whole. Leader-following

control involves all follower agents to track the state of the single leader agent, and the

objective of containment control is to drive all followers into the convex hull spanned

by multiple leaders. Secondly, obtaining accurate models of practical industrial sys-

tems is a challenging task, and cooperative control for uncertain distributed systems

has received an increasing amount of attention [61, 62, 63, 64, 65, 66, 67]. Finally,

the actuator channel is also subject to security and reliability challenges, which is

motivation to consider resilient distributed control approaches.

During the practical operation of distributed control systems, the actuators of

agents may suffer from unknown faults, which could lead to performance degradation or

even accidents. Ensuring the stability and performance of distributed control systems
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under faults is a topic of both theoretical and practical importance. It is noted that

though the distributed control problem could also be faced with the aforementioned

false data injection, denial-of-service and sparse attacks, faults on the actuators are

the main type of adversary that is relatively unique to the distributed control problem,

and will be the focus of this section.

1) Known Direction Actuator Faults

A wealth of research has been carried out for resilient distributed control with ac-

tuator faults. Authors of [62] developed an adaptive distributed fault-tolerant control

scheme for actuator faults that can be modelled as a constant. A more practical and

challenging type of faults is where the effectiveness of the actuator and the additive

fault signal are time-varying. In these cases, the actuator signal of the ith agent can

be modelled as

ui(t) = bi(t)vi(t) + δi(t), i = 1, . . . , N, (1.4)

where vi(t) ∈ Rni is the control signal to be designed, and bi(t) ∈ Rni×ni and δi(t) ∈ Rni

are unknown. Aiming at time-varying additive faults and partial loss of effectiveness

faults, many effective adaptive fault-tolerant control schemes have been proposed [65,

68, 69, 70, 71]. To name a few, [72] investigated fault-tolerant leader-following for

leaders with uncertain dynamics via a data-driven approach. A reinforcement learning

method was introduced in [73] for the containment control problem. Both sensor

and actuator faults were considered in [74], where adaptive and H∞ controllers were

introduced and compared. On the other hand, many engineering systems are multi-

input multi-output (MIMO) systems, where ni in (1.4) is larger than 1, which makes

the resilient control problem more challenging. A number of works have dealt with

the fault-resilient control problem for distributed MIMO systems [68, 75, 76].

2) Unknown Direction Actuator Faults

It has been noted that the aforementioned work are carried out under the assump-

tion that the control directions and fault directions are known, that is, bi(t) > 0.

However, in many cases, the control/fault directions may be unknown in the con-

troller design process, where practical examples of unknown control direction include

un-calibrated visual servoing and autopilot design of ships [77]. A typical approach to
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deal with unknown control directions is to introduce a Nussbaum function, and this

approach was only recently extended to distributed systems whose control directions

are unknown [78, 79, 80]. However, the application of the Nussbaum function approach

for distributed systems means that additions involving multiple Nussbaum functions

exist for multiple agents in the distributed system, and their effects may counteract

each other, therefore [78, 79, 80] assumed that all unknown control directions in the

distributed system are identical. In another line of work, [81, 82, 83] applied a com-

pensator network to tackle unknown nonidentical control directions, with the trade-off

being increased order of the closed-loop system. The control for MIMO systems with

unknown control direction is a more challenging problem. Some novel Nussbaum func-

tions which ensure that the effects of the multiple Nussbaum functions reinforce rather

than counteract each other were introduced in [84]. In [85], a multiple-model adaptive

control scheme was proposed, where for a q-input q-output system, 2q controllers were

required to run in parallel, and 2q estimators were required for each unknown nominal

controller parameter, resulting in considerable computation burden.

In spite of the progress, all the aforementioned research make the assumption that

the unknown control directions are constant and do not experience jumps. Unknown

direction actuator faults, which introduce jumps to the actuation directions are a type

of actuator faults that exists on practical engineering systems such as, spacecraft [86],

power systems [87] and vehicles [88]. The jumps in actuator directions introduced by

the unknown direction faults make the existing Nussbaum function based approaches

no longer valid. Resilient control for distributed systems with time-varying unknown

control direction faults is a challenging problem that has yet to be addressed.

1.3 Contributions and Organization

This thesis aims to address the gaps in current research on resilient estimation and

control. The main contributions of this thesis can be summarised as follows.
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Figure 1.2: Organization and contents of this thesis.

• For distributed systems with multiple disturbances and false data injection at-

tacks, a multi-step resilient estimation approach consisting of a composite hier-

archical anti-disturbance observer, an attack detector and a detection-triggered

attack observer is introduced. Compared with existing results, the proposed

approach separates the influence of disturbances and attacks to enhance the

resilience of distributed systems.

• For distributed systems under both deception and denial-of-service attacks, a

novel event-based distributed estimator is designed. A novel event-based com-

munication scheme, an adaptive term and a distributed disturbance observer

are introduced, which reduces the communication burden and guarantees the

estimation performance under the joint influence of heterogeneous attacks and

disturbances.

• For nonlinear systems under sparse injection attacks, a monitoring function and a

switching estimator are proposed. By utilizing redundancy of measurements, the

sparse attack channels can be identified and subsequently removed to guarantee

the correctness of estimation. This is the first research to consider sparse attack-

resilient estimation for nonlinear systems.



1.3. CONTRIBUTIONS AND ORGANIZATION 27

• An adaptive resilient containment control scheme is designed for a class of het-

erogeneous distributed MIMO systems with unknown direction faults. Through

introduction of novel Nussbaum function-based controllers and a novel contradic-

tion statement, the unknown system parameters and unknown direction jumps

in the actuators are dealt with successfully. Compared with existing research,

the proposed resilient control scheme allows the fault directions to be unknown

and time-varying and only requires the leading principle minors of the control

gain matrices to be nonzero, which relaxes the restrictions on the CGMs and

enhances system reliability.

As shown in Figure 1.2, this thesis consists of six chapters, and a brief introduction

of each chapter is presented as follows.

In Chapter 1, the background and motivation of the estimation and control problem

for distributed dynamic systems are introduced. Then, we review the current research

progress related to resilient estimation and control. The main contributions of this

thesis are also given.

In Chapter 2, related preliminaries including mathematical notations, stability

theory and basic algebraic graph theory are introduced.

In Chapter 3, the resilient estimation problem for distributed systems under mul-

tiple disturbances and false data injection attacks is considered. Disturbances and

attacks co-exist widely in practical systems and distributed state estimation of dis-

tributed systems in the simultaneous presence of disturbances and attacks has been

widely recognised as a challenging issue. In this chapter, an enhanced three-stage

approach for the detection and rejection of attacks is established. First, a multi-layer

distributed estimator with a disturbance observer layer is proposed. Then, an optimal

observer-based attack detection scheme is designed to specify an attack detection logic.

After disturbance rejection and attack detection, an attack-resilient estimator with a

dynamic detection-triggered structure is proposed to actively reject FDI attacks on-

line. This three-stage approach effectively separates the influence of disturbances and

attacks in the distributed estimation process, enabling multiple heterogeneous distur-

bances and attacks across the sensor network to be rejected. A numeric example and
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comparisons are provided to illustrate the effectiveness of the proposed approach.

In Chapter 4, we investigate the resilient estimation problem for distributed sys-

tem under heterogeneous attacks. Distributed control systems, particularly networked

cyber-physical systems are prone to various types of cyber-attacks and disturbances.

An event-based distributed estimation approach is introduced to deal with the joint

influence of DoS and deception attacks under disturbances. A distributed event-based

communication scheme is proposed to guarantee estimation performance in the pres-

ence of aperiodic DoS attacks and simultaneously reduce the data transmission bur-

den. A novel adaptive observer is constructed to compensate for deception attacks.

Moreover, a distributed disturbance observer is proposed for disturbance rejection.

Sufficient conditions for the estimator design are given, which take the joint effects of

DoS attacks and deception attacks into account. The proposed estimation approach is

capable of attack-resilient state estimation subject to both DoS and deception attacks

under disturbances and precludes Zeno phenomenon. Finally, a simulation example

on an IEEE 4-bus power grid demonstrates the feasibility and effectiveness of the

proposed approach.

In Chapter 5, resilient estimation for nonlinear engineering systems under sparse

attacks is addressed. Secure state estimation against sparse injection attacks and

disturbances is a challenging problem of both theoretical and practical importance,

and existing results mainly focus on linear systems despite many practical systems

being nonlinear. In this chapter, a novel secure state estimation scheme is proposed

for a class of nonlinear systems with application to robotic manipulators. A kind of

high-gain K-filters is constructed to estimate the unmeasured states, which can atten-

uate the disturbances to an arbitrary level. Moreover, a monitoring function and a

switching scheme are introduced, which successfully preclude attacked measurements

after a finite number of switching. With these efforts, the proposed estimation scheme

steers the estimation error into a residual set which can be made arbitrarily small by

properly choosing some design parameters, regardless of the disturbances and possibly

unbounded attacks. Both simulation and experimental results on a robotic manipula-

tor demonstrate the effectiveness of the proposed method.
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In Chapter 6, a novel output-feedback adaptive containment control scheme is pro-

posed for a class of heterogeneous multi-agent systems, where the agents are nonlinear

multi-input multi-output (MIMO) systems whose relative degrees are allowed to be dif-

ferent. Unlike existing results, we only require the leading principal minors of agents’

control gain matrices (CGMs) to be nonzero and take into account unknown direction

actuator faults, which relaxes the restrictions on CGMs and enhances system relia-

bility. The difficulties jointly caused by the unknown CGMs, unknown parameters,

and unknown jumps introduced by the actuator faults are successfully overcome by a

novel recursive contradiction argument based on some Nussbaum functions and a ma-

trix similarity transformation. Moreover, an event-triggering mechanism is introduced

to avoid continuous communication among agents and reduce the communication bur-

den. It is shown that all closed-loop signals are globally uniformly bounded and the

containment errors converge to a residual set that can be made arbitrarily small. Sim-

ulation results illustrate the effectiveness of the proposed scheme.

In Chapter 7, the thesis is summarised, and potential directions for future research

are pointed out.



Chapter 2

Preliminaries

2.1 Notations

In this section, some notations and definitions used throughout this thesis are given.

For a vector v(t), its Euclidean norm is denoted as ∥v(t)∥ =
√
vT(t)v(t). Cm

n =

n!
m!(n−m)!

, where ! is the factorial operator. supp(a(t)) denotes the set consisting of

indices corresponding to the non-zero elements of a(t). For a set S, |S| denotes its

number of nonzero elements. 1n denotes a column vector of dimension n with all

elements equal to 1, and In denotes the n × n identity matrix. PT represents the

transpose of the matrix P . P > 0 and P < 0 denote positive definiteness and negative

definiteness, respectively. λmax(A) denotes the largest eigenvalue of matrix A and

λmin(A) denotes the smallest eigenvalue of matrix A. For a real matrix M , we define

the operation H{M} as H{M} =M +MT.

Definition 2.1.1. The Kronecker product of a m×n matrix A and a p× q matrix B

is a mp× nq matrix denoted as A⊗B defined as

A⊗B =


a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 .

Definition 2.1.2. The function f is globally Lipschitz on R if there exists K ∈ R≥0

30
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such that |f(x)− f(y)| ≤ K∥x− y∥, ∀x, y ∈ Rn.

Lemma 2.1.1. (Young’s inequality, [89]). For a, b ≥ 0 and p, q ≥ 1 such that 1
p
+ 1

q
= 1

one has

ab ≤ 1

p
ap +

1

q
bq.

2.2 Basic Graph Theory

The topological features of a distributed system can be modelled using graphs. In

this section, we introduce some graph theory basics that are essential to distributed

estimation and control.

A graph denoted by G = (V , E ,A) with the index set V = {1, 2, . . . ,N} represents

a networked system with N agents. E ⊆ V × V denotes the set of edges. An edge of

the directed graph G is denoted by (i, j). An edge (j, i) ∈ E implies that information

can be transferred from agent j to agent i but not vice versa. In this case, agent j is an

in-neighbour of agent i, and agent i is an out-neighbour of agent j. If for any edge on

the graph, (i, j) ∈ E implies (i, j) ∈ E , then the graph is undirected. A = [aij] ∈ RN×N

denotes the adjacency matrix. Elements of the adjacency matrix aij > 0 ⇔ (j, i) ∈ E

are positive elements representing the directed information transmission, whereas the

adjacency element aij = 0 if no directed link exists from sensor j to sensor i. The set

of neighbors of node i is denoted by Ni = {j ∈ V : (j, i) ∈ E}. The Laplacian matrix

of the graph G is defined as

L = W −A,

where W = diagiN {wi} with the diagonal elements wi =
∑

j∈Ni
aij represents the

degree of the sensor node, and A is the adjacency matrix. It is clear that since L has

zero row sums, 0 is an eigenvalue of L associated with the eigenvector 1N .

A directed graph is strongly connected if there exist a directed path from every

agent to every other agent. A directed graph is complete if there is an edge from every

node to every other node. A directed tree is a directed graph, where every node has

exact one parent except for one node, called the root, and the root has directed paths
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to every other node. A spanning tree is a subset of the Graph G, which has all the

vertices covered with minimum possible number of edges. The existence of a spanning

tree in a undirected graph is equivalent to the undirected graph being connected. A

strongly connected graph contains at least one directed spanning tree, therefore the

existence of a spanning tree is a weaker condition than being strongly connected. The

Laplacian matrix L of a strongly connected graph has 0 as a simple eigenvalue, and

all nonzero eigenvalues have positive real parts.

Depending on the number of leaders, the topology of distributed systems can be

categorised as leaderless, leader-follower, and multiple leaders. For distributed systems

with multiple leaders, containment control can be carried out with the objective to

drive all followers into the convex hull spanned by multiple leaders. Assuming that

the leaders have no in-neighbors, the Laplacian matrix associated with a distributed

system with n leaders and m followers can be written as

L =

 L1 L2

0m×n 0m×m

 (2.1)

where L1 ∈ Rn×n contains the topology of the leaders and L2 ∈ Rn×m contains the

topology of followers.

Definition 2.2.1 ([90]). A square matrix A ∈ Rn×n is called a nonsingular M -matrix

if all its off-diagonal elements are non-positive, and all eigenvalues of A have positive

real parts.

Lemma 2.2.1. ([91]) Assume that for each of the followers, there exists at least

one leader that has a directed path to the follower. Then, each entry of −L−1
1 L2 is

non-negative, and all row sums of −L−1
1 L2 is equal to one.

Proof. Noting that L1 is a nonsingular M -matrix, the eigenvalues of L1 have non-

negative real parts. Noting that L contains a spanning tree, L1 is non-singular, and all

eigenvalues of L1 have non-negative real parts. Since each entry of L2 is non-positive,

it can be concluded that each entry of −L−1
1 L2 is non-negative. It can also be obtained

that
[
L1 L2

] 1n

1m

 = 0, and it follows that L11n = −L21m, which implies that

−L−1
1 L21m = 1n. Thus, each row sum of −L−1

1 L2 equals one.
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2.3 Basic Stability Theory

Consider the system

ẋ = f(x, t), x (t0) = x0, x ∈ Rn. (2.2)

The point x∗ ∈ Rn is called a equilibrium point of (2.2) if f(x∗, t) ≡ 0.

Definition 2.3.1. (Lyapunov Stability) The equilibrium point x∗ = 0 of (2.2) is

Lyapunov stable at t = t0 if for any constant ϵ > 0, there exists a δ (t0, ϵ) > 0 such

that

∥x (t0)∥ < δ =⇒ ∥x(t)∥ < ϵ, ∀t ≥ t0.

Definition 2.3.2. (Asymptotic Stability) For the system (2.2), the equilibrium point

x∗ = 0 is asymptotically stable if it is Lyapunov stable, and limt→∞ x(t) = 0. If

limt→∞ x(t) = 0 holds for any initial state in Rn, the equilibrium point is globally

asymptotically stable.

Definition 2.3.3. (Exponential Stability) For the system (2.2), the equilibrium point

x∗ = 0 is exponentially stable if there exist α > 0 and β > 0 such that

∥x(t)∥ < α∥x(0)∥e−βt

holds. If this inequality holds for any initial state in Rn, the equilibrium point is

globally exponentially stable.

Definition 2.3.4. (Positive Definite Function), A scalar function V (x) is locally

positive definite if V (0) = 0 and x ̸= 0 implies V (x) > 0 in a ball around the origin. If

the above properties hold for the entire space, the V (x) is said to be globally positive

definite.

Definition 2.3.5. (Lyapunov function) If the function V (x) is positive definite, has

continuous partial derivatives, and its time derivative V̇ (x) satisfies V̇ (x) ≤ 0, then

V (x) is a Lyapunov function.

Lemma 2.3.1. (Barbalat’s Lemma) If a function f(t) is uniformly continuous for t ∈

[0,∞), and
∫∞
0
f(t)dt exists, then limt→∞ f(t) = 0.
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Lemma 2.3.2. Let V : [0,∞) 7→ R and f be a constant. Then

V̇ ≤ −αV + f, ∀t ≥ t0 ≥ 0 (2.3)

implies that

V (t) ≤ e−α(t−t0)V (t0) +
f

α
− fe(α(t0−t))

α
, ∀t ≥ t0 ≥ 0 (2.4)

for any positive constant α.

Proof. First, multiply both sides of (2.3) with eαt, and we have

eαtV̇ + eαtαV ≤ eαtf. (2.5)

Noting that f is a constant, we can integrate both sides of (2.5) over [t0, t] and obtain

eαtV (t) ≤ eαt0V (t0) +
feαt

α
− feαt0

α
, (2.6)

Dividing both sides of (2.6) with eαt, we obtain (2.4) and the proof is complete. ■

Definition 2.3.6. (Nussbaum function, [92]) A continuously differentiable function

h(x) : [0,∞) 7→ (−∞,∞) is called a Nussbaum function if it satisfies

lim sup
y→∞

1

y

∫ y

0

h(x)dx = ∞

lim inf
y→∞

1

y

∫ y

0

h(x)dx = −∞.



Chapter 3

Resilient Distributed Estimation

Under Multiple Disturbances and

Injection Attacks

3.1 Introduction

False data injection (FDI) attacks do not require prior knowledge of the internal model

or the network topology, and false signals could easily be mixed with the actual sen-

sor measurement to destabilise the state estimator [14]. FDI attacks can disrupt the

integrity of information in networked systems, and lead to severe security loss, as is

evident in numerous real-life incidents [15, 16]. It is of great importance to investi-

gate secure distributed state estimation schemes with enhanced resilience towards FDI

attacks.

On the other hand, it is well known that disturbances from both internal and ex-

ternal sources exist in networked systems. The coupling of disturbance and attack

signals poses a major challenge to the detection and rejection of attacks. It is noted

that only a single source of disturbance was considered in existing works, which can be

described by either Gaussian [30] or norm-bounded variables [1, 29] and can be sepa-

rated from the attacks. However, in practical scenarios, multiple types of disturbances

35
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co-exist. When multiple sources of disturbances appear in the sensor measurements,

it is difficult to distinguish attack signals from disturbances. Detection and rejection

of FDI attacks for a network subject to multiple disturbances remains a challenging

and open problem.

In this chapter, an enhanced distributed state estimation approach with resilience

to multiple disturbances and FDI attacks is proposed. In many practical cases, a

distinction between disturbances and attacks is that while most disturbances are per-

sistent, the occurrence of FDI attacks is intermittent and irregular. This suggests that

it is possible to estimate and reject some disturbances in prior to the occurrence of

FDI attacks. Inspired by this phenomenon, a novel three-stage approach is proposed

to reject both multiple disturbances and FDI attacks. In the initial stages of estima-

tion, a multi-layer anti-disturbance estimator integrated with a disturbance observer

is proposed for simultaneous attenuation and compensation of multiple disturbances.

This stage can be considered as the calibration/initialization of the system. Subse-

quently, an optimal observer-based FDI attack detection algorithm in the presence of

disturbances is developed and adopted as a trigger to activate the attack estimator.

Finally, a detection-triggered attack-resilient estimator is introduced to actively reject

the effect of attacks. The considered adversaries do not require knowledge of the sys-

tem, measurements or the topology of the network. The main contributions of this

chapter are as follows:

1) For a networked system under multiple disturbances, an anti-disturbance esti-

mator with a novel multi-layer architecture is presented to achieve simultaneous state

estimation and disturbance rejection for a distributed system. Specifically, a distur-

bance observer is constructed in the inner layer to estimate and compensate for the

disturbances with partially known dynamics, and a robust H∞ filtering scheme is

employed in the outer layer to attenuate the remaining norm-bounded disturbances.

With the proposed disturbance rejection scheme, multiple sources of disturbances can

be dealt with simultaneously. Moreover, with the rejection of disturbances, the false

alarm rate of the subsequent attack detection strategy is significantly reduced.

2) A three-stage resilient distributed estimation approach consisting of anti-disturbance
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estimation, attack detection and attack-resilient estimation is proposed to simultane-

ously reject and attenuate multiple disturbances and FDI attacks in networked sys-

tems. The considered attack model is not assumed to have knowledge of the system,

and the number of considered attacks is not limited. Compared with existing meth-

ods that aim to mitigate or isolate the effects of FDI attacks, the proposed estimation

scheme estimates and compensates for FDI attacks to actively reject their effects whilst

the system remains online.

3.2 Problem Formulation

In this chapter, a sensor network with N sensor subsystems is considered. The

topology of the interacting sensor network is represented with a directed graph G =

(V , E ,A). The dynamics of the sensor systems and measurements are given by

ẋ = Ax+Gg(x, t) +Bw, (3.1)

yi = Cix+Hih(x, t) +Divi +Di
1di +Di

2fi, ∀i ∈ 1, ...,N , (3.2)

where x ∈ Rn and yi ∈ Rm are the state and the sensor measurement, respectively.

A,B,Ci, Di, D
i
1, D

i
2, G and Hi are known constant matrices with compatible dimen-

sions. g(x, t) and h(x, t) are known nonlinear functions. di are external disturbances.

fi are the FDI attacks satisfying |fi| ≤ f̄ ,∀t ≥ 0, where f̄ is an unknown constant.

The modelling of the FDIs is based on the principle that typically no prior knowledge

of FDIs should be known, and a similar attack model has been studied in [1, 93] and

[94]. In this case, the attacks are assumed to be absent in the initial stages of estima-

tion. w and vi are the norm-bounded disturbances in the system and measurements,

respectively.

Assumption 3.2.1. w and vi satisfy

∥w∥ ≤ β1, ∥vi∥ ≤ β2, (3.3)

where β1 and β2 are known positive constants.

Assumption 3.2.2. For any x1 and x2 ∈ Rn, the nonlinear functions g(x, t) and
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h(x, t) satisfy

g(0, t) = 0, ∥g (x1, t)− g (x2, t)∥ ≤ ∥U1 (x1 − x2)∥ ,

h(0, t) = 0, ∥h (x1, t)− h (x2, t)∥ ≤ ∥U2 (x1 − x2)∥ , (3.4)

where Ui (i = 1, 2) are known constant matrices.

The external disturbances di can be described by the following exogenous systems:

ḋi = Sidi, ∀i ∈ 1, ...,N , (3.5)

where Si are known constant matrices. The model in (3.5) can describe many dis-

turbances in practical engineering systems including Markov stochastic processes in

inertial sensors, wind gust in the environment, jitters and vibrations in various sensor

systems, and rotating mechanisms with eccentricity [95, 96].

Remark 3.2.1. The system model is a nonlinear model with norm-bounded distur-

bances and nonlinear items. The nonlinear items g(x, t) and h(x, t) are assumed to be

Lipschitz. In addition to the norm-bounded disturbances w and vi, which have been

considered in works such as [1, 27, 97] and [98], unknown external disturbances di on

the sensor measurements are considered in this chapter.

Remark 3.2.2. In this chapter, an assumption on the boundedness of the attack

is made. It is noted that some works do not prescribe the attack signals to follow

any particular structure or to be bounded. Examples include Byzantine attacks [99]

and unbounded sparse attacks [53]. However, for the Byzantine model, the attacker is

assumed to possess knowledge of the graph topology and the system dynamics, which

is not required in our model. Moreover, both the Byzantine and unbounded sparse

model limit the number of attacked sensors. Attack resilience cannot be guaranteed

for those cases if this limit is exceeded, while our model allows for the ‘worst case’

situation where all sensors are corrupted with FDI attacks.

It is clear from the measurement model that the external disturbances di and

attacks fi are coupled on the measurement information, which is the main focal point

of this chapter. The coupling of disturbances and attacks would cause great difficulties

in the detection and rejection of these signals. Moreover, in a distributed estimator

structure, the detrimental effects of di and fi will propagate across the network.
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3.3 Distributed Robust Anti-disturbance Estima-

tion

In this section, a novel distributed multi-layer estimator with disturbance rejection

capability is presented. The estimator comprises of two layers: 1) disturbance ob-

server layer, which estimates and compensates for the effect of external disturbances

across the network; 2) a robust H∞ estimator layer, which attenuates the effects of

additional norm-bounded disturbances and uncertainties to a predefined level. This

multi-layer architecture enables simultaneous compensation and attenuation for mul-

tiple disturbances, which is akin to the approach taken in CHADC [95, 100]. The main

objective of this estimator is to mitigate the influence of multiple disturbances on the

following attack detection and rejection efforts. This estimation approach is designed

to be performed in the initial stages of sensor network state estimation, in attack-free

environments where FDI attacks fi are absent.

For this purpose, the following multi-layer estimator structure is proposed:


˙̂xi = Ax̂i +Kiδi +Mi

∑
j∈Ni

aijηij +Gg(x̂i, t),

˙̂
di = Sid̂i + Liδi, ∀i ∈ V ,

(3.6)

where δi and ηij are the local and distributed innovations, respectively. The estimator

innovations utilise the state estimations from the local node i and its neighbouring

nodes j. The measurements and state estimates are processed at each sensor subsystem

rather than a fusion center. The local innovation δi and the distributed innovation ηij

are defined as δi = yi − Cix̂i −Di
1d̂i −Hih(x̂i, t),

ηij = x̂i − x̂j, ∀i ∈ V .
(3.7)

The first equation of (3.6), which comprises the state estimation layer of the esti-

mator, is updated by both the local innovation and the distributed innovation. The

second equation, which is the estimator for external disturbances d̂i, has a similar form

to a full order disturbance observer utilizing only the local innovations. Ki, Mi and Li

are the estimator gains to be computed. Note that the local innovations δi utilise not
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only the local measurement yi and the local estimated state xi, but also the estimated

value of disturbance di from the disturbance estimator to compensate for the effect of

external disturbances in the state estimation. Estimated state information is shared

between sensor subsystem i and their neighbours j through the distributed innovation

ηij. The distributed innovation enables co-operation between neighbouring nodes, and

can be considered as a dynamic consensus protocol. The main distinctions between

the proposed distributed estimator and the distributed estimators presented in [97]

and [98] are that: 1) the proposed estimator adopts a multi-layer structure to per-

form disturbance estimation and rejection, where the disturbance estimations d̂i are

included in the local innovations δi as additional control inputs to counter the effect

of external disturbances; 2) the proposed estimator takes additional consideration for

system nonlinearities.

Remark 3.3.1. The proposed estimator (3.6) implements a multi-layer architec-

ture, where the first layer comprises of a distributed state estimator and the second

layer includes a disturbance observer. It should be noted that the proposed estimator

does not pose a limit to the number of disturbances applied onto the sensor network.

Also, since the disturbance observer layer only utilises local innovations, heteroge-

neous disturbances with different characteristics across the network can be dealt with

simultaneously.

Defining the estimation errors as exi = x− x̂i and edi = di − d̂i, the error dynamic

of the proposed estimator can be obtained as follows:
ėxi =(A−KiCi)exi +Gg̃i(t) +Bw −KiD

i
1edi −KiDivi −KiHih̃i(t)

+Mi

∑
j∈Ni

aij(exi − exj),

ėdi =(Si − LiD
i
1)edi − LiCiexi − LiDivi − LiHih̃i(t),

(3.8)

where g̃i(t) = g(x(t), t)− g(x̂i(t), t) and h̃i(t) = h(x(t), t)− h(x̂i(t), t).

In order to simplify the notations for the information across the entire sensor

network and facilitate the discussions, we denote Ā = IN ⊗ A, B̄ = IN ⊗ B, C̄ =

diagiN {Ci}, D̄ = diagiN {Di}, D̄1 = diagiN {Di
1}, D̄2 = diagiN {Di

2}, S̄ = diagiN {Si},

K̄ = diagiN {Ki}, L̄ = diagiN {Li}, M̄ = diagiN {Mi}, Ḡ = colN{G}, H̄ = coliN {Hi},
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ēx = coliN {exi}, ēd = coliN {edi}, w̄ = colN {w}, v̄ = coliN {vi}, Ū1 = colN {U1},

Ū2 = colN {U2}, ḡ(t) = coliN {g̃i(t)}, h̄(t) = coliN

{
h̃i(t)

}
, and L̃ = In ⊗ L.

According the definition of the Laplacian matrix L = W −A and its elements lij,

it is obvious that
∑N

j=1 aij(xi − xj) =
∑N

j=1 lijxj. Taking the estimator gain Mi and

previously denoted notations into consideration, it can be further obtained that

N∑
i=1

Mi

N∑
j=1

aij(exi − exj) =
N∑
i=1

Mi

N∑
j=1

lijexj = M̄ L̃ēx.

With the congregate notations and the relation obtained above, defining an ex-

tended error state as ē =
[
ēTx , ē

T
d

]T
and d̄ =

[
w̄T, v̄T

]T
, the error dynamic across the

entire sensor network can be rewritten as

˙̄e = Ãē+ B̃d̄+ G̃ḡ(t) + H̃h̄(t), (3.9)

where

Ã =

 Ā− K̄C̄ + M̄ L̃ −K̄D̄1

−L̄C̄ S̄ − L̄D̄1

 , B̃ =

 B̄ −K̄D̄

0 −L̄D̄

 ,
G̃ =

 Ḡ

0

 , H̃ =

 −K̄H̄

−L̄H̄

 . (3.10)

To facilitate further discussions, the congregate form of the matrices can be divided

into known system matrices and the estimator gains to be solved as

Ã = Ā − KC +ML̄, B̃ = B − KD, H̃ = −KH, (3.11)

where

Ā =

 Ā 0

0 S̄

 ,B =

 B̄ 0

0 0

 ,K =

 K̄

L̄

 ,M =

 M̄

0

 ,
C =

[
C̄ D̄1

]
,D =

[
0 D̄

]
, L̄ =

[
L̃ 0

]
. (3.12)

Assumption 3.3.1. The matrix pair
(
Ā,

[
CT, L̄T

]T)
is detectable.

Remark 3.3.2. Assumption 3.3.1 is a necessary condition for the distributed estima-

tor (3.6) to be asymptotically stable. For the state estimation layer of the distributed
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estimator, we do not require the detectability of each individual matrix pair (A,Ci).

Since the distributed structure allows for a certain level of co-operation between the

sub-estimators, the conditions of detectability for the first equation of (3.6) can be

relaxed to the detectability of the congregate matrix pair

(
Ā,

[
C̄T, L̃T

]T)
, as stated

in [101].

Extending these results, a similar conclusion for the error dynamics (3.9) can be

reached as in Assumption 3.3.1. Breaking up the composite matrices, the detectability

of the augmented networked system is a result of a number of factors: 1) each matrix

pair (A,Ci); 2) the parameter matrices Si and Di
i; 3) the topology of the sensor

network, which in this case is represented by the Laplacian matrix L. The matrices

from the detectability condition in Assumption 3.3.1, A, Ci, Si, D
i
i and L are all known

to the user of the system. The verification for detectability is a static process which

can be performed off-line, before the estimation.

The objective of the proposed estimation method is to simultaneously estimate the

state and the disturbance of each sensor subsystem, and utilise the estimated value

of the disturbance to compensate for its effects. In this situation, accurate estimation

performance is equivalent to the convergence of the error system (3.9). In addition, an

H∞ performance index is introduced to guarantee that the norm-bounded disturbances

are attenuated. For a predefined level of disturbance attenuation performance γ > 0,

the objective of the distributed estimator is to compute appropriate gains Ki, Mi and

Li to ensure that the following conditions are met:

(P1) The estimation error dynamic (3.9) in the absence of d̄ is asymptotically sta-

ble, and

(P2) For nonzero d̄, a given disturbance attenuation index γ and a predefined

matrix M∞, a reference output Z =M∞ē under zero initial condition satisfies∫ t

0

ZT(τ)Z(τ)dτ < γ2
∫ t

0

(d̄T(τ)d̄(τ))dτ. (3.13)

In the following theorem, the design of the desired resilient estimator with appro-

priate estimator gains K̄, L̄ and M̄ that satisfy conditions (P1) and (P2) is presented.
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The first condition ensures that both the state and disturbance estimation asymp-

totically converge to their true values, while the second condition ensures that the

norm-bounded disturbances are attenuated to a predefined H∞ performance index.

Theorem 3.3.1. For the sensor network estimation with error dynamics (3.9) satis-

fying Assumptions 3.2.1, 3.2.2 and 3.3.1, for a predefined parameter γ > 0 and matrix

M∞, suppose that there exist matrices P > 0 and any Q, R satisfying Ω < 0, where

Ω =



Φ1 Φ2 P G̃ P H̃ UT
1 UT

2 MT
∞

∗ −γ2I 0 0 0 0 0

∗ ∗ − 1
λ2
1
I 0 0 0 0

∗ ∗ ∗ − 1
λ2
2
I 0 0 0

∗ ∗ ∗ ∗ −λ21I 0 0

∗ ∗ ∗ ∗ ∗ −λ22I 0

∗ ∗ ∗ ∗ ∗ ∗ −I


, (3.14)

and

Φ1 = P Ā+ ĀTP −QC − CTQT +RL̄+ L̄TRT,

Φ2 = PB + BTP −QD −DTQT,

with ∗ representing the corresponding elements in the symmetric matrix. Then, by

defining K = P−1Q and M = P−1R, the estimator gains can be obtained and the

error system (3.9) satisfies objective in (P1) and (P2).

Proof. In order to analyse the asymptotic stability of the estimator error dynamics,

consider the Lyapunov candidate

V (t) = ēT(t)P ē(t) +
1

λ21

∫ t

0

[
∥U1ē(τ)∥2 − ∥ḡ(τ)∥2

]
dτ +

1

λ22

∫ t

0

[
∥U2ē(τ)∥2 −

∥∥h̄(τ)∥∥2
]
dτ.

(3.15)

From the definitions of Assumption 3.2.2, we have ∥ḡ(τ)∥ ≤ ∥U1ē(τ)∥ and
∥∥h̄(τ)∥∥ ≤

∥U2ē(τ)∥, which ensures that V ≥ 0 holds for all arguments. In the absence of d̄, it
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can obtained that

V̇ =ēT
(
P Ã+ ÃTP

)
ē+ 2ēTP G̃ḡ(t) + 2ēTP H̃h̄(t) + λ21[∥U1ē∥2 − ∥ḡ(τ)∥2]

+ λ22[∥U2ē∥2 − ∥f̄(τ)∥2]

≤ēT[P Ã+ ÃTP +
1

λ21
P G̃G̃TP +

1

λ22
P H̃H̃TP + λ21U

T
1 U1 + λ22U

T
2 U2]ē

=ēTΩ11ē, (3.16)

where

Ω11 =P Ã+ ÃTP +
1

λ21
P G̃G̃TP +

1

λ22
P H̃H̃TP + λ21U

T
1 U1 + λ22U

T
2 U2. (3.17)

Based on Lyapunov theory, it is shown that the error dynamics in (3.9) is asymp-

totically stable in the absence of d̄ if Ω11 < 0 holds.

Then, we focus on the condition (P2) for disturbance attenuation. Let us define

the following auxiliary function

J(t) = V (t) +

∫ t

0

[
∥Z(τ)∥2 − γ2∥d̄(τ)∥2

]
dτ, (3.18)

which satisfies J(t) =
∫ t

0
S(τ)dτ under zero initial condition, where V is denoted as in

(3.15). We have

S(t) =ZT(t)Z(t)− γ2d̄T(t)d̄(t) + V̇ (t)

=ēT(t)(Ω11 +MT
∞M∞)ē(t) + 2eT(t)PB̃d̄(t)− γ2d̄T(t)d̄(t)

=
[
ēT(t) d̄T(t)

]
Ω22

 ē(t)

d̄(t)

 ,
where

Ω22 =

 Ω11 +MT
∞M∞ PB̃

B̃TP −γ2I

 .
It can be seen that Ω < 0 if and only if Ω22 < 0 according to the Schur complement

lemma, and it is obvious that Ω11 is a submatrix of Ω. Hence, it implies that Ω < 0

is equivalent to S(t) ≤ 0. It is clear that J(t) ≤ 0 when S(t) ≤ 0 holds, and thus the

condition (P2) is satisfied. The proof is complete. ■
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In the estimators proposed in the following sections, the disturbance estimation

is no longer updated by the innovation information, but rather updated using the

previous estimation and the known dynamics of the disturbances. ∥ē∥ ≤ ε is proposed

as the condition for the convergence of the estimator (3.6), and the moment that this

condition is satisfied is denoted as tn.

3.4 Optimal Observer-based Attack Detection

In this section, an optimal observer-based distributed attack detection method is in-

troduced. The detector generates an optimal threshold to determine the presence of

attacks. An attack detection logic is then established to enable the sensor network to

make informed decisions. Using a guaranteed cost performance index as the objective

function, an optimization algorithm with LMI constraints is applied to minimise the

threshold value, improving the sensitivity to incoming FDI attacks.

The local innovations δi are selected as the residue signal of the detection due to

its direct availability to the estimator system. Following the definition in the previous

section, the set of local innovation values ∆ = coliN {δi} can be denoted as

∆ = C̄ēx + D̄1ēd + D̄v̄ + H̄h̄(t) ≤ (C̄ + H̄Ū2)ēx + D̄1ēd + D̄v̄, (3.19)

where v̄ = coliN {vi}. Since attack detection takes place after the disturbance compen-

sation, here ēd is considered as a norm-bounded residue error. A reference output is

defined as

ϱ =M2∆ =M2C̄ēx +M2D̄1ēd +M2D̄v̄ +M2H̄h̄(t)

≤M2(C̄ + H̄Ū2)ēx +M2D̄1ēd +M2D̄v̄. (3.20)

We consider the sub-optimal guaranteed cost for the H2 performance index as

Jp =

∫ ∞

0

ϱT(t)ϱ(t)dt. (3.21)

The design of observer based attack detection can be described as designing appropri-

ate gains such that:
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(Q1) The state estimation error dynamics ˙̄ex = (Ā− K̄C̄ + M̄ L̃)ēx + B̄v̄ is asymptot-

ically stable;

(Q2) TheH2 performance index Jp satisfies Jp ≤ Jb, where the guaranteed performance

index Jb of the proposed reference output is

Jb = Vx + ∥ϱ∥2 − ϵ∥v̄∥2 − ϵ∥ēd∥2,

where Vx = ēTxP ēx and Jb is as small as possible. By minimising Jb, this attack detec-

tion approach aims to minimise the residue’s sensitivity towards disturbances, so that

its sensitivity towards incoming attacks is effectively maximised. The aforementioned

conditions can be effectively represented by an LMI constraint. In the the following

theorem, the design of an attack detection observer is provided such that conditions

(Q1) and (Q2) are satisfied.

Theorem 3.4.1. For the reference output (3.20) and performance index (3.21), if

there exist P > 0 and any Q, R such that

Ω1 =


Π11 Π12 Π13

∗ Π22 Π23

∗ ∗ Π33

 < 0,

where

Π11 =PĀ+ ĀTP −QC̄ − (QC̄)T +RL̃+ (RL̃)T + (C̄ + H̄Ū2)
TMT

2 M2(C̄ + H̄Ū2),

Π12 =(C̄ + H̄Ū2)
TMT

2 M2D̄1, Π13 = PB̄ + (C̄ + H̄Ū2)
TMT

2 M2D̄,

Π22 =D̄
T
1M

T
2 M2D̄1 − ϵI, Π23 = D̄T

1M
T
2 M2D̄, Π33 = D̄TMT

2 M2D̄ − ϵI,

and ∗ represents the corresponding elements in the symmetric matrix, then condition

(Q1) is met and the performance index satisfies

Jp = ∥ϱ∥2 ≤ ēTx (0)P ēx(0) + ϵ∥ēd∥2 + ϵ∥v̄∥2, (3.22)

with ϵ the infimum of the feasibility of Ω1 < 0.

Proof. A Lyapunov candidate is defined as

Vx = ēTxP ēx.

According to the error dynamics of ēx the derivative of V can be obtained as

V̇x =ēTx (PĀ+ ĀTP −QC̄ − (QC̄)T +RL̃+ (RL̃)T)ēx + 2ēTxPB̄v̄.
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Taking the derivative of Jb, we have

J̇b = V̇ + ∥ϱ∥ − ϵ∥v̄∥ − ϵ∥ēd∥ =
[
ēTx (t) ēTd (t) v̄T

]
Ω1


ēx

ēd

v̄

 ,
where the condition Ω1 < 0 ensures that condition (Q1) is met. The performance

index Jb in (Q2) is minimised by calculating the infimum of the parameter ϵ of the

feasibility of Ω1 < 0. The proof is complete. ■

After the design of the attack detection observer, an attack detection threshold can

be specified and a decision logic based on value of the residue signals can be obtained.

In this case, following the previous assumptions on the upper bound of the norm of

estimation errors ∥ēx∥2, ∥ēd∥2 and the disturbances ∥v̄∥2, we have a reference in ∥ϱ∥

and a threshold value

β =
√
ēTx (0)P ēx(0) + ϵ∥ēd∥2 + ϵ∥v̄∥2 =

√
(λmax(P ) + ϵ)ε+ ϵβ2. (3.23)

This attack detection threshold represents the practical upper bound of the effects

of the estimation error residues and norm-bounded disturbances on the reference signal

ϱ. Defining the residue indicator as ρ(t) = ∥ϱ(t)∥, when the residue indicator does not

exceed the threshold, it can be concluded that there are no attacks on the estimator

system. The following logic for attack detection is proposed:

ρ ≤ β → No attack,

ρ > β → attack → alarm.

Remark 3.4.1. It should be noted that the proposed attack detector is effectively

a minimax detector, where the residue’s sensitivity towards attack is maximised by

minimizing its sensitivity towards disturbances. In this case, the attack detector is

proposed as part of the multi-stage framework to facilitate the consequent resilient

estimation efforts. Once an attack is detected and an alarm is raised, our attack

detection logic leads to the activation of the attack-resilient estimator in the next

section. In contrast to the anti-disturbance estimator proposed in Section 3.3, where a

disturbance observer layer is constantly being updated, the attack observer layer to be
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introduced in the next section is only activated when an attack is detected, effectively

reducing the computation load.

3.5 Distributed Attack-Resilient Estimator

In the third and final stage of the proposed method, we focus on developing a detection-

triggered distributed attack-resilient estimator. Resilience to FDI attacks on the sensor

measurements is guaranteed via active attack estimation and compensation. An attack

observer layer provides the estimator with the ability to recover from the effects of

FDI attacks online. In addition, the proposed estimator is equipped with a dynamic

detection-triggered structure, in which the attack estimator layer is only activated in

the event of a detected attack.

Instead of isolating or re-initializing the sensor subsystems that are being attacked,

the proposed distributed state estimator deals with the effect of the FDI attack via

real-time online attack compensation, thereby enabling the sensor network to recover

from FDI attacks without re-initialization. Unlike the research towards the Byzantine

model [99] of attacks, our approach does not impose an upper bound on the number

of compromised sensors. Also, since only the local innovation is utilised in the attack

estimator, our method can deal with heterogeneous attacks across the sensor network.

The initial value of the attack-resilient estimator can be inherited from the estima-

tion of the previous anti-disturbance estimator at the moment tn:

χ(0) = x̂(tn), dn(0) = d̂(tn). (3.24)

We recall the measurement model from (3.2). At this stage of estimation, FDI

attacks fi are introduced. The FDI attacks are estimated and compensated for by a

full-order attack observer in the event of a detected attack. The following estimator
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structure is introduced:
χ̇i = Aχi +Kn

i δ
n
i +Mn

i

∑
j∈Ni

aijη
n
ij +Gg(χi, t),

˙̂
fi = {

Jiδ
n
i , if attack detected,

0, otherwise,

(3.25)

where the local innovations δni and distributed innovations ηnij are defined asδ
n
i = yi − Ciχi −Di

1d
n
i −Hih(χi, t)− f̂i,

ηnij = χi − χj, ∀i ∈ V .
(3.26)

It should also be noted that the external disturbances di are assumed to be still

prevailing at this stage. Based on the known model of the disturbances and the

previous estimation of the disturbances, the disturbances can be actively updated as

ḋn = Sdn.

Defining the estimation errors as eχi = χi− χ̂i and efi = fi− f̂i, the error dynamic

of the proposed estimator can be obtained as follows:
ėχi =(A−Kn

i Ci)eχi +Gg̃(t) +Bw −Kn
i D

i
2efi −Kn

i Divi −Kn
i Hih̃(t)

+Mn
i

∑
j∈Ni

aij(eχi − eχj),

ėfi =− JiD
i
2efi − JiCiefi − JiDivi − JiHih̃(t).

(3.27)

According to congregate notations similar to that in Section 3.3, defining an ex-

tended error state as ēn =
[
ēTχ , ē

T
f

]T
and d̄ =

[
w̄T, v̄T

]T
, the error dynamic across the

entire sensor network can be rewritten as

˙̄en = Ãnēn + B̃nd̄+ G̃nḡ(t) + H̃nh̄(t), (3.28)

where

Ãn =

 Ā− K̄nC̄ + M̄nL̃ −K̄nD̄2

−J̄C̄ −J̄D̄2

 , B̃n =

 B̄ −K̄nD̄

0 −J̄D̄

 ,
G̃n =

 Ḡ

0

 , H̃n =

 −K̄nH̄

−J̄H̄

 .
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The congregate form of the matrices can be divided into known system matrices

and the estimator gains to be solved as

Ã = An −KnCn +MnL̄, B̃ = B − KnD, H̃n = −KnH̄n, (3.29)

where Cn =
[
C̄ D̄2

]
and

An =

 Ā B̄1

0 0

 ,Kn =

 K̄n

J̄

 ,Mn =

 M̄n

0

 .

Assumption 3.5.1. The matrix pair
(
An,

[
CT
n , L̄T

]T)
is detectable.

Remark 3.5.1. As discussed in Remark 3.3.2, the detectability conditions for the

estimator in Assumption 3.5.1 should be regarded as an extension to the detectability

condition proposed in Reference [101]. However, since the estimator proposed in this

section takes a dynamic detection-triggered structure, when no attacks are detected,

the estimator is reduced to a distributed H∞ state estimator and correspondingly, the

conditions for the stability of the error dynamics of the estimator would be reduced

to the detectability of the matrix pair

(
Ā,

[
C̄T, L̃T

]T)
. For the sake of simplicity, we

will focus on the stability of the expanded form of the attack-resilient estimator in the

following theorem.

The objective of the distributed attack-resilient estimator is to ensure that the follow-

ing conditions are met:

(R1) The estimation error dynamics (3.28) in the absence of d̄ is asymptotically

stable, and

(R2) For nonzero d̄, a given disturbance attenuation index γn and a predefined

matrix Mn, the reference output Z =Mnēn under zero initial condition satisfies∫ t

0

ZT(τ)Z(τ)dτ < γ2n

∫ t

0

(d̄T(τ)d̄(τ))dτ. (3.30)

In the following theorem, we present a criteria of the existence of the proposed

attack-resilient estimator with corresponding estimator gains K̄n, J̄ and M̄n, where
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for a predefined level of disturbance attenuation, asymptotic stability of the error

dynamic (3.28) is ensured in the absence of d̄ and the disturbances in d̄ are attenuated

to a level according to the H∞ performance index.

Theorem 3.5.1. For the sensor network estimation with error dynamics (3.28) sat-

isfying Assumptions 3.2.1, 3.3.1 and 3.5.1, for a predefined parameter γn > 0 and a

matrix Mn, if there exist P > 0 and Q, R satisfying Ω2 < 0, where

Ω2 =



N1 N2 P G̃ P H̃ UT
1 UT

2 MT
n

∗ −γ2nI 0 0 0 0 0

∗ ∗ − 1
λ2
1
I 0 0 0 0

∗ ∗ ∗ − 1
λ2
2
I 0 0 0

∗ ∗ ∗ ∗ −λ21I 0 0

∗ ∗ ∗ ∗ ∗ −λ22I 0

∗ ∗ ∗ ∗ ∗ ∗ −I


, (3.31)

and

N1 = PAn +AT
nP −QCn − CT

nQ
T +RL̄+ L̄TRT,

N2 = PBn + BT
nP −QD −DTQT,

with ∗ representing the corresponding elements in the symmetric matrix, then by

defining Kn = P−1Q, Mn = P−1R, the estimator gains can be solved such that the

conditions (R1) and (R2) are satisfied.

Proof. Noting the difference between A/An,B/Bn, K/Kn,M/Mn and C/Cn, the

proof can be given similarly to that of Theorem 3.3.1.

Remark 3.5.2. The main differences between the attack-resilient estimator proposed

in (3.25) and the anti-disturbance estimator (3.6) are that: 1) The estimator (3.25) has

a detection-triggered dynamic structure, which would significantly reduce the compu-

tation load of the estimator when no attacks are detected, whereas the estimator (3.6)

has a fixed expanded multi-layer structure and higher computational load, but is only

designed to be updated for the initial stages of estimation; 2) The model of the exter-

nal disturbance di is supposed to be known, whereas no prior knowledge on the attack
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is required. In many existing literature [1, 93], the attack on sensor measurements

is assumed to be an injection of constant bias, a type of model which the proposed

method is proven to be able to reject with sufficiency.

The proposed enhanced distributed state estimation algorithm is summarised in

Figure 3.1 and Algorithm 1.

Figure 3.1: Schematic of enhanced approach to disturbance and attack rejection in
distributed estimation.

Algorithm 1 Enhanced Distributed State Estimation

1: for Each sensor i ∈ N do
2: Initialise and design a bank of estimators (3.6) for the sensor network (3.2);
3: Update set of local and consensus innovations δi, ηij; solve LMI Ω, compute

estimator gains Ki,Mi, Li;
4: Output state estimation x̂i, disturbance estimation d̂i
5: if ∥ē∥ ≤ ε then
6: Solve LMI Ω1, compute ϵ;
7: Generate the attack detection threshold β in (3.23);
8: Design new bank of estimators (3.25) for sensor network (3.2), initialise

estimation values χ(0), dn(0) as in (3.24);
9: Update set of local and consensus innovations δni , η

n
ij; solve LMI Ω2, compute

new set of estimator gains Kn
i ,M

n
i , Ji, output state estimation χ̂i

10: else Continue with estimator (3.6)
11: end if
12: end for

3.6 Numerical Examples

Now, a simulation example is presented to demonstrate the effectiveness of the pro-

posed method. A sensor network consisting of four sensor subsystems is constructed
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where the target state evolves according to (3.1) and the sensing mechanism is given

in (3.2).

In the following simulations, the system parameters are given asA =

 −0.98 0.40

0.15 −0.75

,
B =

[
0.16 0.18

]T
, C1 =

[
0.82 0.62

]
, C2 =

[
0.75 0.60

]
, C3 =

[
0.74 0.75

]
,

C4 =
[
0.75 0.65

]
,D1 = 0.18,D2 = 0.12,D3 = 0.16,D4 = 0.14,D11 =

[
0.22 0.24

]
,

D12 =
[
0.20 0.20

]
, D13 =

[
0.10 0.10

]
, D14 =

[
0.16 0.16

]
, D21 = 0.24,

D22 = 0.20, D23 = 0.10, D24 = 0.10, β1 = β2 = 1, Gi = Hi = 1 (i = 1, ..., 4), and

the nonlinear items are defined as g(x, t) = sin(10πt)x(t), h(x, t) = 0.5 sin(10πt)x(t),

which satsify Assumption 3.2.2 with U1 = I2 and U2 = 0.5I2. In the following results,

the first and second states of the system are denoted as x(1) and x(2) respectively. The

Laplacian matrix representing the topology of the connected sensor network is given

below, where it can be verified that the detectability conditions in Assumptions 3.3.1

and 3.5.1 are satisfied for this set of parameters:

L =


2 −1 0 −1

−1 2 0 −1

−1 −1 3 −1

−1 0 −1 2

 .

In this simulation, the exogenous disturbances are constructed in the form of (3.5),

and defined as S1 = S2 = S4 =

 0 −0.1

0.1 0

, S3 =

 0 −1

1 0

, representing har-

monic disturbances with different frequencies. The initial value of the state is given

as x0 = 5 and the initial values of the disturbances are given as [ 4 4 ]T.

First, the performance of the anti-disturbance estimator is assessed. The LMI Ω is

solved by the LMI toolbox in Matlab, where the reference output is defined as in (3.13)

with M∞ = [ 1 1 ] and γ = 0.3. Comparing the estimation performance of a generic

distributed H∞ filter (Figure 3.2) without disturbance rejection with the proposed

anti-disturbance estimator (3.6) (Figure 3.3), it is clear that the measurement of the

generic filter is severely affected by the disturbance, whereas the proposed estimator

(3.6) effectively rejects the effects of disturbance through disturbance estimation and

compensation.
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Figure 3.2: State estimation error ex of an H∞ estimator under disturbances.

In the case of Figure 3.3, defining ε = 0.05, it can be obtained that tn = 18s.

According to the proposed multi-stage approach, the system carries on to the attack-

resilient estimator in (3.25) and an attack detection criterion is simultaneously com-

puted by solving the LMI constraint Ω1 to obtain the optimal detection threshold.

The infimum of ϵ for the feasibility of Ω1 is solved as ϵ = 0.5681, the corresponding

optimal threshold is obtained as β = 0.748 and an attack detection logic is developed

based on this threshold.

The FDI attack signals on the sensors are set as constant biasing signals. A signal

of the amplitude of 5 is applied on sensor subsystems 2, 3 and 4 at t = 25s, and

a signal of the amplitude of 10 is applied on the 1st sensor subsystem at t = 50s.

As displayed in Figure 3.4, the FDI attacks are confirmed to have taken the local

innovation δi above the threshold and activated the attack estimation. In the event of

attacks, the constraint Ω2 is solved to obtain the corresponding estimator gains across

the network. Again, a generic distributed H∞ filter (Figure 3.5) is compared with the
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Figure 3.3: State estimation error ex of the anti-disturbance estimator (3.6) under
disturbances.

attack-resilient estimator (3.25) (Figure 3.6). From Figure 3.5, it is shown that not

only the attacked sensor subsystems, but all sensor measurements in the network have

been heavily biased by the FDI attacks. Comparing Figure 3.5 and Figure 3.6, it can

be seen that the proposed attack-resilient estimator can successfully detect and track

the value of the attack and simultaneously reject the attack via compensation in the

estimator structure, enabling the sensor measurements to actively recover from the

attack via online attack compensation.

It should be noted that the model of attack in this simulation study is similar to

the biasing attack in References [1] and [93]. However, different from the approach

taken in References [1] and [93], our proposed approach considers and effectively deals

with the coupling of multiple disturbances and attacks.
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Figure 3.4: Response of residue ρ and threshold β.

For the purpose of further highlighting the the advantages of the proposed esti-

mation methods, comparisons with existing methods are carried out in the following.

We suppose that the sensor network is subject to the same multiple sources of dis-

turbances and FDI attacks as described above. Figure 3.7 displays the comparison

between the multi-stage estimation approach proposed in this chapter and the method

presented in Reference [1]. From Figure 3.7, we can see that the estimation strategy

proposed by Reference [1] can not estimates the states accurately due to the presence

of multiple disturbances, while the method proposed in this chapter can achieve better

performance due to the introduction of a robust anti-disturbance estimation scheme

in addition to the attack-resilient estimator.

3.7 Conclusions

In this chapter, an enhanced resilient distributed estimation approach has been pro-

posed for sensor networks subject to multiple disturbances and FDI attacks. The

proposed approach consists of three stages. In the initial stages of estimation, an

anti-disturbance estimator with a multi-layer architecture is introduced to simulta-

neously compensate and attenuate the effects of multiple disturbances in the sensor

measurements. Then, an observer-based attack detection scheme is introduced, where

local residue signals are compared to an optimal threshold to determine whether an
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Figure 3.5: State estimation error eχ of an H∞ estimator under FDI attacks.

FDI attack is present. Finally, an attack-resilient estimator with a dynamic detection-

triggered structure is introduced to develop resilience towards FDI attacks.

The proposed enhanced three-stage approach effectively deals with the coupling

between FDI attacks and multiple disturbances. Compared with existing resilient

estimation results, which only consider a single source of disturbance, our approach is

shown to be able to actively reject FDI attacks in the presence of multiple disturbances.

Another feature of the proposed scheme is that it can deal with arbitrary number

of heterogeneous disturbances and attacks across the sensor network. Furthermore,

a novel detection-trigger architecture reduces the computational load of the attack-

resilient estimator.

On the other hand, in addition to false data injection attacks, denial-of-service

(DoS) attacks is another typical type of cyber attacks that is likely to simultaneously

exist on distributed systems once the cyber defence is compromised. DoS attack
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Figure 3.6: State estimation error eχ of the attack-resilient estimator (3.25) under FDI
attacks.

signals are completely heterogeneous to the attack and disturbance signals considered

in this chapter. This motivates us to consider resilient distributed estimation towards

heterogeneous attacks. In the next chapter, an event-based communication scheme

will be designed to mitigate the effect of DoS attacks.
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Figure 3.7: Comparison between proposed resilient estimation scheme and the method
in Reference [1].



Chapter 4

Event-Based Resilient Distributed

Estimation Under Multiple

Heterogeneous Cyber-Attacks

4.1 Introduction

Typical cyber-attacks on networked systems include denial-of-service (DoS) attacks

[102], which block the communication channels in the network to prevent data trans-

mission, and deception attacks [103, 104], which corrupt the integrity of the system to

alter the state or maliciously tamper measurement data. For systems under a single

type of attacks, many effective estimation approaches have been proposed. However,

despite the research progress, it has been noted that in most existing work, only a sin-

gle type of attacks was considered. However, in practice, networked CPSs are prone

to multiple heterogeneous types of attacks and disturbances, as once the cyber-layer

defense is compromised, the attacker is likely to simultaneously launch DoS and de-

ception attacks to maliciously modify system’s states and block signal transmission.

The presence of multiple heterogeneous cyber-attacks poses additional difficulties for

the distributed state estimation problem, since attacks of different nature cannot be

60
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dealt with a uniform approach. Recently, some research [29, 105, 106] investigated dis-

tributed state estimation for systems under both DoS and deception attacks. However,

some notable gaps still exist in the research on this topic. Firstly, the works mentioned

above assume that the presence of DoS attacks follows a probability distribution, which

is often a strict assumption in practical applications. Secondly, the existing works are

based on the assumption of continuous data transmission in the network, leading to

significantly higher consumption of network resources compared with the event-based

approach. Thirdly, in the aforementioned work, reconstruction and compensation of

deception attacks is not considered, which limits their attack-rejection capabilities.

In the mean time, multiple sources of disturbances may also seriously influence the

performance of CPSs. In the simultaneous presence of both attacks and disturbances,

disturbances could be mixed and become indistinguishable with the attack signals

if the disturbances are not rejected properly. Therefore, the disturbance estimation

and compensation is a critical problem for the performance of attack-resilient state

estimation. All of the aforementioned estimation approaches deal with disturbances

via either disturbance attenuation under an H2/H∞ framework or filtering under a

stochastic framework, instead of active disturbance estimation and compensation.

Moreover, though event-based transmission schemes have been proposed to re-

duce network transmission burden whilst maintaining a desired level of estimation

performance [35, 36, 37], the balance between the event-based mechanisms and the

estimation performance requires significant reconsideration when a number of data

transmissions are blocked by DoS attacks. There is a demand for novel event-based

communication schemes to cope with the adverse effects of DoS attacks on the network

transmission.

To address the above challenges, this chapter presents an event-based distributed

state estimation method for systems under multiple heterogeneous cyber-attacks and

disturbances, where the attacker simultaneously launches DoS attacks on the measure-

ment transmission channels and deception attacks on the agents, as shown in Figure

4.1. The main contributions of this chapter include the following.

1) Considering that practical CPSs are prone to multiple heterogeneous types of
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Figure 4.1: Schematic of the distributed state estimation of a networked system under
DoS and deception attacks.

cyber-attacks, non-periodic DoS attacks and time-varying deception attacks are con-

sidered simultaneously. A novel event-based distributed state estimation approach is

proposed to provide resilience towards the joint influence of DoS and deception attacks

under disturbances.

2) A novel distributed event-based network communication scheme is introduced,

which reduces the data transmission burden with consideration towards the adverse

effect of DoS attacks. Meanwhile, Zeno behaviour is successfully precluded. An adap-

tive term is designed for reconstruction and compensation of unknown time-varying

deception attacks, and a distributed disturbance observer is introduced for estimation

and compensation of disturbances.

4.2 Problem Formulation

A networked system with N sensors is considered. The topology of the interacting

sensor network is represented by a directed graph G = (V , E ,A). The dynamics of the

observed system can be described by

ẋ = Ax+Bd+ Ff(t), (4.1)
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where x ∈ Rnx is the state vector, d ∈ Rnd represents the disturbance in the system,

f(t) ∈ R is an unknown deception attack, and A ∈ Rnx×nx , B ∈ Rnx×nd and F ∈ Rnx

are known constant matrices.

Define the sequence of DoS attacks as h0 < h1 < h2 < · · · ≤ +∞. The jth

(j = 0, 1, 2, . . .) DoS attack interval can be denoted as Hj = [hj, hj + ηj), where hj

represents the beginning instant of the attack, and ηj > 0 the duration of the attack.

It is clear that hj+1 > hj + ηj. We define Φ(t) =
⋃

hj∈[t0,t] [hj, hj + ηj) ∩ [t0, t] as the

time periods when the network is subject to DoS attacks, and Ψ(t) = [t0, t] \Φ(t) as the

time periods when the network is free from DoS attacks during [t0, t). For convenience,

it is assumed that the initial time instant t0 ∈ Ψ(t).

Assumption 4.2.1. There exist an unknown constant ε and a known non-negative

function φ(t) such that |f(t)| ≤ εφ(t).

Remark 4.2.1. The above definition puts a time-varying deception cyber-attack

into consideration, which maliciously alters the state of the system, similar to the

definitions given in [94]. Together with the DoS attacks, attackers can design hetero-

geneous attacks that simultaneously block network communication and alter system

states. From the defender’s perspective, it is fair to assume that the attack has an

energy constraint. Similar assumptions on the deception attacks are given in existing

literature [1, 29, 94, 103, 104]. In practical scenarios, the defender can obtain some

information of the attack signal by monitoring the target for a period of time. In

this chapter, the presence of deception attacks, DoS attacks and disturbances will be

considered and dealt with simultaneously.

The measurement model of the ith sensor is given as

yi = Cix+Did, ∀i ∈ V , (4.2)

where yi ∈ Rmi is the measurement from the ith sensor, and Ci ∈ Rmi×nx and

Di ∈ Rmi×nd are known constant matrices. A total of N sensors exist in the net-

work following the topology defined by the graph G. In this chapter, we consider a

class of disturbances d in the following form:

ḋ = Sd+ γ, (4.3)
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where S ∈ Rnd×nd is a known matrix, and γ ∈ Rnd is unknown and satisfies ∥γ∥2 ≤ γm

with γm ≥ 0 an unknown constant. We assume that x and d are bounded.

Remark 4.2.2. In this chapter, the disturbances under consideration are formulated

by an exogeneous system (4.3). The parameter matrix S can be determined by param-

eter identification methods or even direct measurement. The potential limit for this

assumption is that the modelled representation of disturbances will not always be ac-

curate. For this purpose, the uncertainties in the disturbance dynamics are accounted

for by the additional norm-bounded term γ to provide a more general description of

the disturbance, making it more general than the disturbance model considered in

(3.5).

4.3 Event-Based Communication Scheme

Event-based communication schemes have been demonstrated to be effective for im-

proving the utilization of communication resources for networked systems by reducing

the number of transmissions. In this section, a dynamic event-based communica-

tion scheme is proposed to reduce network resource consumption and provide the

estimator with resilience towards non-periodic DoS attacks. With the proposed com-

munication scheme, each estimator will generate its own event update sequence, and

Zeno behaviour is strictly precluded for all estimators by deriving a positive minimum

triggering interval.

First, we define the sequence of event time for estimator i (i ∈ V) as ti,0 < ti,1 <

ti,2 < · · · · ≤ +∞, where ti,0 := t0. The event-based communication scheme dictates

that the estimators shall only share their information to the neighboring estimators at

these event instants. To generate a condition for event-based update, we define

si(t) = x̂i(t) +Bd̂i(t), i ∈ V , (4.4)

where x̂i and d̂i are the estimations of the state x and the disturbance d generated by

the ith estimator to be designed in the next section. Moreover, define

s̄i(t) = x̂i(ti,k) +Bd̂i(ti,k), ∀t ∈ [ti,k, ti,k+1), (4.5)
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where k = 0, 1, 2, . . .. Define the signal

µi(t) = si(t)− s̄i(t), ∀t ∈ [ti,k, ti,k+1). (4.6)

It is clear that the presence of the DoS attacks will block updates of network trans-

mission, and therefore the network should seek a stable rate of update when DoS

attacks are detected. Here, a novel event-based communication scheme is proposed to

determine the communication instants with consideration towards DoS attacks, given

by

ti,k+1 =

 inf{t > ti,k | ∥µi(t)∥2 ≥ ϖi(t)}, if ti,k ∈ Ψ(t),

ti,k + σ, if ti,k ∈ Φ(t),
(4.7)

where σ > 0 is a predefined constant, and ϖi(t) is a dynamic threshold given by

ϖ̇i(t) = −ρiϖi(t)− qi∥µi(t)∥2 + ςi, (4.8)

with ρi > 0, qi > 0, ςi > 0 and ϖi(t0) >
ςi
ρi
. This communication scheme follows a

distributed event-triggered condition when the network is reliable, and switches to a

fixed update interval when DoS attacks are detected in the network.

Define the latest triggering time instant of the ith estimator during the time interval

[t0, t] as gi(t) = max{ti,k|ti,k ≤ t}. Then, noting t0 ∈ Ψ(t), we iteratively define

t2j+1 = min{ti,k > t2j|gi(t) ∈ Φ(t) for at least one i ∈ V}, (4.9)

t2j+2 = min{t > t2j+1|gi(t) ∈ Ψ(t) for all i ∈ V}, (4.10)

where j = 0, 1, 2, . . .. Here, t2j+1 denotes the earliest triggering instant after t2j when

at least one estimator is under DoS attack, and t2j+2 denotes the earliest triggering

instant after t2j+1 when all estimators in the network are free from DoS attacks. The

definitions above allow us to quantify the effect of DoS attacks with the event-based

updates and facilitate the estimator design.

In consideration of the DoS attacks, we further define ζi(j) as the number of com-

munication failures on the ith estimator caused by the jth attack, and let

ζ(j) = max{ζ1(j), . . . , ζN(j)}. (4.11)

We can further define the frequency of blocked communications from DoS attacks as

ℓ (j) =
ζ (j)

t2j+3 − t2j+1

. (4.12)
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Remark 4.3.1. A dynamic event-triggering condition is introduced in (4.7). Advan-

tages of this event-triggered scheme include: 1) Each estimator has its own triggering

sequence, which offers additional flexibility compared to the centralised triggering con-

dition in literature such as [107], where the network shares a triggering sequence; 2)

The value of the event-triggering threshold is state-dependent. Compared with static

parameter-based conditions, it is easier to acquire an appropriate set of parameters; 3)

Zeno behaviour can be strictly precluded by obtaining a positive inter-event interval.

Remark 4.3.2. The definition of DoS attack frequency in (4.12) provides an alterna-

tive to the definition based on probabilistic assumption in work such as [29, 105, 106]

to accommodate non-periodic DoS attacks. This definition is more practical since

attackers will likely launch their attacks without following any specific probability dis-

tributions or determined periodic features. The energy constraint of DoS attacks is

described by the frequency ℓ (j). The design parameter σ determines the fixed inter-

val in which the network updates when DoS attacks occur. The value of this interval

allows us to quantify the effects of DoS attacks to the event-based update and facili-

tates the stability analysis. In practice, σ should be carefully selected by the user as

a relatively small number.

4.4 Estimator Design

In this section, a distributed resilient estimator structure and a novel compensation

term for deception attacks are introduced. With the communication instants defined

in (4.7), we introduce the signal s∗i (t) ∈ Rnx for the ith estimator as follows:

s∗i (t) = s∗i (ti,k), ∀t ∈ [ti,k, ti,k+1),

s∗i (ti,k) =

 si(ti,k), if ti,k ∈ Ψ(t),

si(ti,k−1), if ti,k ∈ Φ(t).
(4.13)

And define the distributed innovations as

ξi(t) =
N∑
j=1

aij(si(t)− sj(t)), (4.14)
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ξ̄i(t) =
N∑
j=1

aij(s̄i(t)− s̄j(t)), (4.15)

ξ∗i (t) =
N∑
j=1

aij(s
∗
i (t)− s∗j(t)). (4.16)

In addition, we can obtain ei(t) = ξ̄i − ξi =
∑N

j=1 aij(µi − µj). Then, the estimator

associated with the ith sensor is designed as ˙̂xi = Ax̂i +Kiδi +Miξ
∗
i +Bd̂i + Fvi(t),

˙̂
di = Sd̂i +Giδi + Jiξ

∗
i , ∀i ∈ V ,

(4.17)

where x̂i and d̂i are the estimations of the state x and the disturbance d generated

by the ith estimator, respectively, vi are the compensation terms for the deception

attacks to be designed, Ki ∈ Rnx×mi ,Mi ∈ Rnx×nx , Gi ∈ Rnd×mi and Ji ∈ Rnd×nx are

estimator gains to be determined, and δi ∈ Rmi represents the local innovation, given

by

δi = yi − Cix̂i −Did̂i. (4.18)

Denote the state and disturbance estimation errors as x̃i = x− x̂i and d̃i = d− d̂i,

respectively. In order to simplify notations and facilitate further discussions, we denote

Ā = diagN{A}, B̄ = diagN{B}, F̄ = diagN{F}, C = diagiN{Ci}, D = diagiN{Di},

S̄ = diagN{S}, K = diagiN{Ki}, M = diagiN{Mi}, G = diagiN{Gi}, J = diagiN{Ji},

x̃ = coliN{x̃i}, d̃ = coliN{d̃i}, e = coliN{ei}, γ̄ = colN{γ}, v = coliN{vi}, f̄ = colN{f},

ξ = coliN{ξi}, ξ̄ = coliN{ξ̄i}, ξ∗ = coliN{ξ∗i }, Īd = diagN{Id}, Lx = L⊗ Ix, Ld = L⊗B,

and L̃ = [Lx Ld].

Define an extended estimation error across the sensor network as χ̃ = [x̃T, d̃T]T. It

is clear that ξ = L̃χ̃. Then, we have

˙̃χ = (Ã − K̃C̃ − M̃L̃)χ̃+ F̃(f̄ − v) + Ĩγ̄ − M̃(ξ∗(t)− ξ(t)),

where

Ã =

 Ā B̄

0 S̄

 , K̃ =

 K

G

 ,M̃ =

 M

J

 , F̃ =

 F̄

0

 ,
C̃ =

[
C D

]
, Ĩ =

 0

Īd

 . (4.19)



4.5. PERFORMANCE ANALYSIS 68

It can be checked that when the network communication is reliable (in the absence of

DoS attacks), ξ∗(t) = ξ̄(t), and the system error dynamics can be rewritten as

˙̃χ = (Ã − K̃C̃ − M̃L̃)χ̃+ F̃(f̄ − v) + Ĩγ̄ − M̃e. (4.20)

For the deception attacks with unknown upper bound, the following adaptive com-

pensation term vi(t) is designed:

vi(t) = − ε̂2iφ
2(t)√

|Wiδi|2ε̂2iφ2(t) + ϵi
Wiδi, (4.21)

where ϵi are design parameters, and ε̂i are the estimations of the upper bound ε

updated according to

˙̂εi(t) = −ā1ε̂i(t) + 2ā2φ(t)|Wiδi|, (4.22)

with Wi ∈ R1×mi gain matrices and ā1 > 0 and ā2 > 0 design parameters. Define

ε̃i = ε− ε̂i and W = diagiN {Wi}. The following assumption is made.

Assumption 4.4.1. The matrix pair (Ã, [C̃T, L̃T]T) is detectable.

4.5 Performance Analysis

Now, we are ready to establish our main theorem of this chapter.

Theorem 4.5.1. Under Assumptions 4.3.1 and 4.4.1, consider the distributed estima-

tion of the network system with error dynamics in (4.19), the adaptive compensation

terms in (4.21) and the adaptive laws in (4.22). Suppose that there exist matrices

P1 > 0, P2 > 0, Q and R, positive constants Θ, θ1, θ2 and θ3, and a positive integer j∗

such that

H{P Ã −QC̃ +RL̃}+ 1

θ1
RTR + θ3ĨTĨ < −ΘI, (4.23)

P1F̄ = CTWT, (4.24)

ρi > θ1∥L∥2 − qi, (4.25)

ℓ (j) ≤ ϱ1 − ϱ0
(ϱ1 + ϱ2)σ

, ∀j ≥ j∗, (4.26)
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where P = diag{P1, P2}, ϱ1 = min{ Θ
λmax(P )

, ā1,
∑N

i=1(ρi+qi−θ1∥L∥2)}, ϱ2 = max{λmax(H1)
λmin(P )

,

θ1||L||2Λ, ā1, 2θ1} with Λ = max{ 4
λmin(P )

, 4||B||2
λmin(P )

}, 0 < ϱ0 < ϱ1, and

H1 = H{P Ã −QC̃ +RL̃}+ 1

θ1
RTR +

1

θ2
RTR + θ2L̃TL̃+ θ3ĨTĨ. (4.27)

Then, by defining K̃ = P−1Q and M̃ = P−1R, the estimator gains can be obtained

and the error system (4.19) is stable.

Proof. Define the following Lyapunov candidate:

V (t) = V̄ (t) +
N∑
i=1

ϖi(t), (4.28)

where

V̄ (t) = χ̃T(t)Pχ̃(t) +
N∑
i=1

1

2ā2
ε̃2i . (4.29)

In view of the definitions in (4.9) and (4.10), two cases are considered when calculating

V̇ (t).

Case 1: t ∈ [t2j, t2j+1). In this case, ξ∗(t) = ξ̄(t) and (4.20) holds. In view of (4.20),

noting K̃ = P−1Q, M̃ = P−1R, and

d

dt
(
1

2ā2
ε̃2i ) =

ā1
ā2
ε̃iε̂i − 2|Wiδi|ε̃iφ(t), (4.30)

we can obtain

˙̄V (t) =χ̃T(t)H{P Ã −QC̃ +RL̃}χ̃(t) + 2χ̃T(t)P F̃(f̄ − v)

+ 2χ̃T(t)Ĩγ̄ − 2χ̃T(t)Re(t) +
N∑
i=1

ā1
ā2
ε̃iε̂i − 2

N∑
i=1

|Wiδi|ε̃iφ(t). (4.31)

Using Young’s inequality, it can be readily checked that

−2χ̃T(t)Re(t) ≤ 1

θ1
χ̃T(t)RTRχ̃(t) + θ1e

T(t)e(t)

≤ 1

θ1
χ̃T(t)RTRχ̃(t) + θ1∥L∥2

N∑
i=1

∥µi(t)∥2. (4.32)

Taking (4.23), (4.24), (4.31) and (4.32) into consideration, and noting ∥γ∥2 ≤ γm, the

derivative of V̄ (t) satisfies
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˙̄V (t) ≤−Θ∥χ̃(t)∥2 + 2χ̃T(t)P F̃(f̄ − v) +
1

θ3
∥γ̄∥2 +

N∑
i=1

ā1
ā2
ε̃iε̂i

− 2
N∑
i=1

|Wiδi|ε̃iφ(t) + θ1e
T(t)e(t)

≤−Θ∥χ̃(t)∥2 + 2
N∑
i=1

|Wiδi|εφ(t)− 2
N∑
i=1

|Wiδi|ε̂iφ(t) +
1

θ3
∥γ̄∥2+

N∑
i=1

ā1
ā2
ε̃iε̂i − 2

N∑
i=1

|Wiδi|ε̃iφ(t) + θ1e
T(t)e(t) +

N∑
i=1

2ϵi

≤−Θ∥χ̃(t)∥2 + N

θ3
γm + θ1e

T(t)e(t)−
N∑
i=1

ā1
2ā2

ε̃2i (t) +
ā1N

2ā2
ε2 +

N∑
i=1

2ϵi

≤−Υ1V̄ (t) +
ā1N

2ā2
ε2 +

N

θ3
γm + θ1∥L∥2

N∑
i=1

∥µi(t)∥2 +
N∑
i=1

2ϵi

≤−Υ1V̄ (t) + ι1 + θ1∥L∥2
N∑
i=1

∥µi(t)∥2, (4.33)

where Υ1 = min{ Θ
λmax(P )

, ā1}, and ι1 = ā1N
2ā2

ε2 + N
θ3
γm +

∑N
i=1 2ϵi. It follows from (4.8)

that
N∑
i=1

ϖ̇i(t) =
N∑
i=1

(−ρiϖi(t)− qi∥µi(t)∥2 + ςi). (4.34)

Combining (4.33) and (4.34), we can obtain

V̇ (t) ≤−Υ1V̄ (t) +
N∑
i=1

(θ1∥L∥2 − qi)∥µi∥2 −
N∑
i=1

ρiϖi(t) +
N∑
i=1

ςi + ι1. (4.35)

In this case, we know from (4.7) that ∥µi(t)∥2 ≤ ϖi(t). Thus,

V̇ (t) ≤−Υ1V̄ (t)−
N∑
i=1

(ρi + qi − θ1∥L∥2)ϖi(t) +
N∑
i=1

ςi + ι1

≤− ϱ1V (t) + f ∗
1 , (4.36)

where f ∗
1 = ā1N

2ā2
ε2 + N

θ3
γm +

∑N
i=1 ςi +

∑N
i=1 2ϵi.

For all t ∈ [t2j, t2j+1), it follows from (4.36) and Lemma 2.3.2 that

V (t) ≤V (t2j)e
(−ϱ1(t−t2j)) +

f ∗
1

ϱ1
(1− e(−ϱ1(t−t2j)). (4.37)
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Case 2: t ∈ [t2j+1, t2j+2). In this case, the system error dynamics satisfies

˙̃χ(t) =(Ã − K̃C̃ − M̃L̃)χ̃(t) + F̃(f̄(t)− v(t))− M̃(ξ∗(t)− ξ(t)) + Ĩγ̄, (4.38)

and the derivative of V̄ (t) is given by

˙̄V (t) =χ̃T(t)H{P Ã −QC̃ +RL̃}χ̃(t) + 2χ̃T(t)Ĩγ̄ + 2χ̃T(t)P F̃(f̄(t)− v(t))

− 2χ̃T(t)R(ξ∗(t)− ξ(t)) +
N∑
i=1

ā1
ā2
ε̃iε̂i − 2

N∑
i=1

|Wiδi|ε̃iφ(t). (4.39)

Let ti,s be the latest time instant at which s∗i successfully updates its value by

receiving information of si. If ti,s < t2j+1, by (4.5), (4.7) and (4.13), we have

||si(t2j+1)− si(ti,s)||2 ≤ ϖi(t2j+1), (4.40)

and

||s∗i (t)||2 = ||si(ti,s)||2 ≤ 2||si(t2j+1)||2 + 2ϖi(t2j+1). (4.41)

On the other hand, if ti,s ≥ t2j+1, then

||si(t)− si(ti,s)||2 ≤ ϖi(t), (4.42)

||s∗i (t)||2 = ||si(ti,s)||2 ≤ 2||si(t)||2 + 2ϖi(t). (4.43)

Combining (4.41) and (4.43) gives

||s∗i (t)||2 ≤||si(t2j+1)||2 + ||si(t)||2 + 2ϖi(t2j+1) + 2ϖi(t), ∀i ∈ V . (4.44)

Letting s(t) = coliN{si(t)}, we have

||s(t)||2 =
N∑
i=1

||x̂i(t) +Bd̂i(t)||2

≤2NΞ + 2
N∑
i=1

||x̃i(t) +Bd̃i(t)||2

≤2NΞ + 4
N∑
i=1

||x̃i(t)||2 + 4
N∑
i=1

||B||2||d̃i(t)||2

≤2NΞ + ΛV̄ (t). (4.45)
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where Ξ = supt≥t0 ||x(t) + Bd(t)||2. Define s∗(t) = coliN{s∗i (t)} and recalling ξ∗(t) =

coliN{ξ∗i (t)}, we have ξ∗(t) = Ls∗(t). In view of (4.44) and (4.45), we can obtain

ξ∗T(t)ξ∗(t) ≤||L||2||s∗(t)||2

≤||L||2(ΛV̄ (t) + ΛV̄ (t2j+1) + 4NΞ) +
N∑
i=1

(2ϖi(t2j+1) + 2ϖi(t)). (4.46)

From (4.46) and Young’s inequality, it can be checked that

−2χ̃T(t)R(ξ∗(t)− ξ(t))

≤ χ̃T(t)

(
1

θ1
RTR +

1

θ2
RTR + θ2L̃TL̃

)
χ̃(t) + θ1ξ

∗T(t)ξ∗(t)

≤ χ̃T(t)

[
1

θ1
RTR +

1

θ2
RTR + θ2L̃TL̃

]
χ̃(t) + θ1||L||2ΛV̄ (t2j+1)

+θ1||L||2ΛV̄ (t) + 4θ1||L||2NΞ + θ1

N∑
i=1

(2ϖi(t2j+1) + 2ϖi(t)). (4.47)

Substituting (4.47) into (4.39), we have

˙̄V (t) ≤ χ̃T(t)H1χ̃(t) + θ1||L||2ΛV̄ (t2j+1) + θ1||L||2ΛV̄ (t) +
N

θ3
γm

+θ1

N∑
i=1

(2ϖi(t2j+1) + 2ϖi(t)) +
N∑
i=1

ā1
ā2
ε̃iε̂i +

N∑
i=1

2ϵi + 4θ1||L||2NΞ

≤ λmax(H1)

λmin(P )
χ̃T(t)Pχ̃(t) + θ1||L||2ΛV̄ (t2j+1) + θ1||L||2ΛV̄ (t)−

N∑
i=1

ā1
2ā2

ε̃2i (t)

+
ā1N

2ā2
ε2γm + θ1

N∑
i=1

(2ϖi(t2j+1) + 2ϖi(t)) + 4θ1||L||2NΞ +
N∑
i=1

2ϵi

≤ Υ2max(V̄ (t), V̄ (t2j+1)) + ι2 + θ1

N∑
i=1

(2ϖi(t2j+1) + 2ϖi(t)), (4.48)

where Υ2 = max{λmax(H1)
λmin(P )

, θ1||L||2Λ, ā1} and ι2 = ā1N
2ā2

ε2+N
θ3
γm+

∑N
i=1 2ϵi+4θ1||L||2NΞ.

Noting that (4.34) still stands, we can obtain

V̇ (t) ≤Υ2max(V̄ (t), V̄ (t2j+1)) + 2θ1

N∑
i=1

ϖi(t2j+1)− 2(ρi + qi − θ1)
N∑
i=1

ϖi(t) + ι2 +
N∑
i=1

ςi

≤ϱ2max(V (t), V (t2j+1)) + f ∗
2 , (4.49)

where f ∗
2 = ā1N

2ā2
ε2 + N

θ3
γm +

∑N
i=1 ςi +

∑N
i=1 2ϵi + 4θ1||L||2NΞ.

It is clear that for all t ∈ [t2j+1, t2j+2), V (t) satisfies

V (t) ≤V (t2j+1)e
(ϱ2(t−t2j+1)) +

f ∗
2

ϱ2
(e(ϱ2(t−t2j+1)) − 1). (4.50)
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Combining Case 1 and Case 2, we can conclude that for all j = 0, 1, 2, . . . ,

V (t2j+3) ≤V (t2j+1)e
(ϱ2(t2j+2−t2j+1)−ϱ1(t2j+3−t2j+2))

+
f ∗
2

ϱ2
e(ϱ2(t2j+2−t2j+1)−ϱ1(t2j+3−t2j+2))−1)

+
f ∗
1

ϱ1
(1− e(−ϱ1(t2j+3−t2j+2))). (4.51)

Noting the definitions of σ in (4.7), t2j+1 and t2j+2 in (4.9) and (4.10), and ζ(j)

and ℓ(j) in (4.11) and (4.12), we can obtain the relation t2j+2 − t2j+1 ≤ σζ(j) ≤

σℓ(j)(t2j+3 − t2j+1). Further noting (4.27), it can be concluded that there exists a

finite j∗ such that for all j ≥ j∗,

ϱ2(t2j+2 − t2j+1)− ϱ1(t2j+3 − t2j+2) < −ϱ0(t2j+3 − t2j+1), (4.52)

where ϱ0 is a positive constant. As a result, for all j ≥ j∗, we have

V (t2j+3) ≤V (t2j+1)e
(−ϱ0(t2j+3−t2j+1)) +

f ∗
2

ϱ2
e(−ϱ0(t2j+3−t2j+1)−1)

+
f ∗
1

ϱ1
(1− e(−ϱ1(t2j+3−t2j+2))). (4.53)

From (4.53), we can further obtain

V (t2j+3) ≤V (t2j∗+1)e
(−ϱ0(t2j+3−t2j∗+1)) +

f ∗
2

ϱ2
e(−ϱ0(t2j+3−t2j∗+1)−1)

+
f ∗
1

ϱ1
(1− e(−ϱ1

∑j
k=j∗ (t2j+3−t2j+2))), (4.54)

which implies that V (t2j+1) converges towards a constant bound
f∗
1

ϱ1
when j → ∞.

Further noting that for all t ∈ [t2j+1, t2j+3], V (t) is bounded by

V (t) ≤V (t2j+2) ≤ V (t2j+1)e
(ϱ2ζ(j)σ) +

f ∗
2

ϱ2
(e(ϱ2ζ(j)σ) − 1), (4.55)

where ζ(j) is finite. We can conclude that V (t) converges to a bound as t → ∞, and

the error system is stable.

Now, we prove that Zeno behaviour is precluded under the event-based commu-

nication scheme. Obviously, for all ti,k ∈ Φ(t), noting that σ > 0, Zeno behaviour is

precluded. On the other hand, for all t ∈ [ti,k, ti,k+1) with ti,k ∈ ψ(t), it follows from
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the triggering condition that ∥µi(t)∥2 ≤ ϖi(t). Calculate the change rate of ∥µi(t)∥2:

d

dt
∥µi(t)∥2 =2µT

i (t)ṡi(t) = 2µT
i (t)(

˙̂xi(t) +B
˙̂
di(t))

=2µT
i (t)(Ax̂i(t) + (B +BS)d̂i(t) + (Ki +BGi)δi(t)

+ (Mi +BJi)ξ
∗
i (t) + Fvi(t))

:=ri(t), t ∈ (ti,k, ti,k+1]. (4.56)

Noting the boundedness of µi(t), x̂i(t), d̂i(t), δi(t), ξ
∗
i (t) and vi(t), we can conclude

that |ri(t)| is bounded by a constant r̄i > 0, which implies that d
dt
∥µi(t)∥2 is upper

bounded. On the other hand, according to (4.7), we have

∥µi(ti,k)∥2 = 0, lim
t→t−i,k+1

∥µi(t)∥2 = ϖi(t). (4.57)

In view of (4.7) and (4.8), we have

ϖ̇i(t) ≥ −(ρi + qi)ϖi(t) + ςi. (4.58)

Thus, by induction, we can obtain

ϖi(t) ≥(ϖi(ti,k)−
ςi

ρi + qi
)e[−(ρi+qi)(t−ti,k)] +

ςi
ρi + qi

≥(ϖi(ti,k−1)−
ςi

ρi + qi
)e[−(ρi+qi)(t−ti,k−1)] +

ςi
ρi + qi

≥ · · ·

≥(ϖi(t0)−
ςi

ρi + qi
)e[−(ρi+qi)(t−t0)] +

ςi
ρi + qi

>
ςi

ρi + qi
, t ∈ (ti,k, ti,k+1], (4.59)

which confirms that the auxiliary variables ϖi(t) are positive. By (4.56), (4.57) and

(4.59), it can be checked that

ti,k+1 − ti,k ≥
ςi

r̄i(ρi + qi)
. (4.60)

Noting that (ςi/ρi+ qi) is positive, (4.60) confirms that a positive minimum triggering

interval exists. As a result, Zeno behaviour is strictly precluded, which completes the

proof. ■

Remark 4.5.1. Theorem 4.5.1 shows that estimation error stability can be achieved

for an unreliable networked system with event-based updates under both aperiodic DoS
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attacks and deception attacks with an unknown upper bound. In this case, an observer

applying a technique similar to the adaptive sliding-mode observer is introduced to

compensate for deception attacks. The adaptive sliding mode observer is selected in

this work because it provides: 1) fast response and good transient performance; 2)

an independent structure to the main state observer, which can be separated from

the state estimator when necessary and 3) the ability to include an on-line adaptive

parameter estimator to estimate the upper bound of deception attacks.

4.6 Simulation Results

In this section, we evaluate the effectiveness of the proposed method with a simula-

tion study. We consider the distributed state estimation problem for an IEEE 4-bus

distribution line power grid. The model for a network of interconnected distributed

energy generators (DEGs) is taken from [108], as shown in Figure 4.2. Four DEGs

are modeled as voltage sources whose input voltages can be denoted by {vci(s)}i=1,...,4.

The DEGs are connected to the power network at the points of common coupling

(PCCs), where the voltages at the PCC are denoted by {vti(s)}i=1,...,4. A coupling

inductor exists between each DEG and the rest of the network, which is denoted as

{Lci(s)}i=1,...,4. We define vt = [vt1, . . . , vt4]
T and vc = [vc1, . . . , vc4]

T. The purpose of

voltage control is to keep the voltages at PCCs at a reference value vref. It is clear

that the system reaches equilibrium vt = vref given a proper vc. Defining the system

state as the derivation of the voltages from their reference value x = vf − vref, the

voltage dynamic equation of the power grid can be given in the form of (4.1). Note

that in this chapter, we are not concerned with the voltage control of the power grid,

but rather the estimation of its states when appropriate control efforts are carried out.

In this case, the system matrices are given as

A =


−0.837 0.5427 0 0

−0.5427 −0.837 0 0

0 0 −0.9851 0

0 0 0 −0.9556

 , B = I4, Di =


0.24 0.22

0.42 0.4

0.16 0.16

0.18 0.16

 , F = I4,
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Figure 4.2: Model of DEGs connected to the power network.

and the model of disturbance is given as

S =


1.5 0 −3 0

0 −1.5 0 3

3 0 −1.5 0

−3 0 1.5 0

 ,

with i = 1, . . . , 4, and γm = 0.1. The disturbance model represents a periodic distur-

bance with unknown amplitude and additional uncertainties, which commonly exists

in practical power grids [109]. The network topology is given by the Laplacian matrix

L =


2 −1 0 −1

−1 2 −1 0

0 −1 2 −1

−1 0 −1 2

 .

In this distributed setting, each grid sub-estimator is assumed to have partial measure-

ment of the system states. The 1st sensor measures the 1st and the 2nd coordinates of

the state vector, the 2nd sensor measures the 2nd and the 3rd coordinates, the 3nd sen-

sor measures the 3rd and the 4th coordinates, and the 4th sensor takes measurements

of the 4th and the 1st coordinates. For instance, the 4th sensor has a measurement

matrix of C4 =

 0 0 0 1

1 0 0 0

. This set of system matrices satisfies Assumption

4.4.1, while local detectability of pairs (A,Ci) , i = 1, . . . , 4, is not satisfied, meaning

that the sub-estimators cannot successfully estimate the state of the system without

assistance from their neighbors.
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The deception attack is given as f(t) = 2 + sin (πt+ 0.2) with upper bound

ε = 3, and introduced to the system at t = 20s. The non-periodic DoS attack inter-

vals are generated randomly as Hj = {[1.54, 2.49], [4.97, 5.88], [6.69, 7.98], [8.05, 8.25],

[8.58, 9.09], [10.48, 10.86], [11.16, 12.97], [14.51, 15.24], [15.38, 15.60], [17.20, 17.74],

[19.16, 22.38], [23.69, 23.73], [24.59, 25.47], [25.59, 26.22], [26.65, 29.27]}. The parame-

ters of the adaptive law are given as ā1 = 0.03, ā2 = 0.25, ϵi = 0.005, W1 = [3.7 1.4],

W2 = [3.09 1.56], W3 = [1.5 1.29], and W4 = [2.78 1.42]. The function φ(t) is designed

as a hyperbolic function φ(t) = tanh(0.2t). The parameters for event based update are

given as ρi = 1.1, qi = 0.2, and ςi = 0.005, and the initial values are set as xi(0) = 5,

di(0) =
[
0.3 0.3 0.3 0.3

]T
, where i = 1, . . . , 4.

The system states and their estimates with the proposed algorithm are depicted in

Figure 4.3. From these results, it is seen that the designed distributed state estimator

can accurately estimate the system states in both cases, even in the presence of DoS

and deception attacks. In comparison, simulations under the same conditions in the

absence of disturbance rejection and attack compensation are carried out in Figure

4.4 and Figure 4.5, respectively, where the bound of the deception attack is unknown.

It can be seen that the proposed algorithm has superior estimation performance and

resilience.

To further assess the performance of the proposed algorithm, the adaptive estima-

tion of the upper bound ε of the deception attack from each estimator is displayed

in Figure 4.6. It can be seen that ε̂i is bounded in each estimator. The mean square

errorMSE = 1
N
∥x̃∥2 of estimation under various scenarios are shown in Figure 4.7. It

can be observed that the proposed algorithm has considerably lower estimation error

compared with estimators in the absence of disturbance rejection or attack compen-

sation.

4.7 Conclusions

In this chapter, an event-based resilient distributed state estimation method has been

proposed for systems under disturbances and multiple heterogeneous cyber-attacks. A
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novel event-based communication scheme with resilience towards non-periodic DoS at-

tacks is proposed to reduce unnecessary data transmissions within the network, while

guaranteeing desired estimation performance. A novel adaptive deception attack rejec-

tion scheme is introduced to deal with deception attacks via compensation. Moreover,

a distributed disturbance observer is proposed to compensate for disturbances in the

system in a distributed manner. By means of the Lyapunov function approach, suf-

ficient conditions for convergence of the estimator are obtained. A practical example

with a 4-bus power grid is provided to demonstrate the effectiveness of the proposed

estimation method, where the results show that the proposed method is capable of

estimating the state of the system in the presence of both DoS and deception attacks.

While the approach proposed in this chapter addresses resilient distributed estima-

tion against typical heterogeneous attacks, it is noted that some cyber attacks, namely

sparse injection attacks, could be potentially unbounded and cannot be dealt with by

the compensation approach. In these cases, a separation and isolation approach is

required to remove the attack signal from the measurements. In the next chapter, a

switching estimator based on a monitoring function will be introduced for the secure

estimation for nonlinear systems against sparse attacks.
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Figure 4.3: System states and estimates of the proposed algorithm.
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Figure 4.4: System states and estimates without disturbance rejection.
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Figure 4.5: System states and estimates without attack compensation.
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Figure 4.6: Estimation of attack upper bound ε.

Figure 4.7: Comparison of mean square errors.



Chapter 5

Secure State Estimation for

Nonlinear Systems Under Sparse

Attacks

5.1 Introduction

Among the common types of cyber attacks, sparse injection attacks are particularly

challenging to deal with, and have recently garnered the attention of researchers [41].

From a physical perspective, sparse attacks are a general class of unknown attacks

that can be modelled as a sparse vector and that are maliciously injected to system

measurements. As sparse attacks are potentially unbounded, in the presence of sparse

attacks, the challenge of secure state estimation mainly lies in the identification of the

attack mode.

Secure estimation against sparse attacks has been widely investigated in recent

years for both discrete-time [43, 44, 49] and continuous-time [51, 52, 53] linear time-

invariant systems. However it is noticed that while a wide range of practical systems,

including robotic manipulators and unmanned aerial vehicles, are modelled as nonlin-

ear systems, most existing estimation schemes against sparse attacks are limited to

linear systems. In particular, modern robotic systems are often required to operate

83
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under unstructured or even hostile environments, and are vulnerable to attacks. It is

far from trivial to design suitable state observers for nonlinear systems, particularly

in the presence of sparse attacks. Moreover, practical systems are subject to distur-

bances, and the disturbances may pollute the residue signals used to identify attacks,

making it hard to preclude attacked sensors. Secure state estimation for nonlinear

systems under the simultaneous presence of sparse attacks and disturbances remains

an open problem.

Motivated by the above observations, in this chapter, a novel secure state esti-

mation scheme is introduced for a class of continuous nonlinear systems under sparse

attacks and disturbances, with application to robotic manipulators. The main contri-

bution of this chapter is twofold.

1) A kind of high-gain K-filters is constructed to estimate unmeasured states of

a class of high-order systems with strong nonlinearities. The high-gain K-filters can

attenuate the disturbances to an arbitrary level and steer the estimation error into an

arbitrarily small residual set when measurements from attacked sensors are precluded.

It is also noted that contrary to the nonlinearities considered in Chapter 3, the nonlin-

ear terms of the system considered in this chapter do not have to satisfy the Lipschitz

assumption.

2) A monitoring function and a switching scheme are designed, which successfully

preclude attacked sensors after a finite number of switchings. It is proved that with

the switching scheme and high-gain K-filters, the estimation error can converge to

a residual set which can be made arbitrarily small, regardless of the disturbances

and possibly unbounded sparse attacks. The proposed estimation scheme removes

the boundedness assumption on attack signals required in [51] and [52] and the LMI

constraints on estimators required in [52] and [53]. Moreover, the application of the

proposed method to a robotic manipulator illustrates its effectiveness.
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5.2 Problem Formulation

Consider a class of nonlinear systems described by

ẋ = Ax+ φ(x1) + b(u+ d), (5.1)

where x = [x1, . . . , xn]
T ∈ Rn and u ∈ R are the system states and the control input, re-

spectively, φ(x1) ∈ Rn is a known smooth nonlinear function, d ∈ R is the disturbance

signal which satisfies |d(t)| ≤ d̄ with d̄ a known constant, A =


0
... In−1

0 · · · 0

 ∈ Rn×n,

and b = [0, . . . , 0, b̄]T ∈ Rn with b̄ ∈ R a known constant. The measurement y ∈ Rl

from l sensors is given by

y = Cx+ a(t), (5.2)

where

C =


1 0 · · · 0

1 0 · · · 0
...

...

1 0 · · · 0

 ∈ Rl×n, a(t) =


a1(t)

a2(t)
...

al(t)

 ∈ Rl (5.3)

with a(t) denoting the sparse sensor attacks injected by the attackers. If the ith sensor

(i = 1, . . . , l) suffers from an attack, then ai(t) is nonzero; otherwise, ai(t) ≡ 0. It is

assumed that a(t) and u(t) do not tend to infinity in finite time.

The robotic manipulator can be equipped with sensing, actuation and communi-

cation capabilities to interact with the cyber domain. Since modern robotic systems

often operate in open and unstructured environments, they are potentially subject to

cyber attacks. The dynamics of the manipulator can be described as [110]

Jẍ1 +mgϕ sin(x1) + γ(t) = u, (5.4)

where x1, ẋ1 and ẍ1 denote the link angle, link angular velocity and link angular ac-

celeration, respectively, and u is the control torque. Constants J,m, g and ϕ rep-

resent the rotational inertia, mass of link, gravitational acceleration and distance

from the joint axis to the link center of mass, respectively, and γ(t) is the distur-

bance torque that is assumed to be bounded and piecewise continuous. By letting
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x2 = ẋ1, x = [x1, x2]
T, φ(x1) = [0,−mgϕ

J
sin(x1)]

T, b̄ = 1
J
and d(t) = −γ(t), we can

rewrite (5.4) in the form of (5.1) with n = 2. From the physical perspective, the

disturbance γ(t) could represent the reaction torque and constrained external force in

the physical model.

The link angle measurement y is collected by encoders integrated to the manipula-

tors. In order to enhance the security and reliability of manipulator measurements as

well as detect potential faults, manipulators are commonly equipped with redundant

encoders. Typical configurations for redundant encoders include multiple identical

encoders, pairing of incremental and absolute encoders, and encoders of different mea-

surement principles (such as optical/magnetic). The measurement from redundant

encoders corresponds to the measurement model in (5.2). Sparse attack signals could

be injected to the sensors by corrupting the cyber layer of the sensors.

The following assumption is made on the sparse attacks.

Assumption 5.2.1. The attack signal a(t) ∈ Rl in (5.2) has s nonzero elements,

where s is known and no larger than l − 1, and supp(a(t)) is constant over time t.

In this chapter, the objective is to design a secure state estimator for the system

in (5.1) with the measurement (5.2), such that the estimation error converges to a

residual set that can be made arbitrarily small in the presence of sparse attacks and

disturbances.

Remark 5.2.1. In addition to robotic manipulators, the system model in (5.1) can

also describe a wide range of practical systems, such as servomotors [111], spring-

mass-damper systems [112] and ship dynamics [113]. The measurement model in

(5.2) represents a set of l sensors with only partial measurement of the states. Many

practical systems are equipped with redundant sensors, which can be used to improve

the accuracy, and enhance the reliability of measurements. Practical examples of

sensors that can be described by the measurement model in (5.2) include redundant

encoders for robotic manipulators [114], and redundant inertial sensors for navigation

systems. In the proposed method, the measurement redundancy is exploited to identify

the sparse attack mode.
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Remark 5.2.2. Assumption 5.2.1, also defined as s-sparse in literature [41, 43], places

a restriction on the number of sensors that the attack can compromise, meaning that no

more than s out of l sensors are under attack, and that the number of attacked sensors

remains constant. This assumption is based on the reasoning that attack resources are

limited, and similar assumptions can be found in [22, 50, 51, 52, 53], where only linear

time-invariant systems are considered and s is required to be no more than l/2. By

comparison, in this chapter, nonlinear systems are considered and s is only required

to be no more than l−1. In many cases, the number of attacked sensors s is known to

the users in advance. In the cases where s is unknown to users, the estimation scheme

proposed in this chapter can still be implemented under the worst case assumption of

s = l − 1.

5.3 Estimator Design

A schematic of the proposed method is presented in Figure 5.1, which includes modules

depicting the system (5.1), sensors, sparse injection attacks, switching mechanism,

and high-gain K-filters, respectively. In this section, the estimation scheme, including

the high-gain K-filters, the monitoring function and the switching mechanism will be

introduced.

Figure 5.1: Schematic diagram of the proposed method

We refer to a possible set of attacked sensor locations as an attack mode. For l

sensors under s sparse injection attacks, there will be a total of Cs
l possible attack

modes. Denote by S = {S ⊂ {1, 2, . . . , l} : |S| = s} = {S1, . . . , SCs
l
} the set of all
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attack modes. For the ηth attack mode Sη, we can define the corresponding switching

function matrix Qη(t) = diag{ϱ1(η(t)), . . . , ϱl(η(t))}, where ϱi(η) = 0 for i ∈ Sη, and

ϱi(η) = 1 otherwise, i = 1, . . . , l. We design the switching index η(t) as

η(t) = mod(q − 1, Cs
l ) + 1, ∀t ∈ [tq−1, tq), (5.5)

where t0 := 0, and tq (q = 1, 2, 3, . . . ) are switching time instants to be specified. It

is clear that when Sη = supp(a(t)), the attacked measurements are removed by the

switching matrix and Qη(t)a(t) = 0. A challenging aspect of resilient estimation is

to identify the attack-free mode when no information on the channels of attacks are

known to the defender. For this purpose, we define a switching measurement based

on the switching matrix as

yη =
1

(l − s)

l∑
i=1

ỹi, (5.6)

where ỹi is the ith element of ỹ := Qηy. This definition ensures that yη = x1 when

Qη(t)a(t) = 0.

Choose a constant vector K0 = [k1, . . . , kn]
T ∈ Rn such that the matrix A0 =

A −K0E
T is Hurwitz (i.e., sn + k1s

n−1 + · · · + kn−1s + kn is a Hurwitz polynomial),

where E = [1, 0, . . . , 0]T ∈ Rn. For the nonlinear system in (5.1), We design a kind of

high-gain K-filters based on the switching measurement yη as follows:

ξ̇1 = Aµξ1 +Kµyη, (5.7)

ξ̇2 = Aµξ2 + φ(yη), (5.8)

ξ̇3 = Aµξ3 + bu, (5.9)

where ξ1, ξ2, and ξ3 are states of the filters, Aµ = A−KµE
T andKµ = [µk1, . . . , µ

nkn]
T

with µ ≥ 1 a design parameter. Based on the high-gain K-filters, the state estimation,

denoted by x̂, is given as

x̂ = ξ1 + ξ2 + ξ3. (5.10)

From (5.1) and (5.7)-(5.10), it can be checked that the state estimation error x̃ := x−x̂

satisfies

˙̃x = Ax+ φ(x1) + b(u+ d)− Aµ(ξ1 + ξ2 + ξ3)−Kµyη − φ(yη)− bu

= (A−KµE
T)x+Kµ(E

Tx− yη)− Aµx̂+ φ(x1)− φ(yη) + bd

= Aµx̃+Kµ(x1 − yη) + φ(x1)− φ(yη) + bd. (5.11)
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If Qη(t)a(t) = 0 for all t ≥ t∗ with t∗ a finite time instant, then yη = x1 and thus

˙̃x(t) = Aµx̃(t) + bd(t), ∀t ≥ t∗. (5.12)

Applying the transformation ε = Wx̃ with W = diag{1, µ−1, . . . , µ1−n}, in view of

(5.12), we have

ε̇(t) = WAµW
−1ε(t) +Wbd(t)

= µA0ε(t) +Wbd(t), ∀t ≥ t∗. (5.13)

The following lemma gives the estimation performance of the high-gain K-filters when

the attacked measurements are removed.

Lemma 5.3.1. Define V0 = εTP0ε, where P0 = PT
0 > 0 is the solution of the Lyapunov

equation AT
0 P0 + P0A0 = −2In. Consider the system in (5.1) with the measurement

in (5.2) and the state estimation given by (5.7)-(5.10). Assuming that Qη(t)a(t) = 0

for all t ≥ t∗ with t∗ a finite time instant, then for all t ≥ t∗ we have

∥x̃(t)∥2 ≤
µ2n−2e

− 2µ−1
λmax(P0)

(t−t∗)
V0(t

∗) + λmax(P0)f
2µ−1

λmin(P0)
, (5.14)

where x̃ = x− x̂ is the estimation error, and f = ∥P0∥2b̄2d̄2 is a constant independent

of the design parameter µ. Moreover, x̃ converges to a residual set which can be made

arbitrarily small by increasing µ.

Proof. In view of (5.13), the derivation of V0(t) yields

V̇0(t) = −2µεT(t)ε(t) + 2εT(t)P0Wbd(t)

≤ −(2µ− 1)εT(t)ε(t) + µ(2−2n)∥P0∥2b̄2d̄2

≤ − 2µ− 1

λmax(P0)
V0(t) + µ(2−2n)f, ∀t ≥ t∗. (5.15)

It follows from (5.15) that

V0(t) ≤ e
− 2µ−1

λmax(P0)
(t−t∗)

V0(t
∗) +

λmax(P0)µ
(2−2n)f

2µ− 1
,∀t ≥ t∗. (5.16)

As a result,

∥ε(t)∥2 ≤
e
− 2µ−1

λmax(P0)
(t−t∗)

V0(t
∗) + λmax(P0)µ(2−2n)f

2µ−1

λmin(P0)
,∀t ≥ t∗. (5.17)
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On the other hand, it can be readily checked that

∥x̃∥2 = ∥W−1ε∥2 ≤ µ2n−2∥ε∥2. (5.18)

Combining (5.17) and (5.18) gives (5.14). Further, by (5.14), we have

lim
t→+∞

∥x̃(t)∥2 ≤ λmax(P0)f

(2µ− 1)λmin(P0)
. (5.19)

It is clear from (5.19) that x̃ converges to a residual set which can be made arbitrarily

small by increasing µ. This completes the proof. ■

Remark 5.3.1. Different from traditional K-filters [115], the high-gain K-filters de-

signed in (5.7)-(5.9) offer an adjustable design parameter µ. As shown in Lemma 5.3.1,

in the absence of sensor attacks, the high-gain K-filters can steer the state estimation

error into an arbitrarily small residual set by increasing µ. This feature enables atten-

uation of the disturbance d to an arbitrary level, and will play an important role in

the subsequent design and analysis.

Now, we shall propose a monitoring function and a switching scheme to specify the

switching time instants. Let the ith elements of x̂, x̃ and ε be denoted as x̂i, x̃i and

εi, respectively, where i = 1, . . . , n. The following assumptions are made.

Assumption 5.3.1. There exists a known constant β such that limt→+∞ |x̃1(t)| ≤ β

does not hold if Qη(t)a(t) does not remain 0 after a finite time instant, where β can

be arbitrarily small.

Assumption 5.3.2. The system states x1, . . . , xn are bounded.

Remark 5.3.2. Assumption 5.3.1 avoids strictly undetectable attacks from the de-

fenders’ perspective. Works in [22] and [116] introduced the concept of completely

stealthy attacks that can completely remove their influence on monitored residues and

are strictly undetectable. But such attacks require complete knowledge of the system

model and the detection mechanism, which is a very restrictive assumption. The se-

cure estimation approach in this chapter is developed from the defenders’ perspective,

without prior knowledge on the attack signals. Therefore, it is necessary to introduce

Assumption 5.3.1 to avoid strictly undetectable attacks. Thanks to the high-gain K-

filters, the constant β is allowed to be arbitrarily small, which significantly reduces the
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restrictiveness of Assumption 5.3.1. Assumption 5.3.2 is also reasonable since systems

are often subject to physical constraints. For instance, the angle and angular velocity

of a robotic manipulator are bounded due to mechanical restrictions [114, 117].

Reminding that (5.14) holds when the attack-free mode is identified, it is natural

to construct a monitoring function based on (5.14). In view of (5.14) and noting

V0(t
∗) ≤ λmax(P0)

∑n
i=1 ε

2
i (t

∗) = λmax(P0)[x̃
2
1(t

∗) +
∑n

i=2 ε
2
i (t

∗)], it can be checked that

λmin(P0)x̃
2
1(t)

≤ µ2n−2e
− 2µ−1

λmax(P0)
(t−t∗)

λmax(P0)[x̃
2
1(t

∗) +
n∑

i=2

ε2i (t
∗)] +

λmax(P0)f

2µ− 1

≤ µ2n−2e
− 2µ−1

λmax(P0)
(t−t∗)

λmax(P0)[x̃
2
1(t

∗) + 2
n∑

i=2

x̂2i (t
∗)µ2−2i + 2

n∑
i=2

x2i (t
∗)µ2−2i]

+
λmax(P0)f

2µ− 1
, ∀t ≥ t∗. (5.20)

Introduce a monotonically increasing unbounded sequence α(j) (j = 0, 1, 2 . . . ) which

satisfies α(j) > 0 and limj→+∞ α(j) = +∞. Taking (5.20) into consideration, a

monitoring function ψ(t) is designed as follows:

ψ(t) = µ2n−2e
− 2µ−1

λmax(P0)
(t−tq−1)λmax(P0)[x̃

2
1(tq−1) + 2

n∑
i=2

x̂2i (tq−1)µ
2−2i + α(q − 1)]

+
λmax(P0)f

2µ− 1
, ∀t ∈ [tq−1, tq). (5.21)

Define

ϖ(t) = λmin(P0)x̃
2
1(t). (5.22)

Based on (5.21) and (5.22), we propose the following switching scheme to determine

the switching time instant tq:

tq = inf{t > tq−1

∣∣ϖ(t) = lim
∆t→0−

ψ(t+∆t)}. (5.23)

Meanwhile, we choose the design parameter µ such that

λmax(P0)f

(2µ− 1)λmin(P0)
≤ β2. (5.24)

Remark 5.3.3. The switching scheme in (5.23) together with the design in (5.5)

drives the value of the switching index η(t) to switch among 1, . . . , Cs
l . The presence
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of an increasing sequence α(q− 1) ensures that the monitoring function ψ(t) jumps at

each switching instance, providing a margin for the next potential switching. In the

following subsection, it will be proved theoretically that the switching index η(t) will

stop at the attack-free mode after a finite number of switchings.

5.4 Performance Analysis

Theorem 5.4.1.: Consider the nonlinear system in (5.1) with the measurement in

(5.2). Suppose that Assumptions 5.2.1, 5.3.1 and 5.3.2 hold. Then, by means of the

high-gain K-filters in (5.7)-(5.9) and the switching law in (5.23), the state estimation

error x̃ converges to a residual set given by

lim
t→+∞

∥x̃(t)∥ ≤

√
λmax(P0)f

(2µ− 1)λmin(P0)
, (5.25)

which can be made arbitrarily small by increasing the design parameter µ.

Proof. First, we prove that the switching will eventually stop after a finite number of

switchings. Suppose by contradiction that the switching index η(t) switches without

stopping. Then, the increasing sequence α(q − 1) increases unboundedly as q → +∞.

In view of Assumption 5.3.2, there must exist a finite integer q∗ such that

α(q∗ − 1) > 2
n∑

i=2

x2i (t)µ
2−2i, ∀t ≥ tq∗−1, (5.26)

and

Qη(tq∗−1)a(t) = 0. (5.27)

Note that (5.27) implies that the attacked measurements are removed. Then, from

(5.26) and (5.21), we have

ψ(t) > µ2n−2e
− 2µ−1

λmax(P0)
(t−tq∗−1)λmax(P0)

n∑
i=1

ε2i (tq∗−1) +
λmax(P0)f

2µ− 1
, (5.28)

where t ≥ tq∗−1. On the other hand, by (5.27) and Lemma 5.3.1, ϖ(t) = λmin(P0)x̃
2
1(t)

satisfies

ϖ(t) ≤ µ2n−2e
− 2µ−1

λmax(P0)
(t−tq∗−1)λmax(P0)

n∑
i=1

ε2i (tq∗−1) +
λmax(P0)f

2µ− 1
, (5.29)
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where t ≥ tq∗−1. Combining (5.28) and (5.29) gives ψ(t) > ϖ(t) when t ≥ tq∗−1, which

together with (5.23) implies that no switching will occur after the time instant tq∗−1.

This leads to a contradiction. Therefore, we can conclude that the switching will stop

after a finite number of switchings.

Let h denote the total number of switchings and th be the time instant of the last

switching, both of which are finite. Then, from (5.21), we have

ψ(t) = µ2n−2e
− 2µ−1

λmax(P0)
(t−th)λmax(P0)[x̃

2
1(th) + 2

n∑
i=2

x̂2i (th)µ
2−2i + α(h)]

+
λmax(P0)f

2µ− 1
, ∀t ≥ th. (5.30)

Since a(t) and u(t) are bounded in finite time, it is clear from (5.2), (5.6)-(5.10) and

Assumption 5.3.2 that x̂(t) and x̃(t) are bounded for t ∈ [0, th]. As a result, x̃21(th)

and
∑n

i=2 x̂
2
i (th)µ

2−2i in (6.14) are bounded. With this fact in mind, using (5.22) and

(5.24) and noting ϖ(t) ≤ ψ(t) for all t ≥ th, it can be checked that

lim
t→+∞

x̃21(t) ≤ 1

λmin(P0)
lim

t→+∞
ψ(t)

≤ λmax(P0)f

(2µ− 1)λmin(P0)
≤ β2. (5.31)

Subsequently, taking Assumption 5.3.1 into consideration, we know the attack-free

model is identified and Qη(t)a(t) remains 0 for all t ≥ th, which together with Lemma

5.3.1 indicates that (5.25) holds and x̂ and x̃ are uniformly bounded for all t ≥ 0. This

completes the proof. ■

Remark 5.4.1. It should be pointed out that (5.24) can always be satisfied through

the selection of µ. Owing to the high-gain K-filters, µ can be set to a large value.

As a result, β is allowed to be small, which makes Assumption 5.3.1 mild. Besides,

different from [52] and [53], the secure estimation scheme proposed in this chapter

does not require solving any LMIs and, theoretically speaking, in our scheme it is

much easier to choose the design parameters.
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5.5 Simulation and Experimental Results

Most existing works focusing on sparse attacks are only devoted to linear systems,

and only simulation results are presented. In this section, the proposed secure state

estimation method is applied to a robotic manipulator, where both simulation and

experimental studies are performed. The angle measurement is collected by encoders

integrated to the manipulators. In this case, the manipulator is equipped with 4

independent encoders all subject to sparse attacks. This measurement configuration

corresponds to the measurement model in (5.2) with C = [1 0; 1 0; 1 0; 1 0]. In

our simulation and experiments, the physical parameters of the manipulator are J =

8.5× 10−5 kg·m2, m = 0.08 kg, ϕ = 0.055 m and g = 9.8 m/s2, and the sequence α(j)

is chosen as α(j) = j + 1.

In the simulation study, we consider the case where constant attack signals are

injected to the 2nd and the 4th encoders. The attack vector is given as a(t) = [0 5 0 5]T

for all t ≥ 0, and the control input is given as u = 0.004 sin t and the disturbance γ(t)

is set as a white noise upper bounded by 0.1. The initial conditions of the manipulator

are x1(0) = 0.6 rad and x2(0) = 0 rad/s, and initial conditions of the high-gain K-

filters are set to be zero. The design parameters are chosen as µ = 50, k1 = 2 and

k2 = 1, and the simulation results are shown in Figures 5.2 and 5.3. From Figure

5.2, one can see that the proposed K-filters estimate the angle and angular velocity of

the manipulator. From Figure 5.3, it is shown that the estimation error activates the

switching mechanism three times, eventually identifying the attack-free mode.

Following the simulation study, we further validate the proposed estimation method

through a hardware experiment on the OpenMANIPULATOR-X manipulator. A

schematic diagram of the experimental platform is given in Figure 5.4. The estimation

and control algorithms are executed in MATLAB/Simulink RealTime environment.

Sensor measurements are read by the U2D2 board, and sparse attacks are injected by

the PC interface.
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Figure 5.2: States and estimations from simulation.

5.5.1 Experiment 1-State Estimation

In the first experiment, the manipulator is programmed to follow a desired trajectory,

and our proposed estimation scheme performs state estimation while the sensors are

under sparse attacks. The attack vector is set as a(t) = [0 5 0 5]T for all t ≥ 0, and the

design parameters of our estimation scheme are chosen as µ = 50, k1 = 2 and k2 = 1.

The initial conditions of the manipulator are x1(0) = 0.2 rad and x2(0) = 0 rad/s,

and initial conditions of the high-gain K-filters are set to be zero. The manipulator

trajectory and its estimation are given in Figure 5.5, which shows that our proposed

scheme estimates the trajectory of the manipulator after a period of switching. From

Figure 5.6, it is observed that the switching mechanism successfully switches to the

attack-free mode.
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Figure 5.3: ψ(t) and ϖ(t) from simulation.

Figure 5.4: Schematic diagram of the experiment platform.

5.5.2 Experiment 2-Estimation-Based Control

Based on the first experiment, we now design a backstepping control scheme based

on the estimated states with consideration to the estimation error and apply it to the

manipulator.

Step 1. Define z1 = x1−x1d, where x1d is the desired trajectory. Taking the derivative

of z1 yields

ż1 = ẋ1 − ẋ1d = x2 − ẋ1d = x̂2 + x̃2 − ẋ1d. (5.32)

Define z2 = x̂2−ω, and choose ω = −c1z1+ẋ1d− 1
4
z1, where c1 > 0 is design parameter.

Then, we have ż1 = −c1z1 + z2 + x̃2 − 1
4
z1. Considering the first Lyapunov function

candidate V1 =
1
2
z21 , it can be checked that

V̇1 = −c1z21 + z1z2 + z1x̃2 −
1

4
z21 ≤ −c1z21 + z1z2 + x̃22. (5.33)
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Figure 5.5: Trajectory and estimation from Experiment 1.
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Figure 5.6: ψ(t) and ϖ(t) from Experiment 1.

Step 2. Noting ω̇ = −c1ż1 + ẍ1d − 1
4
ż1 = −(c1 +

1
4
)(x̂2 − ẋ1d) + ẍ1d − (c1 +

1
4
)x̃2, we

have

ż2 = ˙̂x2 − ω̇ = σ + b̄u+ (c1 +
1

4
)x̃2, (5.34)

where σ = −µ2k2ξ1,1+µ
2k2yη−µ2k2ξ2,1+

BGΩ
J

sin(yη)−µ2k2ξ3,1+(c1+
1
4
)(x̂2−ẋ1d)−ẍ1d.

Let V2 = V1 +
1
2
z22 , whose derivative satisfies

V̇2 ≤ −c1z21 + z1z2 + z2b̄u+ z2σ +
1

4
(c1 +

1

4
)2z22 + 2x̃22. (5.35)

Now, the control signal is chosen as u = b̄−1[−c2z2 − σ − 1
4
(c1 +

1
4
)2z2 − z1], which

results in

V̇2 ≤ −c1z21 − c2z
2
2 + 2x̃22 ≤ −2min{c1, c2}V2 + 2x̃22. (5.36)

Since x̃2 is bounded and converges to a residual set which can be made arbitrarily

small by increasing the design parameter µ, it is clear from (5.36) that V2, z1 and z2
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are bounded and converge to some residual sets which can be made arbitrarily small

by increasing µ, c1 and c2.

In Experiment 2, the control gains are chosen as c1 = c2 = 2. The experiment is

carried out in an attack-free environment. From Figure 5.7, it can be seen that the

estimation-based controller can force the link angle to track the desired trajectory x1d.

From the simulation and experimental results, it has been demonstrated that the

proposed method can estimate the state information of the robotic manipulator under

sparse attacks and disturbances. It is noted that the results in [22, 43, 45, 46, 47, 48,

49, 50, 51, 52, 53] cannot deal with the state estimation of nonlinear systems, and thus

is not applicable in this case study.

0 5 10 15 20 25 30 35 40

Time (sec)

-1

0

1

2

Figure 5.7: x1d, x1 and x̂1 from Experiment 2.

5.6 Conclusions

In this chapter, considering sparse sensor attacks and disturbances, a secure state esti-

mation scheme has been proposed for a class of nonlinear systems with application to a

robotic manipulator. Our design introduces a kind of high-gain K-filters, a monitoring

function and a switching scheme. With these efforts and using a contradiction argu-

ment, it has been proved that all attacked sensors are precluded after a finite number

of switchings and the estimation error can converge to an arbitrarily small residual

set. The proposed method has been applied to a robotic manipulator with both sim-

ulation and experimental studies, where the effectiveness of the proposed scheme has
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been validated. In the following chapter, we shall consider uncertainties on the actu-

ator channel of distributed systems, and a resilient containment control scheme will

be introduced for distributed heterogeneous MIMO nonlinear systems with unknown

direction actuator faults.



Chapter 6

Containment Control for

Heterogeneous MIMO Nonlinear

Agents With Unknown Direction

Actuator Faults

6.1 Introduction

Due to their scale and complexity, multi-agent systems are prone to faults on the actu-

ator channel, which may lead to degradation of system performance or even instability.

Aiming at additive faults and partial loss of effectiveness faults, many effective adap-

tive fault-tolerant control schemes have been proposed for SISO agents [62, 65, 67] and

MIMO agents with known CGMs [68, 75, 76]. Though ignored by all the aforemen-

tioned control schemes, unknown direction actuator faults including reverse faults are

frequently encountered by practical systems including spacecraft [86], power systems

[87] and vehicles [88]. It should be pointed out that the joint influence of unknown

CGMs and unknown direction actuator faults brings unique challenges to cooperative

control of MIMO agents. Firstly, the faults result in an unknown time-varying matrix

between the CGM and the control signal, which further complicates the disposal of

100
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CGMs. Meanwhile, additions involving multiple Nussbaum functions are unavoidable

in this case, and the actuation directions of actuators and the unknown parameters to

be estimated experience jumps, where the effects of multiple Nussbaum functions may

counteract each other and the jumps significantly increase the difficulty in state esti-

mation, adaptive controller design and stability analysis. These problems make all the

contradiction arguments used in existing Nussbaum function-based control schemes

(see, e.g., [63, 64, 67, 88, 84] and [118]) no longer valid in face of unknown signs of

leading principal minors of CGMs and unknown direction actuator faults.

In this chapter, a novel output-feedback adaptive containment control scheme is

proposed for a class of nonlinear MIMO agents. The main contributions of this chapter

are as follows:

1) The agents in the distributed system are completely heterogeneous in the sense

that, except for the input-output dimension, all other characteristics are allowed to

be different. With respect to the CGMs, we only require the signs of their leading

principal minors to be nonzero, which considerably relaxes the assumptions on CGMs

in existing cooperative control schemes [68, 75, 76, 119, 120, 121, 122, 123, 124].

2) Unknown direction actuator faults are considered simultaneously in the pro-

posed control scheme. By introducing some Nussbaum functions, a novel contradic-

tion argument and a matrix similarity transformation, the difficulties caused by the

CGMs, actuator faults and jumps are successfully overcome and all closed-loop sig-

nals are proved to be globally uniformly bounded. To our best knowledge, this is

the first adaptive cooperative control scheme capable of tolerating unknown direction

actuator faults and unknown signs of leading principal minors of CGMs. Also, an

event-triggering mechanism is introduced to avoid continuous communication among

agents, which considerably reduces the communication burden.
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6.2 Problem Formulation

Consider a group of N +M agents, where agents 1, . . . , N are followers and agents

N +1, . . . , N +M are leaders. The followers under consideration are q-input q-output

uncertain nonlinear systems in output-feedback form [115], and the dynamics of the

ith follower is given by

ẋi = Aoixi +

νi∑
p=1

Gi,pfi,p(yi) +Biui, yi = Cixi, (6.1)

Aoi =



0 Iq 0 · · · 0

0 0 Iq · · · 0
...

...
...

. . .
...

0 0 0 · · · Iq

0 0 0 · · · 0


, Bi =



0
...

0

Bi,mi

...

Bi,0


, (6.2)

where xi = [xTi,1, . . . , x
T
i,ni

]T ∈ Rqni is the state with xi,j ∈ Rq, i = 1, . . . , N , j =

1, . . . , ni; ui ∈ Rq and yi ∈ Rq are the input and output, respectively; fi,p(yi) =

[fT
i,p,1(yi), . . . , f

T
i,p,ni

(yi)]
T with fi,p,j(yi) ∈ Rq are known smooth functions; Aoi ∈

Rqni×qni , Bi ∈ Rqni×q, Ci = [Ip, 0, · · · , 0] ∈ Rq×qni and Gi,p = diag{Ai,p, · · · , Ai,p} ∈

Rqni×qni with Ai,νi , . . . , Ai,1 ∈ Rq×q and Bi,mi
, . . . , Bi,0 ∈ Rq×q being unknown constant

matrices; and q, νi, ni and mi are known integers. The states xi,2, . . . , xi,ni
are not

measured. Define ρi = ni −mi and ρ = maxi=1,...,N ρi.

The actuators of the followers may suffer from unknown faults, given by

ui,j(t) =

ūi,j(t), 0 ≤ t < Ti,j,

δ̄i,jūi,j(t), t ≥ Ti,j,

(6.3)

where j = 1, . . . , q, and ūi = diag{ūi,1, . . . , ūi,q} is the control input to be designed,

δ̄i,j ̸= 0 is a constant whose sign represents the fault direction, and Ti,j is an unknown

constant denoting the time instant at which the jth actuator of the ith follower suffers

from faults. Both the magnitude and the sign of δ̄i,j are unknown. Letting

δi,j(t) =

1, 0 ≤ t < Ti,j,

δ̄i,j, t ≥ Ti,j,

(6.4)
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we have

ẋi = Aoixi +

νi∑
p=1

Gi,pfi,p(yi) +Biδiūi, yi = Cixi, (6.5)

where δi = diag{δi,1, . . . , δi,q} and the signs of δi,j represent the actuation directions of

actuators.

Remark 6.2.1. The agents in (6.1) are completely heterogeneous in the sense that,

except for the input-output dimension, all other characteristics are allowed to be differ-

ent. For example, for each follower, its relative degree ρi and order ni can be different

from those of other followers.

Remark 6.2.2. The actuator fault model in (6.3) covers partial loss of effectiveness

(0 < δ̄i,j < 1) and reverse faults (−1 ≤ δ̄i,j < 0). Reserve faults are not considered in

most of existing fault-tolerant control schemes such as [62, 65, 67, 68, 75, 76], but they

are prevalent in engineering systems including spacecraft [86], power systems [87] and

vehicles [88]. Note that the fault directions in (6.3) are unknown and δi experiences

jumps when actuator faults occur on the ith follower, which makes the control problem

much more challenging.

A directed graph G = (V , E) is used to characterize the communication network

among the agents. The adjacency matrix A = [aij] ∈ R(N+M)×(N+M) of G is defined

such that aii = 0, aij = 1 if (j, i) ∈ E and aij = 0 otherwise. The Laplacian matrix is

denoted by L = [lij] ∈ R(N+M)×(N+M), where lii =
∑N+M

j=1,j ̸=i aij and lij = −aij, ∀j ̸= i.

The leaders have no in-neighbours, and L can be partitioned as

L =

 L1 L2

0M×N 0M×M

 (6.6)

with L1 ∈ RN×N and L2 ∈ RN×M . The following assumptions are made.

Assumption 6.2.1. The leading principal minors σ̄i,1, . . . , σ̄i,q of the CGM Bi,mi
are

nonzero.

Assumption 6.2.2. For each of the N followers, there exists at least one leader that

has a directed path to the follower.

Assumption 6.2.3. There exists a positive integer ρ known to all followers such that
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ρ ≥ ρi,∀i = 1, . . . , N .

Remark 6.2.3. In Assumption 6.2.1, both the magnitudes and the signs of σ̄i,1, . . . , σ̄i,q

are allowed to be unknown. This assumption significantly relaxes the assumptions on

the CGM made in existing distributed cooperative control schemes. In [68, 75, 76, 120,

121, 122, 123], the CGM is required to be exactly known or to be positive definite.

As for [124], it requires the sign knowledge of σ̄i,1, . . . , σ̄i,q and continuous undirected

communication among followers. Besides, the control scheme in [124] cannot handle

actuator faults or guarantee global stability. Assumption 6.2.2 is a mild condition for

containment control and can be widely found in the literature (see, e.g., [119] and

[121]).

The trajectories of the leaders are denoted as yj(t) ∈ Rq (j = N + 1, . . . , N +

M), where yj(t) and their derivatives up to the ρth order are bounded and piecewise

continuous. The objective is to design a distributed control scheme such that all

closed-loop signals are bounded, and the outputs of the followers move into the convex

hull Z(t) spanned by the leaders, where

Z(t) = {
N+M∑
j=N+1

ḡjyj(t) | ḡj > 0,
N+M∑
j=N+1

ḡj = 1}. (6.7)

The following lemma will be used in our design and analysis.

Lemma 6.2.1. [84]: For all i = 1, . . . , N and j = 1, . . . , q, given any nonzero

constants bi,j, the functions ςj(β) = 2q−j sin(2j−1β) satisfy

sign(bi,j)ςj(β) ≤ 0, if β ∈ [2hπ + ϱ̄i, 2hπ + ϱ̄i + 2−qπ], (6.8)

and

sign(bi,j)ςj(β) ≤ −1, if β = 2hπ + ϱ̄i + 2−qπ, (6.9)

where h = 1, 2, 3, . . ., and ϱ̄i = π − 2−qπ +
∑q

j=1 2
−jbi,jπ ≥ 0.
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6.3 Controller Design

6.3.1 Auxiliary Filters and Event-Triggering Mechanism

Define Y (t) = [yTN+1(t), . . . , y
T
N+M(t)]T and

r(t) = [rT1 (t), . . . , r
T
N(t)]

T = −(L−1
1 L2 ⊗ Iq)Y (t), (6.10)

where ri(t) ∈ Rq, i = 1, . . . , N , and ⊗ denotes the Kronecker product. As stated in

[121], if Assumption 6.2.2 holds, then each row sum of −L−1
1 L2 equals to one, and thus

ri(t) belongs to Z(t) in (6.7). We construct a network of N auxiliary filters, which

utilizes local information and event-triggered communication to estimate ri. The filter

associated with the ith (i = 1, . . . , N) follower is designed as

η̇i,k = ηi,k+1, η̇i,ρ = v̄i, k = 1, . . . , ρ− 1, (6.11)

where ηi,k ∈ Rq and ηi,ρ ∈ Rq are states of the filter, and v̄i ∈ Rq will be specified later.

For the jth leader, let ηj,k := y
(k−1)
j , where j = N + 1, . . . , N +M and k = 1, . . . , ρ.

Define εi = ηi,1 − ri and ε̄i = ( d
dt
+1)ρ−1εi =

∑ρ−1
k=0 ϱkε

(k)
i , where ϱk =

(ρ−1)!
(ρ−1−k)!k!

. Then,

we have

˙̄εi = ε
(ρ)
i +

ρ−2∑
k=0

ϱkε
(k+1)
i

= v̄i −
ρ−1∑
k=0

ϱkr
(k+1)
i +

ρ−2∑
k=0

ϱkηi,k+2. (6.12)

Note that εi and ε̄i will only be used for analysis. Further, for the jth agent (j =

1, . . . , N +M), define ψj =
∑ρ−1

k=0 ϱkηj,k+1. If the jth agent has out-neighbours, an

event-triggering mechanism is introduced as follows:

tj,p+1 = inf

{
t|t > tj,p, ||ψ̄j(t)|| ≥

λj
σ

}
, (6.13)

where p = 0, 1, 2, . . . , tj,0 := 0, λj > 0 and σ > 0 are design parameters, and

ψ̄j(t) = ψj(t)− ψj(tj,p), ∀t ∈ [tj,p, tj,p+1). (6.14)

For each i = 1, . . . , N , v̄i in (6.11) is designed as

v̄i = −σ
N+M∑
j=1

aij∆i,j −
ρ−2∑
k=0

ϱkηi,k+2, (6.15)
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where

∆i,j(t) = ψi(t)− ψj(tj,p), ∀t ∈ [tj,p, tj,p+1). (6.16)

Lemma 6.3.1. The auxiliary filters designed in (6.11) and (6.15) can ensure the

boundedness of ηi,1, . . . , ηi,ρ and v̄i and force ηi,1 to track ri with the tracking error

εi converging to a residual set which can be made arbitrarily small by increasing the

design parameter σ. Moreover, Zeno behaviour is strictly precluded.

Proof. Define ϕi =
∑N+M

j=1 aij(ηi,1 − ηj,1), where i = 1, . . . , N . Let ϕ = [ϕT
1 , . . . , ϕ

T
N ]

T,

ε = [εT1 , . . . , ε
T
N ]

T, and η1 = [ηT1,1, . . . , η
T
N,1]

T. In view of (6.10), we have

ϕ =(L1 ⊗ Iq)η1 + (L2 ⊗ Iq)Y

=(L1 ⊗ Iq)
[
η1 +

(
(L−1

1 L2)⊗ Iq
)
Y
]

=(L1 ⊗ Iq) ε. (6.17)

Define ϕ̄i = ( d
dt

+ 1)ρ−1ϕi =
∑ρ−1

k=0 ϱkϕ
(k)
i . Then, with ϕ̄ = [ϕ̄T

1 , . . . , ϕ̄
T
N ]

T and ε̄ =

[ε̄T1 , . . . , ε̄
T
N ]

T, we know ϕ̄i =
∑N+M

j=1 aij(ψi − ψj) and ϕ̄ = (L1 ⊗ Iq)ε̄. Substituting

(6.15) into (6.12) and noting (6.14), it can be checked that

˙̄εi =− σ
N+M∑
j=1

aij∆i,j −
ρ−1∑
k=0

ϱkr
(k+1)
i

=− σ
N+M∑
j=1

aij(ψi − ψj)− σ
N+M∑
j=1

aijψ̄j(t)−
ρ−1∑
k=0

ϱkr
(k+1)
i

=− σϕ̄i + R̄i, (6.18)

where R̄i = −σ
∑N+M

j=1 aijψ̄j(t) −
∑ρ−1

k=0 ϱkr
(k+1)
i . It follows from (6.13) that ∥ −

σ
∑N+M

j=1 aijψ̄j(t)∥ ≤ σ
∑N+M

j=1 aij∥ψ̄j(t)∥ ≤
∑N+M

j=1 aijλj. Subsequently, noting from

(6.10) that
∑ρ−1

k=0 ϱkr
(k+1)
i is bounded, we have

∥R̄i∥ ≤
N+M∑
j=1

aijλj + ∥
ρ−1∑
k=0

ϱkr
(k+1)
i ∥ ≤ si,1, (6.19)

where si,1 =
∑N+M

j=1 aijλj +supt≥0 ∥
∑ρ−1

k=0 ϱkr
(k+1)
i (t)∥ is a constant independent of the

design parameter σ.

As stated in [121], under Assumption 6.2.2, there exists a positive diagonal matrix

Q1 such that Q2 = LT
1Q1 +Q1L1 is symmetric positive definite. Now, we consider the
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following quadratic form:

V0 =
1

2
ϕ̄T(Q1 ⊗ Iq)ϕ̄. (6.20)

In view of (6.17) and (6.18), differentiating V0 gives

V̇0 = −1

2
σϕ̄T(Q2 ⊗ Iq)ϕ̄+ ϕ̄T(Q1 ⊗ Iq)L1R̄, (6.21)

where R̄ = [R̄T
1 , . . . , R̄

T
N ]

T. Using Young’s inequality and (6.19), it can be checked that

ϕ̄T(Q1 ⊗ Iq)L1R̄ ≤σλmin(Q2)

4
ϕ̄Tϕ̄+

∥(Q1 ⊗ Iq)L1R̄∥2

σλmin(Q2)

≤σ
4
ϕ̄T(Q2 ⊗ Iq)ϕ̄+

s1
σ
, (6.22)

where s1 =
||(Q1⊗Iq)L1||2

λmin(Q2)

∑N
i=1 s

2
i,1. Substituting (6.22) into (6.21) gives

V̇0 ≤ −σ
4
ϕ̄T(Q2 ⊗ Iq)ϕ̄+

s1
σ

≤ −σλmin(Q2)

2λmax(Q1)
V0 +

s1
σ
. (6.23)

Solving (6.23) yields

V0(t) ≤
2s1λmax(Q1)

σ2λmin(Q2)
+

[
V0(0)−

2s1λmax(Q1)

σ2λmin(Q2)

]
e
− σλmin(Q2)

2λmax(Q1)
t
, (6.24)

which implies that V0 and ϕ̄ are bounded. Then, noting the definition of ϕ̄, the

boundedness of ε, ηi,1, . . . , ηi,ρ and v̄i can be obtained. Moreover, it follows from

(6.24) that limt→+∞ V0(t) ≤ 2s1λmax(Q1)
σ2λmin(Q2)

. Using (6.17) and (6.20), we can obtain

limt→+∞ ∥ε̄(t)∥ ≤
√

2 limt→+∞ V0(t)
λmin(Q3)

≤ 2
√
s1s2
σ

, where Q3 = (LT
1 ⊗ Iq)(Q1 ⊗ Iq)(L1 ⊗ Iq)

and s2 = λmax(Q1)
λmin(Q2)λmin(Q3)

. Noting limt→+∞ ||εi(t)|| ≤ limt→+∞ ∥ε̄(t)∥ ≤ 2
√
s1s2
σ

, it can

be concluded that the errors εi (i = 1, . . . , N) converge to a residual set which can be

made arbitrarily small by increasing the design parameter σ.

Next, we prove that Zeno behaviour can be strictly precluded. Define Fj(t) =

ψ̄T
j (t)ψ̄j(t). From the boundedness of ηj,1, . . . , ηj,ρ and v̄j, it can be checked that ψ̄j

and ψ̇j are bounded. As a result, there exists a constant ιj such that

|Ḟj(t)| = |2ψ̄T
j (t)ψ̇j(t)| ≤ ιj, ∀t ∈ (tj,p, tj,p+1). (6.25)

On the other hand, according to (6.13), we have

Fj(tj,p) = 0, lim
t→t−j,q+1

Fj(t) =
λ2j
σ2
, (6.26)
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which together (6.25) with gives tj,p+1 − tj,p ≥ (λ2j/σ
2ιj). Hence, Zeno behaviour is

strictly precluded. This completes the proof. ■

Remark 6.3.1. The event-triggering mechanism in (6.13) avoids continuous commu-

nication among agents and reduces the communication burden. Meanwhile, the above

design is fully distributed because each agent uses the states of its own filter to decide

the triggering time instants. The estimation of ri, i.e., ηi,1, is always available to the

ith follower, which allows us to solve the containment control problem by forcing yi to

track ηi,1.

6.3.2 Nussbaum Function and K-filters

To handle the unknown direction actuator faults and the unknown signs of the leading

principal minors of the CGM, we introduce a group of Nussbaum functions as follows:

Hj(β) = 2q−j(2β2 + 1)eβ
2

sin(2j−1β)

+2q−1βeβ
2

cos(2j−1β), j = 1, . . . , q. (6.27)

It can be shown that ∫ β

0

Hj(κ)dκ = ςj(β)βe
β2

, (6.28)

where ςj(β) is given in Lemma 6.2.1. These Nussbaum functions will be applied in the

controller design.

The unmeasured states of each follower are estimated by K-filters. Let Kci :=

[k̄i,1Iq, . . . , k̄i,ni
Iq]

T, where k̄i,j > 0, j = 1, . . . , ni, are chosen such that the matrix

Aci = Aoi −KciCi is Hurwitz. Define Ei,j = ēi,j ⊗ Iq, where ēi,j is the jth coordinate

vector in Rni . For the ith follower, we introduce the following K-filters:

ω̇i,0 = Aciωi,0 +Kciyi, (6.29)

ω̇i,p = Aciωi,p + fi,p(yi), p = 1, . . . , νi, (6.30)

ξ̇i = Aciξi + Ei,ni
ūi. (6.31)

Furthermore, define ζi,j = Aj
ciξi, j = 0, . . . ,mi. Considering A

j
ciEi,ni

= Ei,ni−j, we can

obtain

ζ̇i,j = Aciζi,j + Eni−jūi, j = 0, . . . ,mi. (6.32)
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Based on the above signals, the estimation of the ith follower’s state can be parametrised

as

x̂i = ωi,0 +

νi∑
p=1

Ai,pωi,p +

mi∑
j=0

Bi,jδiζi,j. (6.33)

Let the time instants at which the ith follower suffers from new actuator faults be

denoted as T̄i,1, T̄i,2, . . . , T̄i,n̄i
. Obviously, n̄i ≤ q and T̄i,n̄i

is finite. Define T̄i,0 = 0

and T̄i,n̄i+1 = +∞. Note that, for each j = 0, . . . , n̄i, δi is a constant during the

time interval (T̄i,j, T̄i,j+1). With this fact in mind, it can be checked that the state

estimation error ϵi = xi − x̂i satisfies

ϵ̇i = Aciϵi, ∀t ∈
n̄i⋃
j=0

(T̄i,j, T̄i,j+1). (6.34)

Let ωi,0, ωi,p, ξi, ζi,j and ϵi be partitioned as ωi,0 = [ωT
i,0,1, · · · , ωT

i,0,ni
]T, ωi,p = [ωT

i,p,1, · · · ,

ωT
i,p,ni

]T, ξi = [ξTi,1, · · · , ξTi,ni
]T, ζi,j = [ζTi,j,1, · · · , ζTi,j,ni

]T, and ϵi = [ϵTi,1, · · · , ϵTi,ni
]T, with

ωi,0,k ∈ Rq, ωi,p,k ∈ Rq, ξi,k ∈ Rq, ζi,j,k ∈ Rq and ϵi,k ∈ Rq. Then, taking (6.5) and

(6.33) into consideration, the derivative of yi can be expressed as

ẏi = xi,2 +

νi∑
p=1

Ai,pfi,p,1(yi)

= ωi,0,2 +

νi∑
p=1

Ai,p[fi,p,1(yi) + ωi,p,2] +

mi∑
j=0

Bi,jδiζi,j,2 + ϵi,2. (6.35)

6.3.3 Backstepping Design Procedure

In what follows, we aim at forcing yi to track ηi,1 generated in Section 6.3.1. For each

follower, we begin by defining

zi,1 = yi − ηi,1, zi,j = ζi,mi,j − αi,j−1, j = 2, . . . , ρi, (6.36)

where αi,j−1 is a stabilizing function to be designed at the (j − 1)th step. Let the kth

element of zi,j be denoted as zi,j,k, and

αi,ρi := ūi + ζi,mi,ρi+1, zi,ρi+1 := 0. (6.37)

Introducing positive scalars ci,j, γi,j (j = 1, . . . , ρi), γ̄i,k (k = 1, . . . , q), gi and sym-

metric positive definite matrices Ξi,k ∈ Rq̄i×q̄i , Λi,k ∈ Rq̄i×q̄i , Γi,h ∈ R(q−h)×(q−h) (h =



6.3. CONTROLLER DESIGN 110

1, . . . , q − 1) with q̄i := q(νi +mi + 1) as design parameters, the backstepping design

procedure for the ith follower includes ρi steps.

Step 1: Based on (6.35) and (6.36), we have

żi,1 = −γi,1zi,1 +Bi,mi
δi(zi,2 + αi,1) +ϖi,1 + ϵi,2 +

mi−1∑
j=0

Bi,jδiζi,j,2

+

νi∑
p=1

Ai,p

(
fi,p,1(yi) + ωi,p,2

)
, (6.38)

where ϖi,1 = γi,1zi,1 + ωi,0,2 − ηi,2. From [125], if Assumption 6.2.1 holds, then Bi,mi

can be factored as Bi,mi
= SiDiUi, where Si ∈ Rq×q is symmetric positive definite, Ui ∈

Rq×q is unity upper triangular, andDi = diag{di,1, . . . , di,q} = diag{sign(σ̄i,1), sign(σ̄i,2σ̄−1
i,1 ),

. . . , sign(σ̄i,qσ̄
−1
i,q−1)}. Applying this factorization and multiplying both sides of (6.38)

by S−1
i , it gives

S−1
i żi,1 = −γi,1S−1

i zi,1 +DiUiδi(zi,2 + αi,1) + Θiµi,1 + S−1
i ϵi,2, (6.39)

where Θi = [S−1
i , SiAi,νi , . . . , S

−1
i Ai,1, S

−1
i Bi,mi−1δi, . . . , S

−1
i Bi,0δi] ∈ Rq×q̄i , and µi,1 =

[ϖT
i,1, f

T
i,νi,1

(yi)+ω
T
i,νi,2

, . . . , fT
i,1,1(yi)+ω

T
i,1,2, ζ

T
i,mi−1,2, . . . , ζ

T
i,0,2]

T ∈ Rq̄i . Then, to handle

the unknown actuator faults, we introduce the following similarity transformation:

Wi(t) = δ−1
i (t)Uiδi(t). (6.40)

It can be readily checked that Wi is also unity upper triangular, and Uiδi = δiWi. It

follows from (6.39) and (6.40) that

S−1
i żi,1 = −γi,1S−1

i zi,1 +DiUiδizi,2 +Diδiαi,1 +Diδi[Wi(t)− Iq]αi,1

+Θiµi,1 + S−1
i ϵi,2. (6.41)

Besides, we have

Diδi[Wi(t)− Iq]αi,1 = [θTi,1Xi,1, . . . , θ
T
i,q−1Xi,q−1, 0]

T, (6.42)

where θi,j = di,jδi,j[Wi,j,j+1, . . . ,Wi,j,q]
T ∈ Rq−j and Xi,j = [αi,1,j+1, . . . , αi,1,q]

T ∈

Rq−j (j = 1, . . . , q − 1) with Wi,j,k being the (j, k)th element of Wi and αi,1,k be-

ing the kth element αi,1. Define φi = ∥DiUiδi∥2, and let the jth column of ΘT
i be
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denoted as Θi,j. Then, we consider the quadratic form

Vi,1 =
1

2
zTi,1S

−1
i zi,1 +

1

2gi
φ̃2
i +

1

2

q∑
j=1

Θ̃T
i,jΞ

−1
i,j Θ̃i,j +

1

2

q−1∑
j=1

θ̃Ti,jΓ
−1
i,j θ̃i,j

+
1

4γi,1
ϵTi Pi,1ϵi, (6.43)

where Pi,1 is a positive definite matrix that satisfiesAT
ciPi,1+Pi,1Aci = − diag{S−1

i , . . . , S−1
i },

φ̃i := φ̂i − φi, Θ̃i,j := Θ̂i,j − Θi,j, and θ̃i,j := θ̂i,j − θi,j with φ̂i, Θ̂i,j and θ̂i,j the es-

timations of φi,Θi,j and θi,j, respectively. Note that, for each j = 0, . . . , n̄i, Vi,1 has

no jump during the time interval (T̄i,j, T̄i,j+1). Differentiating (6.43) and noting (6.41)

and (6.42), we have

V̇i,1 = −γi,1zTi,1S−1
i zi,1 + zTi,1DiUiδizi,2 + zTi,1Diδiαi,1 +

q−1∑
j=1

zi,1,jθ
T
i,jXi,j

+

q∑
j=1

zi,1,jΘ
T
i,jµi,1 + zTi,1S

−1
i ϵi,2 +

1

gi
φ̃i

˙̂φi +

q∑
j=1

Θ̃T
i,jΞ

−1
i,j

˙̂
Θi,j +

q−1∑
j=1

θ̃Ti,jΓ
−1
i,j

˙̂
θi,j

−
ni∑
j=1

1

4γi,1
ϵTi,jS

−1
i ϵi,j, ∀t ∈

n̄i⋃
j=0

(T̄i,j, T̄i,j+1). (6.44)

It can be checked that

zTi,1DiUiδizi,2 ≤ φiz
T
i,1zi,1 +

1

4
zTi,2zi,2, (6.45)

zTi,1S
−1
i ϵi,2 ≤ γi,1z

T
i,1S

−1
i zi,1 +

1

4γi,1
ϵTi,2S

−1
i ϵi,2. (6.46)

Let

˙̂φi = giz
T
i,1zi,1,

˙̂
Θi,j = Ξi,jµi,1zi,1,j, j = 1, . . . , q, (6.47)

˙̂
θi,j = Γi,jXi,jzi,1,j, j = 1, . . . , q − 1. (6.48)

Substituting (6.45)-(6.48) into (6.44) gives

V̇i,1 ≤ −ci,1zTi,1zi,1 +
1

4
zTi,2zi,2 +

q∑
j=1

zi,1,jdi,jδi,jαi,1,j

−
q∑

j=1

zi,1,jᾱi,1,j, ∀t ∈
n̄i⋃
j=0

(T̄i,j, T̄i,j+1), (6.49)

where, for j = 1, . . . , q − 1,

ᾱi,1,j = −ci,1zi,1,j − φ̂izi,1,j − Θ̂T
i,jµi,1 − θ̂Ti,jXi,j, (6.50)
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and

ᾱi,1,q = −ci,1zi,1,q − φ̂izi,1,q − Θ̂T
i,qµi,1. (6.51)

With the Nussbaum functions defined in (6.27), we design the jth element of the

stabilizing function αi,1 as

αi,1,j = Hj(βi,j)ᾱi,1,j, j = 1, . . . , q, (6.52)

where βi,j is generated by

β̇i,j = γ̄i,jzi,1,jᾱi,1,j. (6.53)

Substituting (6.52) and (6.53) into (6.49) yields

V̇i,1 ≤− ci,1z
T
i,1zi,1 +

1

4
zTi,2zi,2 +

q∑
j=1

β̇i,j
γ̄i,j

[di,jδi,jHj(βi,j)− 1], ∀t ∈
n̄i⋃
j=0

(T̄i,j, T̄i,j+1).

(6.54)

Remark 6.3.2. In existing adaptive control schemes for single MIMO systems, when

the factorization Bi,mi
= SiDiUi is applied to the CGM, the decomposition Uiαi,1 =

αi,1 + (Ui − Iq)αi,1 is commonly used to avoid algebraic loops; see, e.g., [84] and

[125]. However, this technique is no longer valid in this chapter, because, as can be

seen from (6.39), the actuator faults bring in the unknown time-varying parameter

matrix δi between Ui and αi,1. To overcome this difficulty, we introduce the similarity

transformation in (6.40) and replace Uiδi by δiWi, where Wi is unity upper triangular.

Then, we introduce the decomposition Wiαi,1 = αi,1 + (Wi − Iq)αi,1 to ensure that no

algebraic loops exist in (6.50) and (6.51).

Step 2: It is noted that αi,1,q is a smooth function of yi and Ψi,1 = [ηTi,1, η
T
i,2, βi,1, . . . ,

βi,q, θ̂
T
i,1, . . . , θ̂

T
i,q−1, Θ̂

T
i,1, . . . , Θ̂

T
i,q, φ̂i, ω

T
i,0, ω

T
i,1, . . . , ω

T
i,νi
, ξTi,1, . . . , ξ

T
i,mi+1]

T, while αi,1,j, for

j = 1, . . . , q − 1, is a smooth function of αi,1,j+1, . . . , αi,1,q, yi and Ψi,1. Thus, αi,1 is in

fact a smooth function of yi and Ψi,1. With this fact in mind and using (6.32), (6.35)

and (6.36), the derivative of zi,2 = ζi,mi,2 − αi,1 can be expressed as

żi,2 = zi,3 + αi,2 −ϖi,2 +
∂αi,1

∂yi
Ωiµi,2 −

∂αi,1

∂yi
ϵi,2, (6.55)

whereϖi,2 = k̄i,2ζi,mi,1+
∂αi,1

∂yi
ωi,0,2+

∂αi,1

∂Ψi,1
Ψ̇i,1, Ωi = [−Ai,νi , . . . ,−Ai,1,−Bi,mi

δi, . . . ,−Bi,0δi] ∈

Rq×q̄i , and µi,2 = [fT
i,νi,1

(yi) + ωT
i,νi,2

, . . . , fT
i,1,1(yi) + ωT

i,1,2, ζ
T
i,mi,2

, . . . , ζTi,0,2]
T ∈ Rq̄i . Let
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Ω̂i be the estimation of Ωi, where the jth columns of Ω̂T
i and ΩT

i are denoted as Ω̂i,j

and Ωi,j, respectively. Define

Vi,2 = Vi,1 +
1

2
zTi,2zi,2 +

1

2

q∑
j=1

Ω̃T
i,jΛ

−1
i,j Ω̃i,j +

1

4γi,2
ϵTi Pi,2ϵi, (6.56)

where Pi,2 is a symmetric positive definite matrix that satisfies AT
ciPi,2+Pi,2Aci = −Iqni

.

It can be checked that

V̇i,2 ≤− ci,1z
T
i,1zi,1 +

q∑
j=1

β̇i,j
γ̄i,j

[di,jδi,jHj(βi,j)− 1] + zTi,2

[
1

4
zi,2 + zi,3 + αi,2 −ϖi,2

+
∂αi,1

∂yi
Ω̂iµi,2 + γi,2

∂αi,1

∂yi
(
∂αi,1

∂yi
)Tzi,2

]
+

q∑
j=1

Ω̃T
i,jΛ

−1
i,j (

˙̂
Ωi,j − τi,1,j), ∀t ∈

n̄i⋃
j=0

(T̄i,j, T̄i,j+1) (6.57)

with τi,1,j =
∑q

k=1 Λi,jµi,2
∂αi,1,k

∂yi,j
zi,2,k. Note that

∂αi,1,k

∂yi,j
is the (k, j)th element of

∂αi,1

∂yi
.

Design the second stabilizing function as

αi,2 =− ci,2zi,2 −
1

4
zi,2 +ϖi,2 −

∂αi,1

∂yi
Ω̂iµi,2 − γi,2

∂αi,1

∂yi
(
∂αi,1

∂yi
)Tzi,2. (6.58)

Then, (6.57) becomes

V̇i,2 ≤−
2∑

j=1

ci,jz
T
i,jzi,j +

q∑
j=1

β̇i,j
γ̄i,j

[di,jδi,jHj(βi,j)− 1] + zTi,2zi,3

+

q∑
j=1

Ω̃T
i,jΛ

−1
i,j (

˙̂
Ωi,j − τi,1,j), ∀t ∈

n̄i⋃
j=0

(T̄i,j, T̄i,j+1). (6.59)

Step h (h = 3, . . . , ρi): Recall that αi,h−1 is a smooth function of yi, Ω̂i,1, . . . , Ω̂i,q

and Ψi,h−1 = [ηTi,1, . . . , η
T
i,h, βi,1, . . . , βi,q, θ̂

T
i,1, . . . , θ̂

T
i,q−1, Θ̂

T
i,1, . . . , Θ̂

T
i,q, φ̂i, ω

T
i,0, . . . , ω

T
i,νi
,

ξTi,1, . . . , ξ
T
i,mi+h−1]

T. The derivative of zi,h = ζi,mi,h − αi,h−1 can be formulated as

żi,h = zi,h+1 + αi,h − ϖi,h +
∂αi,h−1

∂yi
Ωiµi,2 − ∂αi,h−1

∂yi
ϵi,2 −

∑q
j=1

∂αi,h−1

∂Ω̂i,j

˙̂
Ωi,j, where ϖi,h =

k̄i,hζi,mi,1 +
∂αi,h−1

∂yi
ωi,0,2 +

∂αi,h−1

∂Ψi,h−1
Ψ̇i,h−1. Define

Vi,h = Vi,h−1 +
1

2
zTi,hzi,h +

1

4γi,h
ϵTi Pi,2ϵi, (6.60)

and ζ̄i,h = [ζ̄i,h,1, . . . , ζ̄i,h,q]
T, where, for k = 1, . . . , q,

ζ̄i,h,k =

{ 0, if h = 3,
q∑

j=1

h−1∑
p=3

zTi,p
∂αi,p−1

∂Ω̂i,j
Λi,jµi,2

∂αi,h−1,k

∂yi,j
, if h > 3.

(6.61)
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Choose τi,h−1,j = τi,h−2,j +
∑q

k=1 Λi,jµi,2
∂αi,h−1,k

∂yi,j
zi,h,k and

αi,h =− ci,hzi,h − zi,h−1 +ϖi,h −
∂αi,h−1

∂yi
Ω̂iµi,2 − γi,h

∂αi,h−1

∂yi
(
∂αi,h−1

∂yi
)Tzi,h

+

q∑
j=1

∂αi,h−1

∂Ω̂i,j

τi,h−1,j + ζ̄i,h. (6.62)

Then, for all t ∈
⋃n̄i

j=0(T̄i,j, T̄i,j+1), it can be checked that

V̇i,h ≤−
h∑

j=1

ci,jz
T
i,jzi,j +

q∑
j=1

β̇i,j
γ̄i,j

[di,jδi,jHj(βi,j)− 1] + zTi,hzi,h+1

+

q∑
j=1

Ω̃T
i,jΛ

−1
i,j (

˙̂
Ωi,j − τi,h−1,j) +

q∑
j=1

h∑
p=3

zTi,p
∂αi,p−1

∂Ω̂i,j

(τi,h−1,j − ˙̂
Ωi,j). (6.63)

At Step ρi, design the adaptive law for Ω̂i,j as

˙̂
Ωi,j = τi,ρi−1,j, j = 1, . . . , q. (6.64)

Recalling (6.37), the control signal ūi is given by

ūi = αi,ρi − ζi,mi,ρi+1. (6.65)

In (6.63), after setting h = ρi, for all t ∈
⋃n̄i

j=0(T̄i,j, T̄i,j+1) we have

V̇i,ρi +

ρi∑
j=1

ci,jz
T
i,jzi,j ≤

q∑
j=1

β̇i,j
γ̄i,j

[di,jδi,jHj(βi,j)− 1]. (6.66)

Based on (6.66), we can establish the stability of the closed-loop system, as will be

shown in the next section. The structure of our control scheme is summarised in Figure

6.1.

Remark 6.3.3. Different from existing control schemes handling unknown control

directions (see, e.g., [63, 64, 67, 88, 84] and [118]), in the state estimation and each

step of the backstepping design procedure, we have to face unknown jumps caused

by the actuator faults. These jumps are inherent in δi,j, ϵi, Vi,1, . . . , Vi,ρi and prevent

(6.66) being valid for all t ≥ 0. Moreover, the sum
∑q

j=1
β̇i,j

γ̄i,j
di,jδi,jHj(βi,j) in (6.66)

not only involves multiple Nussbaum functions in each agent, but also suffers from

sign jumps of δi,j resulting from reverse faults. These problems significantly increase

the difficulty in establishing system stability.
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Figure 6.1: Structure of our control scheme from the ith follower’s viewpoint.
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6.4 Stability Analysis

Theorem 6.4.1. Consider the closed-loop system consisting of the M leaders, the N

followers in (6.1), the auxiliary filters given by (6.11) and (6.15), the K-filters in (6.29)-

(6.31), the adaptive laws in (6.47), (6.48) and (6.64), and the control laws in (6.65).

Suppose that Assumptions 6.2.1-6.2.3 hold. Then, all signals of the closed-loop system

are globally uniformly bounded, and the containment errors yi − ri (i = 1, . . . , N)

converge to a residual set which can be made arbitrarily small by adjusting the design

parameters.

Proof. Integrating both sides of (6.66) and noting from (6.28) that
∫ β

0
Hj(κ)dκ =∫ |β|

0
Hj(κ)dκ, for all t ∈ [T̄i,j, T̄i,j+1), we have

Vi,ρi(t) +

ρi∑
j=1

∫ t

T̄i,j

ci,jz
T
i,j(κ)zi,j(κ)dκ

≤Vi,ρi(T̄i,j) +
q∑

j=1

1

γ̄i,j
βi,j(T̄i,j)−

q∑
j=1

1

γ̄i,j
βi,j(t) +

q∑
j=1

∫ βi,j(t)

βi,j(T̄i,j)

di,jδi,j
γ̄i,j

Hi,j(κ)dκ

≤Vi,ρi(T̄i,j) + Υi(T̄i,j) +

q∑
j=1

Ri,j(t) +

q∑
j=1

1

γ̄i,j
ϑi,j(t), (6.67)

where Υi(T̄i,j) = −
∑q

j=1
di,jδi,j
γ̄i,j

ςi,j
(
ϑi,j(T̄i,j)

)
ϑi,j(T̄i,j)e

ϑ2
i,j(T̄i,j) +

∑q
j=1

1
γ̄i,j
βi,j(T̄i,j) and

Ri,j(t) =
di,jδi,j
γ̄i,j

ςi,j(ϑi,j(t))ϑi,j(t)e
ϑ2
i,j(t), (6.68)

with ϑi,j(t) = |βi,j(t)|. Define

β̄i(t) = max{|βi,1(t)|, . . . , |βi,q(t)|}. (6.69)

Next, we establish system stability based on a contradiction argument.

During the time interval [T̄i,j, T̄i,j+1), di,jδi,j is a nonzero constant. In this case,

choose the constant bi,j in Lemma 6.2.1 as bi,j = di,jδi,j. Suppose that β̄i(T̄i,j) and

Vi,ρi(T̄i,j) are bounded but β̄i(t) is unbounded on [T̄i,j, T̄i,j+1). Then, there must exist

a monotonously increasing sequence {t∗i,h} ∈ [T̄i,j, T̄i,j+1), h = h0, h0 + 1, h0 + 2, . . . ,

that satisfies β̄i(t
∗
i,h) = 2hπ + ϱ̄i + 2−qπ and 2h0π + ϱ̄i + 2−qπ ≥ β̄i(T̄i,j), where ϱ̄i ≥ 0
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is given in Lemma 6.2.1. For each h, define Π = {1, . . . , q} and

Πi,1,h = {j | j ∈ Π, ϑi,j(t
∗
i,h) = 2hπ + ϱ̄i + 2−qπ}, (6.70)

Πi,2,h = {j | j ∈ Π, 2hπ + ϱ̄i ≤ ϑi,j(t
∗
i,h) < 2hπ + ϱ̄i + 2−qπ}, (6.71)

Πi,3,h = {j | j ∈ Π, ϑi,j(t
∗
i,h) < 2hπ + ϱ̄i}. (6.72)

It is clear that Πi,1,h

⋃
Πi,2,h

⋃
Πi,3,h = Π and the number of elements in Πi,1,h is no

less than 1. From (6.68) and Lemma 6.2.1, for j ∈ Πi,1,h, sign(di,jδi,j)ςj(ϑi,j(t
∗
i,h)) ≤ −1

stands. Therefore,∑
j∈Πi,1,h

Ri,j(t
∗
i,h) ≤−

∑
j∈Πi,1,h

si,3ϑi,j(t
∗
i,h)e

ϑ2
i,j(t

∗
i,h)

≤− si,3(2hπ + ϱ̄i + 2−qπ)e(2hπ+ϱ̄i+2−qπ)2 , (6.73)

where si,3 = min{ |b̄i,1|
γ̄i,1

, . . . ,
|b̄i,q |
γ̄i,q

} with b̄i,j = min{|δ̄i,j|, 1}. For j ∈ Πi,2,h, it follows

from Lemma 6.2.1 that di,jδi,jςj(ϑi,j(t
∗
i,h)) ≤ 0, which together with (6.68) results in∑

j∈Πi,2,h

Ri,j(t
∗
i,h) ≤ 0. (6.74)

For j ∈ Πi,3,h, noting that the number of elements in Πi,3,h is no more than q − 1 and

that |di,jςj(ϑi,j(t
∗
i,h))| ≤ 2q−j, we have∑

j∈Πi,3,h

Ri,j(t
∗
i,h) +

q∑
j=1

1

γ̄i,j
ϑi,j(t

∗
i,h)

≤
∑

j∈Πi,3,h

si,4ϑi,j(t
∗
i,h)e

ϑ2
i,j(t

∗
i,h) + si,5β̄i(t

∗
i,h)

≤ (q − 1)si,4(2hπ + ϱ̄i)e
(2hπ+ϱ̄i)

2

+ si,5(2hπ + ϱ̄i + 2−qπ), (6.75)

where si,4 = max{2q−1b̄∗i,1
γ̄i,1

, . . . ,
2q−q b̄∗i,q

γ̄i,q
} with b̄∗i,j = max{|δ̄i,j|, 1}, and si,5 = qmax{ 1

γ̄i,1
, . . . , 1

γ̄i,q
}.

Combining (6.73)-(6.75) gives

q∑
j=1

Ri,j(t
∗
i,h) +

q∑
j=1

1

γ̄i,j
ϑi,j(t

∗
i,h)

≤ −si,3(2hπ + ϱ̄i + 2−qπ)e(2hπ+ϱ̄i)
2

[
e2

−qπ(4hπ+2ϱ̄i+2−qπ)

−(q − 1)
si,4
si,3

− si,5
si,3

e−(2hπ+ϱ̄i)2
]
. (6.76)

According to (6.76),
∑q

j=1Ri,j(t
∗
i,h) +

∑q
j=1

1
γ̄i,j
ϑi,j(t

∗
i,h) → −∞ as h → +∞, which

contradicts (6.67). Therefore, if β̄i(T̄i,j) and Vi,ρi(T̄i,j) are bounded, then β̄i(t) must

be bounded on the time interval [T̄i,j, T̄i,j+1).
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Then, noting that β̄i(T̄i,0) and Vi,ρi(T̄i,0) with T̄i,0 = 0 are bounded, one can obtain

the boundedness of β̄i(t) over [T̄i,0, T̄i,1). From (6.69), (6.67) and Lemma 6.3.1, it can

be established that Vi,ρi(t) and all closed-loop signals are bounded over [T̄i,0, T̄i,1). At

the time instant T̄i,1, as a result of the faults, bounded jumps could occur to φi, Θi,j, θi,j

and Ωi,j, while their estimations φ̂i, Θ̂i,j, θ̂i,j and Ω̂i,j are continuous. The state estima-

tion x̂i in (6.33) also experiences bounded jumps at T̄i,1, while xi is continuous. Denote

the jump of Vi,ρi at T̄i,1 as ∇Vi,ρi(T̄i,1). Since the jumps contributing to ∇Vi,ρi(T̄i,1),

namely the jumps in 1
2gi
φ̃2
i ,

1
2

∑q
j=1 Θ̃

T
i,jΞ

−1
i,j Θ̃i,j,

1
2

∑q−1
j=1 θ̃

T
i,jΓ

−1
i,j θ̃i,j,

1
2

∑q
j=1 Ω̃

T
i,jΛ

−1
i,j Ω̃i,j,

1
4γi,1

ϵTi Pi,1ϵi and
∑ρi

j=2
1

4γi,j
ϵTi Pi,2ϵi at T̄i,1, are bounded, we know ∇Vi,ρi(T̄i,1) and thus

Vi,ρi(T̄i,1) are bounded. Then, it can be concluded that all closed-loop signals are

bounded over [T̄i,0, T̄i,1], which in turn implies that β̄i(t) is bounded over [T̄i,1, T̄i,2).

Repeating the above procedure and noting T̄i,n̄i+1 = +∞ with n̄i ≤ q, it can be con-

cluded that all closed-loop signals are globally uniformly bounded on the time interval

[0,+∞). Moreover, from (6.38) and (6.67), we know żi,1(t) and
∫ +∞
0

zTi,1(t)zi,1(t)dt

are bounded, which together with Barbalat’s lemma implies that limt→+∞ zi,1(t) = 0.

Finally, taking Lemma 6.3.1 and the relationship yi − ri = zi,1 + εi into consideration,

it is clear that the containment errors converge to a residual set which can be made

arbitrarily small by increasing the design parameter σ. The proof is completed. ■

Remark 6.4.1. Theorem 6.4.1 indicates the proposed scheme achieves the contain-

ment control objective and global stability of the closed-loop system with less prior

information on the CGM, regardless of the unknown direction actuator faults. By

comparison, existing containment control schemes impose much more restrictive as-

sumptions on the CGM and cannot handle unknown direction actuator faults.

Remark 6.4.2. Due to the problems mentioned in Remark 6.4.1, all the contradiction

arguments in [63, 64, 67, 88, 84] and [118] cannot be employed to prove Theorem 6.4.1.

Instead, a novel contradiction argument is introduced. It first assumes that β̄i(T̄i,j)

and Vi,ρi(T̄i,j) are bounded but β̄i(t) is unbounded on [T̄i,j, T̄i,j+1). In this case, it

shows that
∑

j∈Πi,1,h
Ri,j(t

∗
i,h) in (6.73) can force

∑q
j=1Ri,j(t

∗
i,h) +

∑q
j=1

1
γ̄i,j
ϑi,j(t

∗
i,h) in

(6.76) to go to −∞ as h → +∞, which contradicts (6.67) and gives the conclusion

that β̄i(t) must be bounded on [T̄i,j, T̄i,j+1) if β̄i(T̄i,j) and Vi,ρi(T̄i,j) are bounded. Then,

starting from the boundedness of β̄i(T̄i,0) and Vi,ρi(T̄i,0) and using a recursive approach,
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it gradually expands the time interval on which all closed-loop signals are bounded

and finally establishes global stability of the closed-loop system.

Remark 6.4.3. As can be seen from the above design and analysis, the design pa-

rameters ci,j, γi,j (j = 1, . . . , ρi), γ̄i,k (k = 1, . . . , q), gi, Ξi,k, Λi,k, and Γi,h affect the

dynamics of zi,j, βi,k, φ̂i, Θ̂i,k, Ω̂i,k, and θ̂i,h. Generally speaking, increasing ci,j, γi,j,

γ̄i,k, gi, λmin(Ξi,k), λmin(Λi,k) and λmin(Γi,h) helps to reduce the containment errors but

may increase the amplitude of control signals. The parameters k̄i,1, . . . , k̄i,ni
should be

chosen such that the matrix Aci = Aoi − KciCi is Hurwitz. Besides, increasing σ or

decreasing λj helps to reduce the containment errors but may increase the communi-

cation burden among agents. In summary, the design parameters should be properly

chosen to make a trade-off among the containment errors, the communication burden

and the amplitude of control signals.

6.5 Simulation Results

To demonstrate the effectiveness of the proposed scheme, we consider a practical exam-

ple of six agents, where agents 1-3 are followers, agents 4-6 are leaders. The followers

are coupled inverted double pendulums described by [126]

ÿi,1 = M̃i,1 sin(yi,1)− M̃i,2ui,1 + M̃i,3ρ̃i,1(yi),

ÿi,2 = M̃i,1 sin(yi,2)− M̃i,2ui,2 + M̃i,3ρ̃i,2(yi), (6.77)

where yi = [yi,1, yi,2]
T represents the pendulum angles in radians, and ui = [ui,1, ui,2]

T

is the control torque, M̃i,1, M̃i,2 and M̃i,3 are nonzero constants assumed to be un-

known, ρ̃i,1(yi) = sin(yi,2) cos(yi,2)− sin(yi,1) cos(yi,1) and ρ̃i,2(yi) = sin(yi,1) cos(yi,1)−

sin(yi,2) cos(yi,2). Letting xi = [yTi , ẏ
T
i ]

T, Ai,1 = diag{M̃i,1, M̃i,1}, Ai,2 = diag{M̃i,3, M̃i,3},

fi,1(yi) = [0, 0, sin(yi,1), sin(yi,2)]
T, fi,2(yi) = [0, 0, ρ̃i,1(yi), ρ̃i,2(yi)]

T, and Bi,0 = − diag

{M̃i,2, M̃i,2}, (6.77) can be expressed in the general form of (6.1). In the simu-

lation, we set M̃i,1 = 1, M̃i,2 = 1 (i = 1, 2, 3), M̃1,3 = 0.25, M̃2,3 = 0.5, and

M̃3,3 = 0.3. The trajectory of the leaders are generated by ÿi + 2ẏi + yi = r̃i, where

i = 4, 5, 6, r̃4 = [sin(0.3t), cos(0.3t)]T, r̃5 = [1.4 sin(0.3t + 0.15π), cos(0.3t + 0.15π)]T,

and r̃6 = [1.6 sin(0.3t), 1.6 cos(0.3t)]T. In the network topology, a12 = a21 = a23 =
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a32 = a14 = a34 = a25 = a36 = 1, and all other adjacency elements are zero.
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Figure 6.2: Output trajectories on 2-D space.
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Figure 6.3: Containment errors.

In the simulation, we choose k̄i,1 = 2 and k̄i,2 = 1 (i = 1, 2, 3) for the K-filters,

and σ = 1 and λj = 0.05 (j = 1, . . . , 6) for the auxiliary filters. The other design

parameters are chosen as ci,1 = ci,2 = 5, γi,1 = γi,2 = 1, γ̄i,1 = γ̄i,2 = 1, gi = 5,

Γi,1 = 2, and Ξi,1 = Ξi,2 = Λi,1 = Λi,2 = I6. The initial conditions of the followers

are set as x1(0) = [0.1, 0.4, 0, 0]T, x2(0) = [0.6, 0.3, 0, 0]T and x3(0) = [0, 0.2, 0, 0]T.

The unknown actuator faults are given by (6.3) with δ̄1,1 = −1, δ̄1,2 = 0.7, δ̄2,1 = 0.3,

δ̄3,1 = −1, δ̄3,2 = 0.5, T1,1 = 1s, T1,2 = 5s, T2,1 = 10s, T3,1 = 2s and T3,2 = 20s, where

the second actuator of the second follower is free of faults in the simulation. The
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Figure 6.4: Control signals.

simulation results are shown in Figures 6.2-6.4. As shown in Figure 6.2, the followers

are driven into the convex hull spanned by the leaders. From Figure 6.3, it can be seen

that the containment errors yi − ri converge to a small residual set in the presence of

unknown direction actuator faults.

6.6 Conclusions

In this chapter, based on backstepping design, an output-feedback adaptive contain-

ment control scheme has been proposed for a class of heterogeneous nonlinear MIMO

agents with unknown actuator faults. The unknown CGMs, unknown parameters, and

unknown jumps introduced by the actuator faults are dealt with by a novel contra-

diction argument based on some Nussbaum functions and a matrix similarity trans-

formation, which establishes the stability in a recursive fashion. Besides, continuous

communication among agents is also avoided. We have shown that all closed-loop

signals are globally uniformly bounded and the containment errors can converge to an

arbitrarily small residual set.



Chapter 7

Conclusions and Future Work

In this chapter, the main contributions of this thesis are summarised and we discuss

possible directions for future research.

7.1 Conclusions

In this thesis, we have introduced distributed resilient estimation and control against

a range of adversaries on all channels of the distributed dynamic system, namely

false data injection attacks and multiple disturbances on the sensor channel, denial-of-

service attacks on the communication channel, sparse attacks on redundant sensors,

and unknown direction faults on the actuator channel. In this thesis, a resilient esti-

mation and control framework is introduced. The distributed control and estimation

approaches covers the scope of typical adversaries faced by distributed systems, with

particular focus placed on developing cohesive algorithms to deal with the joint effects

of heterogeneous adversaries, and resilient control of nonlinear systems under a more

general class of faults. Specifically, the following problems have been investigated in

detail.

• For distributed systems subject to multiple disturbances and FDI attacks, an en-

hanced resilient distributed estimation scheme is introduced. In the initial stages

122
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of estimation, a multi-layer anti-disturbance estimator is introduced to compen-

sate and attenuate the effects of multiple disturbances. Then, an observer-based

optimal attack detection scheme is introduced, where the residue signals are

compared to an optimally obtained threshold to determine the presence of FDI

attacks. Finally, an attack-resilient estimator that is activated by the detec-

tion of attacks is introduced to develop resilience towards FDI attacks. The

proposed enhanced three-stage approach effectively deals with the coupling be-

tween FDI attacks and multiple disturbances. Compared with existing resilient

estimation results, which only consider a single source of disturbance, the pro-

posed approach is shown to be able to actively reject FDI attacks in the presence

of multiple disturbances. Furthermore, the novel detection-triggered estimation

structure reduces the computational load of the attack-resilient estimator.

• An event-based resilient distributed state estimation method has been proposed

for distributed systems under system disturbances and multiple heterogeneous

cyber-attacks. A novel event-based communication scheme is designed to re-

duce unnecessary data transmissions within the network, while guaranteeing de-

sired estimation performance in the presence of aperiodic DoS attacks. A novel

adaptive deception attack rejection scheme is introduced for the adaptive com-

pensation of deception attacks. Moreover, a distributed disturbance observer is

proposed to deal with disturbances in the system in a distributed manner. Suffi-

cient conditions for convergence of the estimator are obtained via the Lyapunov

function approach. A practical example on a 4-bus power grid is presented to

demonstrate the effectiveness of the proposed estimation method, and the results

show that the proposed method is capable of accurately estimating the state of

the system in the presence of heterogeneous attacks.

• In view of sparse injection attacks and system disturbances, a secure state esti-

mation scheme has been proposed for a class of nonlinear systems. Our design

introduces a kind of high-gain K-filters, a monitoring function and a switching

scheme. With the aforementioned efforts and a contradiction argument, it has

been proved that all attacked sensors can be precluded after a finite number of

switching and the estimation error can converge to an arbitrarily small residual
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set. Furthermore, a backstepping controller is designed based on the estimation

results, and the proposed method has been applied to a robotic manipulator

with both simulation and experimental studies, where the effectiveness of the

proposed scheme has been validated.

• An output-feedback adaptive containment control scheme based on backstepping

design has been proposed for a class of heterogeneous nonlinear MIMO agents

with unknown direction actuator faults. The unknown CGMs, unknown pa-

rameters, and unknown jumps introduced by the actuator faults are dealt with

a novel Nussbaum function-based approach in conjunction with a contradiction

statement and a matrix similarity transformation, which establishes the stability

in a recursive fashion. Besides, an event-based communication scheme is intro-

duced to preclude continuous communication among agents. It can be obtained

that all closed-loop signals are globally uniformly bounded and the containment

controller errors can converge to an residual set that can be made to be arbitrarily

small.

7.2 Future Work

As mentioned in the conclusions section, the aim is to propose a cohesive resilient esti-

mation and control framework that covers a wide range of heterogeneous adversaries.

However, some notable gaps still exist in the research introduced in this thesis. Several

potential extensions to our research are listed as follows.

• There has been research on stealthy FDI attacks able to bypass residue-based

attack detection methods, as can be seen in References [127, 128] and [129]. Very

recently, in Reference [127], a stealthy attack was developed from the attackers’

perspective to guarantee that the attack keeps its effects on the attack detectors

residue below a predefined level in the presence of norm-bounded disturbances.

In addition, attacks that are theoretically strictly undetectable have been de-

fined in References [22] and [41] by exploiting the zero-dynamics in the system.

However, these types of attacks are designed from the attackers’ perspective, and
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require full knowledge of the model of the observed system as well as the detec-

tion mechanism, which is a very restrictive assumption. The attack detection

and rejection approach in this thesis is developed from the defenders’ perspec-

tive, with no prior knowledge or assumptions on the attack signals. In the future,

we will endeavour to investigate the detection and rejection of stealthier attacks.

• In Chapters 3 and 4, the disturbances under consideration are formulated by an

exogeneous system, which can describe a wide range of disturbances in practical

scenarios, and an additional norm-bounded term is included to account for the

uncertainties in the disturbance model. Future work will include utilization

of identification techniques to deal with disturbances with unknown dynamic

characteristics.

• In Chapters 5 and 6, the system under consideration is of output-feedback

form, which can describe a wide range of practical engineering systems. Fu-

ture work will include the extension of the proposed nonlinear estimation and

control schemes to more general uncertain nonlinear systems to overcome the

pertaining limitations of the system model considered in Chapters 5 and 6.
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