142,833 research outputs found

    V3CMM: a 3-view component meta-model for model-driven robotic software development

    Get PDF
    There are many voices in the robotics community demanding a qualitative improvement in the robotics software development process and tools, in order to increase product flexibility, adaptability, and overall quality, while reducing its cost and time-to-market. This article describes a first step towards a model-driven approach to robotics software development, based on the definition of highly reusable and platform-independent component-based design models. The proposed approach revolves around the V3CMM modeling language and the definition of different model transformations for deriving both special purpose models (e.g., models suited for analysis or simulation purposes) and lower-level design models, in which platform-specific and application-dependent details can be progressively included. The article describes the tool-chain implemented to support the different stages of the proposed MDE process, including (1) the definition of component-based architectural models, defined using the V3CMM platform-independent modeling language, (2) the automatic transformation of the V3CMM component-based models into equivalent object-oriented designs, described in terms of the UML standard, and (3) the transformation of the UML models into an the Ada 2005 object-oriented programming language. In order to show the feasibility and the benefits of the proposal, a simple (yet complete) case study regarding the design of a Cartesian robot is presented.This research has been funded by the Spanish CICYT Project EXPLORE (ref. TIN2009-08572), the FundaciĂłn SĂ©neca Regional Project COMPAS-R (ref. 11994/PI/09), and the Spanish Research Network on Model-Driven Software Development (ref. TIN2008-00889-E)

    Model driven language engineering

    Get PDF
    Modeling is a most important exercise in software engineering and development and one of the current practices is object-oriented (OO) modeling. The Object Management Group (OMG) has defined a standard object-oriented modeling language the Unified Modeling Language (UML). The OMG is not only interested in modeling languages; its primary aim is to enable easy integration of software systems and components using vendor-neutral technologies. This thesis investigates the possibilities for designing and implementing modeling frameworks and transformation languages that operate on models and to explore the validation of source and target models. Specifically, we will focus on OO models used in OMG's Model Driven Architecture (MDA), which can be expressed in terms of UML terms (e.g. classes and associations). The thesis presents the Kent Modeling Framework (KMF), a modeling framework that we developed, and describes how this framework can be used to generate a modeling tool from a model. It then proceeds to describe the customization of the generated code, in particular the definition of methods that allows a rapid and repeatable instantiation of a model. Model validation should include not only checking the well-formedness using OCL constraints, but also the evaluation of model quality. Software metrics are useful means for evaluating the quality of both software development processes and software products. As models are used to drive the entire software development process it is unlikely that high quality software will be obtained using low quality models. The thesis presents a methodology supported by KMF that uses the UML specification to compute the design metrics at an early stage of software development. The thesis presents a transformation language called YATL (Yet Another Transformation Language), which was designed and implemented to support the features provided by OMG's Request For Proposal and the future QVT standard. YATL is a hybrid language (a mix of declarative and imperative constructions) designed to answer the Query/Views/Transformations Request For Proposals issued by OMG and to express model transformations as required by the Model Driven Architecture (MDA) approach. Several examples of model transformations, which have been implemented using YATL and the support provided by KMF, are presented. These experiments investigate different knowledge areas as programming languages, visual diagrams and distributed systems. YATL was used to implement the following transformations: * UML to Java mapping * Spider diagrams to OCL mapping * EDOC to Web ServicesEThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Model driven language engineering

    Get PDF
    Modeling is a most important exercise in software engineering and development and one of the current practices is object-oriented (OO) modeling. The Object Management Group (OMG) has defined a standard object-oriented modeling language the Unified Modeling Language (UML). The OMG is not only interested in modeling languages; its primary aim is to enable easy integration of software systems and components using vendor-neutral technologies. This thesis investigates the possibilities for designing and implementing modeling frameworks and transformation languages that operate on models and to explore the validation of source and target models. Specifically, we will focus on OO models used in OMG's Model Driven Architecture (MDA), which can be expressed in terms of UML terms (e.g. classes and associations). The thesis presents the Kent Modeling Framework (KMF), a modeling framework that we developed, and describes how this framework can be used to generate a modeling tool from a model. It then proceeds to describe the customization of the generated code, in particular the definition of methods that allows a rapid and repeatable instantiation of a model. Model validation should include not only checking the well-formedness using OCL constraints, but also the evaluation of model quality. Software metrics are useful means for evaluating the quality of both software development processes and software products. As models are used to drive the entire software development process it is unlikely that high quality software will be obtained using low quality models. The thesis presents a methodology supported by KMF that uses the UML specification to compute the design metrics at an early stage of software development. The thesis presents a transformation language called YATL (Yet Another Transformation Language), which was designed and implemented to support the features provided by OMG's Request For Proposal and the future QVT standard. YATL is a hybrid language (a mix of declarative and imperative constructions) designed to answer the Query/Views/Transformations Request For Proposals issued by OMG and to express model transformations as required by the Model Driven Architecture (MDA) approach. Several examples of model transformations, which have been implemented using YATL and the support provided by KMF, are presented. These experiments investigate different knowledge areas as programming languages, visual diagrams and distributed systems. YATL was used to implement the following transformations: * UML to Java mapping * Spider diagrams to OCL mapping * EDOC to Web Service

    Integrating Building Information Modeling with Object-Oriented Physical Modeling for Building Thermal Simulation

    Get PDF
    This study presents a Building Information Modeling (BIM) to Building Energy Modeling (BEM) translation framework (BIM2BEM) through the integration of BIM with Object-Oriented Physical Modeling (OOPM) for building thermal simulation to support sustainable building design. A Model View Definition (MVD) is used as a data modeling methodology to assist BIM2BEM, and an application of BIM2BEM is demonstrated by visualizing energy performance in BIM. The framework of BIM2BEM is made of a system interface between BIM and OOPM-based BEM (ModelicaBEM). The interface consists of the following two major phases: (1) pre-processing BIM models to add required thermal parameters into BIM and generate the building topology, and (2) translating BIM to ModelicaBEM automatically and running the thermal simulation. Finally, a case study was conducted to demonstrate and validate the simulation results. The MVD enables efficient model translation consisting of a process model and a class diagram. The process model demonstrates the object-mapping process from BIM to ModelicaBEM and facilitates the definition of required information during the model translation process. The class diagram represents the object information and object relationships for producing the software tool for automatic model translation. In order to demonstrate and validate the approach, simulation result comparisons have been conducted for three test cases, each having two models: (1) the BIM-based Modelica model (ModelicaBEM) generated using the framework, and (2) the model manually created using Lawrence Berkeley National Laboratory’s Modelica Buildings library. The results show that the framework: (1) enables BIM models to be translated into ModelicaBEM models, (2) enables system interface development based on the MVD for thermal simulation, and (3) facilitates the reuse of the original BIM data for building energy simulation without an import/export process. The visualization application enables visualizing building energy simulation results in BIM for designers to better understand the relationship between design decisions and the building performances. This new application lets architects use BIM as a common user interface for building design and performance visualization

    Iterative criteria-based approach to engineering the requirements of software development methodologies

    Get PDF
    Software engineering endeavours are typically based on and governed by the requirements of the target software; requirements identification is therefore an integral part of software development methodologies. Similarly, engineering a software development methodology (SDM) involves the identification of the requirements of the target methodology. Methodology engineering approaches pay special attention to this issue; however, they make little use of existing methodologies as sources of insight into methodology requirements. The authors propose an iterative method for eliciting and specifying the requirements of a SDM using existing methodologies as supplementary resources. The method is performed as the analysis phase of a methodology engineering process aimed at the ultimate design and implementation of a target methodology. An initial set of requirements is first identified through analysing the characteristics of the development situation at hand and/or via delineating the general features desirable in the target methodology. These initial requirements are used as evaluation criteria; refined through iterative application to a select set of relevant methodologies. The finalised criteria highlight the qualities that the target methodology is expected to possess, and are therefore used as a basis for de. ning the final set of requirements. In an example, the authors demonstrate how the proposed elicitation process can be used for identifying the requirements of a general object-oriented SDM. Owing to its basis in knowledge gained from existing methodologies and practices, the proposed method can help methodology engineers produce a set of requirements that is not only more complete in span, but also more concrete and rigorous

    Early aspects: aspect-oriented requirements engineering and architecture design

    Get PDF
    This paper reports on the third Early Aspects: Aspect-Oriented Requirements Engineering and Architecture Design Workshop, which has been held in Lancaster, UK, on March 21, 2004. The workshop included a presentation session and working sessions in which the particular topics on early aspects were discussed. The primary goal of the workshop was to focus on challenges to defining methodical software development processes for aspects from early on in the software life cycle and explore the potential of proposed methods and techniques to scale up to industrial applications

    Business Domain Modelling using an Integrated Framework

    Get PDF
    This paper presents an application of a “Systematic Soft Domain Driven Design Framework” as a soft systems approach to domain-driven design of information systems development. The framework combining techniques from Soft Systems Methodology (SSM), the Unified Modelling Language (UML), and an implementation pattern known as “Naked Objects”. This framework have been used in action research projects that have involved the investigation and modelling of business processes using object-oriented domain models and the implementation of software systems based on those domain models. Within this framework, Soft Systems Methodology (SSM) is used as a guiding methodology to explore the problem situation and to develop the domain model using UML for the given business domain. The framework is proposed and evaluated in our previous works, and a real case study “Information Retrieval System for academic research” is used, in this paper, to show further practice and evaluation of the framework in different business domain. We argue that there are advantages from combining and using techniques from different methodologies in this way for business domain modelling. The framework is overviewed and justified as multimethodology using Mingers multimethodology ideas
    • 

    corecore