
Kent Academic Repository
Full text document (pdf)

Copyright & reuse
Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all
content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions
for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research
The version in the Kent Academic Repository may differ from the final published version.
Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the
published version of record.

Enquiries
For any further enquiries regarding the licence status of this document, please contact:
researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down
information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Octavian Patrascoiu (2005) Model driven language engineering. Doctor of Philosophy (PhD)
thesis, University of Kent.

DOI

uk.bl.ethos.429663

Link to record in KAR

https://kar.kent.ac.uk/86335/

Document Version

UNSPECIFIED

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/384444635?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

University of Kent

Computing Laboratory

Model Driven Language

Engineering

Octavian Patrascoiu

March 2005

A thesis submitted to The University of Kent for the degree of

Doctor of Philosophy

Abstract

Modeling is a most important exercise in software engineering and development and one of

the current practices is object-oriented (OO) modeling. The Object Management Group

(OMG) has defined a standard object-oriented modeling language – the Unified Modeling

Language (UML). The OMG is not only interested in modeling languages; its primary aim is

to enable easy integration of software systems and components using vendor-neutral

technologies. This thesis investigates the possibilities for designing and implementing

modeling frameworks and transformation languages that operate on models and to explore

the validation of source and target models. Specifically, we will focus on OO models used in

OMG’s Model Driven Architecture (MDA), which can be expressed in terms of UML terms

(e.g. classes and associations).

The thesis presents the Kent Modeling Framework (KMF), a modeling framework that we

developed, and describes how this framework can be used to generate a modeling tool from a

model. It then proceeds to describe the customization of the generated code, in particular the

definition of methods that allows a rapid and repeatable instantiation of a model. Model

validation should include not only checking the well-formedness using OCL constraints, but

also the evaluation of model quality.

Software metrics are useful means for evaluating the quality of both software development

processes and software products. As models are used to drive the entire software

development process it is unlikely that high quality software will be obtained using low

quality models. The thesis presents a methodology supported by KMF that uses the UML

specification to compute the design metrics at an early stage of software development.

The thesis presents a transformation language called YATL (Yet Another Transformation

Language), which was designed and implemented to support the features provided by

OMG’s Request For Proposal and the future QVT standard. YATL is a hybrid language (a

mix of declarative and imperative constructions) designed to answer the

Query/Views/Transformations Request For Proposals issued by OMG and to express model

transformations as required by the Model Driven Architecture (MDA) approach.

Several examples of model transformations, which have been implemented using YATL and

the support provided by KMF, are presented. These experiments investigate different

knowledge areas as programming languages, visual diagrams and distributed systems. YATL

was used to implement the following transformations:

UML to Java mapping

Spider diagrams to OCL mapping

EDOC to Web Services

Acknowledgments

This work would not have been possible without the constant dedication, guidance and

advice of my supervisors, Stuart Kent and Peter Rodgers, to whom I am deeply grateful.

Many thanks for their support and invaluable advice throughout the duration of the research

and writing of this thesis.

I am grateful to the members of the Supervisory Panel, Peter Linington and David Shrimpton

for their helpful comments and advice. Especially, my thanks to Peter for showing me how

to form a coherent argument from my initial collection of ideas.

Many thanks to the academic staff of the Systems Engineering Research Group – David

Akehurst, Eerke Boiten, Ana Cavalcanti, Nigel Dalgliesh, Rogerio de Lemos, and Jim

Woodcook – who have provided an atmosphere of great intellectual stimulation, a pleasant

and comfortable working environment. Many thanks to David Barnes and Tim Hopkins for

their comments regarding the UML models measuring.

Thanks to both my parents Elena and Dumitru Patrascoiu for their support, encouragement

and tutelage during my early years, without which I would have never got to the point of

being able to attempt a doctoral degree. Thanks to both my parents-in-law Maria and Nicolae

Mitroi for supporting me in the early years of my academic career.

Finally, thanks to my family – Giana and Virgil Patrascoiu – for their tolerance and patience

during the final period of writing up.

The work presented in this thesis was partly funded by:

The UK Engineering and Physical Sciences Research Council (EPSRC) as part
of the Reasoning with Diagrams project (no. GR/R63509/01).

International Business Machines (IBM) as part of IBM Faculty Partnership
Award No. 220 20858.

Contents

CHAPTER 1. INTRODUCTION .. 1

1.1. Model Driven Engineering ..2

1.2. Objectives ..3

1.3. Thesis overview...3

1.4. Contribution..5

1.5. Summary of publications ...7

CHAPTER 2. BACKGROUND.. 9

2.1. Unified Modeling Language ..9

2.2. Model Driven Architecture ..10

2.3. Modeling frameworks ..13

2.3.1. Eclipse Modeling Framework ..14

2.3.2. Metadata Repository ..15

2.3.3. Fujaba ..15

2.3.4. Rational Software Modeler...17

2.3.5. Comparison ..18

2.4. Transformation Languages..19

2.4.1. OMG’s QVT..19

2.4.2. ATLAS Transformation Language ..23

2.4.3. Other Transformation Frameworks..24

2.5. Languages and Translators..25

2.5.1. Languages, grammars, and automata ..25

2.5.2. Language processors..27

2.6. Object Oriented Design Patterns ..28

2.6.1. Factory Method Pattern ...29

2.6.2. Abstract Factory Pattern..29

2.6.3. Builder Pattern ...30

2.6.4. Visitor Pattern ..31

2.6.5. Observer Pattern ..31

2.6.6. Adapter Pattern ..32

2.6.7. Bridge Pattern ..34

2.7. Summary ...35

CHAPTER 3. KENT MODELING FRAMEWORK 36

3.1. Modeling Tools Requirements ...36

3.2. The Kent Modeling Framework..38

3.2.1. About KMF and KMF-Studio ...38

3.2.2. About OCL support...42

3.3. About XMI and UML support ..43

3.4. The generated tool ..44

3.5. Creating populations ..46

3.6. Augmenting the generated code ..47

3.7. Code generation..49

3.7.1. Code generation framework requirements ...50

3.7.2. Code generation mechanisms...51

3.7.3. Programmatic translation ..51

3.7.4. Translation by XSLT...52

3.7.5. Translation by templates ..53

3.7.6. Translation using transformation languages and templates53

3.8. KMF-Studio’s code generation framework..54

3.8.1. XTL an introduction..55

3.8.2. Grammars...55

3.8.3. Comments ...56

3.8.4. Expression action ...56

3.8.5. Compound action ...57

3.8.6. include action ...57

3.8.7. if-elif-else action...58

3.8.8. foreach action...58

3.8.9. Namespaces ..58

3.9. Analysis of KMF: does it meet the requirements? ..59

3.10. Conclusions ...61

CHAPTER 4. MODEL QUALITY MEASURING 62

4.1. Background...63

4.1.1. An overview of object-oriented metrics ..64

4.2. Measuring UML models in KMF-Studio..67

4.2.1. Measuring UML models ...67

4.2.2. The KMF metrics suite ...69

4.2.3. Methodology...73

4.3. An example..74

4.4. Conclusions and future work ..78

CHAPTER 5. YATL SPECIFICATION 80

5.1. YATL Overview ..80

5.2. An example..81

5.2.1. Main features..82

5.3. Programs ...84

5.4. Grammars ...84

5.4.1. Lexical grammar ..85

5.4.2. Syntax grammar ...85

5.5. Types and variables ..85

5.6. Expressions..88

5.6.1. The assignment operator ..88

5.6.2. The new operator..89

5.6.3. The build operator..89

5.6.4. The track operator..89

5.7. Actions ...90

5.7.1. End points and reachability..91

5.7.2. Blocks ...91

5.7.3. Action lists ..92

5.8. The empty action ..92

5.9. Declaration actions ...93

5.9.1. Local variable declarations..93

5.10. Expression actions ..94

5.11. The apply action ..95

5.11.1. Name lookup...96

5.11.2. Rule applicable to A ...96

5.11.3. Rule invocation...97

5.12. The delete action ...98

5.13. Decision actions...98

5.13.1. The if action..98

5.14. Iteration actions..99

5.14.1. The while action ...99

5.14.2. The do action ..100

5.14.3. The foreach action..101

5.14.4. The break action ...102

5.14.5. The continue action ..102

5.15. Namespaces and translation units...103

5.16. Comparison...104

5.17. Conclusions ...106

5.17.1. Compliance to RFP requirements...106

5.17.2. Other design features ... 111

5.17.3. Relationship to existing OMG specifications ... 111

5.17.4. Comparison to QVT submissions ...112

CHAPTER 6. MODEL TRANSFORMATIONS IN YATL............ 113

6.1. Transformation environment ..113

6.2. Transformation from the UML model to the Java model...........................115

6.3. Transformation from spider diagrams model to OCL model.....................117

6.3.1. Spider diagrams ...118

6.4. Transformation from a subset of EDOC to Web Services121

6.4.1. EDOC: the UML profile for Enterprise Distributed Object Computing

Specification ...122

6.4.2. Web Service ..123

6.4.3. Mapping from Document Model to XML Schema ..124

6.4.4. Mapping from CCA to WSDL...126

6.4.5. An example ...129

6.5. Conclusions ...131

CHAPTER 7. DISCUSSION AND CONCLUSIONS 132

7.1. Thesis Summary ...132

7.2. Achievements ..134

7.3. Future work ..134

7.3.1. Visual languages and YATL ..135

7.3.2. Relationship between graph transformations and YATL135

7.3.3. Adding new features to YATL processors..136

APPENDIX 1. GRAMMAR SPECIFICATION RULES................ 138

APPENDIX 2. XTL-OVERVIEW... 139

2.1.1. An Example...139

2.1.2. Supported Features ..141

APPENDIX 3. XTL-GRAMMAR ... 142

3.1. XTL Syntax ...142

APPENDIX 4. THE QUALITY MODEL.................................... 145

APPENDIX 5. YATL-LEXICAL GRAMMAR............................ 152

APPENDIX 6. YATL-SYNTAX GRAMMAR............................. 154

APPENDIX 7. MAPPING FROM UML MODEL TO JAVA

MODEL ... 157

APPENDIX 8. MAPPING FROM SPIDER DIAGRAMS MODEL

TO OCL MODEL .. 161

APPENDIX 9. MAPPING FROM EDOC TO WS...................... 169

BIBLIOGRAPHY ... 179

List of Figures
Figure 2.1 Participants of the Factory Method Pattern ...29

Figure 2.2 Participants of the Abstract Factory pattern...30

Figure 2.3 Participants of the Builder pattern ...31

Figure 2.4 Participants of the Visitor Pattern ..31

Figure 2.5 Participants of the Observer Pattern ..32

Figure 2.6 Participants of Object Adapters ...33

Figure 2.7 Participants of Class Adapters ...34

Figure 2.8 Participants of Bridge Patterns ..34

Figure 3.1 Screen shot for generated tool ...44

Figure 3.2 Screen shot for builders ...45

Figure 4.1. Quality model ...74

Figure 4.2. OCL expressions...75

Figure 4.3. OCL selection, call, and loop expressions..75

Figure 4.4. OCL Primary expressions...76

Figure 4.5. Kiviat diagram for class OclExpressionAS ..77

Figure 4.6. Quality report for OCL expressions..78

Figure 5.1 Abstract Syntax..81

Figure 5.2 A transformation example in YATL..82

Figure 5.3 YATL types ..86

Figure 5.4 YATL expressions ..87

Figure 5.5 YATL actions ...90

Figure 6.1 Transformation Environment...114

Figure 6.2 A possible Java model..115

Figure 6.3 Example of mapping from UML model to Java model117

Figure 6.4 A spider diagram..118

Figure 6.5 OCL equivalent expression..119

Figure 6.6 Mapping spider diagrams to OCL ...121

Figure 6.7 Document Model profile ...124

Figure 6.8 XML Schema...125

Figure 6.9 CCA profile ...127

Figure 6.10 WSDL model ...128

Figure 6.11 Travel agency community process...130

Figure 6.12 BuySell and BuyFlight coreography ...130

Figure 6.13 Mapping the travel agency model to a WS model...131

List of Tables
Table 2.1. A comparison of modelling frameworks ..18

Table 2.2 Chomsky’s hierarchy...27

Table 3.1 Outline of code generated by KMF Studio ...41

Table 3.2 XTL operators ...57

Table 4.1. Summary of CK metrics...65

Table 4.2. KMF metrics suite- first level ..70

Table 4.3. KMF metrics suite-second level...72

Table 5.1 A comparison of transformation languages ...104

Table 6.1 Transformation rules from spider diagrams to OCL ...120

Table 6.2 Transformation rules for Document Model to XML Schema mapping126

Table 6.3 Transformation from CCA to WDSL ..129

Chapter 1. Introduction 1

Chapter 1. INTRODUCTION

The development of software requires an adequate description of the problem domain.

Involved in the development of such a description are not only software engineers, but also

users and domain experts. The members of such teams must communicate with each other

using documents. The aim is to provide a representation of an application domain that is

understandable for all persons involved in the software engineering process.

This representation, called a model, shows only the essential parts of the planned system. As

models are intended to be used during the entire software development process,

implementation details should be supported, too. To achieve this, a suitable modeling

language is required. Such a language must be easy to understand and support a certain level

of abstraction and formalization. For instance, programming languages are not suitable

because they are implementation-oriented. Furthermore, not all team members, especially

domain experts, easily understand programming languages. On the other side, natural

language is not an alternative because it is ambiguous. Therefore, unambiguous languages

with a certain level of abstraction are required.

It has been shown that visual modeling languages can be used successfully to achieve the

above aims. A modeling language should contain not only diagrammatic components but

also textual notation. This combination increases the expressiveness of modeling languages.

The aim is to add support for both a visual and a textual description of a problem domain.

The diagrammatic representation can be used to describe the visual information while the

textual representation can be used to augment the visual information with written

information. The augmentation can be used for different purposes such as providing

comments, indicating further details or adding a formal description to a visual description.

Generating new models is relatively easy. But over time, responding to ever changing

requirements gets more and more difficult. Hence, tools for model processing are required.

Such tools include text editors, pretty printers, type checkers, diagram editors, parsers,

Chapter 1. Introduction 2

evaluators, simulators, execution engines and so on. On the other hand, changing the model

implies changing the software. Every time a model is changed the software must be changed.

The aim is to develop a system architecture solid enough to allow reliable code development.

Automated code generation leads to solid code faster as long as the code generators are

thoroughly tested. The aim is to automate the generation of code starting from a given

model. The generation of design-level code for an application greatly increases both the

quality of the components and the speed of their availability. For example, the code for

model tools can be automatically generated.

1.1. Model Driven Engineering

Modeling is one of the foundations of software engineering and development and one of the

current practices is object-oriented (OO) modeling. The Object Management Group (OMG)

has defined a standard object-oriented modeling language – the Unified Modeling Language

(UML).

The OMG is not only interested in modeling languages; its primary aim is to enable easy

integration of software systems and components using vendor-neutral technologies. The last

step towards this goal is its announcement of the Model Driven Architecture (MDA) as the

basis for future OMG standards.

The quality of abstract descriptions is vital for MDA as it provides the possibility of

generating software from abstract descriptions. While the current OMG standards such as

UML and MOF provide a well-established foundation for defining OO models, no such

foundation exists for describing transformations between models. The process of

transformation between language models is based on a large body of research in the field of

compilation. The OMG’s recently initiated standardization process called Queries/Views/

Transformations will provide also the missing link of MDA: the transformation language.

The aim of this thesis is to investigate the possibilities for designing and implementing

transformation languages that operate on models and to explore the validation of source and

target models. Specifically, we will focus on OO models used in MDA, which can be

expressed in terms of MOF/UML concepts (e.g. classes and associations). We think that

model validation should include not only checking the well-formedness using OCL

Chapter 1. Introduction 3

constraints, but also the evaluation of model quality. As models are used in MDA to drive the

entire software development process it is unlikely that high quality software can be obtained

using invalid or low quality models. Evaluation of the quality of UML models at early stages

of the software development process should reduce the overall cost of the software

development process.

1.2. Objectives

The main objectives of this thesis are:

1) To investigate efficient and usable techniques for specifying transformations
from a source UML model instance to a target UML model.

2) To illustrate whether or not this style of specification can be used to provide a
transformation engine implementation that can be, at least partially, automated.

3) To investigate the validation of OO models by checking the OCL constraints on
source and target model instances, and evaluating the quality of the source and
target models using software metrics.

1.3. Thesis overview

To achieve the objectives described in 1.2 the thesis follows the following format:

Chapter 2 Background: this chapter starts by discussing the OMG’s Model Driven

Architecture (MDA), presenting the main features of the framework for

software development. It also describes other work related to the area of

language translation. It includes an overview of topics that support the

understanding of the research presented in the following chapters. The last

section presents a description of some object-oriented programming

patterns used as part of the concepts, techniques, and tools proposed in

this thesis.

Chapter 3 Kent Modeling Framework: this chapter starts with the presentation of the

requirements for a modeling framework. Then it describes the modeling

framework that we developed (Kent Modeling Framework) and how this

framework can be used to generate a modeling tool from a model. It then

Chapter 1. Introduction 4

proceeds to describe the customization of the generated code, in particular

the definition of methods that allows a rapid and repeatable instantiation

of a model.

Chapter 4 Model Quality Measuring: this highlights a methodology that uses the

UML specification to compute the design metrics at an early stage of

software development. The first section gives a brief description of the

background, object-oriented metrics, and problems of the measuring UML

models using software metrics. The second section describes our set of

metrics and algorithms. The third section describes the measuring

problem for UML models and describes the methodology that we have

used. The fourth section gives an example. The last two sections contain

an overview of the related work, and the conclusions and future work.

Chapter 5 YATL Specification: this chapter presents the current version of YATL

(Yet Another Transformation Language), which was designed and

implemented to support the features provided by OMG’s Request For

Proposal and the future QVT standard. The first subsection provides a

quick overview of the YATL language. Subsequent sections present the

features of YATL in more details.

Chapter 6 Model Transformations in YATL: this chapter describes three examples of

model transformations, which have been implemented using YATL and

the Kent Modeling Framework. The three examples are:

UML to Java mapping

Spider diagrams to OCL mapping

EDOC to Web Services

Chapter 7 Conclusions: highlights the contribution of the work presented in this

thesis, showing how transformation specification techniques and the

implementation approaches meet the objectives outlined in Chapter 1.

This chapter also proposes some future research that could lead on from

the results of the work presented here.

Chapter 1. Introduction 5

1.4. Contribution

This thesis defines a modeling framework that caters for the specification of OO model

validation and model transformations in the context of OMG’s MDA. The argument of the

thesis is novel, in that current systems and frameworks do not provide adequate support for

software development using OMG’s MDA concepts. Furthermore, very few frameworks

make use of the concepts specific to MDA for supporting the specification and development

of large scale software systems. The transformation framework described in this thesis is a

contribution to forming an adequate basis for supporting MDA software development. We

already made some steps in this direction by providing validation support for UML models

[ALP03] [AP03][OCL2P].

The modeling framework proposed in this thesis allows UML model instances to be

validated before transformation takes place. This is important as models are the driving

concepts in MDA and we are unlikely to obtain high-quality software from incorrect model

instances or models that were designed poorly. In the classic approach UML models

validation is performed by checking well-formedness rules described using OCL constraints.

This approach fails to cover other aspects regarding the UML models such as the quality of

the design and the effort required to understand and maintain a model. This thesis proposes a

set of design metrics that can be used to evaluate the quality of UML models from a design

perspective.

Although the major contribution of this thesis lies in the definition and specification of a

transformation language called Yet Another Transformation Language (YATL), we also

propose a modeling framework that supports, among other features, model transformations.

We also present tools that have been implemented to support the modeling process.

Modeling activities such as:

Java and C# code generation to instantiate UML models

Model persistence using XMI,

UML model instance validation by checking OCL constraints

UML model instance validation using design metrics

are supported by the KMF-Studio tool. Code generation is performed in KMF-Studio using

an original template language called X Template Language (XTL) for which language

Chapter 1. Introduction 6

processors are implemented. The proposed transformation framework and language is

implemented by YATL-Studio tool, which uses the code generated by KMF-Studio to

implement YATL transformations.

To summarize, the contributions are presented below:

Development of KMF (Kent Modeling Framework), a modeling framework that
provides support for software development using MDA techniques. The main
characteristics of KMF are:

o All the modeling features described in this thesis (e.g. code generation,
creating model instances, OCL validation, quality evaluation, and
transformation support) are integrated in KMF.

o Code generation is performed using templates described in XTL, a template
language that was designed and implemented to provide code for flexible
code generation in the KMF.

o The OCL support is highly portable as it is structured using OO
programming patterns such as adapter, bridge, visitor and observer. As a
consequence of this approach, the initial implementation of OCL support in
KMF was easily ported to IBM’s EMF.

o As KMF is using MDA concepts to develop software, it allows the
integration of applications at the metadata and model levels.

Designing of a transformation language called YATL that provides the missing
link in the OMG’s MDA framework. This is vital as transformations are key
concepts in MDA. The main characteristics of YATL are:

o YATL is a rule-based transformation language and structured in OO style
using namespaces. A YATL transformation rule consists of two parts: a left-
hand side (LHS) and a right-hand side (RHS). The LHS accesses the source
model, whereas the RHS expands in the target model.

o The LHS of a YATL transformation is specified using a filtering expression
written either in OCL or native code such as Java, C#, and scripts. This
approach allows filter expressions to include both modeling information
(e.g. navigational expressions, property values, collections) and platform
dependent properties (e.g. special conversion functions), which makes them
extremely powerful.

o The RHS of a YATL transformation rule is specified using a procedural
approach (e.g. decision and iteration actions and new/delete syntactic
constructs).

o YATL supports a mechanism to store and retrieve source to target mappings
using track actions. Native actions support interaction with the host
platform. To provide deterministic behavior and flexibility, YATL rules are
invoked explicitly using their names and providing the required arguments.

o YATL is implemented both as a compiler and an interpreter to provide
support both for static and dynamic model transformations.

Chapter 1. Introduction 7

To test YATL’s descriptive power and its expressiveness we performed several
transformations. YATL was used to experiment with transformations between
various models, from different knowledge domains (e.g. spider diagrams to OCL
and UML’s profile Enterprise Distributed Object Computing to Web Services).
The experiments have shown that YATL is simple, easy to learn and use, and
can be used to described transformations from various knowledge domains. The
experiments also proved that the transformation engine that supports YATL is
very efficient.

KMF proposes two approaches to validate the source and target models involved
in a transformation. The first approach uses the OCL support to check if the
OCL constraints attached to the source and target model instance are satisfied,
thus checking the well-formedness of models. The second approach provides the
evaluation of the quality of the source and target model using a set of software
metrics. This thesis proposes a framework to evaluate the quality of UML
models and a set of design metrics to evaluate the maintainability of UML
models. The validation of models is vital as in the OMG’s MDA framework,
software development process is driven by models.

1.5. Summary of publications

The work presented in Chapter 3 and Chapter 4 proposes a modeling framework that

supports the software development process using OMG’s MDA approach. The framework

does not only supports classic modeling activities such as code generation, model element

instantiation, storage and persitance through XMI, but also model validation using OCL

constraints and design metrics to evaluate the model quality. The results of the

investigations have been published in the following papers:

[ALP03] Akehurst, D., Linington, P., and Patrascoiu, O. (2003) OCL 2.0- Implementing the
Standard. Technical Report No. 12-03, Computer laboratory, University of Kent,
UK.

[AP03] Akehurst, D. and Patrascoiu, O. (2003). OCL 2.0 – Implementing the Standard for
Multiple Metamodels. In OCL2.0-"Industry standard or scientific playground?" -
Proceedings of the UML'03 workshop, page 19. Electronic Notes in Theoretical
Computer Science.

[AP04a] Akehurst, D. and Patrascoiu, O. (2004). Prototyping Metamodels: Automated
Generation of Modeling Tools with support for Checking Well-Formedness
Constraints. Submitted to UML 2004.

[Pat02a] Patrascoiu, O. (2002) A quality model for Java programs maintenance. In Else
Software Journal, University of Craiova.

[Pat02b] Patrascoiu, O. (2002) Software systems quality. In Else Software Journal, University
of Craiova.

Chapter 1. Introduction 8

The work presented in Chapter 5 and Chapter 6 proposes a technique for model

transformation and presents several experiments that were performed using this technique.

The results have been published in the following papers:

 [AKP03] Akehurst, D., Kent, S., and Patrascoiu, O. (2003). A relational approach to defining
and implementing transformations between metamodels. In Journal of Software and
Systems Modeling (SoSym), 2(4), 215-239.

[Pat04a] Patrascoiu, O. (2004) YATL:Yet Another Transformation Language. In Proc. of
First European Workshop MDA-IA, University of Twente, the Nederlands.

[Pat04b] Patrascoiu, O. (2004) YATL:Yet Another Transformation Language. Reference
Manual. Version 1.0. Technical Report 2-04, University of Kent, UK.

 [Pat04c] Patrascoiu, O. (2004) Model transformations in YATL. Studies and Experiments.
Technical Report 3-04, University of Kent, UK.

[Pat04d] Patrascoiu, O. (2004) Mapping EDOC to Web Services using YATL. In Proc. of 8th

IEE International Enterprise Distributed Object Computing Conference, EDOC
2004.

[PR04] Patrascoiu, O. and Rodgers, P. (2004). Embedding OCL expressions in YATL. In
Proc. of “OCL and Model Driven Engineering” workshop, UML 2004.

[PR05] Patrascoiu, O. and Rodgers, P. (2005). Model transformations in YATL. Submitted
to Journal of Software and Sytems Modeling, January 2005.

Chapter 2. Background 9

Chapter 2. BACKGROUND

This chapter starts by discussing the OMG’s Model Driven Architecture (MDA), presenting

the main features of the framework for software development. This chapter then describes

other work related to the area of language translation. It also includes an overview of topics

that support the understanding of the research presented in the following chapters.

The first section discusses the MDA, presenting the main features of the OMG’s initiative.

The second section presents the theoretical and practical aspects of the translation process.

The last section presents a description of some object-oriented programming patterns used as

part of the concepts, techniques, and tools proposed in this thesis.

2.1. Unified Modeling Language

Modeling is a principal exercise in software engineering and development and one of the

current practices is object-oriented (OO) modeling. In 1996, the Object Management Group

(OMG), an international consortium of computer vendors, end users and consultants,

adopted the well-known Unified Modeling Language (UML). UML has since become far-

and-away the dominant standard for software modeling. Today, nearly every software

development tool has incorporated some form of UML-style modeling into its development

process, and the number of commercially available UML tools is growing.

Based on the success of UML, the OMG has subsequently developed a number of other

broad-based software industry standards around UML, including the Meta Object Facility

(MOF), used primarily to manage metadata and integrate tools; the Common Warehouse

Model (CWM), used primarily in data warehousing; the XML Metadata Interchange (XMI),

used in mapping MOF to XML; and the Enterprise Distributed Object Computing (EDOC)

standard, used for the modeling of enterprise computing.

Chapter 2. Background 10

UML has evolved since 1996 in successive versions. There is ongoing work on finalizing the

latest version, UML 2.0. UML 2.0 is divided in several parts:

UML 2.0 Superstructure: The superstructure defines the six structure diagrams,
three behavior diagrams, four interaction diagrams, and the elements that
comprise them, and so is the part of the language that you'll encounter

UML 2.0 Infrastructure: The infrastructure defines base classes that form the
foundation not only for the UML 2.0 superstructure, but also for MOF 2.0.

UML 2.0 Object Constraint Language (OCL): This allows setting of pre- and
post-conditions, invariants, and other conditions.

UML 2.0 Diagram Interchange: This specification extends the UML metamodel
with a supplementary package for graph-oriented information, allowing models
to be exchanged or stored/retrieved and then displayed as they were originally.

The OMG also has begun to develop derivative standards for specific business domains (e.g.

real-time, healthcare, financial services, telecom, transportation, manufacturing) by defining

the following UML Profiles:

UML Profile for CORBA

UML Profile for CORBA Component Model (CCM)

UML Profile for Enterprise Application Integration (EAI)

UML Profile for Enterprise Distributed Computing (EDOC)

UML Profile for OoS and Fault Tolerance

UML Profile for Schedulability Performance, and Time

UML Testing Profile.

and one related specification:

UML Human-Usable Textual Notation (HUTN)

2.2. Model Driven Architecture

The Object Management Group (OMG) was formed with the declared purpose of

accelerating the introduction of standardized object software. The Object Request Broker

was one of the first important standards. Two other standards, the Object Management

Architecture (OMA) and the Common Object Request Broker Architecture (CORBA), were

designed to provide the standard framework for distributed systems. This framework is in the

same spirit as the OSI Reference Model and the Reference Model of Open Distributed

Procession (RM-ODP or ODP).

Chapter 2. Background 11

To keep up with its expanding focus, in 2001 OMG adopted a second framework, the Model

Driven Architecture MDA) MDA is not, like the OMA and CORBA, a framework for

implementing distributed systems. It is an approach to using models in software

development. It is based on other standards including MOF, UML, XMI, and CWM.

[MDA] introduces a number of concepts used by the OMG’s MDA initiative. The definitions

of these concepts are presented below.

System A system is a collection of elements and a set of relations
between elements. An element can be anything. For example:
a program, a computer, a network of computers, a human or
an enterprise.

Model A model is a description of a system and its environment. A
model can be described using a modeling language or a
textual language.

Viewpoint Is an abstraction of a system using a set of architectural
concepts and structuring rules.

View A view is a representation of a system using a chosen
viewpoint.

Computation
Independent Model

The computation independent viewpoint (CIV) focuses on the
requirements of a system and its environment. A computation
independent model (CIM) of a system describes the domain
and requirements of the system. A CIM might consist of a
model that captures information about the data of a system.

Platform
Independent Model

The platform independent viewpoint (PIV) focuses on the
operation of the system discarding the details specific to a
given platform. A platform independent model (PIM) is a
description of a system from the platform independent
viewpoint.

Platform Specific
Model

The platform specific viewpoint (PSV) combines the platform
independent viewpoint with details specific to the
implementation on a specific platform. A platform specific
model (PSM) is a description of a system from the platform
specific viewpoint.

Model
Transformation

A model transformation is the process of transforming a
model of a given system into another model of the same
system.

Chapter 2. Background 12

Typically the process of software development using OMG’s MDA approach is performed in

several steps, described below.

Requirements specification. The requirements for the system are described using modeling

languages that are computation independent. The resultant model, sometimes called the

domain model or business model, describes the system and its interaction with the

environment in which it operates. A CIM might be described using UML and additional

information regarding the viewpoints used to describe the system.

Platform modeling. The architect will then choose a platform model that allows the

implementation of the system with the desired architectural features. Usually, this model is

described in software and hardware manuals and is based on the architect’s experience.

PIM modeling. Starting from the CIM a PIM model is built. This model describes the

system discarding the details specific to the platform on which it will be implemented.

PSM modeling. The mapping from PIM to PSM describes the transformation of PIM into

PSM for a given platform. The platform model is used to determine the exact form of the

transformation. The resulting PSM specifies the same system as PIM and describes how the

model uses the platform.

Generate deployable code. To produce an implementation of the system, deployable code is

generated starting from resulting PSM. Deployable code can be generated directly from

PIM, without producing a PSM. This approach has the benefit of being more efficient. In

some cases, using a direct code generation, could affect drastically the efficiency of further

stages (e.g. debugging). Unless the PIM and the platform are close, the development of an

intermediate PSM is recommended.

The MDA approach promises a number of benefits [MDA][CH03]:

Improved portability due to separating the application knowledge from the
mapping to a specific implementation technology.

Increased productivity due to automating the mapping.

Improved quality due to reuse of well-proven patterns and best practices.

Improved maintainability due to better separation of concerns.

Chapter 2. Background 13

Enables different applications to be integrated by explicitly relating their
models: this facilitates integration and interoperability and supports system
evolution as platform technologies change.

While the current OMG standards such as UML and MOF provide a well-established

foundation for defining PIMs and PSMs, no such well-established foundation exists for

transforming PIMs to PSMs [GLRSW02]. In 2002, in its effort to define the transformations,

OMG initiated a standardization process by issuing a Request for Proposal (RFP) on Query /

Views / Transformations (QVT) [QVT02]. This process will lead to an OMG standard for

defining model transformations, which will be of interest not only for PIM-to-PSM

transformations, but also for defining views on models and synchronization between models.

Driven by practical needs and the OMG’s request, a large number of approaches to model

transformation have been recently proposed [CH03].

2.3. Modeling frameworks

Many current UML CASE-tools, both commercial (e.g.Rational Rose [RAT], Together

[TOG], Poseidon [GEN]) and non-commercial (e.g. ArgoUML [ARG]) offer extensibility

and interoperability capabilities, for example by providing a proprietary API for model

repository access, by introducing a scripting language, or by providing libraries for tool

developers. However, these CASE-tool dependent solutions are not generally well-suited for

performing a chain of transactions or queries on the models. One of the main goals of

modeling frameworks and tools is to support the combining of small model operations to

achieve higher-level functionality, customizable for a given process, domain, or a platform.

Of the existing UML model processing platforms, the IBM’s Eclipse Modeling Framework

(EMF), the NetBeans Metadata Repository (MDR), and FUJABA [FUJ] come close to our

approach. In comparison, the system described in this thesis, KMF, supports model

validation, using OCL and design metrics, and model transformations using a transformation

language called YATL (Yet Another Transformation Language).

Chapter 2. Background 14

2.3.1. Eclipse Modeling Framework

The Eclipse Modeling Framework (EMF) is an open source framework targeting model-

driven architecture development. The Eclipse Modeling Framework unifies Java, XML and

UML-enabling developers to rapidly construct robust applications based on simple models.

It can be used for both modeling and code generation. It creates Java code for graphically

editing, manipulating, reading, and serializing data based on a model specified in XML

Schema, UML, or annotated Java. EMF is the basis for many of the tools within IBM’s

WebSphere Studio and Eclipse projects.

In addition to generating Java code, EMF can also generate Eclipse plug-ins and graphical,

customizable editors. EMF keeps the code synchronized with the model. The EMF-generated

code supports the standard create, retrieve, update, and delete operations, and it also supports

cardinality constraints, complex relationships and inheritance structures, containment

definitions, and a suite of attribute descriptions. The generated code provides notification,

referential integrity, and customizable persistence to XMI.

EMF incorporates several of the MDA concepts and standards. Behind both EMF and MDA

is the key concept of using models as input to development and integration tools,

transforming those models into executable implementations. In terms of the MDA standards,

EMF uses XMI as primary serialization format for the models and meta-models. EMF's

meta-model, called Ecore, roughly corresponds to the EMOF (Essential MOF) subset of the

recently accepted MOF 2.0 standard. EMF also provides tools for transforming model forms

like UML, XML Schema and simple annotated Java interfaces into Ecore and powerful code

generator tools, which are used to produce high-quality Java code from Ecore model

descriptions.

The project is implemented in Java and based on the Eclipse platform. To integrate EMF’s

various modules Eclipse's plug-in mechanism is used. For example, the basic code

generation components have no Ecore modeling dependency, which makes them ripe for

reuse in other code generation applications. In fact, EMF is modularized in such a way that

many parts of it can even be used without Eclipse itself.

Chapter 2. Background 15

2.3.2. Metadata Repository

The Metadata Repository (MDR) implements the OMG's MOF standard based metadata

repository and integrates it into the NetBeans Tools Platform. It contains an implementation

of MOF repository, including persistent storage mechanism for storing the metadata. The

interface of the MOF repository is based on and fully compliant with JMI (Java Metadata

Interface). MDR also defines additional features that help to incorporate it into the IDE (e.g.

its event notification mechanism).

MDR has the following features:

Ability to save the contents of any package into an XMI 1.2 document.

Generate Java APIs for accessing metadata described by the specified MOF
metamodel.

MOF metamodels loaded into the MDR can be instantiated.

A metamodel can be accessed using both reflective and metamodel specific
APIs.

The generated APIs are implemented automatically during the MDR run-time as
they are needed.

MDR can work as a standalone application by using a command line access.

Part of MDR is integrated in NetBeans by exposing the repository contents and
actions that can be performed on the repository.

2.3.3. Fujaba

The primary topic of the Fujaba Tool Suite project is to provide an easy way to extend a

UML and Java development platform with the ability to add plug-ins. The Fujaba Tool Suite

combines UML class diagrams and UML behavior diagrams to create a powerful, easy to

use, yet formal system design and specification language. Furthermore the Fujaba Tool Suite

supports the generation of Java source code from the UML model. The result of the code

generation could be an executable prototype, if the model contains all the relevant

information. It provides also, to some extent, reverse engineering. The Fujaba Tool Suite is

configured with plug-ins for Reverse Engineering and Design Pattern recognition. The

Fujaba Tool Suite project is located at the Software Engineering Group, Computer Science

Department at the University of Paderborn.

Chapter 2. Background 16

The Pattern Specification plug-in provides a graphical editor for the specification of patterns.

They specify patterns as graph transformation rules, with respect to the abstract syntax graph

(ASG) of a system’s source code. Applying pattern rules results in enriching the ASG with

annotation nodes that may be linked to an arbitrary number of ASG elements. Thus,

annotation nodes mark pattern implementations recognized by pattern rules.

A pattern rule is defined by a left-hand side (LHS) and a right hand side (RHS). The LHS of

the rule describes the structure that has to be found in the ASG if an instance of the pattern

exists. The LHS may also contain annotations created by other pattern rules, thereby

permitting a composition of rules. Rules requiring annotations created by other rules depend

on those rules. The right-hand side (RHS) of a pattern rule defines an annotation node and

links to certain ASG elements that are to be created when the LHS could be matched.

The pattern rules are applied by an inference algorithm that is implemented by the Inference

Engine plug-in. The inference engine uses a pattern dependencies net (PDN) in which pattern

rules are organized in levels according to their dependencies and trigger relationships. Based

on the PDN the inference engine applies rules scheduled in priority queues. It starts with

rules that are independent from other rules.

Successfully applied rules create annotations that in turn trigger other rules at higher levels.

This is called the bottom-up mode of the inference engine. Newly triggered rules are

scheduled according to their levels in descending order. Thus, high level rules, which

produce meaningful results, are executed as early as possible. The analysis results (e.g. the

annotations) are displayed in class diagrams that can be directly obtained from the ASG.

The inference engine works semiautomatically because it involves the software engineer in

the reverse engineering analysis. The reverse engineer may pause the inference at any time

and inspect the results produced so far. Furthermore the engineer may modify or manually

add hypothetical results and continue the inference. The changes are then considered in the

further analysis.

Chapter 2. Background 17

2.3.4. Rational Software Modeler

The IBM Rational Software Modeler (RSM) is a UML2 modeling tool based on the Eclipse

framework, which is a part of the IBM Software Development Platform (SDP), a set of

modeling and model-driven engineering tools.

The diagram editor provided by RSM supports the 13 official diagram types of UML2 and

several extra types of diagrams (e.g browse, freeform and topic diagrams). Selecting the

range of diagrams on which to perform given operations (e.g. printing) proves to be

somewhat cumbersome. Customized UML profiles are supported and model constraints can

be defined (e.g., OCL). HTML and XML-based data exportation and reporting are provided

out of the box, but the documentation for advanced topics is sometimes not available or is

minimal. For example, although it generates quality reports, the set of metrics that is used

measures only various dimensions of the model (e.g. number of classes and number of

packages) and not the complexity of dynamic diagrams (e.g. sequence diagrams). Features

for advanced documentation and quality evaluation can be included in RSM using the plug-

in mechanism provided by Eclipse.

RSM provides team support with multi-model support, compare, merge, and system

versioning integrations. It supports model versioning but only at the model file level. A

model cannot contain several versions of a UML element (e.g. classes). Having several

versions of a UML element in the same model is a useful feature when modeling large scale

systems.

RSM provides support for two types of transformations: model to model and model to text. It

also provides three predefined transformations: to Java, C++, or EJB code. The

transformations are implemented programmatically. User transformations can be integrated

into RSM using the Eclipse plug-in mechanism. RSM does not provide support for a

transformation language, which increases the effort of writing transformations.

Chapter 2. Background 18

2.3.5. Comparison

In this section we compare the modeling frameworks described in the previous sections by

analysing the features provided by their specification. To achieve this comparison we

analyse the languages on the basis of several features. The results of the comparison are

summarized in Table 2.1.

Feature/

Language

EMF MDR FUJABA RSM

Graphic Editor No No No UML 2 diagrams

Model Quality No Local and global No Local and global

Prototype Graphic Programmatic Programmatic Programmatic

Well-formedness Static & Dynamic

OCL

Static OCL No Static OCL

Transformations No No No Predefined

transformations to

Java, C++ and EJB

Versioning No No No Model level

Table 2.1. A comparison of modelling frameworks

In this table the rows represent features that are used for comparison and the columns

represent the modeling frameworks that are compared. The table indicates how each feature

is supported by a modelling framework. The features are explained below.

Graphic Editor. Indicates if the modeling framework contains a built in graphic editor that

supports the drawing of UML diagrams.

Model Quality. The quality of a model can be measured using software metrics. This

indicates if the modelling framework supports quality evaluation both at local and global

level. Local evaluation allows the modeler to focus on a quality attribute or a particular

Chapter 2. Background 19

element from the model, without being distracted by having to assess things that are not the

current focus. Global evaluation allows the user to have a global view over the entire model.

Prototype. In order to provide sufficient data against which to validate the model, the

modelling framework must be capable of setting up potential populations of the model. The

population can be created either by using a graphic interface or writing programs.

Well-formedness. To check if a given population is well-formed, the rules that validate a

population must be verified. Hence, modeling frameworks could support both the static and

the dynamic evaluation of the well-formedness rules specified in the model.

Transformations. Modeling frameworks can support transformations from one model

instance to another and trace the mappings.

Versioning. It must be possible to handle multiple versions of the model. The versioning can

be performed at model level or model element level. Versioning at the local level means that

a model can contain several versions of a given element.

2.4. Transformation Languages

Transformation languages play an important part in the MDA framework. The process of

translation between language models is based on a large body of research in the field of

compilation. This section presents some of the existing transformation languages.

2.4.1. OMG’s QVT

While the current OMG standards such as Unified Modelling Language (UML) and Meta

Object Facility (MOF) provide a well-established foundation for defining PIMs and PSMs,

no such well-established foundation exists for transforming PIMs to PSMs. In 2002, in its

effort to define the transformations, OMG initiated a standardization process by issuing a

Request for Proposal (RFP) on Query / Views / Transformations (QVT). This process will

lead to an OMG standard for defining model transformations, which will be of interest not

only for PIM-to-PSM transformations, but also for defining views on models and

Chapter 2. Background 20

synchronization between models. In response to the OMG’s Request For Propoasal (RFP), 8

proposals were submitted:

1) Adaptive Ltd. (in the following abbreviated as ADAPTIVE)

2) DSTC/IBM (abbreviated as DSTC)

3) Compuware Corporation/Sun Microsystems (SUN)

4) Alcatel/Softeam/TNI-Valiosys/Thales (THALES)

5) Kennedy Carter (KC)

6) QVTPartners, which comprises Artisan Software, Kinetum, Kings College, and
the University of York (QVTPartners)

7) Codagen Technologies Corporation (CODA)

8) Interactive Objects Software GmbH/Project Technology (IO)

2.4.1.1. DSTC

To satisfy the requirements of the RFP and those identified above, DSTC developed a

transformation language that allows for the declarative specification of transformations

without regard for rule application order. This language was prototyped based on a modified

F-Logic interpreter [KLW95].

A declarative transformation describes what the result should be in terms of the input, but

does not prescribe how to go about constructing the result. However, like Horn clauses in

logic programming, instances of a transformation language should be a declarative

specification, and also have an equivalent procedural interpretation, thus allowing the

specification to be executed.

A transformation in DSTC’s language consists of the following major concepts: pattern

definitions, transformation rules and tracking relationships. Pattern definitions are used to

label common structures that may be repeated throughout a transformation. A pattern

definition has a name, a set of parameter variables, a set of local variables, and a term.

Pattern definitions are used to name a query or pattern-match defined by the term. The result

of applying a pattern definition via a pattern use is a collection of bindings for the pattern

definition’s parameter variables.

Transformation rules are used to describe the things that should exist in a target repository

based on the things that are matched in a source repository. Transformation rules can be

Chapter 2. Background 21

extended, allowing for modular and incremental description of transformations. More

powerfully, a transformation rule may also supersede another transformation rule. This

allows for general case rules to be written, and then special cases dealt with via superseding

rules.

Tracking relationships are used to associate a target element with the source elements that

lead to its creation. Since a tracking relationship is generally established by several separate

rules, they allow other rules to match elements based on the tracking relationship

independently of which rules were applied or how a target element was created. This allows

one set of rules to define what constitutes a particular relationship, while another set depends

only on the existence of the relationship without needing to know how it was defined. This

kind of rule decoupling is essential for rule reuse via extending and superseding to be useful.

2.4.1.2. Thales

The core of this proposal is a transformation language called TRL (Transformation

Language). The language can be used for querying models as well as for transforming

models. It reuses and extends the selection and filtering capabilities already available in OCL

2.0. The type of the data returned by a query may be a composite type (collection types, tuple

types, dictionary types) or maybe provided by a metamodel (in which case the query is a

special kind of transformation program).

TRL is based on metamodeling techniques. The rules express the relationship between

source and target model elements in terms of the available metaclasses, metaattributes and

metaassociations. In addition the language has a direct support of dynamic extensibility

using through using stereotypes in profiles.

The abstract syntax is provided as a MOF 2.0 compliant metamodel and is independent of

the proposed concrete syntax. A TRL program specification may have more than one source

model as input. This allows the merging of distinct kinds of data that might be necessary to

achieve a complete automated transformation. This applies in particular to marked models.

In such a case the designer may declare what are the profiles that apply to a source or target

model. In addition to this, a TRL program may have parameters.

Chapter 2. Background 22

2.4.1.3. QVT Partners

This submission proposes a possibly extended version of OCL 2.0 to describe queries in the

new QVT language, as OCL 2.0 resolves OCL 1.3’s deficiencies as a query language.

A view is a projection on a parent model, created by a transformation. From this simple

definition, the proposal builds the necessary machinery to cope with advanced technologies

such as RM-ODP style viewpoints. Essentially, the viewpoints are analogous to a query

which not only creates a view but also potentially restricts the meta-model of the view as

well. Thus from each viewpoint one does not in general have enough information to rebuild

the entire system. One possible mechanism for dealing with viewpoints in this proposal is to

use a query to create a view of a model, and then use a transformation to alter the view to

reflect the viewpoint’s restricted meta-model.

This proposal defines the transformations using two distinct layers. Similar to UML2

concepts, they are named the infrastructure and superstructure layer. The proposal defines a

simple infrastructure which has a small extension to the MOF meta-model and whose

semantics are easily defined in terms of existing OMG standards. The infrastructure is

necessarily low-level and not of particular importance to end users of transformations. The

superstructure contains a much higher-level set of transformation types suitable for end

users. Some parts of the infrastructure are effectively included ‘as is’ in the superstructure.

Concepts that exist in the superstructure but not in the infrastructure have a translation into

the infrastructure. This superstructure contains plug points to allow it to be easily extended

with new features.

The proposal’s overall framework for transformations allows the use of a variety of different

transformation styles: relations and mappings.

Relations are multi-directional declarative specifications. In general they are non-executable,

but some restricted types of bi-directional relations can be automatically refined into

mappings. Relations are written in any valid UML constraint language, OCL being the best

choice. In general, relations are used in the specification stages of system development.

Mappings are transformation implementations. Hence they are operational. Unlike relations,

mappings are potentially uni-directional. Mappings are expressed in the Actions Semantics

Language (ASL) and thus encompass all programming language implementations. Mappings

Chapter 2. Background 23

can implement any number relations, in which case the mapping must be consistent with the

relations it refines.

2.4.2. ATLAS Transformation Language

The ATL is a QVT-based transformation language, developed by the INRIA Atlas team. An

implementation of ATL is currently available as open source under an Eclipse project called

Generative Model Transformer (GMT) project. It is developed as a set of Eclipse plugins and

works as a development IDE for transformations, with execution and debugging. Currently

integrates with EMF and MDR.

It is described by an abstract syntax (a MOF meta-model), a textual concrete syntax and an

additional graphical notation allowing modelers to represent partial views of transformation

models. A transformation model in ATL is expressed as a set of transformation rules. The

recommended style of programming is declarative. Transformations from Platform

Independent Models (PIMs) to Platform Specific Models (PSMs) can be written in ATL to

implement the MDA.

The declarative part of ATL is based on the notion of matched rule. Such a rule consists of a

source pattern matched over source models and of a target pattern that gets created in target

models for every match. Traceability links are automatically created. Rule inheritance and

polymorphic rule reference are available. Navigation is performed using OCL expressions.

Transformation programs written in ATL are inherently unidirectional. Source models,

which are only navigable (e.g. read-only), and target models, which are not navigable (e.g.

write-only), are clearly identified at development time.

ATL offers two imperative constructs: called rule and action block. A called rule is

explicitly called, like a procedure, but its body may be composed of a declarative target

pattern. Matched rules and called rules may be used together in a single transformation

program. Action blocks are sequences of imperative instructions that can be used in either

matched or called rules. The recommended style is declarative (e.g. no called rules and no

action blocks). Imperative style should only be used when no declarative language construct

provides the capabilities required by a particular case.

Chapter 2. Background 24

There are two modes in which the declarative part of an ATL program can operate: standard

and refining. In standard mode, elements are only created when a rule is matched. However,

since models cannot be transformed in-place (source models are read-only), transformations

that only modify small parts of a model and leave most of the rest unchanged are complex to

write in this mode. As a matter of fact, there must be roughly at least one copy rule for each

type declared in the metamodel. This is not required in the refining mode where unmatched

elements are automatically copied by the engine. In most cases, developers may assume they

are actually modifying a source model with the difference that every navigation expression

always operates on the original source model.

2.4.3. Other Transformation Frameworks

Below are some open source tools of different character:

UMT (UML Model Transformation Tool) - UMT is an open source UML/XMI-
based tool for model transformation and code generation purposes, which uses
XSLT and Java for generation [UMT].

The IBM Model Transformation Framework (MTF) is an EMF based model
transformation framework, now available at alphaWorks. It provides a
declarative means of specifying metamodel relationships, similar to that of QVT
relations [MTF].

Generative Model Transformer (GMT) an Eclipse project that will provide
model transformation technology for the Eclipse platform. Currently the FUUT-
je tool, a code generator tool, is the primary GMT deliverable. (ATL, mentioned
above, provides core transformation technology.) [GMT]

MTL Engine. Another QVT-like implementation, by the INRIA Triskell team.
Uses the MTL language. Integrates with Netbeans MDR and Eclipse EMF.

MOdel transformation Language (MOLA) is combination of traditional
structured programming in a graphical form with pattern-based rules. The loop
concepts enable the iterative style for transformation definitions, while other
languages rely on recursion [MOLA].

MOFScript, a model to text transformation tool, based on one of the OMG MOF
Model to Text Transformation submissions. It is implemented as an Eclipse
plugin, based on metamodels/models in EMF [MOFS].

ModFact. A MOF Repository and QVT-like engine from LIP6, Paris. Based on
the TRL language. LIP6 are also working on an open source ModelBus
implementation, which will enable MDD tools interoperability [MODF].

OpenArchitectureWare, a flexible, template-based generator framework
integrated with XMI [OAW].

Chapter 2. Background 25

OpenMDX, an open source MDA environment, which integrates with several
tools through XMI and supports code generation towards several target
platforms (J2EE, .Net) [OMDX].

AndroMDA, an open source template-based tool for J2EE code generation from
UML/XMI. Uses VTL (Velocity Template Engine) as scripting language and
Netbeans MDR as a model API [AMDA].

XDoclet an open source, attribute based code generation tool for J2EE. Not
really model-based, but can be combined with generation tools such as UMT to
achieve good model-based value [XDOC].

Middlegen, an open source, database driven code generator based on JSBC,
Velocity, Xdoclet and Ant [MID].

2.5. Languages and Translators

There is a communication gap between humans and computers. Computer hardware operates

in terms of bytes and locations while humans express themselves in terms of natural

languages such English or using high-level concepts. A translation process bridges the

human-machine communication gap. Language translation is the process of restating some

text written in one language in a different language. In other words, to translate is to examine

some original text, written in what is termed the source language, and write a corresponding

text in a different language, termed the target language, with the goal of preserving the

meaning of the original text.

2.5.1. Languages, grammars, and automata

Programming languages used for the purpose of computer programming (such as C# or Java)

do not resemble human languages very much. They are described using tools termed formal

languages. Formal languages lack questions, exclamations, simile, metaphor, and other

features of human language. [Sal73] provides a general treatment of formal languages.

In computer science a formal language is a set of strings over a given alphabet. A grammar

is a way of describing formal languages. These systems are named grammars by analogy

with the concept of grammar for human languages. The basic idea behind these formal

systems is that strings contained in a language can be generated by starting from a special

Chapter 2. Background 26

start symbol and then apply rules that indicate how certain combinations of symbols can be

rewritten by replacing them with other combinations of symbols.

A grammar G is an algebraic system consisting of the following components:
A finite set N of nonterminal symbols.

A finite set T of terminal symbols that is disjoint from N.

A finite set P of production rules where a rule is of the form

 where and are strings from the language (T N)*

(where * is the Kleene star operator and is set union) with the restriction that
the left-hand side of a rule (i.e., the part to the left of the) must contain at
least one nonterminal symbol.

A symbol S in N that is indicated as the start symbol.

Usually such a grammar G is simply summarized as (N, T, P, S).

A grammar is a rewriting system that generates strings from other strings by applying the

grammar’s productions. The string 1 derives directly to 2 , denoted as 1 2, if there is a

production rule in G such as 1 = 1 1 and 2 = 2 2, where 1, 1, 2, and 2 are

arbitrary strings over the alphabet (N T)*. The notation can be extended to + and *

using Kleene’s operators.

The language described by a formal grammar G = (N, T, P, S), denoted as L(G), is the set of

strings over T that can be generated by starting with the start symbol S and then applying the

production rules in P until no more nonterminal symbols are present:

L(G) = {w T* | S * w }

Languages can also be described using concepts from automata theory. The automata are

abstract models of computer execution and storage. The best-known automata are the Turing

machines, pushdown automata, and finite state machines. [Gin75], [Sal69], and [HU79]

comprise a general treatment of automata and languages.

Turing [Tur36] introduced in 1936 a machine termed since than the Turing Machine. The

purpose of this machine was to give a precise definition of algorithm or “mechanical

procedure”. Turing machines are widely used in theoretical computer science, especially in

the theory of computation and theory of algorithm complexity.

Chapter 2. Background 27

The origin of pushdown concept is not clear and is attributed by most to [BWW54] and

[NS57]. A little later the term LIFO storage was used explicitly in the literature by [SB60],

who used it to translate the ALGOL formulas into machine code. Pushdown automata are

best known for accepting the family of context-free languages, which was independently

proved by [Cho62] and [Eve63].

A finite-state automaton is an abstract machine that has only a finite, constant amount of

memory and an internal state. There are several types of finite state machines: acceptors,

recognizers, and transducers. Acceptors either accept the input or do not by producing a

“yes” or “no” answer. Recognizers are used to categorise the input and transducers are used

to generate an output from a given input. Apart from theory, finite state machines like Moore

and Mealy machines occur in hardware circuits.

Noam Chomsky introduced in [Cho56] a containment hierarchy of grammars. Table 2.2

summarizes each of Chomsky’s four types of languages, the class of grammars it generates

and the type of automaton that recognizes it.

Language Grammar Automaton

Recursively enumerable Type-0 Turing machine

Context-sensitive Type-1 Linear-bounded non-deterministic automaton

Context-free Type-2 Non-deterministic pushdown automaton

Regular Type-3 Finite state automaton

Table 2.2 Chomsky’s hierarchy

2.5.2. Language processors

A translator is a program that accepts as input a program written in a language, termed the

source language, and produces a program written in another language, termed the target

language, preserving the meaning of the original program. Translators typically distinguish

translation from interpretation, which is live translation of speech.

Chapter 2. Background 28

If the source language is a high-level language such as C# or Java and the target language is

a low-level language such as assembly language or machine language, the translator is a

compiler. The machine language of a computer is sometimes termed object code.

An assembler is a translator from an assembly language, which is very close to the machine,

to the object code of a given machine.

An interpreter is a program that accepts a source program written in the source language and

executes it. The interpreter does not produce an object program to be executed; it performs all

the operations implied by the source program.

In theory an interpreter has to follow the control graph attached to the source program, analyse,

and execute each action. This approach is very inefficient and therefore it is not used in real

scale systems. The usual method is to split the interpretation process into two phases. The first

phase analyses the entire source program and builds an internal representation. The second

phase executes the internal form of the source program, following the control graph.

Among practitioners, a distinction is generally made between translation, where the compiler

generates object code which is then executed, and interpreting or interpretation, where the

interpreter analysis and executes the source program. From the point of view of analyzing

the processes involved (translation studies), it is perhaps more useful to treat interpreting as a

subcategory of translation.

Many software tools that manipulate source programs first perform some kind of analysis

similar to that of a compiler. Some examples of such tools include: structure editors, pretty-

printers, static checkers, text formatters, query interpreters, and preprocessors. Practical

aspects of the translation process are presented in more detail in [ASU86], [WG84], [AP02],

and [FL91].

2.6. Object Oriented Design Patterns

Mature engineering disciplines have handbooks that describe successful solutions to known

problems. For instance, rail track designers do not design rail tracks by starting from scratch

and using the laws of physics and geometry. Instead, they reuse standard designs with

Chapter 2. Background 29

successful track records regarding functionality and safety. The extra few percent of

performance available by starting from scratch is not worth the cost.

Object-oriented developers wrote the first software patterns, so they focused on object-

oriented design and programming [GHJV95] or on object-oriented modeling [Coa92]. Since

then new trends appeared, for instance creating patterns in concurrent, parallel, and

distributed programming systems [CVK96] [Gra02].

This thesis makes use of several of these patterns with respect to providing an

implementation of models. These patterns are described in the following subsections.

2.6.1. Factory Method Pattern

Very often one needs to construct an object without knowing the class of object it must

create. The Factory Method pattern is a creational pattern that “Define an interface for

creating an object, but let subclasses decide which class to instantiate” [GHJV95]. The

Factory Method pattern delegate the responsibility of choosing the class that must be created

to subclasses. The participants involved in this software pattern are described in Figure 2.1.

ConcreteProductA ConcreteProductB

Product

<<interface>>
Factoy

create(): Product

ConcreteFactoryA

create():Product

ConcreteFactoryB

create():Product

Figure 2.1 Participants of the Factory Method Pattern

2.6.2. Abstract Factory Pattern

The Abstract Factory pattern is one level of abstraction higher than the Factory Method

pattern. The Abstract Factory pattern provides a way of encapsulating a group of individual

Chapter 2. Background 30

factories that create similar products that belong to different families of products. This

pattern separates the details of implementation of a family of objects from their general

usage. The participants involved in this pattern are presented in Figure 2.2.

Theme1ProductA Theme2Product2

ProductA
Factory

createProductA():ProductA
createProductB():ProductB

Theme1Factory

createProductA():ProductA
createProductB():ProductB

Theme2Factory

createProductA():ProductA
createProductB():ProductB

Theme1ProductB Theme2ProductB

ProductB

Figure 2.2 Participants of the Abstract Factory pattern

2.6.3. Builder Pattern

In many cases the algorithm for creating a complex object must be independent of the parts

that make up the object. As the Builder pattern separates the construction of a complex object

from its representation, a variety of representations can be created using the same

construction process. This creational pattern it is intended “to decouple the process of

building complex objects from parts that make up the object” [GHJV95]. The Builder pattern

has two main participants called director and builder. The director, which responsible for the

overall organization of the creation process, makes calls to the builder. The builder constructs

the complex object under the control of the director. The structure of the pattern is presented

in Figure 2.3.

Builder

buildPart()

ConcreteBuilder1

buildPart()

ConcreteBuilder2

buildPart()

Director

buildProduct()

Chapter 2. Background 31

Figure 2.3 Participants of the Builder pattern

2.6.4. Visitor Pattern

The Visitor pattern is a behavioural pattern that lets you to define and perform a new

operation on all the elements of the object structure, without changing the classes of the

elements on which it operates. In the visitor pattern, the operations are seen as objects as

themselves. The participants involved in this pattern are presented in Figure 2.4. The visitor

pattern is characterized by the following:

1) Two interfaces are defined: Visitable and Visitor.

2) Each element of the object system implements the Visitable interface.

3) For each new operation a concrete visitor is defined that implements the Visitor
interface.

4) The parameters of the operations are stored in Data.

ElementA

accept(Visitor, Data)

ElementB

accept(Visitor, Data)

<<interface>>
Visitable

accept(Visitor, Data)

<<interface>>
Visitor

visit(ElementA, Data)
visit(ElementB, Data)
 . . .

Visitor1

visit(ElementA, Data)
visit(ElementB, Data)
 . . .

Visitor2

visit(ElementA, Data)
visit(ElementB, Data)
 . . .

Figure 2.4 Participants of the Visitor Pattern

2.6.5. Observer Pattern

Sometimes partitioning a system into a collection of cooperative classes looses the

consistency between related objects. Consistency can be achieved either by making the

classes tightly coupled or using the Observer pattern. The Observer pattern is a behavioural

pattern that defines the dependency relations between cooperative classes.

Chapter 2. Background 32

The key concepts in this pattern are subject and observer. A subject may have any number of

dependent observers. The subject notifies its observers whenever a change occurs that could

make its observers’ state inconsistent with its own. After being informed of a change in the

subject, an observer may query the subject for information.

The participants involved in this pattern are presented in Figure 2.4. The visitor pattern is

characterized by the following:

1) Two objects are defined: Subject and Observer.

2) Each element of the object system that must be observed is a subtype of the
Subject object.

3) For each subject there zero or more observers.

4) The parameters of the operations are stored in Data.

SubjectA

getState()
setState()

SubjectB

getState()
setState()

Subject

addObserver(Observe)
removeObserver(Observer)
notify()

Observer

update()

Observer1

update()

Observer2

update()

*

Figure 2.5 Participants of the Observer Pattern

2.6.6. Adapter Pattern

Sometimes objects with different interfaces need to communicate with each other and work

together in a single program. In such cases the adapter pattern is a solution. The Adapter

pattern is a structural pattern that converts the interface of a class into another interface that

clients expect.

Chapter 2. Background 33

The key objects in this pattern are target, adapter and adaptee. Target defines the interface

that the client is using. An adaptee defines an existing interface that needs to be adapted. An

adapter adapts the interface of the adaptee to the target interface.

The adapter pattern can be implemented in two ways, as object adapters or class adapters.

The difference between these two implementations is given by the strategy used to solve the

problems: composition versus inheritance.

Object Adapters

Object adapters use a compositional strategy to adapt one interface to another. The adapter

inherits the target interface that the client expects to see and contains an instance of the

adaptee. When the client calls a method on the adapter, the method is translated into the

corresponding specific request on the adaptee. The structure of object adapters is presented

in Figure 2.6.

Adapter

request()

<<interface>>
Target

request()

Adaptee

specificRequest()

1

Figure 2.6 Participants of Object Adapters

Class Adapters

Class adapters use multiple inheritance to achieve their goals. As in the object adapter, the

class adapter inherits the interface of the client’s target. It also inherits the interface of the

adaptee as well. The participants of the class adapters are presented in Figure 2.7.

Chapter 2. Background 34

Adapter

request()
specificRequest()

<<interface>>
Target

request()

<<interface>>
Adaptee

specificRequest()

Figure 2.7 Participants of Class Adapters

A class adapter adapts adaptee to target by implementing a concrete class. Thus a class

adapter is not capable to adapt a class and all its subclasses. Object adapters are capable of

adapting a class and all its subclasses.

2.6.7. Bridge Pattern

The Bridge pattern is a structural design pattern whose intension is to “decouple an

abstraction from its implementation so that the two can vary independently” [GHJV95]. The

Bridge pattern encourages loose coupling of objects through the use of delegation.

RefinedAbstractionA RefinedAbstractionB

Abstraction

operation()

<<interface>>
Implemenation

operationImpl()

ConcreteImplementationB

operationImpl()

ConcreteImplementationD

operationImpl()

impl

Figure 2.8 Participants of Bridge Patterns

The key concepts in this pattern are abstraction, refined abstraction, implementation, and

concrete implementation. The abstraction defines the interface that the client uses for the

interaction with the abstraction. The abstraction object maintains a reference to an

implementation object that is used to forward the client request to the implementation. A

refined abstraction is any of the abstract class extensions. The implementation defines the

Chapter 2. Background 35

interface for any of the implementations of the abstraction. Typically the implementation

interface “provides only primitive operations, and Abstraction defines higher-level

operations based on these primitives” [GHJV95]. The concrete implementation simply

implements the interface defined by the implementation, defining a concrete implementation

of the abstraction. The participants of the bridge pattern are presented in Figure 2.8.

2.7. Summary

In this chapter we have given an overview of the topics that form together the foundation of

the research contained in the rest of this thesis. Modeling languages are vital for the process

of software development using the model-driven approach. They are vital mainly for

specifying the models used during the development process: computation independent

model, platform model, platform independent model, and platform specific model. As

models are a key part of the MDA framework their quality is very important, as is the

validation of a model over a population of model instances.

Transformation languages play a very important part in the MDA framework. The process of

translation between language models is based on a large body of research in the field of

compilation. The finalization of OMG’s initiated standardization process of QVT [QVT02]

will also provide the missing link of MDA [GLRSW02]. A more detailed description of

approaches taken so far for model transformation is presented in [CH03].

Software development, like any other mature engineering discipline, should be based on

software patterns. Software patterns may vary from object-oriented design and programming

patterns [GHJV95], object-oriented modeling patterns [Coa92] to more general and

sophisticated patterns, as in concurrent, parallel, and distributed programming [CVK96] and

object-oriented software environments [Gra02].

Chapter 3 Kent Modeling Framework 36

Chapter 3. KENT MODELING

FRAMEWORK

Modeling and metamodeling has become popular because it aids the derivation of

implementation from a definition. Software tools for automatically generating an

implementation of the structural part of the definition are now publicly available.

Unfortunately, these tools do not tend to be used when a metamodel is developed, as the

tools are not appropriate for supporting the definition process, and well-formedness rules of

model instances tend to be ignored.

3.1. Modeling Tools Requirements

Currently, the focus of modeling is to capture the abstract syntax of a language, although

models can also be to define other aspects of a language, such as semantics and evaluation.

This thesis will focus on concrete syntax, abstract syntax, semantics, and the appropriate

mappings between them.

The general problem is to support the activity of modeling, by providing a means to check

during the process of a model development if the model is fit for purpose, well-formed and

error-free. The general approach we have adopted is to generate modeling tools from a

model. Another approach might be to provide an interpreter for the model. We have followed

the first approach, because we would like to move on from generating prototypes to

generating industrial-strength modeling tools or at least fragments of modeling tools. We do

not believe that the interpretive approach can be used to deliver industrial-strength tools,

mainly because such an approach is time consuming. With this in mind, we can now consider

more specific requirements, both for the generator, and for the generated prototype.

Chapter 3 Kent Modeling Framework 37

In order to check if a model is fit-for-purpose we have to ensure that what needs to be

expressed in the language it describes can be represented as an instance of the model, and

that only instances which represent valid expressions of the language are valid instances.

Hence, the generated tool should support a process of validation, which allows potential

instances of the model to be explored and checked against the model.

This leads to the following requirements for a prototype tool generated from a model:

1) Evaluating the quality of the model. The quality of a model influences the entire
process of software development because it is unlikely that a low quality model can be
used to automatically generate a high quality software product. Tools should support
quality evaluation both at local and global level. Local evaluation or selective evaluation
allows the modeler to focus on a quality attribute or a particular element from the model,
without being distracted by having to assess things that are not the current focus. Global
evaluation allows the user to have a global view over the entire model. The quality
checker must provide clear feedback to the user, which is vital in order to detect and fix
errors.

2) Rapid and repeatable input and editing of populations. A population of a given
model is a set of instances of the elements described in the model, representing items
from the described language. In order to provide sufficient data against which to validate
the model, the tools must be capable of setting up potential populations of the model
quickly, in several ways (e.g. using a graphic interface or writing programs). The
populations may include examples (valid constructions) and counter-examples (invalid
constructions). It must be possible to set up sophisticated populations, representing
complex constructions and subtle boundary cases. For instance, a tool that only allows
you to set up a model instance object by object, link by link, would not meet this
requirement very well.

3) Viewing and exploring populations. Tools must be capable of viewing and exploring a
population easily. This facility is extremely important in certain situations, for instance
when debugging well-formedness rules.

4) Evaluation of well-formedness rules over populations. It must be possible to evaluate
well-formedness constraints over populations. Tools should support both local
evaluation and global evaluation. Local evaluation or selective evaluation allows the user
to focus on a particular rule or a particular element from the population, without being
distracted by having to evaluate rules that are not the current focus. Global evaluation
allows the user to have a global view over the entire population. The rule checker must
provide clear feedback to the user, which is vital in order to detect and fix errors.

5) Model transformation. It must be possible to create transformations from one model
instance to another and trace the mappings. Tools should support transformation both at
a local and a global level. Transformations at a global level allow the user to have a
global view over the entire population, while local transformations or selective
transformations allow him to focus on a particular rule or a particular element from the
population, without being distracted by having to perform rules that are not the current
focus. The clarity of the feedback provided by the transformation engine is vital in order
to detect and fix errors.

Chapter 3 Kent Modeling Framework 38

6) Smooth process. We would like the process of developing and editing models, applying
transformations, compiling and launching the generated code, working with and
obtaining feedback from test populations, then cycling back to the model, to be as
smooth as possible. It is important that a generated prototype can work with other tools,
especially ones that might provide a means of representing constructions in the language
being defined in some concrete syntax.

7) On-the-fly behavior. It should be possible to input constraints or transformation rules
and have them evaluated on-the-fly against sample populations. The feedback from this
evaluation should be as helpful as possible.

8) Round-trip engineering. We have found that 100% generation of code is very difficult,
especially when we consider some of the requirements on the generated tool that have to
be met. So it is necessary to assume that the generated code will be supplemented by
some hand-written code. On the other hand the model might be changed in the future,
and the code regenerated.

9) Model versioning. It must be possible to handle multiple versions of the model in a way
that does not require major changes to hand-written code, just because the version
number (e.g. in the model name) changes.

3.2. The Kent Modeling Framework

This section describes the Kent Modeling Framework [KMF] and how it can be used to

generate a modeling tool from a model. It then proceeds to describe the customization of the

generated code, in particular the definition of methods that allow a rapid and repeatable input

of population.

3.2.1. About KMF and KMF-Studio

KMF provides a set of tools to support model driven software development. At the core of

KMF is KMF-Studio, a tool that generates modeling tools from the definition of languages

expressed as models. KMF-Studio is supported by OCLCommon and OCL4KMF, two Java

libraries that allows dynamic evaluation of OCL2 constraints; and XMI, a Java

implementation of the XMI standards. Tools generated using KMF-Studio use OCLCommon

and OCL4KMF to provide built in support for checking well-formedness of models, amongst

other things; they use XMI to write and read models in XMI format. XMI is also used by

KMF-Studio to read in models in standard UML 1.3 XMI 1.0 and XMI 1.2 format. The code

generated by KMF Studio for a particular model is summarized in Table 3.1.

Chapter 3 Kent Modeling Framework 39

Metamodel Generated Java code

m:Model User can choose the location of the generated

code, and also the name of the model.

Licensing support for generated code is also

provided.

A common set of boilerplate interfaces (e.g.

Visitable, XElement, where X is the name of the

model).

GUI code, XMI readers and writers and code for

constructing and populating a repository.

Factory and Visitor interfaces for generating and

navigating the model elements.

A repository storing all generated elements.

For all p:Package in m Corresponding interfaces and classes are

generated in a Java package, whose pathname

follows the nesting structure of packages in the

metamodel.

For all c:Class in p A lifecycle class that includes a factory method

for creating instances of the Java class generated

from this class.

A repository contains one instance of the lifecycle

class for each class, and the factory method stores

the object it creates in that repository.

Lifecycle classes can be specialized using hand-

written Java code, and repositories can be

configured with objects of the specialized

Chapter 3 Kent Modeling Framework 40

versions.

For all c:Class in p Interface

Extends interfaces from superclasses, standard

library classes such as X.XElement, where X is

the name of the model.

Class

Implements interface generated from class.

Includes boilerplate code required for GUI, XMI

reading/writing and to support repository

services.

For att:Attribute in c Interface

A get method with the name getX, where X is the

name of the attribute.

A set method with name setX, where X is the

name of the attribute.

Class

An attribute whose name is derived from the

name of the attribute.

Implementations for the get and set methods in

the interface, that make use of the attribute.

For all q:Query operation in c Interface

A method with corresponding signature.

Class

An implementation of the method, whose body is

Chapter 3 Kent Modeling Framework 41

derived from the (OCL) expression that is the

body of the operation.

For all inv:Invariant in c A visit method included in XParseAllVisitor and

XEvaluateAllVisitor classes, where X is the

model name.

For all assoc:Association in p If association is bidirectional, then two

constraints are generated, one in each class

connected by the association, to capture the

bidirectionality constraint.

For all ae:Association End (only

navigable ones) in assoc

Treated as attributes of the class at the source of

the association end, where the type of the

attribute is governed by the multiplicity of the

end. If the target of the end is class X then if the

cardinality is 1, the type is whatever X is mapped

to; if the cardinality is greater than 1 and the

association end is ordered the type is List from

java.util package; else the type is Set from

java.util package.

Type of attributes, arguments and

result of operations, and

association ends

When a class or datatype is used as the type of an

attribute, parameter or operation in the

metamodel, if the type is a class then interface

matching the class is used as the type. If it is a

primitive type X, where X is Integer, String,

Boolean, Set, Sequence or Bag then the type is

the corresponding Java primitive types. All basic

types such as int, float and double are mapped to

corresponding reference types such as Integer and

Double etc.

Table 3.1 Outline of code generated by KMF Studio

Chapter 3 Kent Modeling Framework 42

The generated code can be executed directly, which will launch a tool that provides the

following functionality:

The ability to populate the metamodel, to explore populations, and to edit and
view specific elements of the population through a forms style interface.

The ability to check well-formedness of a population in memory according to
well-formedness constraints expressed in OCL on the metamodel.

The ability to dynamically evaluate OCL expressions over the population in
memory.

The ability to save and load populations to/from XMI files.

The ability to save populations to a “Human Usable Textual Notation” [HUTN]
format.

3.2.2. About OCL support

OCLCommon and OCL4KMF are two libraries used in tools generated by KMF Studio to

check constraints in the metamodel over populations, and to support dynamic evaluation of

OCL expressions entered by the user through the GUI.

The OCL libraries provide support both for compilation and interpretation of OCL

expressions. Implementing both a compiler and an interpreter maximizes the efficiency of

the implementation by reducing the runtime. The compiler is used by KMF to generate code

to check the constraints that are described into the metamodel, while the interpreter is used in

the generated code to allow the user to explore and discover other useful constraints that are

not present in the metamodel and evaluate them on-the-fly. If new constraints are discovered,

they can be added into the metamodel and the compiler will generate code for them if the

tool is regenerated using KMF.

The libraries provides support for all the standard OCL data-types (including collections) and

all of the defined operations for those types. The evaluation of OCL expressions can be

performed within Java code, by calling a method and passing the expression string and

context objects as parameters, or by invoking an evaluator GUI with a defined context into

which OCL expression strings may be typed. The former method of evaluation is used by the

generated code to construct invariants defined on model elements; these invariants can be

evaluated separately or ‘on mass’ from within the generated tool. The latter, GUI, method of

Chapter 3 Kent Modeling Framework 43

evaluation is provided to enable evaluation of expressions that are not part of the defined

model, but which may be useful in exploring the model and testing parts of invariants.

OCLCommon contains elements (e.g. classes and methods) that are platform/tool

independent. The platform/tool specific elements are contained in the OCL4KMF library.

This approach increases the portability of the OCL support to other modelling platforms and

tools (e.g. Eclipse Modeling Framework). OCLCommon is divided into the following

packages: Syntax, Semantics, Evaluation, and Bridge. The Syntax package contains an OCL

parser and APIs for the OCL abstract syntax tree model. The Semantics package contains a

semantic analyzer for OCL and APIs for the OCL semantic model. The Evaluation package

contains the compiler and the interpreter. The semantic analyzer uses a bridge to connect to a

specific description of the model, in our case a bridge to UML1.x. In order to evaluate an

OCL expression for a different model a new bridge implementation has to be written. The

Bridge package contains the interfaces that must be implemented in the platform specific

library (e.g. OCL4KMF and OCL4EMF).

Most of the code contained in the OCLCommon, around 85-90%, was developed using

MDA techniques. KMF-Studio and a parser generator called CUP have been used to generate

Java code starting from abstract description: a UML model of OCL’s abstract syntax and a

BNF description of OCL’s concrete syntax.

3.3. About XMI and UML support

Both KMF-Studio and generated code need support for persistence and other common

behaviour. The XMI package provides supports for reading and writing XMI files,

supporting the standards XMI 1.1 and XMI 1.2. KMF-Studio reads in information from an

XMI file that describes the model and creates instances of UML elements. The required

UML API is provided by the UMLModel package. Initially, this package contained only a

part the UML model, which was hand written. When KMF-Studio became mature enough

the UMLModel API was generated automatically using KMF-Studio.

Chapter 3 Kent Modeling Framework 44

Figure 3.1 Screen shot for generated tool

3.4. The generated tool

The screen shot shown in Figure 3.1 illustrates the generated tool for a fragment of the UML

language that contains packages, classes, associations and association ends. The left hand

side shows the objects populating the specified model. The right hand side shows the facility

for editing properties of a Class_. The generated tool must also deal with details regarding

the underlying programming language (e.g. Class is a default Java class).

Chapter 3 Kent Modeling Framework 45

Figure 3.2 Screen shot for builders

The middle shows the evaluation of the OCL expression self.owner.class_.size()=8, which

has been entered into the dynamic OCL evaluator in order to debug the expression. We can

see the value of the subexpressions self.owner.class_ and self.owner.class_.size() and the

final result.

The bottom of the right hand side shows the evaluation of the invariants over the entire

population. Evaluation can also be performed on subsets of the population, by selecting the

desired elements using the explorer window.

Chapter 3 Kent Modeling Framework 46

3.5. Creating populations

Populations of the model can be constructed directly through the generated GUI, which

provides access to the lifecycle-builder methods. This is illustrated by Figure 3.2, which

shows the available lifecycle-builders, with one of them highlighted, on the left hand side.

The right hand side shows the automatically created window that enables the highlighted

lifecycle-builder to be invoked with various arguments. The builder shown is actually a

bespoke one; it has been coded by hand. The construction of bespoke builders is discussed in

the next subsection. Generated lifecycle-builder methods in general don’t take any

arguments, though they are invoked in a similar way.

Another way of building populations is to write code that initializes the repository before the

GUI is launched. To aid the writing of such code, a default Startup class is generated. This

includes two methods, replaceDefaultLifecycles and initialisePopulation, which can be

overridden by subclasses. A sample initialisePopulation methods in a bespoke startup class

that extends the default one, is given below.

protected void initialisePopulation() {

 //get required Lifecycles from repository

 String path = "Vsml.AS.";

 ClassLifecycle class_b =

 (ClassLifecycle)(rep.getLifecycle(path+"Class_"));

 AssociationLifecycle assoc_b =

 (AssociationLifecycle)(rep.getLifecycle(path+"Association"));

 PackageLifecycle package_b =

 (PackageLifecycle)(rep.getLifecycle(path+"Package_"));

 //Build population

 Package_ pkg = (Package_)package_b.build("example");

 Class_ clsA = (Class_)class_b.build(pkg, "A");

 Class_ clsB = (Class_)class_b.build(pkg, "B");

 Class_ clsC = (Class_)class_b.build(pkg, "C");

 Class_ clsD = (Class_)class_b.build(pkg, "D"));

 Association ass1 = (Association)assoc_b.build(pkg, clsA, clsB,

"a", new Integer(1), new Integer(1),

 "b", new Integer(1), new Integer(1));

 Association ass2 = (Association)assoc_b.build(pkg, clsA, clsC,

 "a", new Integer(1), new Integer(1),

 "c", new Integer(1), new Integer(1));

}

Chapter 3 Kent Modeling Framework 47

This method begins by extracting the lifecycle objects for the classes that will populate the

repository. It then continues to use these to build a population, in this case one comprising a

package (example) that contains three classes (A, B, C, and D). The package also contains

two associations, with ends labeled (a, b) and (a, c,) respectively.

We have found writing initialisePopulation methods inside a startup class to be an extremely

efficient way of building test populations to check and validate a model through the

prototype, especially in combination with bespoke lifecycle-builder methods. It is very quick

to construct new tests or alter existing ones, simply by editing the code, or by more

sophisticated means (e.g. by having methods that set up fragments of population and calling

these from the main initialization method). It is also possible to evaluate constraints

programmatically and check whether or not they pass or fail.

3.6. Augmenting the generated code

As an alternative to using the generated code on its own, we can augment it with additional

bits of program. We could provide an alternative GUI and reuse the repository and OCL

evaluation parts, or write an initialization program that populates the model

programmatically rather than by invoking the generated lifecycle-builders from within the

generated GUI.

A particularly useful option is to write bespoke lifecycle-builders that can greatly simplify

the construction of a population. For example, when creating an Association it is necessary

to create the association’s ends, link and set the attributes and add the association to a

package. This requires a number of individual steps that have to be repeated each time an

association is constructed. If we perform these steps by writing initialization code to do

them, or working through the GUI, we discover that they are time consuming and error-

prone.

We can create a bespoke lifecycle-builder that does all of these things when called with the

appropriate argument. Additionally, we can register the lifecycle with the existing, generated,

repository and subsequently use it from within the generated GUI.

The following code is an example bespoke lifecycle build method for Associations:

Chapter 3 Kent Modeling Framework 48

//one end

public Association build(

 vsml.AS.Package_ p,

 vsml.AS.Class_ source,

vsml.AS.Class_ target,

 String name, Integer lowerBound, Integer upperBound){

 Association assoc = (Association)build();

 lifecycle.AssociationEndLifecycle end_b =

 (lifecycle.AssociationEndLifecycle)

 (repository.getLifecycle(“Vsml.AS.AssociationEnd”));

 AssociationEnd end =

 (AssociationEnd)

 end_b.build(source, target, name, lowerBound, upperBound);

 end.setOtherEnd(null);

 end.setOwner(assoc);

 assoc.getAssociationEnd().add(end);

 if (p!=null) p.getAssociation().add(assoc);

 assoc.setOwner(p);

 return assoc;

}

// two ends

public Association build(

 vsml.AS.Package_ p,

 vsml.AS.Class_ one_class,

vsml.AS.Class_ other_class,

 String one_name, Integer one_lowerBound,

Integer one_upperBound,

 String other_name, Integer other_lowerBound,

Integer other_upperBound){

 Association assoc = (Association)build();

 lifecycle.AssociationEndLifecycle end_b =

 (lifecycle.AssociationEndLifecycle)

 (repository.getLifecycle(“Vsml.AS.AssociationEnd”));

 AssociationEnd one_end =

 (AssociationEnd)

 end_b.build(one_class, other_class,

 one_name, one_lowerBound, one_upperBound);

 AssociationEnd other_end =

 (AssociationEnd)

 end_b.build(other_class, one_class,

 other_name, other_lowerBound, other_upperBound);

Chapter 3 Kent Modeling Framework 49

 other_end.setOtherEnd(one_end);

 one_end.setOtherEnd(other_end);

 other_end.setOwner(assoc);

 one_end.setOwner(assoc);

 assoc.getAssociationEnd().add(one_end);

 assoc.getAssociationEnd().add(other_end);

 if (p!=null) p.getAssociation().add(assoc);

 assoc.setOwner(p);

 assoc.setName("");

 return assoc;

}

The build method constructs the Association, gets the registered lifecycle for

AssociationEnd, uses this to build each end of the association, adds each of the ends to the

Association and finally adds the association to the passed in package.

To instruct the generated code to use this bespoke builder we must register it with the

repository, as shown below:

rep.addLifecycle("Vsml.AS.Association",

 new AssociationLifecycle(rep));

Subsequently, when the generated GUI is executed we are able to use the bespoke lifecycle-

builder, as illustrated in Figure 3.2.

Such code can be included in the body of the method replaceDefaultLifecycles in a bespoke

startup class, as discussed in the previous subsection. This also allows the bespoke lifecycle

methods to be accessed by any initialisePopulation code included in that startup class.

3.7. Code generation

Model driven software engineering requires powerful, efficient, and flexible code generation

mechanisms. OO methods help the developer to analyze and understand a system without

code generation; however the benefits of object modeling seldom extend throughout a

software product’s lifecycle, because developers of a pressing upgrade typically bypass the

model and just modify the code. Models fall out-of-date and become less relevant. An

efficient, flexible, and maintainable code generation for object models means that they retain

their usefulness. This section begins with a discussion regarding the requirements of a code

Chapter 3 Kent Modeling Framework 50

generation framework and a presentation of different mechanisms that can be used to

generate code from UML models along with a discussion about the differences between

these mechanisms. This subsection also provides a description of the code generation

framework used by KMF-Studio to generate code.

3.7.1. Code generation framework requirements

Currently UML is used mainly for the modeling of software systems. It also has potential to

be applied in the implementation and testing phases. Generating code from UML models or

other platform-independent models reduces coding errors, enforces compliance with coding

standards and rules, reduces the time spent to develop software products, increases the

quality of both software products and software development processes, and raises the

abstraction levels for software architects.

A code generation framework has to meet the following requirements [Bel98][SVB02]:

Efficiency. Code generation should be performed rapidly and without
consuming too many resources of the underlying physical machine. Code
generation should be performed using a fine tuning mechanism able to detect
and regenerate only those parts of the model that have been changed and need to
be regenerated in order to keep the system consistent.

Customization. The code generation process needs to provide a mechanism to
customize the generated code according to programming rules and user’s taste.
Customization ranges from low-level features, like changing the indentation and
choosing prefixes or suffixes for names, to high-level features like creating
targets that do not exist at the abstract level.

Extensibility. Code generation systems should allow the user to rapidly and
simply add new features to the generated code. The addition of generation
targets should be performed without affecting the existing code generation
framework. The user should be able to add new code generation rules without
having to recompile the code generation framework.

Flexibility. The code generation system should allow the user to rapidly change
the features of the generated code. Adding and removing generated targets, and
changing the attributes of the generation targets should be done in a rapid and
simple manner.

Maintainability. The code generation process should have a high level of
maintainability. This reduces not only the costs for updating the code generation
framework but also the costs of the evolution of the resulting software products.

Chapter 3 Kent Modeling Framework 51

3.7.2. Code generation mechanisms

According to [Bel98] three ways of bridging the gap between a model and the running code

can be distinguished. Each subsequent mechanism is more complex and more powerful than

its precedent.

1) Structural approach. This approach is based on code generation from the static
structure of the model. In practice this approach generates code from class
diagrams. Because class diagrams do not describe the behavior of the system,
automated synchronization mechanisms between model and generated code are
required, as model and code can easily become inconsistent.

2) Behavioral approach. The approach is based on models that contain state
machines augmented with action specifications (e.g. SDL and UML state
machines). The code generation produces a prototype of the system that can be
tested and debugged by changing the model and not the generated code. This
approach does not need a synchronization mechanism as both the static structure
and the behavior is generated from a model.

3) Translative approach. This approach requires a complete application model
that describes the object structure, the behavior and communication. The
architecture of the target platform is also modeled. A translation engine then
generates code for the application according to the mapping rules from the
application model to the architecture model. This approach potentially allows
one to generate code as well as documentation and test units.

In the next subsections, we will examine four ways of generating code using the translative

approach.

3.7.3. Programmatic translation

Code generation can be performed in any programming language that can describe a model,

gain access to the model description and manipulate basic data objects like integer, strings,

and files. If the model is described in UML or other object-oriented modeling language, then

object-oriented programming languages like C# or Java are ideal candidates because they

can easily represent the model. The code generation module reads in the model and generates

the equivalent code in text files.

This approach has following characteristics:

Chapter 3 Kent Modeling Framework 52

The code generation rules are described using low-level concepts from the
underlying programming languages. Hence, they are hard to read and
understand.

Coding the generation rules into low-level concepts decreases their
maintainability.

Customization is limited to the options provided by a code generation tool. To
add to the options the entire tool needs to be analyzed, changed, and recompiled.

Flexibility is poor because adding, removing or changing some features of the
generated code implies analyzing, updating, and compiling the entire module
responsible for the code generation.

3.7.4. Translation by XSLT

Along with the XML language, the W3C organization provides the Extensible Stylesheet

Language (XSL). In essence, XSL is two languages, not one. The first language, called

XSLT, is a transformation language, the second a formatting language. XSLT is useful

independent of the formatting language. Its ability to move data from one XML

representation to another makes it an important component of XML-based electronic

commerce, electronic data interchange, metadata exchange, and any application that needs to

convert between different XML representations of the same data. These uses are also united

by their lack of concern with rendering data on a display for humans to read. They are purely

about moving data from one computer system or program to another.

Although the primary goal of XSLT is to translate from one XML dialect into another, its is

not limited to that. Stylesheets that translate from a UML model described using XMI, a

dialect of XML, to code decouples the translation process from the modeling tool.

Although, this approach represents a step ahead from the programmatic approach, there are

still several adverse characteristics:

The stylesheets are very hard to read and maintain as the translation with XSLT
is based on navigation through a tree.

The code generation rules are still expressed in low-level concepts and hard to
read, understand, and maintain.

As XSLT maps one XML file to another XML file, an input file needs to be
generated when generated code contains more than one file. Partitioning the
model into small pieces does not solve the efficiency, as the partitioning
algorithm is time consuming, especially for large- scale models.

Chapter 3 Kent Modeling Framework 53

3.7.5. Translation by templates

Most of the web pages on the Internet are static pages. They are just HTML or text files that

are downloaded to your browser and displayed immediately. However, many web pages are

dynamic pages. They are actually programs which produce HTML as their output, and then

send that HTML to your browser. These pages are created using a template-based approach.

The creation process uses the generation code to retrieve the required information in the

model and fills in templates of HTML code with it.

This approach is not limited to dynamic web pages and it can be used to generate code from

models. In the context of code generation the model is the source of the information that is

used to fill in the empty slots from templates. The templates are used to describe the skeleton

of the generated code. Applying the model to the templates returns a number of files

containing the generated code associated with the UML model.

This approach has the following features:

This approach is flexible as templates can be changed easily without affecting
the model and the modeling tool.

Most of the template engines are interpreted, and hence the code generation
process can be slow. However, writing a compiler can solve this issue.

Directly accessing model information from template languages is possible but
complicated. The resulting template is hard to read and understand.

Adding, removing, and updating templates can be done easily, if the template
engine is implemented correctly.

This approach is used to generate code in environments/tools like Eclipse and Poseidon

[SVB02].

3.7.6. Translation using transformation languages and templates

The above code generation approaches do not fully satisfy all characteristics of a model-

driven engineering framework. The template-based approach seems to be the best approach

for code generation from models due to its characteristics. The main problem that still needs

to be solved is the fact that the code generation rules are still described using low-level

concepts, and hence are hard to read and understand.

Chapter 3 Kent Modeling Framework 54

Hence, the best approach is the following:

A transformation language like YATL (see Chapter 5) is used to perform a
transformation from the model to a model of a target language/platform.

A set of templates is used to generate the set of files that form the generated
code.

 This approach has the following features:

The code generation rules are described using high-level concepts from the
model. Hence, they are easy to read and understand. The templates that are used
to map from model elements to code are also easy to read and understand
because they are very simple.

Coding the generation rules in high-level concepts increases their
maintainability.

Customization is not limited to the options provided by code generation tool.
The transformation rules can be easily changed, and so can the templates. The
code generation engine does not need to analyzed, changed, or recompiled if
new options are to be added.

Flexibility is increased because adding, removing or changing some features of
the generated code implies analyzing, updating, and compiling the entire module
responsible for the code generation.

3.8. KMF-Studio’s code generation framework

Generating source code can save time in software development and reduce the amount of

tedious redundant programming. Generating source code can be powerful, but the program

that writes the code can quickly become very complex and hard to understand. One way to

reduce complexity and increase readability is to use templates.

The Kent Modeling Framework (KMF) project contains a very powerful tool for generating

source code: TLP (Template Language Processor). With TLP one can use a JSP-like syntax

that makes it easy to write templates that express the code that one wants to generate.

In this subsection we present the XTL (XTemplate Language) language and the TLP tool that

implements the processors for the XTL template language. An overview of XTL is presented

in Appendix 2.

Chapter 3 Kent Modeling Framework 55

3.8.1. XTL an introduction

XTL is meant to provide the easiest, simplest, and cleanest way to generate code from UML

models. A XTL program consists of one or more source files, known formally as translation

units. A source file is an ordered sequence of Unicode standard characters. Conforming

implementations must accept Unicode source files encoded with the UTF-8 encoding form

[UNI], and transform them into a sequence of Unicode characters. Implementations may

choose to accept and transform additional character encoding schemes, such as UTF-16,

UTF-32, or non-Unicode character mappings.

Conceptually speaking, a XTL program is analysed in five steps:

1) Character conversion, which converts a file from a particular character repertoire
and encoding scheme into a sequence of Unicode characters.

2) Lexical analysis, which translates a stream of Unicode input characters into a
sequence of tokens.

3) Syntactic analysis, which translates the sequence of tokens into an abstract
representation of the input structure.

4) Semantic analysis, which checks if the input follows the semantic rules, and
produces an internal representation of both syntax and semantics.

5) Code generation or interpretation where the semantic representation is either
used to generate code for the underlying machine or directly evaluated on the
same machine.

3.8.2. Grammars

This section presents the syntax of XTL language using two grammars, structured on two

levels. On the first level, the lexical grammar defines how Unicode characters are combined

to form line terminators, white space, comments, and XTL tokens. At the second level, the

syntactic grammar defines how the tokens resulting from the lexical grammar are combined

to form XTL programs. Both grammars are described in Appendix 3, using the notation

given in Appendix 1. Every source file in a XTL program must conform both to the input

production of the lexical grammar and the translation-unit production of the syntactic

grammar.

Chapter 3 Kent Modeling Framework 56

3.8.3. Comments

Comments allow descriptive text to be included that is not placed into the output of the

template engine. Comments are a useful way of reminding and explaining what XTL actions

are doing, or any purpose one finds useful. Below is an example of a comment in XTL.

This is a single line comment

A single line comment begins with ## and finishes at the end of the line. Multi-line

comments, which begin with #* and end with *#, are available to handle the scenario when

one wants to write a few lines of commentary:

#*

 First line of comment

 Second line of comment

 ...

*#

There is a third type of comment, the XTL comment block, which can be used to store such

information as the document author and versioning information:

#**

 This is XTL comment and may be used to store such information as

 the document author and versioning information

 @author Octavian Patrascoiu

 @version 5

**#

3.8.4. Expression action

XTL provides expression actions that one can use to communicate to the surrounding

context. The expression with the action is evaluated and the result of the evaluation is

inserted into the generated source code at the location where the expression action is defined.

public class <% exp context.className %> {

. . .

}

An XTL expression uses boolean, integer, real, and string literals, variable and properties as

operands and a wide range of operators to communicate with the surrounding environment.

The XTL operators are presented in Table 3.2.

Chapter 3 Kent Modeling Framework 57

3.8.5. Compound action

A compound action is used to group for syntactical purposes several actions:

<% foreach Classifier c in context.classes %> <% begin %>

public class <% exp context.className %> {

<%include template::java::generateExtension(context.class,“\t”)%>

<%include template::java::generateInterfaces(context.class,“\t”)%>

{

<%include template::java::generateMembers(context.class, “\t”)%>

}

<% end %>

Operators Example

Unary operators:

+ - !
+3 -4 !true

Selection operator class.name

Call operator f(x, y)

Arithmetic operators

+ - * / %
a + b

Relational operators:

== != < <= > >=
3 <= 4

Logical operators:

&& ||
true && false

Table 3.2 XTL operators

3.8.6. include action

The include action allows the template designer to invoke a template that was previously

written. The text resulted after the invocation of the template is then inserted into the location

where the include action is defined.

public class <% exp context.className %>

<%include template::java::generateExtension(context.class,“\t”)%>

Chapter 3 Kent Modeling Framework 58

<%include template::java::generateInterfaces(context.class,“\t”)%>

{

<%include template::java::generateMembers(context.class, “\t”)%>

}

generates Java code corresponding to a UML class, by filling in the inherited class,

implemented interfaces, and contained members.

3.8.7. if-elif-else action

The if-elif-else action in XTL allows for text to be included when the source code is

generated, if a certain condition is true. For example,

<% if (x == 1) %>

 int option = 1;

<% elif (x == 2) %>

 int option = 2;

<% else %>

 int option = 0;

<% end %>

generates code that declares and initializes an integer variable with a given value.

3.8.8. foreach action

The foreach action allows looping over the elements of a collection. For example,

<% foreach Classifier x in context.self.ownedElements %> <%begin%>

 class <% exp x.name.body %> {

 }

<% end %>

generates code for every classifier from collection context.self.ownedElements.

3.8.9. Namespaces

A XTL program consists of one or more translation units, each contained in a separate source

file. When a XTL program is processed, all of the translation units are processed together.

Chapter 3 Kent Modeling Framework 59

Thus, translation units can depend on each other, possibly in a circular fashion. A translation

unit consists of zero or more import directives followed by zero or more declarations of

templates.

<% import java::util %>

<% import lib %>

<% namespace templates::java %>

<% template generateClass () %> <% begin %>

class <% exp context.name %> {

 . . .

}

<% end %>

The concept of namespace was introduced to allow XTL programs to solve the problem of

names collision that is a vital issue for large-scale transformation systems. Namespaces are

used both as an “internal” organization system for a program, and as an “external”

organization system - a way of presenting program elements that are exposed to other

programs.

3.9. Analysis of KMF: does it meet the requirements?

This section considers how well the current version of KMF, as described in Section 3.2 and

illustrated in Section 3.4, meets the requirements set out in Section 3.1. We’ll deal with each

in turn.

1) Evaluating the quality of the model. The features that allow KMF to support
this characteristics are presented in Chapter 4.

2) Rapid and repeatable input and editing of populations. A KMF generated
prototype allows populations to be input through the GUI, which can then be
saved as XMI and reloaded. The API of the generated code is readily accessible,
and it is possible to customise the default Startup class to initialise populations
from code. It is also possible to customise the generated code with bespoke
lifecycle classes that include bespoke builder methods. These methods can be
accessed through the GUI or, of course, in code. The use of customised startup
classes, in combination with bespoke lifecycle-builders, is a particularly efficient
and repeatable way of setting up many sophisticated populations. As constraint
checking can be invoked through the API, this also provides a scaleable
approach to automated testing of the metamodel through the generated
prototype. By way of contrast, the USE tool [RG00], which also supports OCL
checking over UML models, only supports instantiation of a model (which could
be a metamodel) by drawing object diagrams through the GUI or by feeding in a

Chapter 3 Kent Modeling Framework 60

text representation of an object diagram read from a file. Not only is this
inefficient it is also error-prone and does not lend itself to automated testing.

3) Viewing and exploring populations. A KMF generated prototype allows
populations to be explored, viewed, and edited through the GUI. We have also
found that the dynamic evaluation of OCL expressions provides a convenient
way of navigating the population.

4) Evaluation of well-formedness constraints over populations. A KMF
generated prototype allows all the constraints over the metamodel to be
evaluated, either using the API or through the GUI. Selective evaluation is
supported through the GUI and, of course, through the API. Selective evaluation
could be improved by, for example, allowing constraints to be evaluated on all
objects obtained by walking the containment tree from a particular starting
object.

5) Model transformation. KMF supports the transformation language called
YATL (Yet Another Transformation Language), presented in Chapter 5.

6) Smooth process. The process of using KMF requires one to have a Java
development environment (such as Eclipse), for compiling and executing the
generated code, and a UML modelling tool, such as Poseidon, for editing the
metamodel. We have found that, with all three tools open at the same time, the
process is fairly quick and smooth. The inclusion of projects in KMF studio, has
meant that regeneration of code is usually no more than a couple of mouse-clicks
away. KMF can also be launched from the command line or within Eclipse to
generate code, given a particular project file as argument.

7) On-the-fly evaluation of constraint expressions. The KMF generated
prototype supports on-the-fly evaluation of OCL expressions, through the GUI
or the API.

8) Round-trip engineering. We have organised the generated code so that it is
possible to customise the code in ways that ensures hand written code is not
overwritten on regeneration. We are aware that other frameworks, such as EMF
[EMF], do a better job of this, largely because of the substantial support for Java
(parsers and the like) provided by Eclipse.

9) Model versioning. It is possible to change the name of the model before code
generation takes place, which means that if the model name provided contains
version information, it can be overridden. Another issue here is how to port
populations of a previous version of a metamodel to a new version, where the
new version refactors the metamodel in significant ways. If the test populations
are set up using code, then it can require the code to be updated to take account
of refactoring. We are have also found that, if the refactoring is not too major,
the generated XMI readers are robust enough to load populations of previous
versions, even if there is some information that cannot be understood.

Chapter 3 Kent Modeling Framework 61

3.10. Conclusions

There is a need for tools to support the activity of modeling and metamodeling, per se,

especially since metamodeling is being used to define major industry standards such as

UML. This chapter has identified a set of requirements for such tools, based in the idea of

generating a prototype modeling tool from a metamodel. It has described the Kent Modeling

Framework, which can be used to generate prototypes, in a way that meets most of these

requirements.

The prototyping tool generation facility offered by KMF is actively being used in the

construction and development of a number of meta-models. In particular, KMF is being used

in two research projects at the University of Kent to prototype modeling tools. The first is a

project entitled “Reasoning with Diagrams” RWD, which is tasked with developing tools to

support reasoning with mixed visual/textual constraint languages, employing fragments of

UML, OCL and constraint diagrams. The second is a project entitled “Design Support for

Distributed Systems (DSE4DS)” [DSE4DS], which is building tools to support the model

driven development of distributed systems. Potentially, the tool could be used to test and

validate the new UML 2 and MOF 2 standards.

The grand vision for KMF is to move beyond the generation of prototypes to the generation

of industrial strength modelling tools. We are beginning to investigate the generation of

graphical and textual editors from appropriately extended metamodel definitions, and even

the generation of semantic analysis tools. See [ASP03], for early ideas in this direction.

[ASP03], [Pat04a], [Pat04b], and [Pat04c] also discuss issues with the definition and

(automated) implementation of mappings between modelling languages, a keystone of the

MDA edifice.

Chapter 4. Model Quality Measuring 62

Chapter 4. MODEL QUALITY

MEASURING

Software metrics are a useful means for evaluating the quality of both software development

processes and software products. With the growing popularity and adaptation of object-

oriented programming languages and object-oriented methodologies in software

development, the existence of specific and effective software metrics for object-oriented

characteristics is essential to the improvement of software development. To obtain the design

metrics of the software product most of the existing approaches measure the metrics by

parsing the source code of the software product. Such approaches can be performed only in

the late phases of the software development and hence cannot directly affect the design

process.

In this chapter, we present the framework provided by KMF-Studio to support the

computation of software metrics at the early stages of software development from UML

specifications. This is important especially in OMG’s Model Driven Architecture framework

for software development. As models are used to drive the entire software development

process it is unlikely that high quality software will be obtained using low quality models.

The current version of KMF-Studio uses UML diagrams exported in XMI files and computes

OO metrics that have been shown to be good indicators for evaluating the quality of object-

oriented systems (e.g. [CK91][CK94]). It also provides a set of forty-four original metrics

that can be computed to measure a given UML model. This set of metrics measure both the

internal attributes of UML models (e.g. inheritance depth tree and inherited complexity of a

class) and the external attributes of UML models (e.g. maintainability and changeability).

The user can select a set of predefined metrics to evaluate, but he cannot change the way the

values of the metrics are computed. The tool also allows the modeller to extend the set of

existing metrics by defining new metrics using OCL and choose only a subset of the

predefined metrics. The result of evaluating the metrics over a model can be used to identify

Chapter 4. Model Quality Measuring 63

the weak points of UML models and give on the fly diagnostics about the design quality of

the model.

This chapter is organized as follows. The first section gives a brief description of the

background and existing object-oriented metrics. The second describes how UML models

are measured in KMF, describing the problems of UML model measuring, the proposed set

of metrics, and the measuring methodology used in KMF-Studio. The third section gives an

example. The last section contain the conclusions and future work.

4.1. Background

Measuring has a long tradition in the area of natural sciences. At the end of the 19th century,

the great physicist Lord Kelvin said the following about measuring:

“When you can measure what you are speaking about, and express it in numbers, you

know something about it; but when you cannot measure it, you cannot express it in

numbers, your knowledge is of a meager and unsatisfactory kind”.

Measuring has been studied in the area of software engineering for about thirty years. The

size of the costs for the development and maintenance of software products amplifies the

need for a theoretical foundation for software developing standards and management

decisions, using measurements. In 1980 Curtis [Cur80] stated that in order to transform

programming into an engineering discipline, software products must be developed using

sound scientific methods. The foundation of these methods requires the development of

measuring techniques and establishing the cause-effect relations.

The need for software measurements is presented very clearly in [GC87][Gra90]. Software

metrics can be used to measure attributes not only of software products, but also software

development processes.

The true value of a software metrics suite comes from their capability to measure important

external attributes [ISO96]. An external attribute is measured according to the way the

software product interacts with its environment [Fen91]. Testability, reliability, portability,

and maintainability are examples of external attributes. However, these attributes can be

measured directly only quite late in the software development process. Therefore, software

Chapter 4. Model Quality Measuring 64

metrics can be used to offer good indicators regarding important external attributes. For

example, if we know that keeping the depth of the inheritance tree within some limits

ensures good maintenance, we can optimize inheritance during design because we know that

in doing so we are reducing the costs of maintenance as far as it is linked to the depth of

inheritance tree.

In the last years much effort has been spent in the software engineering research community

in developing software metrics both for procedural and object-oriented system. Usually,

these software metrics compute the value of internal attributes of the software systems (e.g.

number of lines of code, number of variables used and number of parameters). After a

metrics suite has been designed, the relationship between the metric values and the external

attributes needs to be studied. This process, called the validation of the metric, is usually

performed using empirical studies [ET02]. For example [WH98] provides an interpretation

and critique of [CK94] metrics, including the use of two traditional metrics ([McC76] and

[Hal77]) by observing the evolution, over a two and a half year period, of one commercial

grade C++ application comprising 114 classes with 25,000 lines of code. Once a set of

metrics has been validated, software companies and programmers can use it as a guideline

for the software development process.

4.1.1. An overview of object-oriented metrics

A considerable number of object-oriented metrics have been developed to measure the

quality of software; for example see [FBC94], [BM99], [BDM97], [CS00], [CK91], [CK94],

[HS96], [LI93], [LK94], and [TKC99]. By far, the most popular of these is the metric suite

developed by Chidamber and Kemerer [CK94], known as the CK metrics. For historical

reasons the CK metrics are the most referenced ones, being easy to compute and useful, and

many commercial tools compute these metrics. Another comprehensive set of metrics that

capture important structural characteristics has been defined by [BDM97]. The CK metrics

have also received a considerable amount of empirical study. A summary of the CK metrics

can be found in Table 4.1.

Chapter 4. Model Quality Measuring 65

Table 4.1. Summary of CK metrics

Metric Acronym Description

DIT [CK94] defines this metric as follows: “the depth of inheritance of the

class is the DIT metric for the class. In cases involving multiple

inheritance, the DIT will be the maximum length from the node to the

root of the tree”.

NOC The number of children metric is defined as the “number of immediate

subclasses subordinated to a class in the class hierarchy” [CK94]

WMC The weighted method per class metric is defined as the sum of the

complexity of methods in a class.

RFC The response for a class metric measures the cardinality of “a set of

methods that can potentially be executed in response to a message

received by an object of that class” [CK94]. A variant of RFC excludes

methods indirectly invoked by a method of a class [CK91].

CBO The coupling between objects metric is defined as “a count of the

number of other classes to which it is coupled”. A class is coupled to

another if it uses the member functions and/or instance variables of the

other class. [CK94].

LCOM The different definitions of the lack of cohesion in methods metrics

were given by [CK91] and [CK94]. The original definition of LCOM

metric measures the number of disjoint sets of a class’ local methods as

indicated by their access to class variables [CK91]. The LCOM metric

was later revised and a new definition was given [CK94]. The revised

LCOM metric measures the number of pairs of methods in the class that

have no attributes in common, minus the number of pairs of methods

that do. If the difference is negative, the metric is set to zero.

The higher the DIT values are, the harder it is to predict the behaviour of a class due to

interaction between inherited and local features. High NOC values may indicate an

appropriate abstraction in the design while moderate NOC values indicate the scope for reuse

of behaviour and features. The DIT and NOC metrics measure the shape and size of the class

Chapter 4. Model Quality Measuring 66

structure. Well-designed object-oriented systems tend to be built as forests of classes, rather

than one very large inheritance tree. [CK94] states that such forests of classes should not be

deeper than seven classes and not wider than seven classes.

The WMC metric can be measured using different weighting functions and traditional

complexity metrics (e.g. number of lines of code, McCabe’s cyclomatic complexity

[McC76], number of decision points, and number of paths from the entry points to exit

points) to measure the complexity of methods. If all the methods are considered to have the

same complexity, equal to one, the metric is called WMC1 and represents the number of

methods. The WMC1 metric can be used to evaluate the effort that a user has to make in

order to use the class properly, while WMC can be used to evaluate the effort to understand

and maintain the class.

High CBO values may indicate a poor encapsulation and a low reusability. The idea behind

CBO is that a software system with higher CBO values is error-prone as the behaviour of a

class is affected by the activities performed by other coupled classes. High values for RFC

indicate that the number of classes that could potentially respond to a message is high, hence

it measures the complexity of the class. High LCOM values may indicate high complexity of

classes, inappropriate abstraction, and poor encapsulation.

As these metrics measure the software at the source level and not at the model level, they

cannot be used in the early stages of the software development processes. [TC02] presents a

methodology that can be applied to UML specifications to obtain design information and to

compute the design metrics at an early stage of software development. It proposes, in

addition to the CK metrics, a set of four classes of metrics that can be used to further

evaluate the complexity of OO designs.

In order to adapt OO metrics to models, we propose another metric suite, which is

particularly suitable for OMG’s MDA framework. The new metric suite is defined in the next

section.

Chapter 4. Model Quality Measuring 67

4.2. Measuring UML models in KMF-Studio

This section contains a description of particularities of software measurement on UML

models, proposes a set of metrics to measure UML models, and presents the methodology

and the framework provided by KMF-Studio to measure UML models.

4.2.1. Measuring UML models

Evaluating the quality of UML models is very important in the framework of MDA, as UML

models are the key concepts in the software development process using MDA techniques. A

system derived from a poorly designed model, although it can be built quickly to process the

inputs correctly, may cost more in the long run because of the additional costs of the

maintenance. Thus, improving the quality of models is a major research goal in software

development using MDA. This goal will be difficult to achieve unless we can define and

measure the components of model quality. In a restricted sense, the quality of a software

product is often considered synonymous with the presence or absence of errors. However,

most users disregard or do not consider that other software attributes, such as the effort to

understand, use and modify software, should have high quality. The same also goes for

models: the quality of a model is evaluated using external attributes such as complexity,

maintainability and reliability.

UML has gained great popularity both in the software design process and the whole software

development lifecycle. In order to apply software metrics early in the software lifecycle,

object-oriented metrics should be incorporated into UML modeling tools. This ensures that

object-oriented metrics can be applied both in high-level design and more detailed design

phases. Most commercial software development tools only apply object-oriented metrics at

the source code level, although some tools, such as TogetherSoft [TOG], provide support for

the evaluation of object-oriented metrics for a given UML diagram.

UML uses specific diagrams such as class diagrams, collaboration diagrams, and activity

diagrams to describe specific views of a system. A static diagram describes the internal

structure of a class and relationships among classes (e.g. attributes, operations, associations

and generalizations). A collaboration diagram describes the dynamic structure of the system,

Chapter 4. Model Quality Measuring 68

the objects that interact and the messages that are exchanged between the objects, the

sequence of messages in time and the roles of objects contained within the system. The

transitions within a model element, which are triggered by events, are described using

activity diagrams.

Computing metrics for only one type of UML diagram is imprecise. Computing object-

oriented metrics for class diagrams can be useful to measure the static structure of software

systems, but will not capture the dynamic structure of the system. Developing metrics to

measure all the UML specific diagrams is required. On the other hand, every UML model

potentially contains OCL constraints that are attached to model elements. Hence software

metrics to evaluate attributes of the OCL expressions are required (e.g. number of variables

used in an OCL expression and the complexity of an OCL expression). In conclusion, in

order to measure effectively a UML model one needs to consider software metrics for all the

elements that are present inside the model.

To see how object-oriented metrics need to be changed in order to measure various attributes

of models each metric needs to be analyzed separately. [TC02] gives a study of the CK suite.

The results of this study are presented below:

The DIT and NOC metrics from the CK suite, which measure the static structure
of the software systems, can be computed easily from class diagrams. Due to
lack of information describing the body of methods in UML models measuring
WMC using for example the McCabe cyclomatic complexity is not possible, as
the body of the methods is not always specified. Instead we can compute WMC1
or we can consider the complexity of a method to be proportional to the number
of parameters including the returned type, as UML models contain a description
of each method’s signature.

To evaluate the CBO metric on UML models, two issues need to be resolved:
the unit used for the measurement and the definition of the coupling concept.
Although there is no difficulty in proposing the “class” as the unit for the metric,
because the metric measures how many classes are coupled with a given class,
there is no standard definition of the coupling concept for object-oriented
systems. There are, however, different forms of coupling such as inheritance,
coupling by association, by attributes, or by message passing.

The RFC metric measures the response of a UML class. Hence, to compute the
metric for a given class one needs access to the methods that are defined inside a
class and to methods that are invoked by these methods. Methods can be
accessed easily from the UML class diagram, but counting the number of
methods from other classes invoked in a given method, requires a precise
description of the interaction among classes, which is not described in class
diagrams.

Chapter 4. Model Quality Measuring 69

The revised LCOM metric measures the number of pairs of methods in the class
that have no attributes in common, minus the number of pairs of methods that
have attributes in common. As the information on the use of instance variables
inside the body of an operation is not available at the early stages of the
development, only parameters can be used as input data to evaluate the metric.
However, when the model contains more details about the dynamic behavior of
the system, such as activity diagrams, reasonable values for LCOM metrics can
be computed.

4.2.2. The KMF metrics suite

This section contains a description of the metrics that we have designed to measure the

quality of UML models in KMF-Studio.

The set of metrics was designed to achieve the following objectives:

Measure both internal attributes (e.g. number of methods declared in a class) and
external attributes (e.g. maintainability).

Measure all the types of elements present in a UML model: model, namespaces,
classes, and OCL expressions.

Measure all the relations that are present in UML models: inheritance and
associations.

Measure the nesting of containment elements: model, namespaces, and classes.

Measure the complexity of classes and methods.

Measure the complexity of OCL expressions by adapting well-know metrics
used for procedural languages.

Measure the average of relevant metrics (e.g. complexity of class).

The metrics are organized on two levels. The first level contains metrics to measure the

internal attributes of the model (e.g. number of local methods and the height of the

inheritance graph). The second level contains metrics to measure external attributes of the

model such as testability and maintainability. They are also structured on several levels,

according to the type of OO element that is measured: model, namespace, class, and OCL

level. The metrics are summarized briefly in. Table 4.2 and Table 4.3.

Chapter 4. Model Quality Measuring 70

Table 4.2. KMF metrics suite- first level

Metric Acronym Metric Name Description

MODEL-HNT Height of Nesting Tree Measures the vertical nesting of namespaces

in the model.

MODEL-HIG Height of Inheritance

Graph

Measures the maximum height of the

inheritance graph, considering all the

connected components.

MODEL-NCN Number of Contained

Namespaces

Measures the size of namespace nesting in

the model.

MODEL-

ANCPN

Average Number of

Classes Per Namespace

Measures the horizontal nesting of

namespaces in the model.

MODEL-ADIG Average Depth of

Inheritance Graph

Measures the average height of connected

parts of the model’s inheritance graph.

MODEL-ACC Average Class

Complexity

Measures the average complexity of classes

in the model.

MODEL-AMC Average Method

Complexity

Measures the average complexity of the

methods within the model.

MODEL-AOCC Average OCL Constraint

Complexity

Measures the average complexity of OCL

constraints in the model.

NS-NDCN Number of Directly

Contained Namespaces

Measures the horizontal nesting of the

namespace.

NS-NCN Number of Contained

Namespaces

Measures the size of the nesting of the

namespace.

NS-NDCC Number of Directly

Contained Classes

Measures the local dimension of the

namespace. A dimension means a

measurement of the model in a particular

direction (e.g. the number of included

namespaces).

NS-NCC Number of Contained

Classes.

Measures the global dimension of the

namespace.

NS-DNT Depth of Nesting Tree Measures the nesting level of the namespace.

Chapter 4. Model Quality Measuring 71

CLS-NLP Number of Local

Properties

Measures the local dimension of local

properties.

CLS-NP Number of Properties Measures the dimension of all the properties.

CLS-NLO Number of Local

Operations

Measures the dimension of local operations.

CLS-NO Number of Operations Measures the dimension of all the operations.

CLS-ACLO Average Complexity of

Local Operations

Measures the average complexity of local

operations.

CLS-ACO Average Complexity of

Operations

Measures the average complexity of all the

operations.

CLS-DIG Depth of Inheritance

Graph

Measures the inheritance level of the class.

CLS-NDA Number of Direct

Ancestors

Measures the dimension of local ancestors.

CLS-NA Number of Ancestors Measures the dimension of all ancestors. If a

class is inherited more than once, it counts

all its appearances.

CLS-NDD Number of Direct

Descendants

Measures the dimension of local

specialization.

CLS-ND Number of Descendants Measures the dimension of all

specializations.

CLS-NMI Number of Multiple

Inheritances

Measures the dimension of repeated

inheritances.

CLS-NRDC Number of Referred

Classes.

Measures the dimension of references to

other classes.

CLS-NRE Number of Referees Measures the dimension of references from

other classes.

CLS-LC Local Complexity Measure the local complexity of the class.

CLS-C Complexity Measures the global complexity of the class.

OPER-MCC McCabe Complexity Measures the McCabe complexity.

OPER-NP Number of parameters Measures the dimension of the prototype

Chapter 4. Model Quality Measuring 72

associated to a method.

OCL-NDP Number of Decision

Points

Measures the complexity of the methods

using decision points.

OCL-HNT Height of Nesting Tree Measures the nesting of the OCL constraints.

OCL-MCC McCabe complexity Measures the McCabe complexity of the

OCL constraint.

OCL-HALC Halstead Complexity Measures the Halstead complexity of the

OCL constraint by computing the total

number of operator occurrences and total

number of operand occurrences.

OCL-NV Number of Variables Measures the complexity of the OCL

constraint.

Table 4.3. KMF metrics suite-second level

Metric Acronym Metric Name Description

MODEL-MAIN Model Maintainability Measures the effort required to maintain the

model.

MODEL-CHAN Model Changeability Measures the effort required to change a

model.

MODEL-TEST Model Testability Measures the effort required to test the

system described by a model.

CLS-MAIN Class Maintainability Measures the effort required to maintain the

class.

CLS-ANAL Class Analyzability Measures the effort required to analyze the

class

CLS-CHAN Class Changeability Measures the effort required to change the

class

CLS-STAB Class Stability Measures the stability of the class after

changing partially some of the inner

components

Chapter 4. Model Quality Measuring 73

CLS-TEST Class Testability Measures the effort required to test the class.

CLS-USAB Class Usability Measures the effort required to use the class.

CLS-SPEC Class Specialization Measure the effort required to specialize the

class.

The metrics suite and the way the metrics are used to measure the quality of model elements

is described in more details in Appendix 4. New metrics can be added in an XML style using

OCL. For example,

. . .
<metric namespace='OCL' key='OCL-NDD'
 name='Number of Direct Descendants'
 type='ocl' min='0' max='POSITIVE_INFINITY'>
 <body>
 context uml::Foundation::Core::Class inv ndd:
 self.specialization->size()
 </body>
 <diagnostic>
 Reduce the number of direct children
 </diagnostic>
</metric>
. . .

computes the number of direct ancestors of a class.

More details about these metrics, including a brief description of the algorithms and

proposed boundaries are presented in Appendix 4.

4.2.3. Methodology

In the KMF software suite metrics are collected on individual components of a single model.

Predictions given by elementary KMF metrics on individual model elements are then

composed in global KMF metrics to give predictions for the entire system. The same

approach was taken by [EBGR01] to predict the proportion of faulty classes in a whole

system. [BDW99] used object-oriented metrics to predict the effort to develop each class,

and these were then composed to produce an estimate of the overall system. Both [EBGR01]

and [BDW99] consider the implementation level and the modeling level.

Chapter 4. Model Quality Measuring 74

The metrics are collected and composed in KMF into quality models. The results of

measurement are also used to classify components according to their quality category into

excellent, good, acceptable, and poor using the proposed boundaries and accepted deviations.

Once instantiated a quality model takes as input the values of a set of metrics (M1, M2, …,

Mn) for a particular model element, and computes its quality category. An overview of the

quality model behavior is given in Figure 4.1. The quality model is described in more detail

in Appendix 4.

Quality
Model

M1

Mn

.

.

.
Quality
Category

Figure 4.1. Quality model

4.3. An example

This section contains the description of an experiment that was performed in order to

illustrate our methodology. The validation of the proposed metrics is outside the scope of this

experiment.

The methodology presented above was applied on the OCL model that is fully described in

[ALP03]. Figure 4.2, Figure 4.3, and Figure 4.4 show two of the class diagrams used to

describe the OCL expression. With these diagrams, KMF-Studio computes the selected

metrics for each class and displays it using Kiviat diagrams, pie charts and HTML, as shown

in Figure 4.5. We decided to use this mechanism to visualize the result of the measurement

as it provides excellent visual feedback regarding the critical points of the design. Using the

values computed for the metrics that measure the internal attributes, KMF-Studio generates

an HTML quality report that evaluates the maintainability of the system, as shown in Figure

4.6. The report displays, for each model element, the value of the metrics and groups the

elements into several categories: Excellent, Good, and Acceptable (see Appendix 4). Both

the value of the metrics associated with a model element and the final quality report are

Chapter 4. Model Quality Measuring 75

generated by KMF-Studio in HTML format as HTML allows quick navigation. To draw a

Kiviat diagram and a pie chart, KMF-Studio generates HTML text that contains applet

invocations with given arguments. The final quality report contains a pie chart that describes

the percentage of excellent, good, acceptable, and poor elements, according to the criteria

specified in Appendix 4. One can identify the elements that violate the boundaries of

attached metrics by following the provided HTML links. To provide useful feedback the

violations are displayed in Kiviat diagrams using colors and visual effects.

Figure 4.2. OCL expressions

Figure 4.3. OCL selection, call, and loop expressions

Chapter 4. Model Quality Measuring 76

Figure 4.4. OCL Primary expressions

Chapter 4. Model Quality Measuring 77

Figure 4.5. Kiviat diagram for class OclExpressionAS

Chapter 4. Model Quality Measuring 78

Figure 4.6. Quality report for OCL expressions

4.4. Conclusions and future work

This chapter’s contribution is the presentation of the framework provided by KMF-Studio to

support software measurement from UML models. The framework structures the

measurement on two levels. KMF-Studio measures at the first level the internal attributes of

models (e.g. depth of inheritance graph, number of operations, number of properties, and

average complexity of OCL constraints). The second level is responsible for measuring the

external attributes of the software system (e.g. maintainability, testability, changeability, and

usability). The resulting quality report can be used to identify model elements that violate the

boundaries of metrics and thus provides an indication of the elements that are likely to

consume most of the cost of implementation and maintenance. The quality evaluation system

that we designed and implemented is usable, flexible, and extensible. For example, a user

can choose the set of metrics that is used to prepare a quality report, either by choosing some

of the predefined metrics or writing its own metrics written in OCL. An OCL metric

navigates the model and computes a numeric value.

We are currently working to incorporate the measures of other software metrics in KMF-

Studio. The intention is to extend the set of predefined metrics to include other well-known

metric suites such as [LH93][TC02]. We also intend to provide support for measuring other

Chapter 4. Model Quality Measuring 79

elements that appear in the UML2.0 standard (e.g. stereotypes, sequence diagrams, and

activity diagrams) and discover which metrics are worth using.

Chapter 5 YATL Specification 80

Chapter 5. YATL SPECIFICATION

This chapter presents the current version of YATL (Yet Another Transformation Language),

which is evolving in order to support all the features provided by [QVT02] and the future

QVT standard. The first subsection provides a quick overview of the YATL language.

Subsequent sections present the features of YATL in more details.

5.1. YATL Overview

YATL is a hybrid language (a mix of declarative and imperative constructions) designed to

answer the Query/Views/Transformations Request For Proposals [QVT02] issued by OMG

and to express model transformations as required by the MDA [MDA] approach.

YATL formulates queries to interrogate the model using constructions from the OCL 2.0

standard. A YATL query is a syntactic construct that contains the description of the request in

terms of OCL 2.0 (see Appendix 6). The YATL processor invokes the OCL processor to

process the query and supply the results of interrogation.

A YATL transformation describes a mapping between a source MOF metamodel S, and a

target MOF metamodel T. The transformation engine uses the mapping to generate a target

model instance conforming to T from a source model instance conforming to S. The source

and the target metamodels may be the same metamodel. Navigation over models is specified

using OCL.

Each transformation contains one or more transformation rules. A transformation rule

consists of two parts: a left-hand side (LHS) and a right-hand side (RHS). The LHS of a

YATL transformation is specified using a filtering expression written either in OCL or native

code such as Java, C#, and scripts. This approach allows filter expressions to include both

modeling information (such as navigational expressions, properties values, collections) and

Chapter 5 YATL Specification 81

platform dependent properties (such as special conversion functions), which makes them

extremely powerful. A compound action specifies the effect of the RHS. The LHS and RHS

for the YATL transformation are described in the same syntactical construction, called a

transformation rule. A rule is invoked explicitly using its name and with parameters.

The abstract syntax of YATL namespaces, translation units, queries, views, transformations,

and transformations rules is described in Figure 5.1.

Figure 5.1 Abstract Syntax

5.2. An example

Let us consider the following two models:

Model M1 contains class A.

Model M2 contains class B.

Class A has a property called name.

Class B has a property called value.

and the transformation rule:

Chapter 5 YATL Specification 82

“For each instance of class A in M1, which is named John, create an instance of

class B with a value property equal to 5”.

The YATL program in Figure 5.2 expresses the above transformation.

start kmf::edoc2ws::main;

namespace kmf(m1, m2) {

 transformation m1Tom2 {

 --

 -- A to B

 --

 -- Map an A to a B

 rule a2b match m1::A[self.name = ‘John’] () {

 -- Create B

 let b: m2::B;

 b := new m2::B;

 b.value := 5;

 }

 -- main rule

 rule main () {

 -- Map individual elements

 apply a2b();

 }

 }

}

Figure 5.2 A transformation example in YATL

The YATL program starts with the invocation of the rule main, which invokes rule a2b. The

rule iterates over all the instances of A in M1’s repository and filters them using the OCL

expression self.name = ‘John’. If the filter returns true, the body of rule a2b is used to build

the corresponding instance of B and set the value to 5; otherwise the rule does nothing.

5.2.1. Main features

The declarative features come mainly from OCL expressions and the description of the LHS

of transformation rules. YATL acts in a similar way to a database system that uses SQL to

interrogate the database and the imperative host language to process the results of the query.

Chapter 5 YATL Specification 83

We choose OCL to describe the matching part of YATL rules because it is a well defined

language for querying the UML models. It provides a standard library with an acceptable

computational expressiveness, it is a declarative language, and it is a part of the OMG’s

standards.

YATL supports several kinds of imperative features, used in the RHS of transformation rules,

which are presented later in this chapter. These features were selected so that YATL can

provide lifecycle operations like creation and deletion, operations to change the value of

properties, declarations, decisions, and iteration actions, native actions to interact with the

host machine, and build actions to ease the construction of target model instance. Compound

actions contain a sequence of instructions, which are to be executed in the given order. These

syntactic constructions make use of OCL expressions to specify basic operations such as

adding two integer values. YATL uses the same type system as OCL 2.0 [OCL].

YATL is described by an abstract syntax (a MOF metamodel) and a textual concrete syntax.

It does not yet have a graphical concrete syntax as QVT RFP suggested. A transformation

model in YATL is expressed as a set of transformation rules. Transformations from Platform

Independent Models (PIMs) to Platform Specific Models (PSMs) can be written in YATL to

implement the MDA.

A YATL transformation is unidirectional. We believe that a model transformation language

should be unidirectional, otherwise it cannot be used for large scale models. The main

difficulty with a bidirectional transformation language is that it needs some reasoning to

perform the transformation. For example, DSTC’s proposal [QVTD] uses mechanisms

similar to Prolog-unification to perform a bidirectional mapping. The reverse transformation

can be described as any other transformation using YATL.

For a real model-to-model transformation, traceability is necessary to make the approach

workable. To trace the mapping between source and target model instances, YATL comprises

an operator called track. Track expressions are, from the concrete syntax point of view,

similar to DSTC’s track constructions [QVTD]. The main difference is that YATL’s tracks

are defined using concepts like relation name, domain, and imagine, and not Prolog-like

concepts (e.g. unification). This approach makes the traceability system of YATL suitable for

large-scale systems.

Chapter 5 YATL Specification 84

5.3. Programs

A YATL program consists of one or more source files, known formally as translation units. A

source file is an ordered sequence of Unicode standard characters. Conforming

implementations must accept Unicode source files encoded with the UTF-8 encoding form

[UNI], and transform them into a sequence of Unicode characters. Implementations may

choose to accept and transform additional character encoding schemes, such as UTF-16,

UTF-32, or non-Unicode character mappings.

Conceptually speaking, a YATL program is analysed in five steps:

1) Character conversion, which converts a file from a particular character repertoire
and encoding scheme into a sequence of Unicode characters.

2) Lexical analysis, which translates a stream of Unicode input characters into a
sequence of tokens.

3) Syntactic analysis, which translates the sequence of tokens into an abstract
representation of the input structure.

4) Semantic analysis, which checks if the input follows the semantic rules, and
produces an internal representation of both syntax and semantics.

5) Code generation or interpretation where the semantic representation is either
used to generate code for the underlying machine or directly evaluated on the
same machine.

5.4. Grammars

This section presents the syntax of YATL language using two grammars, structured on two

levels. On the first level, the lexical grammar defines how Unicode characters are combined

to form line terminators, white space, comments, and YATL tokens. At the second level, the

syntactic grammar defines how the tokens resulting from the lexical grammar are combined

to form YATL programs. Both grammars are described using the notation comprised in

Appendix 1.

Chapter 5 YATL Specification 85

5.4.1. Lexical grammar

The lexical grammar of YATL is presented in Appendix 5. The terminal symbols of the

lexical grammar are the characters of the Unicode character set, and the lexical grammar

specifies how characters are combined to form white spaces, comments, and tokens.

The lexical processing of a YATL source file consists of reducing the file into a sequence of

tokens that becomes the input to the syntactic analysis. Line terminators, white space, and

comments can serve to separate tokens, but otherwise these lexical elements have no impact

on the syntactic structure of a YATL program.

When several lexical grammar productions match a sequence of characters in a source file,

the lexical processing always forms the longest possible lexical element. For example, the

character sequence is processed as the beginning of a single-line comment because that

lexical element is longer than a single token.

Every source file in a YATL program must conform to the input production of the lexical

grammar.

5.4.2. Syntax grammar

The syntactic grammar of YATL is presented in Appendix 6 and the following sections. The

terminal symbols of the syntactic grammar are the tokens defined by the lexical grammar,

and the syntactic grammar specifies how tokens are combined to form YATL programs.

Every source file in a YATL program must conform to the translation-unit production of the

syntactic grammar.

5.5. Types and variables

The types of the YATL language are derived from the OCL’s types [OCL2],[AP03],[ALP03].

They can be used to encapsulate logical values, numbers, collections, tuples, and user types.

The type hierarchy of YATL is described in Figure 5.3 and derives from [ALP03].

Chapter 5 YATL Specification 86

Figure 5.3 YATL types

YATL’s type system is unified such that a value of any type can be treated as a Classifier.

Every type in YATL directly or indirectly derives from the Classifier class type, which is the

ultimate base class of all types. Undefined values are represented using VoidType.

YATL defines two categories of variables: local variables and value parameters. In the

example

transformation T {
 rule r match java::Class (String s) {
 let i: Integer = 3;
 }
}

s is a value parameter and i is a local variable.

Variables represent storage locations. Every variable has a type that determines what values

can be stored in the variable. YATL is a type-safe language, and the YATL processor

guarantees that values stored in variables are always of the appropriate type. The value of a

Chapter 5 YATL Specification 87

variable can be changed through assignment. If the value of a variable is not specified by an

initialization or assignment, it is considered to be the undefined value from OCL.

A variable must be definitely assigned before its value can be obtained. A variable is said to

be definitely assigned at a given location in the executable code, if the compiler can prove,

by a particular static flow analysis that the variable has been automatically initialized or has

been the target of at least one assignment.

Variables are either initially assigned or initially unassigned. An initially assigned variable

has a well defined initial value and is always considered definitely assigned. An initially

unassigned variable has no initial value. For an initially unassigned variable to be considered

definitely assigned at a certain location, an assignment to the variable must occur in every

possible execution path leading to that location.

Figure 5.4 YATL expressions

Chapter 5 YATL Specification 88

5.6. Expressions

This section defines the syntax, order of evaluation of operands and operators, and meaning

of expressions. YATL expressions are extensions of OCL 2.0 expressions presented in Figure

5.4 [ALP03].

More details about the expressions supported by OCL (e.g. concrete syntax, abstract syntax,

and semantics) and the way they are implemented can be found in [OCL2][ALP03].

The extensions specific to YATL are presented in the following subsections.

5.6.1. The assignment operator

The assignment operator assigns a new value to a variable or a property.

assignment-expression

ocl-expression ‘:=’ rhs-expression .

rhs-expression

ocl-expression |

new-expression |

build-expression |

track-expression .

The left operand of an assignment must be an expression classified as a variable or a

property.

In an assignment, the right operand must be an expression of a type that is compatible to the

type of the left operand [OCL2]. The operation assigns the value of the right operand to the

variable or property given by the left operand.

The result of a simple assignment expression is the value assigned to the left operand. The

result has the same type as the left operand and is always classified as a value.

Chapter 5 YATL Specification 89

5.6.2. The new operator

The new operator is used to create new instances of model element types [OCL2].

new-expression

‘new’ path-name .

The new operator implies creation of an instance of the path-name type.

5.6.3. The build operator

The build operator is used to create new instances of model element types and set their

properties in the same time.

build-expression

‘build’ path-name ‘{‘ list-pair ‘}’.

list-pair

 |

pair ‘,’ list-pair .

pair

name ‘:=’ rhs-expression .

The new operator implies creation of an instance of the path-name type and sets the values

for the properties specified in list-pair. If there is at least one name for which there is no such

property in type path-name, a compile-error is reported.

5.6.4. The track operator

The track operator is used to store and retrieve mappings during and after the transformation

process.

track-expression

‘track’ ‘(‘ ocl-expression ‘,’ simple-name ‘,’ ocl-expression ‘)’ |

‘track’ ‘(‘ ‘null’ ‘,’ simple-name ‘,’ ocl-expression ‘)’ |

‘track’ ‘(‘ ocl-expression ‘,’ simple-name ‘,’ ‘null’ ‘)’ .

Chapter 5 YATL Specification 90

Given a relation R and two objects X and Y, the meaning of the track operator is the

following:

track(X, R, Y) stores the relation R(X, Y).

Y := track(X, R, null) retrieves the element related to X by R.

X := track(null, R, Y) retrieves the element related to Y by R.

The type of X and Y can be any OCL 2.0 type (e.g. integer, real, boolean, string, model

element type, collection, or tuple).

5.7. Actions

This section contains the description of the actions supported by YATL and other basic

concepts such as: end point, reachability, name lookup, rule resolution etc. The abstract

syntax tree of YATL actions is described in Figure 5.5.

Figure 5.5 YATL actions

Chapter 5 YATL Specification 91

5.7.1. End points and reachability

Every action has an end point. In intuitive terms, the end point of an action is the location

that immediately follows the action. The execution rules for composite actions (actions that

contain embedded actions) specify the action that is taken when control reaches the end point

of an embedded action. For example, when control reaches the end point of an action in a

block, control is transferred to the next action in the block.

If an action can possibly be reached by execution, the action is said to be reachable.

Conversely, if there is no possibility that an action will be executed, the action is said to be

unreachable. In the following example

rule r() {
 while (…) {

-- reachable
let i:Integer=3;
break;
-- unreachable

 i := i+1;
}

}
the action i := i + 1 is unreachable because of the break action.

5.7.2. Blocks

A block permits multiple actions to be written in contexts where a single action is allowed.

block

‘ {‘ ‘}’

 |

‘{‘ action-list ‘}’ .

A block consists of an optional action-list, enclosed in braces. If the action list is omitted, the

block is said to be empty.

A block may contain declaration actions. The scope of a local variable or constant declared

in a block is the block. Within a block, the meaning of a name used in an expression context

must always be the same.

A block is executed as follows:

Chapter 5 YATL Specification 92

If the block is empty, control is transferred to the end point of the block.

If the block is not empty, control is transferred to the action list. When and if
control reaches the end point of the action list, control is transferred to the end
point of the block.

The action list of a block is reachable if the block itself is reachable.

The end point of a block is reachable if the block is empty or if the end point of the action

list is reachable.

5.7.3. Action lists

An action-list consists of one or more actions written in sequence. Action lists occur in

blocks.

action-list

action |

action-list action .

An action list is executed by transferring control to the first action. When and if control

reaches the end point of an action, control is transferred to the next action. When and if

control reaches the end point of the last action, control is transferred to the end point of the

action list.

An action in an action list is reachable if at least one of the following is true:

The action is the first action and the action list itself is reachable.

The end point of the preceding action is reachable.

The end point of an action list is reachable if the end point of the last action in the list is

reachable.

5.8. The empty action

An empty-action does nothing.

empty-action

Chapter 5 YATL Specification 93

‘;’ .

An empty action is used when there are no operations to perform in a context where an

action is required.

Execution of an empty action simply transfers control to the end point of the action. Thus,

the end point of an empty action is reachable if the empty action is reachable.

5.9. Declaration actions

A declaration-action declares a local variable. Declaration actions are permitted in blocks.

declaration-action

local-variable-declaration .

5.9.1. Local variable declarations

A local-variable-declaration declares one or more local variables [OCL2], [ALP03].

local-variable-declaration

‘let’ variable-declaration-list ‘;’

variable-declaration-list

variable-declaration |

variable-declaration-list ‘,’ variable-declaration .

variable-declaration

simple-name [‘:’ type] [‘=’ init-expression] .

The type of a local-variable-declaration specifies the type of the variables introduced by the

declaration [OCL2][ALP03]. The init-expression gives the initial value of the variable. Both

type and initial value are optional [OCL2].

The value of a local variable is obtained in an expression using a simple-name, and the value

of a local variable is modified using an assignment. A local variable must be definitely

assigned at each location where its value is obtained.

Chapter 5 YATL Specification 94

The scope of a local variable declared in a local-variable-declaration is the block in which

the declaration occurs. It is an error to refer to a local variable in a textual position that

precedes the local-variable-declarator of the local variable. Within the scope of a local

variable, it is a compile-time error to declare another local variable with the same name.

A local variable declaration that declares multiple variables is equivalent to multiple

declarations of single variables with the same type. Furthermore, a variable initializer in a

local variable declaration corresponds exactly to an assignment action that is inserted

immediately after the declaration.

The example

rule r() {
 let x : Integer = 1, y : Integer, z : Integer = x * 2;
}

corresponds exactly to

rule r() {
 let x : Integer;

x := 1;
 let y : Integer;
 let z : Integer;

z := x * 2;
}

5.10. Expression actions

An expression-action evaluates a given expression. The value computed by the expression, if

any, is discarded.

expression-action

expression ‘;’ .

expression

assignment-expression |

ocl-expression |

track-expression .

Execution of an expression action evaluates the contained expression and then transfers

control to the end point of the expression action.

Chapter 5 YATL Specification 95

5.11. The apply action

An apply-action is used to invoke a rule.

apply-action

‘apply’ path-name’(‘ argument-list ‘)’ ‘;’ .

argument-list

 |

argument ‘,’ argument-list .

argument

ocl-expression .

For a rule invocation, the compiler must first identify the one rule to invoke or the group of

overloaded rules from which to choose a specific rule to invoke. In the latter case,

determination of the specific rule to invoke is based on the context provided by the types of

the arguments in the argument-list.

The compile-time processing of a method invocation of the form R(A), where R is a rule

group and A is an optional argument-list, consists of the following steps:

The set of candidate rules for the rule invocation is constructed. The set of rules
associated with path-name, which are found by a name lookup operation, is
reduced to those rules that are applicable with respect to the argument list A. The
set reduction consists of applying the following rules to each rule T::R in the set,
where T is the transformation in which the rule R is declared:

o If R is not applicable with respect to A, then R is removed from the set.

o If R is applicable with respect to A, then all rules declared in a base type
of T are removed from the set.

o If the resulting set of candidate rules is empty, then no applicable
methods exist, and a compile-time error occurs.

The best rule of the set of candidate rules is identified using the overload
resolution rules. If a single best rule cannot be identified, the rule invocation is
ambiguous, and a compile-time error occurs.

Once a rule has been selected and validated at compile-time by the above steps, the actual

run-time invocation is processed according to the rules of invocation.

Chapter 5 YATL Specification 96

5.11.1. Name lookup

A name lookup is the process whereby the meaning of a name in the context of a

transformation is determined. A rule lookup may occur as part of evaluating a simple-name

in an apply action.

A lookup of a name N in a transformation T is processed as follows:

The set of all accessible rules named N declared in T and the base
transformations of T is constructed.

If no members named N exist and are accessible, then the lookup produces no
match.

Otherwise, this group of rules is the result of the lookup.

5.11.2. Rule applicable to A

A rule is said to be an applicable rule with respect to an argument list A when all of the

following are true:

The number of arguments in A is identical to the number of parameters in the
function member declaration.

For each argument in A, the type of the argument is compatible with the type of
the corresponding parameter, according to OCL 2.0 specification [OCL2].

5.11.2.1. Better function member

Given an argument list A = A1, A2, …, AN with a set of argument types T1, T2, …, TN and two

applicable rules RP and RQ with parameter types P1, P2, …, PN and Q1, Q2, …, QN , RP is

defined to be a better rule than RQ if

For each argument, the implicit conversion from TI to PI is not worse than the
implicit conversion from TI to QI, and

For at least one argument AJ, the conversion from TJ to PJ is better than the
conversion from TJ to QJ.

Chapter 5 YATL Specification 97

5.11.2.2. Better conversion

Given an implicit conversion C1 that converts from a type S to a type T1, and an implicit

conversion C2 that converts from a type S to a type T2, the better conversion of the two

conversions is determined as follows:

If T1 and T2 are the same type, neither conversion is better.

If S is T1, C1 is the better conversion.

If S is T2, C2 is the better conversion.

If an implicit conversion from T1 to T2 exists, and no implicit conversion from T2

to T1 exists, C1 is the better conversion.

If an implicit conversion from T2 to T1 exists, and no implicit conversion from T1

to T2 exists, C2 is the better conversion.

5.11.3. Rule invocation

This section describes the process that takes place at run-time to invoke a particular rule R. It

is assumed that a compile-time process has already determined the particular rule to invoke,

possibly by applying overload resolution to a set of candidate rules.

The run-time processing of a rule member invocation consists of the following steps:

The argument list is evaluated from left to right.

The resulting values are used to build an activation record.

The body of rule R is applied over every source model element for which the
filter attached to rule R is true. If the source model and target model are
identical, the elements added by other previous rules are discarded.

For example, the rule

rule r match A(self.name=’John’) {

 let x:B;

 x := new B;

 ...

}

creates a B instance for each A instance whose property name has the value John. The filter

expression can be any OCL expression (e.g. navigation expressions, operation on primitive

types and collections, and iterator expressions such as select and forall).

Chapter 5 YATL Specification 98

5.12. The delete action

A delete-action destroys an object created by a new-expression.

delete-action

‘delete’ ocl-expression ‘;’ .

The operand must have a model element type [OCL20].

5.13. Decision actions

Selection actions select one of a number of possible actions for execution based on the value

of some expression.

selection-action

if-action.

5.13.1. The if action

The if action selects an action for execution based on the value of a boolean expression.

if-action

‘iff’ expression ‘then’ action [‘else’ action] ‘endif’ .

An else part is associated with the lexically nearest preceding iff that is allowed by the

syntax. Thus, an if action of the form

iff x iff y then y:= x; else x:=y;

is equivalent to

iff x then
 if y then
 y:=x;
 else
 x:=y;
 endif
endif

Chapter 5 YATL Specification 99

An if action is executed as follows:

The expression is evaluated.

If the expression yields true, control is transferred to the first embedded action.
When and if control reaches the end point of that action, control is transferred to
the end point of the if action.

If the expression yields false and if an else part is present, control is transferred
to the second embedded action. When and if control reaches the end point of that
action, control is transferred to the end point of the if action.

If the expression yields false and if an else part is not present, control is
transferred to the end point of the if action.

The first embedded action of an if action is reachable if the if action is reachable and the

expression does not have the constant value false.

The second embedded action of an if action, if present, is reachable if the if action is

reachable and the expression does not have the constant value true.

The end point of an if action is reachable if the end point of at least one of its embedded

actions is reachable. In addition, the end point of an if action with no else part is reachable if

the if action is reachable and the expression does not have the constant value true.

5.14. Iteration actions

Iteration actions repeatedly execute an embedded action.

iteration-action

while-action |

do-action |

foreach-action.

5.14.1. The while action

The while action conditionally executes an embedded action zero or more times.

while-action

‘while’ expression ’do’ action .

Chapter 5 YATL Specification 100

A while action is executed as follows:

The expression is evaluated.

If the expression yields true, control is transferred to the embedded action. When
and if control reaches the end point of the embedded action (possibly from
execution of a continue action), control is transferred to the beginning of the
while action.

If the expression yields false, control is transferred to the end point of the while
action.

Within the embedded action of a while action, a break action may be used to transfer control

to the end point of the while action (thus ending iteration of the embedded action), and a

continue action may be used to transfer control to the end point of the embedded action (thus

performing another iteration of the while action).

The embedded action of a while action is reachable if the while action is reachable and the

expression does not have the constant value false.

The end point of a while action is reachable if at least one of the following is true:

The while action contains a reachable break action that exits the while action.

The while action is reachable and the expression does not have the constant
value true.

5.14.2. The do action

The do action conditionally executes an embedded action one or more times.

do-action

‘do’ action ‘while’ ‘(‘ expression ‘)’ ‘;’

A do action is executed as follows:

Control is transferred to the embedded action.

When and if control reaches the end point of the embedded action (possibly from
execution of a continue action), the expression is evaluated. If the expression
yields true, control is transferred to the beginning of the do action. Otherwise,
control is transferred to the end point of the do action.

Within the embedded action of a do action, a break action may be used to transfer control to

the end point of the do action (thus ending iteration of the embedded action), and a continue

Chapter 5 YATL Specification 101

action may be used to transfer control to the end point of the embedded action (thus

performing another iteration of the do action).

The embedded action of a do action is reachable if the do action is reachable.

The end point of a do action is reachable if at least one of the following is true:

The do action contains a reachable break action that exits the do action.

The end point of the embedded action is reachable and the boolean expression
does not have the constant value true.

5.14.3. The foreach action

The foreach action enumerates the elements of a collection, executing an embedded action

for each element of the collection.

foreach-action

‘foreach’ variable-declaration ‘in’ expression ‘do’ action

The variable-declaration contains the declaration of the iteration variable of the action. The

iteration variable corresponds to a read-only local variable with a scope that extends over the

embedded action. During execution of a foreach action, the iteration variable represents the

collection element for which an iteration is currently being performed. The iteration variable

can be modified or passed as an argument.

The type of the expression of a foreach action must be a collection type (as defined below),

and an explicit conversion must exist from the element type of the collection to the type of

the iteration variable. If expression has the undefined value, a dynamic semantics error is

reported.

A type C is said to be a collection type if it is declared as an OCL collection type or

implements the collection pattern by meeting all of the following criteria:

C is the type of a UML attribute whose multiplicity describes a set of at least 2
elements.

C is the type of a UML association end whose multiplicity describes a set of at
least 2 elements.

Chapter 5 YATL Specification 102

5.14.4. The break action

The break action exits the nearest enclosing while, do, or foreach action.

break-action

‘break’ ‘;’

The target of a break action is the end point of the nearest enclosing while, do, or foreach

action. If a break action is not enclosed by a while, do, or foreach action, a compile-time

error occurs.

When multiple while, do, or foreach action actions are nested within each other, a break

action applies only to the innermost action. To transfer control across multiple nesting levels,

decision actions and boolean flags must be used.

A break action is executed as follows:

Control is transferred to the target of the break action.

Because a break action unconditionally transfers control elsewhere, the end point of a break

action is never reachable.

5.14.5. The continue action

The continue action starts a new iteration of the nearest enclosing while, do, or foreach

action.

continue-action

‘continue’ ‘;’

The target of a continue action is the end point of the embedded action of the nearest

enclosing while, do, or foreach action. If a continue action is not enclosed by a while, do, or

foreach action, a compile-time error occurs.

When multiple while, do, or foreach actions are nested within each other, a continue action

applies only to the innermost action. To transfer control across multiple nesting levels,

decision actions and boolean flags must be used.

Chapter 5 YATL Specification 103

A continue action is executed as follows:

Control is transferred to the target of the continue action.

Because a continue action unconditionally transfers control elsewhere, the end point of a

continue action is never reachable.

5.15. Namespaces and translation units

A YATL program consists of one or more translation units, each contained in a separate

source file. When a YATL program is processed, all of the translation units are processed

together. Thus, translation units can depend on each other, possibly in a circular fashion. A

translation unit consists of zero or more import directives followed by zero or more

declarations of namespace members: queries, views, or transformations.

The concept of namespace was introduced to allow YATL programs to solve the problem of

names collision that is a vital issue for large-scale transformation systems. Namespaces are

used both as an “internal” organization system for a program, and as an “external”

organization system - a way of presenting program elements that are exposed to other

programs. A YATL program can reuse a transformation by importing the corresponding

namespaces and invoking the appropriate rules.

A YATL query is an OCL expression, which is evaluated into a given context such as a

package, classifier, property, or operation. The returned value can be a primitive type, model

elements, collections or tuples. Queries are used to navigate across model elements and to

interrogate the population stored in a given repository. YATL uses the OCL implementation

that was initially developed under KMF and then under Eclipse as an open source project

[OCLP].

A YATL transformation is a construct that maps a source model instance to a target model

instance by matching a pattern in a source model instance and creating a collection of objects

with given properties in the target model instance. The matching part is performed using the

declarative features of OCL, while the creation of target instances is done using the

imperative features provided by YATL. YATL provides also the possibility of interacting with

the underlying machine using native actions. Although we do not encourage the use of such

Chapter 5 YATL Specification 104

features, they were provided to support the modeller when some operations are not available

at the metamodel level (e.g. the standard library of OCL 2.0 does not provide a function to

convert lowercase letters to uppercase letters).

5.16. Comparison

In this section we compare YATL and other transformation languages by analysing the

features provided by their specification. The other transformation systems are discussed in

more detail in 2.4.1, 2.4.2 and 2.4.3.To achieve this comparison we analyse the languages on

the basis of several features. The features are derived from [CH03] and [Gra03]. The results

of the comparison are summarized in Table 5.1.

Feature/

Language

DSTC QVT Partners YATL ATL UMT

Abstraction Level Model (UML) Model (UML) Model (UML) Model (UML) Data (XML)

Transformation

Style

Declarative Declarative Hybrid Hybrid Declarative

Directionality Bidirectional Unidirectional Unidirectional Unidirectional Unidirectional

Cardinality Many to many Many to many Many to many Many to many One to one

Traceability Links Manual Automatic Manual Automatic No support

Matching style Logic

matching

patterns

Relations &

Logic

OCL & Logic OCL & Logic XSLT & Logic

Queries No support Superset of OCL Embedded

OCL

No support No support

Views No support Readonly Views No support No support No support

Definitions Yes No support No support No support No support

Table 5.1 A comparison of transformation languages

Chapter 5 YATL Specification 105

In this table the rows represent features that are used to compare the transformation

languages. The table indicates how the particular language supports each feature. The

features are explained in the remaining part of this section.

Abstraction Level. Transformation definitions can be expressed at the XML level via XSLT

or at the UML level using model concepts. Specifying transformations at the UML level

makes the communication human-machine easier.

Transformation Style. Transformations can be described using various description styles.

We distinguish imperative, hybrid and declarative transformation styles. The hybrid

approach uses both declarative and imperative constructs to specify transformations.

Directionality. This feature indicates the direction in which the transformations can be

executed. We distinguish unidirectional and bidirectional transformations. Unidirectional

transformations can be executed in one direction only, which means that the target model is

created or updated. Bidirectional transformations can be executed either from the source

model to target model or from the target model to source model.

Cardinality. Cardinality indicates the number of input and output models for a

transformation.

Traceability. This feature provides support for keeping records of relations between source

and target elements during and after the execution of a transformation. The traceability is

dealt with in two ways: automatic and manually.

Matching Style. This feature indicates the style that is used to match the transformation

rules over the source repository. We distinguish the following styles: variable-based, graph-

based and logic. Variable-based styles uses variables hold elements from the source or target

models. Graph-based styles use graph patterns as model fragments with zero or more

variables. Logic styles describe computations and constraints on model elements using logic.

Queries. A query is an expression that is evaluated over a model. The result of a query is one

or more instances of types defined in the source model, or defined by the query language.

Views. A view is a model that is entirely derived from another model, called the source

model. A view cannot be modified separately from the model from which it is derived.

Changes to the base model cause corresponding changes to the view. If changes are

Chapter 5 YATL Specification 106

permitted to the view then they modify the source model. Views are typically not persisted

independently of their source models, except perhaps for caching. Views are often read only.

If views are editable a change made in the view results in a change in the source model.

Definitions. A definition is a specification of a relation between elements in the left-hand

side and right-hand side models. A definition may contain sufficient information to describe

the transformation from left to right, right to left or both.

5.17. Conclusions

This section contains a description of the compliance to RFP requirements, other design

requirements, and related work in this area.

5.17.1. Compliance to RFP requirements

OMG’s QVT RFT [QVT02] comprises a set of mandatory and optional requirements for the

Query/Views/Transformations proposal. Meeting these requirements, especially the

mandatory ones, is very important, because they are crucial for describing model

transformations in the model driven engineering framework. This section presents these

requirements and analyzes YATL’s compliance with them.

5.17.1.1. Mandatory requirements

“1. Proposals shall define a language for querying models. The query language shall

facilitate ad-hoc queries for selection and filtering of model elements, as well as for

the selection of model elements that are the source of a transformation.”

YATL queries described using OCL 2.0 concepts can be used to query the source model

instance. The data returned by a query can be any OCL value: number, string, boolean value,

collection, tuple, or any value from the metamodel. The selection and filtering of model

elements that are the source of transformation is done through the LHS of transformation

rules.

Chapter 5 YATL Specification 107

“2. Proposals shall define a language for transformation definitions. Transformation

definitions shall describe relationships between a source MOF metamodel S, and a

target MOF metamodel T, which can be used to generate a target model instance

conforming to T from a source model instance conforming to S. The source and target

metamodels may be the same metamodel.”

The relations between source metamodel S and target metamodel T are described in YATL

by translation rules with LHS and RHS. Current instances of relations can be stored so that

they can be retrieved latter, using the track mechanism. YATL can be used to describe

transformations for which the source model is identical with the target model. To avoid

unnatural behavior in this particular case, the transformation engine applies the

transformation rules only on the elements contained initially in the source model instance.

The model elements that are added into the model instance by invoking transformation rules

are not considered when the LHS of a rule is matched against the model instance.

“3. The abstract syntax for transformation, view and query definition languages shall

be defined as MOF (version 2.0) metamodels.”

The abstract syntax of YATL is described using MOF concepts and is independent of the

concrete syntax. The abstract syntax of YATL is described in Figure 5.1. There is an

ongoing research on the graphical syntax of YATL.

“4. The transformation definition language shall be capable of expressing all

information required to generate target model from a source model automatically.”

Both the LHS and RHS of the rules are capable of expressing all the necessary information

for transformations. The LHS is used to match a specific pattern against the source model

instance, while the RHS is capable of describing the objects which are added into the target

model instance.

“5. The transformation definition language shall enable the creation of a view of a

metamodel.”

Chapter 5 YATL Specification 108

YATL does not support views yet. This is an area of ongoing research.

“6. The transformation definition language shall be declarative in order to support

transformation execution with the following characteristic:

• Incremental changes in a source model may be transformed into changes in a

target model immediately.”

YATL is partially declarative, containing a mixture of declarative and imperative features.

The declarative features are inherited from OCL while the imperative features are provided

mainly by YATL actions.

“7. All mechanisms specified in Proposals shall operate on model instances of

metamodels defined using MOF version 2.0.”

Both LHS and RHS of the transformation rules operate on model instances using names,

pathnames, and concepts specific to the metamodels and not to their specific implementation

on a given platform.

5.17.1.2. Optional requirements

“1. Proposals may support transformation definitions that can be executed in two

directions. There are two possible approaches:

• Transformations are defined symmetrically, in contrast to transformations that

are defined from source to target.

• Two transformation definitions are defined where one is the inverse of the

other.”

The transformations described by YATL are executed in one direction, usually from source

model to target model. If a reverse transformation is needed, the modeler must write that

transformation.

Chapter 5 YATL Specification 109

“2. Proposals may support traceability of transformation executions made between

source and target model elements.”

The current version of YATL supports only explicit traceability of the execution, through

explicit use of track constructions. Adding implicit traceability mechanisms is an ongoing

research area.

“3. Proposals may support mechanisms for reusing and extending generic

transformation definitions. For example: Proposals may support generic definitions of

transformations between general metaclasses that are automatically valid for all

specialized metaclasses. This may include the overriding of the transformations

defined on base metaclasses. Another solution could be support for transformation

templates or patterns.”

To support the reusability of the code YATL programs are organized in translation units and

namespaces. Future versions of YATL will support abstract, overridden, and virtual

transformation rules.

“4. Proposals may support transactional transformation definitions in which parts of

a transformation definition are identified as suitable for commit or rollback during

execution.”

Future versions of YATL will support transactional transformations for which all contained

transformation rules are either committed or rolled back together.

“5. Proposals may support the use of additional data, not contained in the source

model, as input to the transformation definition, in order to generate a target model.

In addition proposals may allow for the definition of default values for this data.”

YATL allows the invocation of the transformation rules by passing additional data as

arguments.

“6. Proposals may support the execution of transformation definitions where the

target model is the same as the source model; i.e. allow transformation definitions to

Chapter 5 YATL Specification 110

define updates to existing models. For example a transformation definition may

describe how to calculate values for derived model elements.”

YATL allows the definition of transformations for which the source model is identical to the

target model. For example, YATL transformations can be used to change properties’ values

or remove objects. To avoid unnatural behavior in this particular case, the transformation

engine applies the transformation rules only on the elements contained initially in the source

model instance. The model elements that are added into the model instance by invoking

transformation rules are not considered when the LHS of a rule is matched against the model

instance.

5.17.1.3. Issues to be discussed

“1. The OMG CWM specification already has a defined transformation model that is

being used in data warehousing. Submitters shall discuss how their transformation

specifications compare to or reuse the support of mappings in CWM.”

YATL uses the concept of repository and warehouse to store source and target model

instances. These concepts are mapped into an implementation by KMF-Studio, a tool from

KMF. Mapping support in CWM can easily be reformulated using YATL.

“2. The OMG Action Semantics specification already has a mechanism for

manipulating instances of UML model elements. Submitters shall discuss how their

transformation specifications compare to or reuse the capabilities of the UML Action

Semantics.”

A YATL program specification can be described in terms of the Action Semantics.

“3. How is the execution of a transformation definition to behave when the source

model is not well-formed (according to the applicable constraints?). Also should

transformation definitions be able to define their own preconditions. In that case:

What’s the effect of them not being met? What if a transformation definition applied to

a well-formed model does not produce a well-formed output model (that meets the

constraints applicable to the target metamodel)?”

Chapter 5 YATL Specification 111

YATL does not check implicitly if the source model instance or if the generated target model

instance are well formed. YATL queries can be used explicitly before and after the

transformation to check the pre and post conditions associated with a transformation.

“4. Proposals shall discuss the implications of transformations in the presence of

incremental changes to the source and/or target models.”

YATL and YATL-Studio cannot automatically detect if the source or the target model

instance suffered incremental changes. At this stage it is the modeler’s task to keep track of

the changes. In the near future, mechanisms to detect automatically if a model instance

suffered some changes will be added to the KMF warehouse and repository concepts.

5.17.2. Other design features

As well as supporting the ongoing QVT requirements, we designed YATL to support the

following additional requirements:

The syntax and semantics of YATL must be well defined.

The process of applying the transformation rules must be deterministic.

Queries, views, and transformations are organized in namespaces to provide
reusability and avoid name collision.

The transformation engine must be capable of performing efficient
transformation for large-scale systems.

YATL must provide adequate computational expressiveness power, regardless
of the host platform or language. For example, YATL should support a complete
set of operations on basic types like strings, integers, or floating point numbers.

5.17.3. Relationship to existing OMG specifications

Object Constraint Language OCL forms the basis of the query language and is also used to

match the LHS of the transformation rules.

Chapter 5 YATL Specification 112

Meta Object Facility The abstract syntax of YATL and OCL are both described in terms of

MOF; the superstructure is a slightly more involved extension of MOF.

Common Warehouse Metamodel Concepts like warehouse and repository are used to store

source and target model instances.

5.17.4. Comparison to QVT submissions

Since OMG launched its QVT RFP [QVT02] in 2002, several submissions were made.

DSTC’s submission [QVTD] contains a declarative definition of QVT and uses high-level

concepts that are similar with those from Prolog. Unfortunately it cannot cope with large-

scale transformations because its concepts make the implementation very slow. QVT

Partners submission [QVTP] considers that transformations are special cases of relations and

describes them using a graphical syntax. This approach is similar to the one presented in

[ASP03]. This submission provides a mechanism for relation refinement. In the near future

YATL will provide a similar support, although it will be described in textual way. The French

submission [QVTF] has similarities with the approach that we took. However, there are a lot

of differences such as the concrete syntax, the semantics of the rules, the tracking

mechanism, the support for interaction with the host machine and creation of the target

model instance.

Chapter 6 Model Transformations in YATL 113

Chapter 6. MODEL TRANSFORMATIONS

IN YATL

This chapter describes three examples of model transformations, which have been

implemented using YATL and the support provided by Kent Modeling Framework [KMF].

Model transformations are supported in KMF by a set of tools such as YATL-Studio, KMF-

Studio, OCLCommon, and OCL4KMF. The core of the model transformations in KMF is

YATL-Studio, a software environment used to create YATL projects and perform model

transformations on them. The implementations of the source and target model are generated

by KMF-Studio. The OCL 2.0 support is provided by OCLCommon and OCL4KMF,

described in more details in [AP03][ALP03], which implement the OCL 2.0 standard.

6.1. Transformation environment

The OMG’s MDA is a new approach to develop large software systems. The core

technologies of MDA are the Unified Modeling Language (UML), Meta-Object Facility

(MOF), XML Meta-Data Interchange (XMI) and Common Warehouse Metamodel (CWM).

These standards are used to facilitate the design, description, exchange, and storage of

models. MDA also introduces other important concept: Platform-Independent Model (PIM),

Platform-Specific Model (PSM), transformation language, and transformation engine. The

relations and interactions between these concepts in KMF is depicted in Figure 6.1.

In our approach, the source and target models are described using the MOF language, which

in this case acts like a metalanguage. The transformation language, in our case YATL, is

described using two metalanguages: BNF and MOF. BNF is used to describe the concrete

syntax, while MOF is used to describe the abstract syntax. The transformation engine

Chapter 6 Model Transformations in YATL 114

performs the mapping from a source model instance to a target model instance, executing a

YATL program, which is an instance of the YATL transformation language.

instance
of

described
by

YATL
Transformation

Engine

YATL
Transformation

Language

MOF

Source
Model

Target
Model

Source Model
Instance

Target Model
Instance

instance
of

source

target

execute

described
by

described
by

YATL
Program

instance
of

target

source

BNF

described
by

Figure 6.1 Transformation Environment

The entire transformation process is performed in KMF following the steps:

The source and target models are defined using a MOF editor (e.g. Rational
Rose or Poseidon)

KMF-Studio is used to generate Java implementations of the source and target
models.

The source model repository is populated used either Java hand-written code or
a GUI provided by the modelling tool generated by KMF-Studio.

YATL-Studio is used to create a YATL project and perform the requested
transformation.

Chapter 6 Model Transformations in YATL 115

Figure 6.2 A possible Java model

6.2. Transformation from the UML model to the Java

model

Figure 6.2 contains a possible model of the Java programming language. This model is

derived from the Java standard [Java] and covers only a subset of the language. The main

elements of the Java model are:

JavaElement denotes a generic element in the Java language and represents a
generalization of all the elements from Java.

JavaPackageElement denotes a JavaElement that can be included in a package.

JavaClassifier denotes a generalization of the types used in Java

JavaPackage, JavaClass, and JavaInterface denote Java packages, classes, and
interfaces.

Members contained within a class are represented by JavaField and
JavaMethod.

Parameters of Java operations are described using JavaParameter.

Basic types are described using DataType.

Chapter 6 Model Transformations in YATL 116

The transformation that maps from UML model to Java model is performed in two phases. In

the first phase 1-1 mappings are established between equivalent concepts:

For every UML Package rule umlPkg2JavaPkg creates an instance of
JavaPackage.

For every UML Class rule umlClass2JavaClass creates an instance of
JavaClass.

For every UML Attribute rule umlAttribute2JavaField creates an instance of
JavaField.

For every UML AssociationEnd rule umlAssociationEnd2JavaField creates an
instance of JavaField.

For every UML Operation rule umlOperation2JavaMethod creates an instanmce
of JavaMethod.

The above rules create new instances of the required types and store the mappings using

track constructions. This information is required in the second phase, which is responsible

for filling the containment fields of Java model elements:

Rule linkElement2Package scans all the ownedElements of all the UML
Packages, retrieves the corresponding JavaPackageElements and includes them
in the elements collection.

Rules linkAttribute2Class and linkAssociationEnd2Class set the correct content
of the fields property.

Rule linkOperation2Class sets the value of the methods property.

The YATL program that performs this transformation is described in detail in Appendix 7.

For example, the following UML class diagram

maps to the following Java program:

class A {

int x;

 B b;

}

class B {

 A a;

}

Chapter 6 Model Transformations in YATL 117

The transformation is performed at the abstract syntax level. The concrete representation of

the program is obtained by visiting the abstract syntax tree and printing the required

information.

The above transformation rules were tested on a source model instance that was populated

using the XMI file that describes the Java model. The result of the mapping of the UML

model instance described in Figure 6.2 to a Java model instance, using YATL-Studio and the

YATL program from Appendix 7, is described in Figure 6.3.

Figure 6.3 Example of mapping from UML model to Java model

6.3. Transformation from spider diagrams model to

OCL model

This section contains the description of the transformation from the spider diagrams model to

the OCL model. The first subsection contains a brief description of the concepts related to

spider diagrams. The subsequent subsections briefly describe the mapping process.

Chapter 6 Model Transformations in YATL 118

6.3.1. Spider diagrams

This section introduces the main syntax and semantics of spider diagrams. Spider diagrams,

introduced in [GHK99] are based on Euler diagrams rather than Venn diagrams. Spider

diagrams considered here are adapted so that we can infer lower bounds for the cardinalities

of the sets represented by the non-empty regions.

A contour is a simple closed plane curve. A boundary rectangle properly contains all other

contours. A basic region is the bounded subset of the plane enclosed by a contour. A region

is defined, recursively, as follows: any district is a region; if r1 and r2 are regions, then the

union, intersection, or difference, of r1 and r2 are regions provided these are non-empty. A

zone or minimal region is a region having no other region contained within it. Contours and

regions denote sets. Every region is a union of zones. A region is shaded if each of its

component zones is shaded. A shaded region denotes the empty set.

Figure 6.4 A spider diagram

A spider is a tree with nodes, called feet, placed in different zones. The connecting edges,

called legs, are straight lines. A spider touches a zone if one of its feet appears in that region.

A spider may touch a zone at most once. A spider is said to inhabit the region that is the

union of the zones it touches. For any spider s, the habitat of s is the region inhabited by s. A

spider denotes the existence of an element in the set denoted by the habitat of the spider.

Two distinct spiders denote distinct elements.

Figure 6.4 contains a spider diagram with contours A, B, and C, six zones, two shaded zones,

and a spider with one leg and two feet. The construction of the equivalent OCL expression,

presented in Figure 6.5, is based on the following basic ideas:

Every spider diagram maps to an OCL let expression.

Chapter 6 Model Transformations in YATL 119

Every zone maps to a variable declaration of Set type.

Every boundary condition regarding a zone maps to an OCL expression that
checks the size of the corresponding variable.

context OclVoid inv:

let

 setA: Set(OclAny) = OclAny.allInstances()->select(x : OclAny |

x.oclIsKindOf(RwD::A) and

not x.oclIsKindOf(RwD::B) and not x.oclIsKindOf(RwD::C)),

 setB: Set(OclAny) = OclAny.allInstances()->select(x : OclAny |

x.oclIsKindOf(RwD::B) and

not x.oclIsKindOf(RwD::A) and not x.oclIsKindOf(RwD::C)),

 setA_B: Set(OclAny) = OclAny.allInstances()->select(x : OclAny |

x.oclIsKindOf(RwD::A) and x.oclIsKindOf(RwD::B) and

not x.oclIsKindOf(RwD::C)),

 setC: Set(OclAny) = OclAny.allInstances()->select(x : OclAny |

x.oclIsKindOf(RwD::C) and

not x.oclIsKindOf(RwD::A) and not x.oclIsKindOf(RwD::B)),

 setA_C: Set(OclAny) = OclAny.allInstances()->select(x : OclAny |

x.oclIsKindOf(RwD::A) and x.oclIsKindOf(RwD::C) and

not x.oclIsKindOf(RwD::B)),

 setB_C: Set(OclAny) = OclAny.allInstances()->select(x : OclAny |

x.oclIsKindOf(RwD::B) and x.oclIsKindOf(RwD::C) and

not x.oclIsKindOf(RwD::A)),

 setA_B_C: Set(OclAny) = OclAny.allInstances()->select(x : OclAny |

x.oclIsKindOf(RwD::A) and x.oclIsKindOf(RwD::B) and

x.oclIsKindOf(RwD::C)),

 out :Set(OclAny) = OclAny.allInstances()->select(x : OclAny |

not x.oclIsKindOf(RwD::A) and not x.oclIsKindOf(RwD::B) and

not x.oclIsKindOf(RwD::C))

in

 (setA_B->size() = 1) and (setB_C->size() = 0) or

 (setA->size() >= 1) and (setA_B->size() = 0) and (setB_C->size() = 0)

Figure 6.5 OCL equivalent expression

Chapter 6 Model Transformations in YATL 120

The transformation rules and their meaning are described briefly in Table 6.1.

Rule name Rule description

ud2let Creates an OCL LetExpression for each spider

diagram Diagram and stores the mapping using the

track mechanism.

z2var Creates an OCL VariableDeclaration for each spider

diagram Zone and stores the mapping using the track

mechanism.

ud2in Creates an OCL Expression, representing the body of

the LetExpression, for each spider diagram Diagram

and stores the mapping using the track mechanism.

LinkLet2Variables Sets the correct value for variables property for each

OCL LetExpression.

LinkLet2In Sets the correct value for body property for each OCL

LetExpression

Main Invokes the above rules in the following order:

 apply ud2var();

 apply z2var();

 apply ud2in();

 apply linkLet2Variables();

 apply linkLet2In();

Table 6.1 Transformation rules from spider diagrams to OCL

The entire YATL program that performs this transformation is described in detail in

Appendix 8. Appendix 8 also contains the Java code that has been used to populate a source

model instance. The result of the mapping of this spider diagram model instance to an OCL

Chapter 6 Model Transformations in YATL 121

model instance, using YATL-Studio and the YATL program from Appendix 8, is described in

Figure 6.6.

Figure 6.6 Mapping spider diagrams to OCL

6.4. Transformation from a subset of EDOC to Web

Services

This section provides a mapping of a distributed system described using a subset of EDOC

into an equivalent system described using Web Services. The subset contains only distributed

systems described by EDOC’s Model Document and Component Collaboration Architecture

profiles. The equivalence between source and target system is established using the behavior

of the system from the user’s point of view. The first two subsections contain a brief

description of EDOC and Web Services. The subsequent sections describe the system and the

Chapter 6 Model Transformations in YATL 122

transformation that performs the mapping. The entire transformation from Model Document

to XML Schema is described in Appendix 9.

6.4.1. EDOC: the UML profile for Enterprise Distributed Object

Computing Specification

The EDOC profile of UML was adopted by the OMG in November of 2001 as the standard

for modeling enterprise systems. It is the modeling standard for Internet computing -

providing for model driven development of enterprise systems based on the OMG’s MDA.

EDOC is proposed as the modeling framework for Internet computing, integrating web

services, messaging, ebXML, .NET and other technologies under a common technology-

independent model. It comprises a set of profiles, which define the Enterprise Collaboration

Architecture (ECA), the Patterns, and the Technology Specific Models and Technology

Mappings.

The ECA allows the definition of PIMs and provides five UML profiles:

The Component Collaboration Architecture (CCA) uses UML classes,
collaborations, and activity graphs to model the structure and behaviour of
components that are part of a system.

The Entity profile describes a set of UML extensions that may be used to model
entity objects.

The Events profile describes a set of UML extensions that may be used to model
event driven systems.

The Business Process profile specializes the CCA and comprises a set of UML
extensions that can be used to model business processes.

The Relationship profile contains extensions of the UML core for rigorously
specifying relationships.

The Patterns profile defines a standard means, Business Function Object
Patterns that can be used to describe object Models using the UML package
notation.

The Technology Specific Models and the Technology Specific Mappings take
into account the mapping from ECA specification to technology specific models.
It defines and EDOC profile for Enterprise Java Beans (EJB) and another for
Flow Composition Model (FCM).

Chapter 6 Model Transformations in YATL 123

6.4.2. Web Service

The purpose of web services is to enable a distributed environment in which any number of

applications, or application components, can communicate in a platform-independent,

language-independent fashion. A web service is a piece of software application, located on

the Internet, that is accessible through standard-based Internet protocols such as HTTP or

SMTP.

Given this definition, several technologies used in recent years could have been classified as

web service technologies, but were not. These technologies include win32 technologies,

J2EE, CORBA, and CGI scripting. These technologies are not web services technologies

mainly because they are based on a proprietary binary standard, which is not supported

globally by most major technologies firms. The core of the web services technologies is

made of eXtensible Markup Language [XML], Simple Object Access Protocol [SOAP], Web

Service Description Language [WSDL], and Universal Description, Discovery and

Integration [UDDI].

XML is a widely used standard from the World Wide Web Consortium (W3C) that facilitates

the interchange of data between computer applications. XML is similar to the language used

for Web pages, the HyperText Markup Language (HTML), both using markup codes (tags).

Computer programs can automatically extract data from an XML document, using its

associated DTD as a guide.

SOAP provides a standard packaging structure for exchanging XML documents over a

variety of Internet protocols, including HTTP, SMTP, and FTP. The existence of a standard

transport mechanism allows heterogeneous clients and servers to communicate. For example,

.NET clients can invoke EJBs and Java clients can invoke .NET Components through SOAP.

 WSDL is an XML technology that provides a standard description of web services. WSDL

can be used to describe the representation of input and output parameters of an invocation,

the function’s structure, the nature of the invocation, and the protocol used for transport.

UDDI provides a worldwide registry of web services for description, discovery, and

integration purposes. Analysts and technologists use UDDI to discover available web

services by searching for categories, names or identifiers.

Chapter 6 Model Transformations in YATL 124

6.4.3. Mapping from Document Model to XML Schema

Both EDOC and WS models describe business processes. A business process manipulates

and exchanges information with other business processes. To describe the information that is

manipulated or exchanged during a business process, both EDOC and WS have dedicated

components: Model Document and XML Schema respectively.

The first step in the mapping from EDOC to WS is to map the models that are used to

describe the information that is manipulated. This section contains the description of the

mapping process from Document Model to XML Schema.

The Document Model package from the EDOC profile defines the information that can be

manipulated by EDOC ProcessComponents. The document model is based on data elements

that can be either primitive data types or composite data. A CD data element contains several

attributes. An attribute has a specific type, an initial value and can be marked as required or

as many to indicate the cardinality. An enumeration defines a type with a fixed set of values.

The document model is described in Figure 6.7.

Figure 6.7 Document Model profile

Chapter 6 Model Transformations in YATL 125

The XML Schema [XMLS] describes the information that can be manipulated by web

services. It contains types that can be simple, such as string or decimal, or complex. A

ComplexType contains a sequence of attributes. An Attribute has a name and a given type. A

partial model of XML Schema is given in Figure 6.8.

Figure 6.8 XML Schema

It is obvious that mapping from Model Document to XML Schema means mapping from

DataElement, DataType and CompositeData to Type, SimpleType and ComplexType

respectively. The transformation process and the rules that perform the mapping are

described briefly in Table 6.2.

Rule name Rule description

dt2st Creates a XML Schema SimpleType for each

Document Model DataType and stores the mapping

using the track mechanism.

cd2ct Creates a XML Schema ComplexType for each

Document Model CompositeData and stores the

mapping using the track mechanism.

at2at Creates a XML Schema Attribute for each Document

Model Attribute and stores the mapping using the

track mechanism.

Chapter 6 Model Transformations in YATL 126

Rule name Rule description

linkAttribute2Type Sets the correct value for the type property for each

XML Schema Attribute.

linkComplexType2Attribute Sets the correct value for sequence property for each

XML Schema CompositeType

documentModel2xsd Invokes the above rules in the following order:

 apply dt2st();

 apply cd2ct();

 apply at2at();

 apply linkAttribute2Type();

 apply linkComplexType2Attribute();

Table 6.2 Transformation rules for Document Model to XML Schema mapping

6.4.4. Mapping from CCA to WSDL

The CCA profile details how the UML concepts of classes and collaboration graphs can be

used to model the structure and the behaviour of the components that comprise a system. In

CCA process components interact with other process components using a set of ports. A

ProcessComponent describes the contract for a component that performs actions. A Port

defines a point of interaction between process components. Ports can be classified according

to the complexity of the interaction into FlowPorts, ProtocolPorts, OperationPorts, and

MultiPorts. A FlowPort is a port capable of producing and consuming a single data type.

ProtocolPorts describe more complex interactions based on Protocols. A Protocol is a

method by which two components can communicate. An OperationPort is a port that

realizes a typical request/response operation. A MultiPort is a group of ports whose actions

are tied together. The specification of a ProcessComponent may include a Choreography to

specify the sequence of interactions performed through ports. Figure 6.9 describes the CCA

profile.

Chapter 6 Model Transformations in YATL 127

Figure 6.9 CCA profile

In WSDL the Definition element acts as a container for the service description. The Import

element serves a purpose similar to the #include directive in the C/C++ programming

language. It lets the modeller separate the elements of a service definition into separate

documents and include them in the main document. The Type element acts as a container for

the definition of datatypes that are used in the Message elements. The Message element is

used to model the data exchanged in a web service. A message is made of several parts, each

part having a name and a type. The PortType element specifies a subset of operations

supported for an endpoint of a web service. The Operation element models an operation. A

WSDL operation can have input, output, and fault messages as part of its action. The Binding

element specifies the protocol and data format of a PortType element. The bindings can be

standard - HTTP, SOAP, or MIME – or can be created by the user. The Service element

typically appears at the end of a WSDL document and identifies a web service. The primary

purpose of a WSDL document is to describe the abstract interface. A Service element is used

only to describe the actual endpoint of a service. Figure 6.10 contains the WSDL model.

Chapter 6 Model Transformations in YATL 128

Figure 6.10 WSDL model

The transformation from CCA to WSDL obeys the well-known compositional principal of

Frege [JB81], which states that “the meaning of a syntactic construct is a function of the

meanings of its constituents”. The transformation process and transformation rules are

described in Table 6.3.

Rule name Rule description

flowPort2message Creates a WSDL Message for each CCA FlowPort and stores

the mapping using the track mechanism.

operationPort2operation Creates a WSDL Operation for each CCA OperationPort and

stores the mapping using the track mechanism. The input and

output properties of the WSDL Operation are computed using

the initiator and the responder port from the OperationPort.

Chapter 6 Model Transformations in YATL 129

protocolPort2portType Creates a WSDL PortType for each CCA ProtocolPort and

stores the mapping using the track mechanism.

processComponent2service Creates a WSDL Service for each CCA ProcessComponent

and stores the mapping using the track mechanism. The

definition of the service is instantied by this rule. The values

of the properties are assigned by the other rules.

LinkDefinition2X Computes the types, messages, and portTypes properties for

every WSDL Definition. Uses the track mechanism to

retrieve the mapping information stored by previous rules.

cca2wsdl Invokes the above rules in the following order:

 apply flowPort2message();

 apply operationPort2operation();

 apply protocolPort2portType();

 apply processComponent2service();

 apply linkDefinition2X();

Table 6.3 Transformation from CCA to WDSL

6.4.5. An example

To study the mapping from EDOC to WS using YATL and YATL-Studio we consider a

simplified model of a travel agency. In general a travel agency provides services such as:

reserves and purchases flights and charters tickets, reserves hotel rooms, rents cars, books

holidays and cruises, and sells travel insurance. To provide such services a travel agency

needs to establish business links with companies such as airlines, hotels, and banks.

Figure 6.12 contains the description of a travel agency community process. The activities in

the TravelAgency Community Process start by the Client initiating the interactions on its

Buy ProtocolPort, according to the BuySell protocol. The TravelAgency is connected

through the Sell ProtocolPort with the Client and responds to the BuySell protocol initiated

by the Client. The TravelAgency uses the dedicated ports BuyFlight, ReserveRoom,

RentCar, and Payment to communicate with the other processes: Airline, Hotel,

Chapter 6 Model Transformations in YATL 130

CarCompany, and Bank. The TravelAgency initiates the communication through these ports,

according to Client’s requests. Figure 6.12 contains the description of choreographies for

BuySell and BuyFlight protocols. Similar choreographies can be derived for ReserveRoom

Client TravelAgency

Buy Sell BuyFlight

ReserveRoom

RentCar

Airline

Flight

Hotel

Room

CarCompany

Car

Bank

Payment

Ship Delivery

Payment

Figure 6.11 Travel agency community process

a) BuySell choreography b) BuyFlight choreography

Figure 6.12 BuySell and BuyFlight coreography

Chapter 6 Model Transformations in YATL 131

Appendix 9 contains the Java code that has been used to populate a source model instance. It

also contains the entire description of transformation rules. The result of the mapping

performed by the YATL program from Appendix 9 over this source model instance is

described in Figure 6.13.

Figure 6.13 Mapping the travel agency model to a WS model

6.5. Conclusions

We have learned a lot during this work. The experiments forced us to add new features to

YATL and improve the implementation, especially the mapping from spider diagrams to

OCL because it is not a conventional mapping from a visual language to a textual language.

YATL is still evolving because one of our main goals is to make it compliant to the QVT

standard.

Chapter 7. Discussion and Conclusions 132

Chapter 7. DISCUSSION AND

CONCLUSIONS

Section 7.1 of this chapter summarizes the work presented in this thesis. Section 7.2

highlights the achievements in terms of the objectives defined in the introduction. Finally,

section 7.3 proposes possible future research that continues from that presented in this thesis.

7.1. Thesis Summary

The thesis presents at the beginning the background of the research: model driven

engineering, language translation, and object-oriented design patterns. The thesis is focused

on the Object Management Group’s (OMG’s) Model Driven Architecture (MDA) initiative.

As MDA is a software development framework in which the translation of one model into

another forms an important part, this thesis is focused on model transformations and model

quality evaluation.

This thesis has investigated and presented object-oriented techniques that can be used to

represent and efficiently implement model transformations in the OMG’s MDA framework.

The proposed technique is based on Yet Another Transformation Language (YATL). YATL is

a hybrid language (a mix of declarative and imperative constructions) that has been designed

and implemented to answer the Query/Views/Transformations Request For Proposals issued

by OMG and to express model transformations as required by the MDA approach.

The technique that we have proposed in this thesis does not claim to be more powerful than

graph transformations, but the implementation of this technique proved to be efficient.

The declarative features come mainly from OCL expressions and the description of the LHS

of transformation rules. YATL acts in a similar way to a database system that uses SQL to

Chapter 7. Discussion and Conclusions 133

interrogate the database and the imperative host language to process the results of the query.

We choose OCL to describe the matching part of YATL rules because it is a well-known

language for querying the UML models; it provides a standard library with an acceptable

computational expressiveness, it is a declarative language, and it is a part of the OMG’s

standards.

YATL supports several kinds of imperative features, used in the right hand side of

transformation rules. These features were selected so that YATL can provide lifecycle

operations like creation and deletion, operations to change the value of properties,

declarations, decisions, and iteration actions, native actions to interact with the host machine,

and build actions to ease the construction of target model instances. Compound actions

contain a sequence of instructions, which are to be executed in the given order. These

syntactic constructions make use of OCL expressions to specify basic operations such as

adding two integer values. YATL uses the same type system as OCL 2.0.

YATL is described by an abstract syntax (a MOF metamodel) and a textual concrete syntax.

It does not yet have a graphical concrete syntax as QVT RFP suggested. A transformation

model in YATL is expressed as a set of transformation rules. Transformations from Platform

Independent Models (PIMs) to Platform Specific Models (PSMs) can be written in YATL to

implement the MDA.

A YATL transformation is unidirectional. We believe that a model transformation language

should be unidirectional, otherwise it cannot be used for large scale models. The main

difficulty with a bidirectional transformation language is that it needs some reasoning to

perform the transformation. The reverse transformation can be described just as any other

transformation using YATL.

The current version of KMF-Studio uses UML diagrams exported over XMI files and

computes OO metrics that have been proved in time to be good indicators to evaluate the

quality of object-oriented systems. KMF-Studio provides forty-four predefined metrics that

can be computed to evaluate to measure a given model. The metrics supported by KMF-

Studio are design metrics that evaluate and measure the maintainability of models. The result

of evaluating the metrics over a model identifies the weak points of UML models and gives

on the fly diagnostic about the current status of the model.

Chapter 7. Discussion and Conclusions 134

7.2. Achievements

The objectives laid out in Section Chapter 1 have been met by the content of this thesis as

described below.

Objective 1 is met by the design and implementation of the YATL language for specifying

model transformations described in Chapter 5. UML and YATL are both object-oriented

specification methods and the transformation specification techniques enables the

transformation relation to be defined between two models that have been specified using

UML.

Objective 2 is met by the experimental studies presented in Chapter 6 and the proposed

modeling framework that is presented in Chapter 3. The experimental studies cover a wide

range of transformations: mapping UML to Java, visual descriptions of constraints to textual

descriptions of constraints (spider diagrams to OCL), and different languages that are used to

describe distributed processing (EDOC to Web Services). The discussion contained in the

above chapters demonstrates how to create a transformation from a UML/YATL

specification. The implementation consists of two parts. The first part, which implements the

UML models, contains the code generated by KMF-Studio providing persistence, editing,

and browsing facilities at model level. The second part contains the specification of

transformations that is executed using the transformation engine implemented by YATL-

Studio.

Objective 3 is met by the design and implementation of a suite of software metrics that can

be used to evaluate the quality of UML models at early stages of software development

process. This is very important especially in OMG’s Model Driven Architecture framework

for software development. As models are used to drive the entire software development

process it is unlikely that high quality software can be derived from low quality models.

7.3. Future work

There are a number of possible areas for continuing the research presented in this thesis.

Some of these are discussed in the following subsections.

Chapter 7. Discussion and Conclusions 135

7.3.1. Visual languages and YATL

Visual languages of many types are used in many disciplines for many purposes. The use of

visual languages is compelling for many reasons, not the least of which is that their graphical

nature can lead to a representation of the actual domain in a way that is not possible with

purely textual systems.

The work presented in this thesis could be extended to study the relationship between YATL

and visual languages. This could lead to a visual description of transformations described

using YATL.

A suitable case study for this investigation would be the constraint diagrams defined by

[GHK99]. These diagrams are based on the concepts of contours, regions, spiders, and

arrows. Such diagrams cannot be mapped to a spatial relationship model based on directed

graphs. Other work has been carried out in [GHK01] to identify the basic concepts of the

notation.

The relationship of these concepts to the abstract YATL concepts could be defined using

mapping rules specified using the specification technique proposed in this thesis.

Some initial work has been carried out in this area and published in [Pat04c] and investigated

the relationship between spider diagrams, which are a subset of constraint diagrams, and

OMG’s Object Constraint Language (OCL), which is used in YATL to query the model

instances. This work could be extended to include investigation into the specification and

implementation of visual languages that are not based on the directed graph style of spatial

relationship model associated with box and line based diagrams.

7.3.2. Relationship between graph transformations and YATL

Graph transformations and graph grammars are at this time the most mature technique for

specifying transformations. Unfortunately graph transformations are not based on object-

oriented concepts, and hence are not compatible with the OMG’s Model Driven Architecture.

Moreover, graph transformations proved to be hard to implement and usually the

Chapter 7. Discussion and Conclusions 136

implementation of such transformations is inefficient. This makes the graph transformation

approach unsuitable for large-scale systems and hence for industrial use.

As future work we propose the investigation of the relationship between graph grammars and

the technique that we proposed in this thesis. We think that UML class diagrams, with the

addition of OCL and YATL are as expressive as graph grammars. There is no formal backing

to this assertion and work to produce evidence in support of it could provide a useful bridge

between the graph grammar and object-oriented communities.

Investigation regarding the expressiveness capabilities of graph grammars and UML/YATL

technique for specifying model transformations could be a direction to follow. Additionally,

the specification of translators between graph grammars and UML/YATL specifications

would aid this work and enable known results from each area to be applied to the other.

To specify the translation it would be necessary to identify the abstract syntax model of both

graph grammars and UML/YATL. The abstract syntax model of graph grammar should

ideally be one that is widely accepted by the graph grammar community.

Based on these translators, tools can be built to provide both graph grammar and UML/YATL

specification of model transformations. This approach would bring the experience and

techniques of the graph grammar community into the industrial community using UML.

Some initial work has been carried out in this area, published in [Pat04b], which investigated

the abstract syntax model of YATL. This work could be extended to include investigation

into the specification of an abstract syntax model for graph grammars and specification of

translation between graph grammars and UML/YATL.

7.3.3. Adding new features to YATL processors

One of the advantages of the model transformation technique proposed in this thesis is the

use of the standardized languages such as UML and OCL, and object-oriented concepts. This

makes the technique easily adoptable by the object-oriented community.

The implementation of the UML/YATL model transformation specification is based on a

classical interpreter/complier approach. The main advantages of this approach are:

Chapter 7. Discussion and Conclusions 137

On the fly evaluation of model transformations

Efficiency of implementation

Support for model transformation debugging

This approach also has disadvantages such as:

Every time the transformation changes the entire transformation needs to be
compiled or interpreted.

Every time the source model changes the entire transformation needs to be re-
executed.

The runtime of the transformation execution is proportional to the size of the
source model instance.

To address these disadvantages, a new implementation approach is required. The approach

that we propose makes use of the observer pattern to monitor the source model instance for

changes continuously. After detecting a change in the source model instance, the

transformation environment alters the target model instance to be consistent with the new

source model instance.

The first step to follow this path could be choosing the appropriate granularity of the

observers used in the transformation environment. As YATL transformation rules are filtered

according to the type of model element instances using dedicated observers for each types

could be a useful approach.

Using such an approach to implement model transformations solves the above

disadvantages:

The observers detect any change in the transformation and trigger and
compile/interpret only the parts that were modified.

The observers detect any change in the source model instance and trigger a
required local transformation that updates the target model instance according to
the new source model instance. Hence, the transformation is not required
explicitly when the model instance changes.

The runtime of the transformation execution is no longer proportional to the size
of the source model instance. The cost of updating the source model instance is
now proportional with the size of the update and the complexity of the invoked
local transformation.

138

Appendix 1. GRAMMAR SPECIFICATION

RULES

Grammar specification is done using the following rules:

1) Left hand-side and right hand-side are separated by symbol .

2) Each production ends with a dot.

3) Terminal symbols are written using capital letter or delimited by apostrophes.

4) The following shortcuts are permitted:

Shortcut Meaning

 X () . X Y . Y .

 X [] . X | () .

 X u + . X Y . Y u | u Y .

 X u * . X Y . Y u | u Y | .

 X || a. X (a) * .

where , and are strings over the language alphabet, Y is a symbol which does not appear

elsewhere in the specification, u is either a unique symbol or an expression delimited by

parentheses, and a is a terminal symbol.

139

Appendix 2. XTL-OVERVIEW

The KMF-Studio framework contains a powerful tool for generating source code: the
XTL (X Template Language). With XTL one can use a JSP-like syntax to write
templates that specify the output to be generated. KMF-Studio provides support for
XTL through a generic template engine that can be used to generate various kinds of
outputs (e.g. C/C++/Java/C# source code and XML).

This section describes how XTL templates are created and used to generate source
code. This section also provides a short reference to the XTL syntax.

The code generation process is performed by KMF-Studio in two steps:

1. Create a Java class, called the template class, from the XTL description.

2. Create an instance of the template class and invoke the method that generates
the code.

2.1.1. An Example

For example, in order to generate a Java file that contains a description of an
interface, the following XTL template

--

-- Generate code for Java

--

<%namespace java %>

--

-- Template for interfaces

--

<%template Test (String pkgName, String interfaceName) %>
<%begin %>

package <%exp pkgName%>;

public Test<%exp interfaceName%> {

}

<%end %>

140

corresponds to the following template class:

/**

 *

 * Class Test.java

 *

 * Generated by XTL compiler at 16 December 2004 16:16:05

 * Visit http://www.cs.ukc.ac.uk/kmf

 *

 */

package test.scripts;

import uk.ac.kent.cs.kmf.*;

import uk.ac.kent.cs.kmf.*;

class Test {

 /** Constructor */

 public Test(java.io.PrintWriter out,

 String pkgName,

 String interfaceName) {

 this.out = out;

 this.pkgName = pkgName;

 this.interfaceName = interfaceName;

 }

 /** Generate code method */

 public void generate() {

 out.print("\npackage ");

 out.print(pkgName);

 out.print(";\n\npublic interface ");

 out.print(interfaceName);

 out.print(" {\n}\n");

 }

 //

 // Local variables

 //

 protected java.io.PrintWriter out;

 protected String pkgName;

141

 protected String interfaceName;

}

If the template class is invoked using “test” and “A” as input arguments, the generated Java

code is:

package test;

public interface A {

}

2.1.2. Supported Features

XTL provides support for the following features:

Namespaces to group templates in hierarchies.

Specify the import of packages used by the generated code.

Specify the parameters of the template class.

Support for control flow and computation through common statements and
expressions (e.g. foreach statements and arithmetic expressions).

142

Appendix 3. XTL-GRAMMAR

3.1. XTL Syntax

Five basic elements make up the lexical structure of a XTL source file: line terminators,

white spaces, comments, and tokens. Of these basic elements, only tokens are significant in

the syntactic grammar of a XTL program.

For compatibility with source code editing tools that add end-of-file markers, and to enable a

source file to be viewed as a sequence of properly terminated lines, the following

transformations are applied, in order, to every source file in a C# program:

If the last character of the source file is a Control-Z character, this character is
deleted.

A carriage-return character is added to the end of the source file if that source
file is non-empty and if the last character of the source file is not a carriage
return, a line feed, a line separator, or a paragraph separator.

The input production defines the lexical structure of a XTL source file. Each source file in a

XTL program must conform to this lexical grammar production.

input | input-element | input input-element.

input-element line-terminator | whitespace| comment| token.

Line terminators divide the characters of a C# source file into lines. YATL uses the following

markers to indicate the end of a line:

Carriage return character (U+000D)

Line feed character (U+000A)

Carriage return character (U+000D) followed by line feed character (U+000A)

Next line character (U+0085)

Line separator character (U+2028)

Paragraph separator character (U+2029)

143

It adds only the following keywords:

elif false in

else foreach namespace

end if template

exp import true

and the following special signs and sequences:

. + ! == ,

() - && != <%

 * || < %>

 / <= *

 % > ::

 >=

The syntax grammar is described below:

// Translation Unit

translation-unit import* namespace

// Import

import '<%' 'import' name '%>' | '<% 'import' name '.' '*' '%>'

// Namespace

namespace '<%' 'namespace' simple-name '{' template* '}' '%>' | template*

// Template

template '<%' 'template' simple-name '(' param* ')' '%>' compound-stm

// Action

action text-stm | exp-stm | include-stm | compound-stm | if-stm | foreach-stm

exp-stm '<%' ‘exp’ exp '%>'

include-stm '<%' 'include' name '(' args ')' '%>'

144

if-stm '<%' 'if' '(' exp ')' '%>' stm ('<%' 'elif' '(' exp ')' '%>' stm)*

 ['<%' 'else' '%>' stm]

 '<%' 'end' '%>'

foreach-stm '<%' 'foreach' type-name simple-name 'in' exp '%>' stm

// Expressions

exp simple-name | 'true' | 'false' | 'integer' | 'real' | ‘string’

exp exp '.' simple-name

exp exp '.' simple-name '(' args ')'

exp ('+' | '-' | '!') exp

exp exp ('*' | '/' | '%') exp

exp exp ('+' | '-') exp

exp exp ('==' | '!=') exp

exp exp ('<' | '<=' | '>' | '>=') exp

exp exp '&&' exp

exp exp '||' exp

// Arguments

args | exp (',' exp)*

// Name

name simple-name ('::' simple-name)*

145

Appendix 4. THE QUALITY MODEL

The ISO/IEC 9126 standard defines the quality of software products considering the

following six characteristics:

Functionality

Reliability

Usability

Efficiency

Maintainability

Portability

The quality model that we propose evaluates the maintainability of UML models according

to the above ISO standard.

Maintainability is defined as a set of attributes that measure the effort to perform given

changes. This characteristic can be reduced to the evaluation of the following attributes, also

called subcharacteristics:

Analyzability

Changeability

Stability

Testability

These attributes together with the corresponding metrics are classified on four levels of

quality.

We have classified model elements whose quality is satisfactory as

Excellent: all the metrics of the quality model are within specified boundaries.

Good: the metric values do not deviate too much from the specified boundaries.

Acceptable: there are no major violations of the metrics boundaries.

A model element whose quality is unsatisfactory can be classified as

146

Poor: the quality model cannot guarantee an efficient maintenance.

This model is based on the principles formulated in [Ghe91] [Som92].

Metrics for internal attributes

Metric Acronym Name Description

MODEL-HNT Height of Nesting Tree Scan the nesting tree starting from the top

using a depth first strategy and compute the

height of the tree. The height of a tree with

only one node is zero.

MODEL-HIG Height of Inheritance

Graph

Scan all the connected parts of the

inheritance graph and compute its height

using an algorithm similar with the one used

in MODEL-HNT. Compute the maximum of

the resulting values.

MODEL-NCN Number of Contained

Namespaces

Performs a depth first search and count the

number of all contained namespaces,

regardless of the nesting level.

MODEL-

ANCPN

Average Number of

Classes Per Namespace

Computes the number of classes for each

namespace and then computes the arithmetic

average.

MODEL-ADIG Average Depth of

Inheritance Graph

Computes the height for each inheritance

graph and then computes the arithmetic

average.

MODEL-ACC Average Class

Complexity

Computes the complexity for each class and

then computes the arithmetic average.

MODEL-AMC Average Method

Complexity

Computes the complexity of every method

and then computes the arithmetic average.

MODEL-AOCC Average OCL Constraint

Complexity

Computes the complexity of every OCL

constraint and then compute the arithmetic

average.

NS-NDCN Number of Directly

Contained Namespaces

Computes the number of directly owned

namespaces.

147

NS-NCN Number of Contained

Namespaces

Computes the number of all owned

namespaces.

NS-NDCC Number of Directly

Contained Classes

Computes the number of classes defined

inside the namespace.

NS-NCC Number of Contained

Classes.

Computes the number of classes owned by

the namespace and all the contained

namespaces.

NS-DNT Depth of Nesting Tree Computes the level of the namespace in the

tree that describes the nesting relation

between namespaces. The height of a node

associated to a namespace that does not

include another namespace is 0.

CLS-NLP Number of Local

Properties

Counts the attributes and the associated ends

that are defined in a Class without

considering the inherited properties

CLS-NP Number of Properties Counts all the properties of a class

considering also the inherited properties,

considering overridden properties only once.

CLS-NLO Number of Local

Operations

Similar to CLS-NLP

CLS-NO Number of Operations Similar to CLS-NP

CLS-ACLO Average Complexity of

Local Operations

Computes the ratio of the sum of complexity

for every local operation and the number of

local operations.

CLS-ACO Average Complexity of

Operations

Similar to CLS-ALCPO

CLS-DIG Depth of Inheritance

Graph

Computes the maximum height in the

existing inheritance graph.

CLS-NDA Number of Direct

Ancestors

Computes the number of directly inherited

classes

CLS-NA Number of Ancestors Computes the number of all the inherited

classes. If a class is inherited more than

148

once, this metric counts all its appearances.

CLS-NDD Number of Direct

Descendants

Computes the number of directed

specializations.

CLS-ND Number of Descendants Similar to CLS-NA, except that

specializations are counted.

CLS-NMI Number of Multiple

Inheritances

Computes the number of classes that are

inherited more than once, considering all the

appearances.

CLS-NRDC Number of Referred

Classes.

Computes the number of classes that are

used directly as attributes’ and association

ends’ types, and inside operations.

Operations’ signature and body are both

checked for appearances. Primitive data

types are not considered.

CLS-NRE Number of Referees Computes the number of classes that refer to

a class.

CLS-LC Local Complexity 2*CLS-NLP + MCC(o)

where o is a local operation. For each

property both a getter and a setter is

considered.

CLS-C Complexity 2*CLS-NP+ MCC(o) where o is a local or

inherited operation.

OPER-MCC McCabe Complexity Computes the McCabe metric.

OPER-NP Number of parameters Counts the number of parameters including

the return type.

OCL-NDP Number of Decision

Points

Counts the number of existing OCL iteration

expressions.

OCL-HNT Height of Nesting Tree Counts the height of the nesting tree that

describes the nesting relation. Nesting

relations that appear in OCL iterations and

let expressions are considered.

OCL-MCC McCabe complexity Computes the McCabe metric for the OCL

149

expression, considering OCL iterations as

loop actions.

OCL-HALC Halstead Complexity Computes the Halstead metric.

OCL-NV Number of Variables Counts the number of variables used in an

OCL expression.

Metrics for external attributes

A quality model implies a set of metrics and boundary limits for each metric. The

maintainability of a UML model is measure at the model and class level according to the

following formulas.

1. MODEL-MAIN = MODEL-CHAN + MODEL-TEST

2. CLS-MAIN = CLS-ANAL + CLS-CHAN + CLS-STAB + CLS-TEST

Class level

Analyzability: CLS-ANAL = CLS-LC + CLS-NA + CLS-ANAL(c) where c is a referred

class.

Definition: Measures the effort to diagnose the errors, the cause of errors, or the parts that

need to be changed. The evaluation of this effort is in strong correlation with the value of

other metrics: local complexity, number of ancestors, and referred classes.

Changeability: CLS-CHAN = CLS-USAB + CLS-SPEC

Definition: The changeability of a class is the sum of the usability and the specialization of

the class.

Usability: CLS-USAB = CLS-NLP + CLS-NLO

Definition: The usability of a class is defined as the sum of:

The number of local properties.

The number of local operations.

Justification: This metric measures the effort required before a class is used. The number of

local properties is multiplied by two because of the presence of get/set methods. The higher

the value of the metric, the harder the class is to use.

150

Specialization: CLS-SPEC = CLS-NLP + CLS-NLO + 10*CLS-NA.

Definition: The specialization of a class is defined as the sum of

The number of local properties.

The number of local operations.

Ten times the number of all inherited classes.

Justification: This metric measure the effort required before a class is specialized. The

number of ancestors is multiplied by a factor as an inherited class defines a set of properties

and operations that need to be analysed. The higher the specialization is the harder is to

speciliaze the class.

Stability: CLS-STAB = CLS-ND + CLS-NRE

Definition: Measures the risk that an unexpected consequence appears after some changes

are performed inside a class. The evaluation derives from the number of the classes that

depend of the class (the descendants and the referees).

Testability: CLS-TEST = CLS-LC

Definition: Testability is the local complexity of class.

Justification: The higher the complexity of a class is, the harder the class is to test. Testability

is based on the computation of McCabe cyclomatic complexity.

Limits

Acronym Min Max

CLS-MAIN 0 400

CLS- ANAL 0 100

CLS-CHAN 0 100

CLS-STAB 0 100

CLS-TEST 0 100

CLS-USAB 0 10

151

CLS-SPEC 0 25

Model level

Changeability: MODEL-CHAN = MODEL-HIG + MODEL-ACC + MODEL-AOCC

Measures the effort required to change the model or to fix some defects. The evaluation of

this effort depends of the depth of the inheritance graph and the average complexity of

classes and OCL constraints.

Testability: MODEL-TEST = MODEL-AMC + MODEL-AOCC

Measures the effort required to validate the model. The effort of validation depends of the

average complexity of methods and OCL constraints.

Limits

Acronym Min Max

MODEL-MAIN 0 200

MODEL-CHAN 0 100

MODEL-TEST 0 100

152

Appendix 5. YATL-LEXICAL GRAMMAR

Five basic elements make up the lexical structure of a YATL source file: line terminators,

white space, comments, and tokens. Of these basic elements, only tokens are significant in

the syntactic grammar of a YATL program.

For compatibility with source code editing tools that add end-of-file markers, and to enable a

source file to be viewed as a sequence of properly terminated lines, the following

transformations are applied, in order, to every source file in a C# program:

If the last character of the source file is a Control-Z character, this character is
deleted.

A carriage-return character is added to the end of the source file if that source
file is non-empty and if the last character of the source file is not a carriage
return, a line feed, a line separator, or a paragraph separator.

The input production defines the lexical structure of a YATL source file. Each source file in a

YATL program must conform to this lexical grammar production.

input | input-element | input input-element.

input-element line-terminator | whitespace| comment| token.

Line terminators divide the characters of a C# source file into lines. YATL uses the following

markers to indicate the end of a line:

Carriage return character (U+000D)

Line feed character (U+000A)

Carriage return character (U+000D) followed by line feed character (U+000A)

Next line character (U+0085)

Line separator character (U+2028)

Paragraph separator character (U+2029)

YATL’s tokens are based on OCL tokens [OCL20],[ALP03]. It adds only the following

keywords:

153

apply do namespace start

break foreach new track

build import null transformation

continue in query while

delete match rule

and the assignment operator :=.

154

Appendix 6. YATL-SYNTAX GRAMMAR

translation-unit

import-list starting-rule namespace-declaration-list .

import-list

 |

import-list import-declaration .

import-declaration

‘import’ simple-name ‘.’ ‘*’ ‘;’ .

starting-rule

‘start’ pathname ‘;’ .

namespace-declaration-list

 |

namespace-declaration-list namespace-declaration .

namespace-declaration

 'namespace' simple-name '(' models ')' '{' (query|transformation)* '}' .

models

source-model [',' target-model].

transformation

‘transformation’ simple-name ‘{‘ rule* ‘}’ .

rule

'rule' simple-name filter '(' [param (',' param)*] ')' compound-stm .

filter

 'match' filter-path .

filterPath

 filter-step |

filter-path '::' filter-step .

filter-step

simple-name ['[' ocl-expression ']']

action-list

 |

155

 action-list action .

action

declaration-stm |

expression-stm |

compound-stm |

if-stm |

loop-stm |

break-stm |

continue-stm |

apply-stm .

declaration-stm

‘let’ variable-declaration-list ‘;’ .

expression-stm

expression ‘;’] .

compound-stm

‘{‘action-list:list ‘}’.

if-stm

‘iff’ ocl-expression ‘then’ action [‘else’ action] ‘endif’.

loop-stm

‘while’ ocl-expression ‘do’ action |

‘do’ action ‘while’ ‘(‘ocl-expression ‘)’ ‘;’ |

‘foreach’ variable-declaration ‘in’ ocl-expression ‘do’ action .

break-stm

‘break’ ‘;’ .

continue-stm

‘continue’ ‘;’ .

apply-stm

‘apply’ pathname ‘(‘ [ocl-expression (‘,’ ocl-expression)*] ‘)’ ‘;’

delete-stm

‘delete’ ocl-expression ‘;’ .

expression

 assignment-expression |

ocl-expression |

track-expression .

assignment-expression

156

ocl-expression ‘:=’ rhs-expression .

rhs-expression

ocl-expression |

new-expression |

build-expression |

track-expression .

new-expression

‘new’ path-name .

build-expression

‘build’ path-name ‘{‘ [pair (‘,’ pair)*] ‘}’.

pair

 name ‘:=’ rhs-expression .

track-expression

‘track’ ‘(‘ ocl-expression ‘,’ simple-name ‘,’ ocl-expression ‘)’ |

‘track’ ‘(‘ ‘null’ ‘,’ simple-name ‘,’ ocl-expression ‘)’ |

‘track’ ‘(‘ ocl-expression ‘,’ simple-name ‘,’ ‘null’ ‘)’ .

query

‘query’ simple-name ‘{‘ context-declaration-list ‘}’ .

Nonterminal ocl-expression, variable-declaration, and context-declaration-list are described

in [OCL2] and [ALP03].

157

Appendix 7. MAPPING FROM UML
MODEL TO JAVA MODEL

start kmf::uml2java::main;

namespace kmf(uml, java) {

 transformation uml2java {

 -- 1-1 Mappings

 -- Map a UML package to a Java package

 rule umlPkg2JavaPkg

 match uml::Model_Management::Package () {

 -- Create Java package

 let jPkg: javaModel::JavaPackage;

 jPkg := new javaModel::JavaPackage;

 -- Set name

 jPkg.name := self.name.body_;

 -- Store mapping

 track(self, pkg2pkg, jPkg);

 }

 -- Map a UML class to a Java class

 rule umlClass2JavaClass

 match uml::Foundation::Core::Class () {

 -- Create Java class

 let jClass: javaModel::JavaClass;

 jClass := new javaModel::JavaClass;

 -- Set name

 jClass.name := self.name.body_;

 -- Store mapping

 track(self, class2class, jClass);

 }

 -- Map a UML attribute to a Java field

 rule umlAttribute2JavaField

 match uml::Foundation::Core::Attribute () {

 -- Create a Java Field

158

 let jField: javaModel::JavaField;

 jField := new javaModel::JavaField;

 -- Set name

 jField.name := self.name.body_;

 -- Store mapping

 track(self, attribute2field, jField);

 }

 -- Map a UML association end to a Java field

 rule umlAssociationEnd2JavaField

 match uml::Foundation::Core::AssociationEnd (){

 -- Create the Java field

 let jField: javaModel::JavaField;

 jField := new javaModel::JavaField;

 -- Set name

 iff self.name.oclIsUndefined() then

 jField.name := self.type.name.body_;

 else

 jField.name := self.name.body_;

 endif

 -- Store mapping

 track(self, associationEnd2field, jField);

 }

 -- Map a UML method to a Java operation

 rule umlOperation2JavaMethod

 match uml::Foundation::Core::Operation () {

 -- Create a Java Method

 let jMethod: javaModel::JavaMethod;

 jMethod := new javaModel::JavaMethod;

 -- Set name

 jMethod.name := self.name.body_;

 -- Store mapping

 track(self, operation2method, jMethod);

 }

 -- Link all the elements to the corresponding package

 rule linkElements2Pkg

 match uml::Model_Management::Package () {

 -- Get the corresponding JavaPackage

 let jPkg: javaModel::JavaPackage;

 jPkg = track(self, pkg2pkg, null);

 -- For each owned element

159

 foreach e:uml::Foundation::Core::Classifier

 in self.ownedElement do {

 -- Get the Java classifier

 let jCls: javaModel::JavaClassifier;

 jCls := track(e, class2class, null);

 jPkg.elements := jPkg.elements->including(jCls);

 }

 }

 -- Link all the fields to the corresponding class

 rule linkAttribute2Class

 match uml::Foundation::Core::Attribute () {

 -- Get the Java Class that owns the corresponding field

 let umlOwner: uml::Foundation::Core::Classifier,

 jClass : javaModel::JavaClass;

 umlOwner := self.owner;

 jClass := track(umlOwner, class2class, null);

 -- Get the Java Field

 let jField: javaModel::JavaField;

 jField := track(self, attribute2field, null);

 -- Link field and class

 jClass.fields := jClass.fields->including(jField);

 jField.javaClass := jClass;

 }

 rule linkAssociationEnd2Class

 match uml::Foundation::Core::AssociationEnd () {

 -- Get the AssociationEnds

 let ends: Set(uml::Foundation::Core::AssociationEnd) =

 self.association.connection->asSet();

 let otherEnd: uml::Foundation::Core::AssociationEnd =

 (ends->asSet()-Set{self})->asSequence()->at(1);

 -- Get the Java Class that owns the corresponding field

 let umlOwner: uml::Foundation::Core::Classifier,

 jClass: javaModel::JavaClass;

 umlOwner := otherEnd.type;

 jClass := track(umlOwner, class2class, null);

 -- Get the Java Field

 let jField: javaModel::JavaField;

 jField := track(self, associationEnd2field, null);

 -- Link field and class

 jClass.fields := jClass.fields->including(jField);

 jField.javaClass := jClass;

 }

160

 -- Link all the operations to the corresponding class

 rule linkOperation2Class

 match uml::Foundation::Core::Operation () {

 -- Get the UML Class that owns the attribute

 let umlOwner: uml::Foundation::Core::Classifier,

 jClass: javaModel::JavaClass;

 umlOwner := self.owner;

 jClass := track(umlOwner, class2class, null);

 -- Get the Java Method

 let jMethod: javaModel::JavaMethod;

 jMethod := track(self, operation2field, null);

 -- Link method and class

 jClass.methods := jClass.methods->including(jMethod);

 jMethod.javaClasses := jMethod.javaClasses->including(jClass);

 }

 -- main rule

 rule main () {

 -- Map individual elements

 apply umlPkg2JavaPkg();

 apply umlClass2JavaClass();

 apply umlAttribute2JavaField();

 apply umlAssociationEnd2JavaField();

 apply umlOperation2JavaMethod();

 -- Add element to Java packages

 apply linkElements2Pkg();

 -- Add fields to Java classes

 apply linkAttribute2Class();

 apply linkAssociationEnd2Class();

 -- Add operations to Java classes

 apply linkOperation2Class();

 }

 }

}

161

Appendix 8. MAPPING FROM SPIDER

DIAGRAMS MODEL TO OCL MODEL

Java program that populates the spider diagram model instance

 SdRepository rep = new SdRepository$Class();

 // Create contours

 Contour a = (Contour)rep.buildElement("sd.as.Contour");

 a.setName("a");

 Contour b = (Contour)rep.buildElement("sd.as.Contour");

 b.setName("b");

 Contour c = (Contour)rep.buildElement("sd.as.Contour");

 c.setName("c");

 // Create zone (a | b)

 Zone z1 = (Zone)rep.buildElement("sd.as.Zone");

 z1.getContainingContours().add(a);

 z1.getExcludingContours().add(b);

 // Create zone (b | a)

 Zone z2 = (Zone)rep.buildElement("sd.as.Zone");

 z2.getContainingContours().add(b);

 z2.getExcludingContours().add(a);

 // Create zone (a, b |)

 Zone z3 = (Zone)rep.buildElement("sd.as.Zone");

 z3.getContainingContours().add(a);

 z3.getContainingContours().add(b);

 // Create diagram containing all the zones

 UnitaryDiagram ud1 =

(UnitaryDiagram)rep.buildElement("sd.as.UnitaryDiagram");

 ud1.getZones().add(z1);

 ud1.getZones().add(z2);

 ud1.getZones().add(z3);

 // Save repository

 rep.saveXMI("src/test/scripts/sdRep.xml");

162

YATL program

start kmf::sd2ocl::main;

namespace kmf(sd, ocl) {

 transformation sd2ocl {

 -- 1-1 Mappings

 -- Map a SD unitary diagram to an OCL expression

 rule ud2let match sd::as::UnitaryDiagram () {

 -- Create let expression

 let letExp: syntax::ast::expressions::LetExpAS;

 letExp := new syntax::ast::expressions::LetExpAS;

 -- Store mapping

 track(self, ud2let, letExp);

 }

 -- Map a SD zone to a variable: init exppression computes the set

 rule z2var match sd::as::Zone () {

 --

 -- Create name(zone): Set{OclAny} = OclAny.allInstances()

 -- ->select(x:OclAny | x.isKindOf() and ... and not x.isKindOf()

 -- and ... and not)

 --

 -- Create OclAny type

 let oclAnyType: syntax::ast::types::ClassifierAS;

 oclAnyType := new syntax::ast::types::ClassifierAS;

 oclAnyType.pathName := Sequence{'OclAny'};

 -- Create type Set{OclAny}

 let setType: syntax::ast::types::SetTypeAS;

 setType := new syntax::ast::types::SetTypeAS;

 setType.elementType := oclAnyType;

 -- Create pathName expression 'OclAny'

 let oclAnyPathNameExp: syntax::ast::expressions::PathNameExpAS;

 oclAnyPathNameExp := new syntax::ast::expressions::PathNameExpAS;

 oclAnyPathNameExp.pathName := Sequence{'OclAny'};

 -- Create OclAny.allInstances selection

 let allInstancesSelection:

 syntax::ast::expressions::DotSelectionExpAS;

 allInstancesSelection :=

 new syntax::ast::expressions::DotSelectionExpAS;

 allInstancesSelection.source := oclAnyPathNameExp;

 allInstancesSelection.name := 'allInstances';

163

 -- Create OclAny.allInstances() operation call

 let allInstancesCall:

 syntax::ast::expressions::OperationCallExpAS;

 allInstancesCall :=

 new syntax::ast::expressions::OperationCallExpAS;

 allInstancesCall.source := allInstancesSelection;

 allInstancesCall.arguments := Sequence{};

 -- Create OclAny.allInstances()->select selection

 let selectExp: syntax::ast::expressions::ArrowSelectionExpAS;

 selectExp := new syntax::ast::expressions::ArrowSelectionExpAS;

 selectExp.source := allInstancesCall;

 selectExp.name := 'select';

 -- Create x: OclAny variable declaration

 let xVar: syntax::ast::contexts::VariableDeclarationAS;

 xVar := new syntax::ast::contexts::VariableDeclarationAS;

 xVar.name := 'x';

 xVar.type := oclAnyType;

 -- Create filters: isKindOf and notIsKindOf

 let filters: Sequence(syntax::ast::expressions::OclExpressionAS);

 filters := Sequence{};

 let isKindOfSelection:

 syntax::ast::expressions::DotSelectionExpAS;

 let isKindOfCall: syntax::ast::expressions::OperationCallExpAS;

 let contourPathNameExp: syntax::ast::expressions::PathNameExpAS;

 foreach c: sd::as::Contour in self.containingContours do {

 -- Create name(c) path name

 contourPathNameExp :=

 new syntax::ast::expressions::PathNameExpAS;

 contourPathNameExp.pathName := Sequence{c.name};

 -- Create x.isKindOf

 isKindOfSelection :=

 new syntax::ast::expressions::DotSelectionExpAS;

 isKindOfSelection.source := xVar;

 isKindOfSelection.name := 'isKindOf';

 -- Create x.isKindOf(c.name)

 isKindOfCall :=

 new syntax::ast::expressions::OperationCallExpAS;

 isKindOfCall.source := isKindOfSelection;

 isKindOfCall.arguments := Sequence{contourPathNameExp};

 -- Add it to filters

 filters := filters->including(isKindOfCall);

 }

 foreach c: sd::as::Contour in self.excludingContours do {

164

 -- Create name(c) path name

 contourPathNameExp :=

 new syntax::ast::expressions::PathNameExpAS;

 contourPathNameExp.pathName := Sequence{c.name};

 -- Create x.isKindOf

 isKindOfSelection :=

 new syntax::ast::expressions::DotSelectionExpAS;

 isKindOfSelection.source := xVar;

 isKindOfSelection.name := 'isKindOf';

 -- Create x.isKindOf(c.name)

 isKindOfCall :=

 new syntax::ast::expressions::OperationCallExpAS;

 isKindOfCall.source := isKindOfSelection;

 isKindOfCall.arguments := Sequence{contourPathNameExp};

 -- Create not x.isKindOf(c.name)

 let notSelection: syntax::ast::expressions::DotSelectionExpAS;

 notSelection := new syntax::ast::expressions::DotSelectionExpAS;

 notSelection.source := isKindOfCall;

 notSelection.name := 'not';

 let notCall: syntax::ast::expressions::OperationCallExpAS;

 notCall := new syntax::ast::expressions::OperationCallExpAS;

 notCall.source := notSelection;

 notCall.arguments := Sequence{};

 -- Add it to filters

 filters := filters->including(notCall);

 }

 -- Compute iterator's body

 let itBody: syntax::ast::expressions::OclExpressionAS;

 itBody := filters->at(1);

 let i:Integer = 2;

 while i <= filters->size() do {

 -- Create itBody.and

 let andSelection: syntax::ast::expressions::DotSelectionExpAS;

 andSelection := new syntax::ast::expressions::DotSelectionExpAS;

 andSelection.name := 'and';

 andSelection.source := itBody;

 -- Create itBody.and(args)

 let andCall: syntax::ast::expressions::OperationCallExpAS;

 andCall := new syntax::ast::expressions::OperationCallExpAS;

 andCall.source := andSelection;

 andCall.arguments := Sequence{filters->at(i)};

 -- Set new value for itBody

 itBody := andCall;

165

 -- Next filter

 i := i + 1;

 }

 -- Create iterator expression OclAny.allInstances()->select(...)

 let iteratorExp: syntax::ast::expressions::IteratorExpAS;

 iteratorExp := new syntax::ast::expressions::IteratorExpAS;

 iteratorExp.source := selectExp;

 iteratorExp.iterator := xVar;

 iteratorExp.loopBody := itBody;

 -- Compute zone's name

 let zName: String = '';

 foreach c: sd::as::Contour in self.containingContours do {

 zName := zName.concat(c.name);

 zName := zName.concat('_');

 }

 zName := zName.concat('|');

 foreach c: sd::as::Contour in self.excludingContours do {

 zName := zName.concat('_');

 zName := zName.concat(c.name);

 }

 -- Create name(zone):Set{OclAny} :=

 -- OclAny.allInstances()->select(...)

 let var: syntax::ast::contexts::VariableDeclarationAS;

 var := new syntax::ast::contexts::VariableDeclarationAS;

 var.name := zName;

 var.type := setType;

 var.initExp := iteratorExp;

 -- Store mapping

 track(self, z2var, var);

 }

 -- Map a SD to let's body (in expression)

 rule ud2in match sd::as::UnitaryDiagram () {

 -- Make a list of conditions for each zone

 let ands: Sequence(syntax::ast::expressions::OclExpressionAS) =

 Sequence{};

 -- For each zone

 foreach z: sd::as::Zone in self.zones do {

 -- Compute the number of spiders touching the zone

 -- All spiders are single footed

 let feetNo: Integer = 0;

 foreach s: sd::as::Spider in self.spiders do {

 iff s.habitat->includes(z) then

166

 feetNo := feetNo + 1;

 endif

 }

 -- Compute is shaded flag

 let isShaded: Boolean = self.shadedZones->includes(z);

 -- Make the expression that checks the size

 -- name(z)->size() operator feetNo

 -- Make name(z) expression

 let varExp: syntax::ast::expressions::VariableExpAS;

 varExp := new syntax::ast::expressions::VariableExpAS;

 varExp.variableDeclarationAS := track(z, z2var, null);

 -- Make name(z)->size

 let selectExp: syntax::ast::expressions::ArrowSelectionExpAS;

 selectExp := new syntax::ast::expressions::ArrowSelectionExpAS;

 selectExp.source = varExp;

 selectExp.name := 'size';

 -- Make name(z)->size()

 let callExp: syntax::ast::expressions::OperationCallExpAS;

 callExp := new syntax::ast::expressions::OperationCallExpAS;

 callExp.source := selectExp;

 -- Make operator

 let opName: String = '>=';

 iff isShaded then

 opName := '=';

 endif

 -- Make name(z)->size() <=

 let selExp: syntax::ast::expressions::DotSelectionExpAS;

 selExp := new syntax::ast::expressions::DotSelectionExpAS;

 selExp.source := callExp;

 selExp.name := opName;

 -- Make feetName exp

 let argExp: syntax::ast::expressions::IntegerLiteralExpAS;

 argExp := new syntax::ast::expressions::IntegerLiteralExpAS;

 argExp.value := feetNo;

 -- Make name(z)->size() <= feetNo

 let relCall: syntax::ast::expressions::OperationCallExpAS;

 relCall := new syntax::ast::expressions::OperationCallExpAS;

 relCall.source := selExp;

 relCall.arguments := relCall.arguments->including(argExp);

 --

 -- Add exp to ands

 --

 ands := ands->including(relCall);

167

 }

 -- Make a logical expression from ands

 iff ands->size() >= 1 then {

 let inExp: syntax::ast::expressions::OclExpressionAS;

 inExp := ands->at(1);

 let i:Integer = 2;

 while i<=ands->size() do {

 -- Make an and

 let andSel: syntax::ast::expressions::DotSelectionExpAS;

 andSel := new syntax::ast::expressions::DotSelectionExpAS;

 andSel.source := inExp;

 andSel.name := 'and';

 let andCall: syntax::ast::expressions::OperationCallExpAS;

 andCall := new syntax::ast::expressions::OperationCallExpAS;

 andCall.source := andSel;

 andCall.arguments := andCall.arguments->including(ands->at(i));

 -- Update inExp for next iteration

 inExp := andCall;

 -- Next

 i := i+1;

 }

 -- Store mapping

 track(self, ud2in, inExp);

 }

 endif

 }

 -- Link let expressions to variables

 rule linkLet2Variables match sd::as::UnitaryDiagram () {

 -- Get let expression

 let letExp: syntax::ast::expressions::LetExpAS;

 letExp := track(self, ud2let, null);

 -- For each zone

 foreach z: sd::as::Zone in self.zones do {

 let var:syntax::ast::contexts::VariableDeclarationAS;

 var := track(z, z2var, null);

 letExp.variables := letExp.variables->including(var);

 }

 }

 -- Link let expressions to variables

 rule linkLet2In match sd::as::UnitaryDiagram () {

 -- Get let expression

168

 let letExp: syntax::ast::expressions::LetExpAS;

 letExp := track(self, ud2let, null);

 -- Get in expression

 let inExp: syntax::ast::expressions::OclExpressionAS;

 inExp := track(self, ud2in, null);

 -- Link them

 letExp.inExp := inExp;

 }

 -- main rule

 rule main () {

 -- Create a let expression for each unitary diagram

 apply ud2let();

 -- Create a variable declaration for each zone

 apply z2var();

 -- Create the in expression

 apply ud2in();

 -- Link diagrams to variables

 apply linkLet2Variables();

 -- Link diagrams to in

 apply linkLet2In();

 }

 }

}

169

Appendix 9. MAPPING FROM EDOC TO

WS

Java code to populate the source model instance

//

// Create EDOC population

//

protected static DataType makeDataType(Repository rep, String type) {

DataType dt = (DataType)rep.buildElement("edoc.ECA.DocumentModel.DataType");

dt.setName(type);

return dt;

}

protected static Attribute makeAttribute(Repository rep, String name,

DataElement type) {

Attribute at = (Attribute)rep.buildElement("edoc.ECA.DocumentModel.Attribute");

at.setName(name);

at.setType(type);

return at;

}

protected static CompositeData makeCompositeType(Repository rep, String name,

List dataElements) {

CompositeData dt =

(CompositeData)rep.buildElement("edoc.ECA.DocumentModel.CompositeData");

dt.setName(name);

dt.setFeatures(dataElements);

return dt;

}

protected static Protocol makeProtocol(Repository rep, String name) {

Protocol p = (Protocol)rep.buildElement("edoc.ECA.CCA.Protocol");

p.setName(name);

return p;

}

protected static FlowPort makeFlowPort(Repository rep,String name,DataElement type) {

FlowPort fp = (FlowPort)rep.buildElement("edoc.ECA.CCA.FlowPort");

fp.setName(name);

fp.setType(type);

return fp;

}

protected static ProtocolPort makeProtocolPort(Repository rep, String name) {

ProtocolPort pp = (ProtocolPort)rep.buildElement("edoc.ECA.CCA.ProtocolPort");

pp.setName(name);

return pp;

170

}

protected static OperationPort makeOperationPort(Repository rep, String name,

FlowPort call, FlowPort ret) {

OperationPort op =

(OperationPort)rep.buildElement("edoc.ECA.CCA.OperationPort");

op.setName(name);

op.getPorts().add(call);

op.getPorts().add(ret);

return op;

}

protected static Repository initEDOCPopulation() {

EdocRepository rep = new EdocRepository$Class();

// Create simple types

DataType stringType = makeDataType(rep, "String");

DataType integerType = makeDataType(rep, "Integer");

DataType realType = makeDataType(rep, "Real");

// Create attributes

Attribute airlineName = makeAttribute(rep, "AirlineName", stringType);

Attribute flightNo = makeAttribute(rep, "FlightNo", integerType);

Attribute location = makeAttribute(rep, "Location", stringType);

Attribute date = makeAttribute(rep, "Date", stringType);

Attribute hotelName = makeAttribute(rep, "HotelName", stringType);

Attribute address = makeAttribute(rep, "Address", stringType);

Attribute companyName = makeAttribute(rep, "CompanyName", stringType);

Attribute period = makeAttribute(rep, "Period", integerType);

// Create composite types

List locationInfo = new Vector();

locationInfo.add(location);

locationInfo.add(date);

CompositeData locationType = makeCompositeType(rep, "Location", locationInfo);

List flightInfo = new Vector();

flightInfo.add(airlineName);

flightInfo.add(flightNo);

flightInfo.add(date);

CompositeData flightType = makeCompositeType(rep, "Flight", flightInfo);

List hotelInfo = new Vector();

hotelInfo.add(hotelName);

hotelInfo.add(address);

hotelInfo.add(date);

hotelInfo.add(period);

CompositeData hotelType = makeCompositeType(rep, "Hotel", hotelInfo);

List carInfo = new Vector();

carInfo.add(companyName);

carInfo.add(address);

carInfo.add(date);

carInfo.add(period);

CompositeData carType = makeCompositeType(rep, "Car", carInfo);

// Create BuySell protocol

Protocol buySellProt = makeProtocol(rep, "BuySell");

ProtocolPort buyPort = makeProtocolPort(rep, "Buy");

buyPort.setDirection(DirectionType$Class.Initiates);

buyPort.setOwner(buySellProt);

buyPort.setUses(buySellProt);

171

ProtocolPort sellPort = makeProtocolPort(rep, "Sell");

sellPort.setDirection(DirectionType$Class.Responds);

sellPort.setOwner(buySellProt);

sellPort.setUses(buySellProt);

buySellProt.getPorts().add(buyPort);

buySellProt.getPorts().add(sellPort);

// Create BuyFlight protocol

Protocol buyFlightProt = makeProtocol(rep, "BuyFlight");

ProtocolPort buyFlightPort = makeProtocolPort(rep, "BuyFlight");

buyFlightPort.setDirection(DirectionType$Class.Initiates);

buyFlightPort.setOwner(buyFlightProt);

buyFlightPort.setUses(buyFlightProt);

ProtocolPort flightPort = makeProtocolPort(rep, "Flight");

flightPort.setDirection(DirectionType$Class.Responds);

flightPort.setOwner(buyFlightProt);

flightPort.setUses(buyFlightProt);

buyFlightProt.getPorts().add(buyFlightPort);

buyFlightProt.getPorts().add(flightPort);

// Add operation protocols

FlowPort locationPort = makeFlowPort(rep, "Location", locationType);

locationPort.setDirection(DirectionType$Class.Initiates);

FlowPort flightFlowPort = makeFlowPort(rep, "FlightInfo", flightType);

flightFlowPort.setDirection(DirectionType$Class.Responds);

OperationPort findFlightPort = makeOperationPort(rep, "FindFlight",

locationPort, flightFlowPort);

buyFlightProt.getPorts().add(findFlightPort);

// Create reserveRoom protocol

Protocol reserveRoomProt = makeProtocol(rep, "ReserveRoom");

ProtocolPort reserveRoomPort = makeProtocolPort(rep, "ReserveRoom");

reserveRoomPort.setDirection(DirectionType$Class.Initiates);

reserveRoomPort.setOwner(reserveRoomProt);

reserveRoomPort.setUses(reserveRoomProt);

ProtocolPort roomPort = makeProtocolPort(rep, "Room");

roomPort.setDirection(DirectionType$Class.Responds);

roomPort.setOwner(reserveRoomProt);

roomPort.setUses(reserveRoomProt);

reserveRoomProt.getPorts().add(reserveRoomPort);

reserveRoomProt.getPorts().add(roomPort);

// Create rentCar protocol

Protocol rentCarProt = makeProtocol(rep, "RentCar");

ProtocolPort rentCarPort = makeProtocolPort(rep, "RentCar");

rentCarPort.setDirection(DirectionType$Class.Initiates);

rentCarPort.setOwner(rentCarProt);

rentCarPort.setUses(rentCarProt);

ProtocolPort carPort = makeProtocolPort(rep, "Car");

carPort.setDirection(DirectionType$Class.Responds);

carPort.setOwner(rentCarProt);

carPort.setUses(rentCarProt);

rentCarProt.getPorts().add(rentCarPort);

rentCarProt.getPorts().add(carPort);

// Create payment protocol

Protocol paymentProt = makeProtocol(rep, "Payment");

ProtocolPort taPaymentPort = makeProtocolPort(rep, "TAPayment");

172

taPaymentPort.setDirection(DirectionType$Class.Initiates);

taPaymentPort.setOwner(paymentProt);

taPaymentPort.setUses(paymentProt);

ProtocolPort bPaymentPort = makeProtocolPort(rep, "BPayment");

bPaymentPort.setDirection(DirectionType$Class.Responds);

bPaymentPort.setOwner(paymentProt);

bPaymentPort.setUses(paymentProt);

paymentProt.getPorts().add(taPaymentPort);

paymentProt.getPorts().add(bPaymentPort);

// Create ShipDelivery protocol

Protocol shipDeliveryProt = makeProtocol(rep, "ShipDelivery");

ProtocolPort shipPort = makeProtocolPort(rep, "Ship");

shipPort.setDirection(DirectionType$Class.Initiates);

shipPort.setOwner(shipDeliveryProt);

shipPort.setUses(shipDeliveryProt);

ProtocolPort deliveryPort = makeProtocolPort(rep, "Delivery");

deliveryPort.setDirection(DirectionType$Class.Responds);

deliveryPort.setOwner(shipDeliveryProt);

deliveryPort.setUses(shipDeliveryProt);

shipDeliveryProt.getPorts().add(shipPort);

shipDeliveryProt.getPorts().add(deliveryPort);

// Create Client

ProcessComponent client =

(ProcessComponent)rep.buildElement("edoc.ECA.CCA.ProcessComponent");

client.setName("Client");

client.getPorts().add(buyPort);

client.getPorts().add(deliveryPort);

buyPort.setOwner(client);

deliveryPort.setOwner(client);

// Create Travel Agency

ProcessComponent travelAgency =

(ProcessComponent)rep.buildElement("edoc.ECA.CCA.ProcessComponent");

travelAgency.setName("Expedia");

travelAgency.getPorts().add(sellPort);

travelAgency.getPorts().add(buyFlightPort);

travelAgency.getPorts().add(findFlightPort);

travelAgency.getPorts().add(reserveRoomPort);

travelAgency.getPorts().add(rentCarPort);

travelAgency.getPorts().add(taPaymentPort);

sellPort.setOwner(travelAgency);

buyFlightPort.setOwner(travelAgency);

reserveRoomPort.setOwner(travelAgency);

rentCarPort.setOwner(travelAgency);

taPaymentPort.setOwner(travelAgency);

// Create Airline

ProcessComponent airline =

 (ProcessComponent)rep.buildElement("edoc.ECA.CCA.ProcessComponent");

airline.setName("BA");

airline.getPorts().add(flightPort);

// Create Hotel

ProcessComponent hotel =

(ProcessComponent)rep.buildElement("edoc.ECA.CCA.ProcessComponent");

hotel.setName("Marriot");

173

hotel.getPorts().add(roomPort);

// Create CarCompany

ProcessComponent carCompany =

(ProcessComponent)rep.buildElement("edoc.ECA.CCA.ProcessComponent");

carCompany.setName("CarCompany");

carCompany.getPorts().add(carPort);

// Save repository into an xml

rep.saveXMI("src/test/scripts/edocRep.xml");

return rep;

}

The YATL program

start kmf::edoc2ws::main;

namespace kmf(sd, ocl) {

 transformation edoc2ws {

 --

 -- EDOC.ECA.DocumentModel to WS.XSD

 --

 -- Map an EDOC DataType to an XSD SimpleType

 rule dt2st match edoc::ECA::DocumentModel::DataType () {

 -- Create SimpleType

 let st: ws::xsd::SimpleType;

 st := new ws::xsd::SimpleType;

 st.name := self.name;

 -- Store mapping

 track(self, type2type, st);

 }

 -- Map an EDOC CompositeData to an XSD ComplexType

 rule cd2ct match edoc::ECA::DocumentModel::CompositeData () {

 -- Create ComplexType

 let ct: ws::xsd::ComplexType;

 ct := new ws::xsd::ComplexType;

 ct.name := self.name;

 -- Store mapping

 track(self, type2type, ct);

 }

 -- Map an EDOC Attribute to an XSD attribute

 rule at2at match edoc::ECA::DocumentModel::Attribute () {

 -- Create Attribute

 let at: ws::xsd::Attribute;

174

 at := new ws::xsd::Attribute;

 at.name := self.name;

 -- Store mapping

 track(self, at2at, at);

 }

 -- Link XSD attributes to XSD types

 rule linkAttribute2Type

match edoc::ECA::DocumentModel::Attribute () {

 -- Get the XSD Attribute

 let xsdAttribute: ws::xsd::Attribute;

 xsdAttribute := track(self, at2at, null);

 -- Get the type

 let edocType : edoc::ECA::DocumentModel::DataElement;

 edocType := self.type;

 let xsdType: ws::xsd::Type;

 xsdType := track(edocType, type2type, null);

 xsdAttribute.type := xsdType;

 }

 -- Link XSD ComplexTypes to XSD Attributes

 rule linkComplexType2Attribute

match edoc::ECA::DocumentModel::CompositeData () {

 -- Get the XSD ComplexType

 let xsdComplexType: ws::xsd::ComplexType;

 xsdComplexType := track(self, type2type, null);

 -- Add every attribute

 foreach edocAttribute : edoc::ECA::DocumentModel::Attribute

in self.features do {

 let xsdAttribute : ws::xsd::Attribute;

 xsdAttribute := track(edocAttribute, at2at, null);

 xsdComplexType.sequence :=

xsdComplexType.sequence->including(xsdAttribute);

 }

 }

 -- Map concepts from EDOC.ECA.DocumentModel to WS.XSD concepts

 rule documentModel2xsd() {

 -- Create a SimpleType for each DataType

 apply dt2st();

 -- Create a ComplexType for each CompositeData

 apply cd2ct();

 -- Create an XSD Attribute for each EDOC Attribute

 apply at2at();

 -- Link XSD Attributes to XSD Types

 apply linkAttribute2Type();

175

 -- Link XSD ComplexTypes to XSD Attributes

 apply linkComplexType2Attribute();

 }

 --

 -- Map concepts from EDOC.ECA.CCA to WS:WSDL

 --

 -- Create a WSDL Message for each EDOC FlowPort

 rule flowPort2message match edoc::ECA::CCA::FlowPort () {

 -- Create Message

 let m: ws::wsdl::Message;

 m := new ws::wsdl::Message;

 m.name := self.name;

 -- Create part and add it

 let part: ws::wsdl::Part;

 part := new ws::wsdl::Part;

 part.name := self.name;

 part.type := track(self.type, type2type, null);

 m.parts := m.parts->including(part);

 -- Store mapping

 track(self, fp2m, m);

 }

 -- Create a WSDL Operation for each EDOC OperationPort

 rule operationPort2operation

match edoc::ECA::CCA::OperationPort () {

 -- Get input and output port

 let iPort : edoc::ECA::CCA::OperationPort;

 iPort := self.ports->asSequence()->at(1);

 let oPort : edoc::ECA::CCA::OperationPort;

 oPort := self.ports->asSequence()->at(2);

 -- Create input

 let input: ws::wsdl::Input;

 input := new ws::wsdl::Input;

 input.name := iPort.name;

 input.message := track(iPort, fp2m, null);

 -- Create outpout

 let output: ws::wsdl::Output;

 output := new ws::wsdl::Output;

 output.name := oPort.name;

 output.message := track(oPort, fp2m, null);

 -- Create Operation

 let o: ws::wsdl::Operation;

 o := new ws::wsdl::Operation;

176

 o.name := self.name;

 o.input := input;

 o.output := output;

 input.operation := o;

 output.operation := o;

 -- Store mapping

 track(self, op2o, o);

 }

 -- Create a WSDL PortType for each EDOC ProtocolPort

 rule protocolPort2portType

match edoc::ECA::CCA::ProtocolPort () {

 -- Create a portType

 let pt: ws::wsdl::PortType;

 pt := new ws::wsdl::PortType;

 pt.name := self.name;

 -- Add operations

 let ps: Set(edoc::ECA::CCA::Port) = self.owner.ports->asSet();

 let fps: Set(edoc::ECA::CCA::Port) =

ps->select(e | e.oclIsKindOf(edoc::ECA::CCA::FlowPort));

 let ops: Set(edoc::ECA::CCA::Port) =

ps->select(e|.oclIsKindOf(edoc::ECA::CCA::OperationPort));

 foreach op: edoc::ECA::CCA::OperationPort in ops do {

 -- Find operation

 let o: ws::wsdl::Operation;

 o := track(op, op2o, null);

 pt.operations := pt.operations->including(o);

 }

 -- Store mapping

 track(self, pp2pt, pt);

 }

 -- Create a WSDL Definition for each EDOC ProcessComponent

 rule processComponent2service

match edoc::ECA::CCA::ProcessComponent () {

 -- Create Definition

 let d: ws::wsdl::Definition;

 d := new ws::wsdl::Definition;

 -- Create service

 let s: ws::wsdl::Service;

 s := new ws::wsdl::Service;

 s.definition := d;

 s.name := self.name;

 -- Store mapping

 track(self, pc2s, s);

177

 }

 -- Link Definition to Types

 rule linkDefinition2X

match edoc::ECA::CCA::ProcessComponent () {

 -- Get the WSDL Service

 let s: ws::wsdl::Service;

 s := track(self, pc2s, null);

 let d : ws::wsdl::Definition;

 d := s.definition;

 -- Add every portType

 let ps : Set(edoc::ECA::CCA::Port) = self.ports->asSet();

 let fps: Set(edoc::ECA::CCA::Port) =

ps->select(e | e.oclIsKindOf(edoc::ECA::CCA::FlowPort));

 let ops: Set(edoc::ECA::CCA::Port) =

 ps->select(e|e.oclIsKindOf(edoc::ECA::CCA::OperationPort));

 let pps: Set(edoc::ECA::CCA::Port) =

 ps->select(e|e.oclIsKindOf(edoc::ECA::CCA::ProtocolPort));

 let m: ws::wsdl::Message;

 let ms: Set(ws::wsdl::Message);

 let ts: Set(ws::xsd::Type);

 foreach fp : edoc::ECA::CCA::FlowPort in fps do {

 m := track(fp, fp2m, null);

 ms := ms->including(m);

 foreach p:ws::wsdl::Part in m.parts do {

 ts := ts->including(p.type);

 }

 }

 foreach op : edoc::ECA::CCA::OperationPort in ops do {

 -- Get input and output port

 let iPort : edoc::ECA::CCA::OperationPort;

 iPort := op.ports->asSequence()->at(1);

 let oPort : edoc::ECA::CCA::OperationPort;

 oPort := op.ports->asSequence()->at(2);

 m := track(iPort, fp2m, null);

 ms := ms->including(m);

 foreach p:ws::wsdl::Part in m.parts do {

 ts := ts->including(p.type);

 }

 m := track(oPort, fp2m, null);

 ms := ms->including(m);

 foreach p:ws::wsdl::Part in m.parts do {

 ts := ts->including(p.type);

 }

178

 }

 let pts : Set(ws::wsdl::PortType);

 foreach pp : edoc::ECA::CCA::ProtocolPort in pps do {

 let pt : ws::wsdl::PortType;

 pt := track(pp, pp2pt, null);

 pts := pts->including(pt);

 }

 d.messages := ms->asSequence();

 d.types := ts->asSequence();

 d.portTypes := pts->asSequence();

 }

 --- Map CCA to WSDL

 rule cca2wsdl() {

 -- Create a WSDL Message for each EDOC FlowPort

 apply flowPort2message();

 -- Map Operation Ports

 apply operationPort2operation();

 -- Map Protocol Ports

 apply protocolPort2portType();

 -- Map ProcessComponent

 apply processComponent2service();

 -- Link Definition to types, messages, and portTypes

 apply linkDefinition2X();

 }

 -- main rule

 rule main () {

 -- Map DocumentModel to XSD

 apply documentModel2xsd();

 -- ECA to WSLD

 apply cca2wsdl();

 }

 }

}

179

BIBLIOGRAPHY

[AC94] Abreu, F. B. and Carapuca, R. (1994). Object-oriented software engineering:
measuring and controlling the development process. In Proceedings of the 4th

International Conference on Software Quality.

[AJU75] Aho, A. V., Johnson, S. C., and Ullman, J. D. (1975) Deterministic parsing of
ambiguous grammars. Commun. ACM 18(8), pp 441-452.

[AJU77] Aho, A. V., Johnson, S. C., and Ullman, J. D. (1977) Code generation for expressions
with subexpressions. JACM, 24(1), pp 146-160.

[AKP03] Akehurst, D., Kent, S., and Patrascoiu, O. (2003). A relational approach to defining
and implementing transformations between metamodels. In Journal of Software and
Systems Modeling (SoSym), 2(4), pp 215-239.

[ALP03] Akehurst, D., Linington, P., and Patrascoiu, O. (2003). OCL 2.0 – Implementing the
Standard. Technical Report No. 12-03, Computer Laboratory, University of Kent,
UK.

[AMDA] AndroMDA Project Home Page, 2005. On-line at http://www.andromda.org/

[ARG] ArgoUML Project Home Page, 2004. On-line at http://argouml.tigris.org/

[AP02] Appel, A. W. and Palsberg J. (2002). Modern Compiler Implementation in Java.
Second ed, Cambridge University Press.

[AP03] Akehurst, D. and Patrascoiu, O. (2003). OCL 2.0 – Implementing the Standard for
Multiple Metamodels. In OCL2.0-"Industry standard or scientific playground?" -
Proceedings of the UML'03 workshop, pp 19-25.

[AP04a] Akehurst, D. and Patrascoiu, O. (2004). Prototyping Metamodels: Automated
Generation of Modeling Tools with support for Checking Well-Formedness
Constraints. Submitted at UML 2004.

[ASU86] Aho, A., V., Sethi, R., and Ullman, J. D. (1986). Compilers: Principles,Techniques
and Tools. Addison-Wesley, Reading Mass.

[AU72] Aho, A. V. and Ullman, J. D. (1972). The theory of parsing, translation, and
compiling. Prentice Hall, Engl. Cliffs.

[Bac79] Backhouse, R. C. (1979). Syntax of Programming Languages: Theory and Practice.
Prentice Hall, Engl. Cliffs.

[BDM97] Briand, L., Devenbu, P., and Melo, W. (1997) An investigation into coupling
measurement for C++. In Proceedings of the 19st International Conference on

180

Software Engineering, pp. 334-344.

[BDW99] Briand, L., Daly, J., and Wuest, J. (1999) A unified framework for coupling
measurement in object-oriented systems. IEEE Transactions on Software
Engineering, 25(1), pp 91-121.

[Bel98] Rodney Bell (1998) Code Generation from Object Models.

http://embedded.com/98/9803fe3.htm

[BM99] Benlarbi, S. and Melo, M. (1999) Polymorphism measures for early risk prediction.
In Proceedings of the 21st International Conference on Software Engineering, pp.
334-344.

[BWW54] Burks, A. W., Warren, D. W., and Wright, J. B. (1954). An analysis of logical
machine using paranthesis-free notation. In Mathematical Tables and Other Aids to
Computation, 8(46), pp. 53-57.

[CH03] Czarnecki, K., and Helsen, S. (2003). Classification of Model Transformation
Approaches. In Generative techniques in the context of MDA – Proceedings of
OOPSLA 2003 workshop.

[Cho56] Chomsky, N. (1956) Three models for the description of language, IRE Transactions
on Information Theory, 2, pp. 113-124.

[Cho62] Chomsky, N. (1962) Handbook of Mathematics Psychology, volume 2, chapter
Formal Properties of Grammars, pp. 323-418. Wiley & Sons, New York.

[CK91] Chidamber, S.R. and Kemerer, C.F. (1991). Towards a metrics suite for object-
oriented design. In Proceedings of The Sixth Object-Oriented Programming Systems,
Languages, and Applications, pp. 97-211.

[CK94] Chidamber, S.R. and Kemerer, C.F. (1994). A metrics suite for object oriented
design. IEEE Transactions Software Engineering, 6, pp. 476-493.

[Con63] Conway, M. E. (1963). Design of a separate transition-diagram compiler. Commun.
ACM 6(7), pp. 396-408.

[CS00] Cartwright, M. and Shepperd, M. (2000) An empirical investigation of an object-
oriented software system: An exploratory analysis. IEEE Transactions on Software
Engineering, 24(8), pp. 629-639.

[Cur80] Curtis, B. (1980), Measurement and Experimentation. In Software Engineering,
Proceedings of the IEEE, 68(9).

[CWM] OMG, Common Warehouse Metamodel Specification. OMG Document formal/2003-
03-02, available at http://www.omg.org/cwm.

[DeR71] DeRemer, F. L. (1971). Simple LR(k) grammars. Commun. ACM 14, pp. 453-460.

[DseDS] Design Support Environments for Distributed Systems (DSE4DS) project.
www.cs.kent.ac.uk/projects/dse4ds/

[EBGR01] El-Eman, K., Benlarbi, S., Goel, N., and Rai, S. (2001) The confounding effect of
class size on the validity of object-oriented metrics. IEE Transactions on Software

181

Engineering.

[EDOC] OMG, Enterprise Distributed Object Computing Specification OMG Document
formal available at http://www.omg.org/technology/documents/formal/edoc.htm

[EMF] IBM, Eclipse Modeling Framework. http://www.eclipse.org.

[ET02] Erdogamus, H. and Tanir, O. (2002). Advances in Software Engineering.
Comprehension, Evaluation, and Evolution. Springer-Verlag.

[Evan97] Evanco, W. (1997) Poisson analysis of defects from small software components.
Journal of Systems and Software, 38, pp. 27-35.

[Eve63] Evey, R. J. (1963) The Theory and Applications of Pushdown Store Machines. Ph.D
thesis, Harvard University, Massachusetts.

[Fen91] Fenton, N. (1991) Software Metrics: A rigorous approach, Chapman and Hall.

[FL91] Fischer, C. N. and LeBlanc, R. J. Jr. (1991). Crafting a compiler with C. Benjamin
Cummings.

[Fra03] Frankel, D. S. (2003) Model Driven Architrecture: Applying MDA to Enterprise
Computing. John Wiley & Sons.

[FUJ] Fujaba Tool Suite Developer Team, University of Paderborn, 2004. On-line at
http://www.fujaba.de/

[Gar03] Gardner, T., Griffin, C., Koehler, J., and Hauser, R. (2003) A reviewof OMG MOF
2.0 Query/Views/Transformations submissions and recommendations towards the
final standard, 1st International Workshop on Metamodeling for MDA, York, UK,
2003.

[GC87] Grady, R. B. and Caswell, D., L., (1987) Software Metrics: Establishing a Company-
Wide Program, Prentice-Hall.

[GEN] Gentleware AG, Poseidon, 2004. On-line at http://www.gentleware.com/

[Ghe91] Ghezzi C, Jazayeri, M., Mandrioli, D. (1991) Fundamentals of Software
Engineering, Prentice Hall.

[GHJV95] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995) Design Pattens.
Elements of Reusable Object-Oriented Software, Addison-Wesley.

[GHK99] Gil, J., Howse, J, and Kent, S. (1999) Formalising Spider Diagrams, In Proccedings
.of IEEE Symposium on Visual Languages (VL99), IEEE Press, pp. 130-137.

[GHK01] Gil J, Howse J, Kent S. (2001) Towards a formalization of constraint diagrams. In
Proceedings of EEE Symposia on Human-Centric Computing (HCC’01), Stresa,
Italy, IEEE Computer Society Press, pp. 72-79.

[Gins75] Ginsburg, G. (1975) Algebraic and Automata-Theoretic Properties of Formal
Languages. North-Holland. Amsterdam.

[GLRSW02] Gerber, A., Lawley, M., Raymond, K., Steel, J., and Wood, A. (2002).
Transformation: The Missing Link of MDA, in A. Corradini, H. Ehring, H. J.

182

Kreowsky, G. Rozenberg (Eds): In Proceedings. of Graph Transformation: First
International Conference (ICGT 2002)

[GMT] Generative Model Transformer Project Home Page. On-line at
http://www.eclipse.org/gmt/

[Gra02] Grand, M. (2002) Java Enterprise design patterns, Wiley&Sons.

[Gra88] Gray R. W. (1988) -GLA – a generator for lexical analyzers that programmars can
use. In Proceedings of USENIX Conference. USENIX Association, Berkley, CA, pp.
147-160.

[Gra90] Grady, R. B., (1990) Work-Product Analysis: The Philosopher’s Stone of Software,
IEEE.

[Hal77] Halstead, M. (1977) Elements of Software Science, Elsevier, Amsterdam.

[Hei81] Heilbrunner, S. (1981) A parsing automata approach to LR theory. Theoretical
Computer Science 15, pp. 117-157.

[HS96] Henderson-Sellers, B. (1996) Object-Oriented Metrics: Measures of Complexity,
Prentice-Hall.

[HU69] Hopcroft, E. and Ullman, J.D. (1969) Formal Languages and Their Relation to
Automata. Addison-Wesley.

[HU79] Hopcroft, E. and Ullman, J.D. (1979) Introduction to Automata Theory, Languages,
and Computations. Addison-Wesley.

[Iro61] Irons, E. T. (1961) A syntax directed compiler for ALGOL 60. CACM 4, 51-55.

[ISO96] ISO/IEC (1996) Information Technology – Software Product Evaluation; Part 1:
Overview. ISO/IEC DIS 14598-1. (International Organization for Standardization
and the International Elcctrotechnical Commission).

[Java] Java standard http://www.sun.com

[JB81] Janssen, T. M. V. and van Emde Boas, P. (1981) Some observations on compositional
semantics. Report 81-11. University of Amsterdam.

[Jon75] Johnson, S. C. (1975). Yacc: yet another compiler compiler. Tech. Rep. CSTR-32,
AT&T Bell Laboratories, Murray Hill, NJ.

[KLW95] Kifer M., Lausen G., and Wu J.. Logical Foundations of Object-Oriented and Frame-
Based Languages. Journal of the ACM, 42(4):741 843, July 1995.

[Kle56] Kleene, S.C. (1956) Representation of events by nerve nets. In Automata Studies, ed.
C.E. Shannon and J McCarthy, Princeton University Press, Princeton, pp. 3-42.

[KMF] Kent Modeling Framework project. http://www.cs.kent.ac.uk/projects/kmf.

[Knu65] Knuth, D. E. (1965) On the translation of languages from left to right. Information
and Control 8, pp. 607-639.

183

[Knu67] Knuth, D. E. (1967) The Art of Programming, Vol. I: Fundamental Algorithms.
Addison Wesley.

[Knu68] Knuth, D. E. (1968) Semantics of context-free languages Math. Syst. Theory 2, 127-
145. Correcttion: Math. Syst. Theory 5, pp. 95-96.

[Les75] Lesk, M. E. (1975). Lex-a lexical analyzer generator. Tech. Rep. Computing Science
Technical Report 39, Bell laboratories, Murray Hill, NJ.

[LH93] Li, W. and Henry, S. (1993) Object-oriented metrics that predict maintainability.
Journal of Systems and Software, 23, pp. 111-122.

[LK94] Lorentz, M. and Kidd, J. (1994) Object-Oriented Software Metrics, Prentice-Hall.

[LS68] Lewis, P. M. and Stearns, R. E. (1968). Syntax-driven translation, JACM 15, pp. 464-
488.

[McC76] McCabe, T. (1976) A complexity measure. IEEE Transactions Software Engineering,
2, pp. 308-320.

[MDA] MDA. Model Driven Architecture Specification. OMG document omg/03-06-01,
available at. http://www.omg.org/mda.

[MID] Middlegen Project Home Page. On-line at http://sourceforge.net/projects/middlegen

[MODF] ModFact Project Home Page. On-line at http://modelware.inria.fr

[MOF] OMG, MOF Meta Object Facility Specification, OMG Document formal/2002-04-
03, available at http://www.omg.org/mof

[MOFS] MOFScript Project Home Page. On-line at http://www.modelbased.net/mofscript/

[MTF] Model Transformation Framework Project Home Page. On-line at
http://www.alphaworks.ibm.com/tech/mtf

[MTL] MTL Engine.Project Home Page. On-line at http://modelware.inria.fr/

[Myh57] Myhill, J. (1957) Finite automata and the representation of events. WADD TR-57-
624, Wright Patterson AFB, Ohio, pp. 112-137.

[Ner58] Nerode, A. (1958) Linear automaton transformations. In Proceedings of the
American Mathematical Society, 9, pp. 541-544.

[NS57] Newell, A. and Shaw, J. C. Programming the logic theory machine. In Proceedings
of the 1957 Western Joint Computer Conference, pp. 230-240, Institute of Radio
Engineers, New-York.

[OAW] Open Architecture Ware Project Home Page. On-line at
http://www.openarchitectureware.org/

[OCL] OMG, OCL Object Constraint Language Specification Revised Submission, Version
1.6, January 6, 2003, OMG document ad/2003-01-07.

184

[OCL2P] Open source project: Object Constraint Language for Kent Modeling Framework and
Eclipse Framework. http://www.cs.kent.ac.uk/projects/kmf.

[OMDX] OpenMDX Project Home Page. On-line at http://www.openmdx.org/

[OMG] Object Management Group. http://www.omg.org.

[Pat04a] Patrascoiu, O. (2004) YATL:Yet Another Transformation Language. In Proc. of First
European Workshop MDA-IA, University of Twente, the Nederlands.

[Pat04b] Patrascoiu, O. (2004) YATL:Yet Another Transformation Language. Reference
Manual. Version 1.0. Technical Report 2-04, University of Kent, UK.

[Pat04c] Patrascoiu, O. (2004) Model transformations in YATL. Studies and Experiments.
Technical Report 3-04, University of Kent, UK.

[Pat04d] Patrascoiu, O. (2004) Mapping EDOC to Web Services using YATL. In Procedings
of 8th IEE International Enterprise Distributed Object Computing Conference,
EDOC 2004.

[Pat02a] Patrascoiu, O. (2002) A quality model for Java programs maintenance. In Else
Software Journal, University of Craiova.

[Pat02b] Patrascoiu, O. (2002) Software systems quality. In Else Software Journal, University
of Craiova.

[Pax95] Paxson, V. (1995) Flex-Fast lexical analyzer generator. Lawrence Berkley
Laboratory, Berckeley, CA, http://www.icir.org/vern/

[PM91] Patrascoiu, O. and Marian, Gh. (1991). TDPG: A Parser Generator for Top-down
Parsing Grammars. In Proceedings of The International Conference on Applied and
Theoretical Electrotechnics, Craiova.

[PM94] Patrascoiu, O. and Marian, Gh. (1994). Translation Scheme for Regular Expression.
In Proceedings of the National Symposium on System Theory, Craiova.

[PR04] Patrascoiu, O. and Rodgers, P. (2004). Embedding OCL expressions in YATL. In
Proc. of “OCL and Model Driven Engineering” workshop, UML 2004.

[QVT02] OG, QVT Query/Views/Transformations RFP, OMG Document ad/02-04-10, revised
on April 24, 202. http://www.omg.org/cgi-bin/doc?ad/2002-4-10

[QVTD] OMG, MOF Query/Views/Transformation, Initial submission, DSTC and IBM.

[QVTF] OMG, MOF Query/Views/Transformation, Initial submission, Alcatel, SoftTeam,
Thales, TNI-Valiosys.

[QVTP] OMG, MOF Query/Views/Transformation, Initial submission, QVT Partners.

[RAT] Rational Software Corporation, Rational Rose, 2004. Online at
http://www.rational.com

[RG00] Richters, M. and Gogolla, M. (2000) Validating UML models and OCL constraints.
In Proceeding of The Third International Conference on the Unified Modeling

185

Language (UML’2000), LNCS. Springer.

[RJB99] Rumbaugh, J., Jacobson, I., and Booch, G.. (1999). The Unified Modeling Language
– Reference Manual. Addison-Wesley.

[RS59] Rabin, M.O. and D. Scott. (1959) Finite Automata and their decision problem. In
IBM Journal of Research and Development 3, pp. 114-125.

[RWD] Reasoning with Diagrams http://www.cs.kent.ac.uk/projects/rwd

[Sal69] Salomaa, A. (1969) Theory of Automata. International Series of Monographs in Pure
and Applied Mathematics, Pergamon Press.

[Sal73] Salomaa, A. (1973) Formal Languages. Academic Press, Revised edition in the series
"Computer Science Classics", Academic Press.

[SB60] Samelson, K. and Bauer, F. L. (1960). Sequential formula translation.
Communications of the ACM, 3(20), pp. 76-83.

[SJF96] Schmidt, D. C., Johnson, R. E., and Fayad, M. (1996) Software patterns. In CACM,
39(10).

[SOAP] W3C, Simple Object Access Protocol http://www.w3.org/TR/soap

[Som92] Sommerville I. (1992) Software engineering, Addison-Wesley.

[SVB03] Sturm, T., von Voss, J., and Boger, M. (2003) Generating Code from UML with
Velocity Templates, In Proceedings of The Fifth International Conference on the
Unified Modeling Language (UML’2002), Dresden, Germany.

[TC02] Tang, M.-H., and Chen, M.-H. (2002) Measuring OO Design Metrics from UML. In
Proceedings of the Fifth International Conference <<UML>> 2002 – The Unified
Modeling Language. Model Engineering, Concepts, and Tools, pp. 368-382.

[TKC99] Tang, M.-H., Kao, M.-H., and Chen, M.-H. (1999) An empirical study on object
oriented metrics. In Proceedings of the Sixth International Software Metrics
Symposium, pp. 242-249.

[TOG] TogetherSoft http://www.togetherSoft.com

[Tur36] Turing, A., On Computable Numbers, With an Application to the
Entschedungsproblem. In, Proceedings of the London Mathematical Society, Series
2, Volume 42, 1936; reprinted in M. David (ed.), The Undecidable, Hewlett, NY:
Raven Press, 1965; online: http://www.abelard.org/turpap2/tp2-ie.asp.

[UDDI] Universal Description, Discovery, and Integration http://uddi.org/specification.html

[UML] OMG, Unified Modeling Language Specification, Version 1.5, 2003, OMG
Document formal/2003-03-01, available at. http://www.omg.org/uml.

[UMT] UML Model Transformation Tool Project Home Page. On-line at
http://umt-qvt.sourceforge.net/

[UNI] Unicode standard. http://www.unicode.org

186

[WG84] Waite, W. M. and Goos, G. (1984) Compiler construction. Springer Verlag.

[WIK] Wikipedia The Free Encyclopedia http://www.wikipedia.org

[WH98] Wilkie F. G. and Hylands B. (1998) Measuring Complexity in C++ Application
Software, Software Practice and Experience, 28(5), pp 513-546.

[WK99] Warmer, J. and Kleppe, A. (1999). The Object Constraint Language: Precise
Modeling with UML. Addison-Wesley.

[WSDL] W3C, Web Service Description Language http://www.w3.org/TR/wsdl

[XDOC] XDoclet Project Home Page. On-line at
http://xdoclet.sourceforge.net/xdoclet/index.html

[XMI] OMG, MOF Meta Object Facility Specification OMG Document 2003-05-02,
available at http://www.omg.org/uml

[XML] W3C, Extensible Markup Language http://www.w3.org/TR/2004/REC-xml-
20040204/

[XMLS] XML Schema http://www.w3.org/XML/Schema

