-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by Kent Academic Repository

Kent Academic Repository
Full text document (pdf)

Citation for published version

Octavian Patrascoiu (2005) Model driven language engineering. Doctor of Philosophy (PhD)
thesis, University of Kent.

DOI
uk.bl.ethos.429663

Link to record in KAR
https://kar.kent.ac.uk/86335/

Document Version
UNSPECIFIED

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all
content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions
for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the
published version of record.

Enquiries
For any further enquiries regarding the licence status of this document, please contact:
researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down
information provided at http://kar.kent.ac.uk/contact.html

KAR e

Kent Academic Repository

https://core.ac.uk/display/384444635?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

University of Kent

Computing Laboratory

Model Driven Language

Engineering

Octavian Patrascoiu
March 2005

A thesis submitted to The University of Kent for the degree of

Doctor of Philosophy

Abstract

Modeling is a most important exercise in software engineering and development and one of
the current practices is object-oriented (OO) modeling. The Object Management Group
(OMG) has defined a standard object-oriented modeling language — the Unified Modeling
Language (UML). The OMG is not only interested in modeling languages; its primary aim is
to enable easy integration of software systems and components using vendor-neutral
technologies. This thesis investigates the possibilities for designing and implementing
modeling frameworks and transformation languages that operate on models and to explore
the validation of source and target models. Specifically, we will focus on OO models used in
OMG’s Model Driven Architecture (MDA), which can be expressed in terms of UML terms

(e.g. classes and associations).

The thesis presents the Kent Modeling Framework (KMF), a modeling framework that we
developed, and describes how this framework can be used to generate a modeling tool from a
model. It then proceeds to describe the customization of the generated code, in particular the
definition of methods that allows a rapid and repeatable instantiation of a model. Model
validation should include not only checking the well-formedness using OCL constraints, but

also the evaluation of model quality.

Software metrics are useful means for evaluating the quality of both software development
processes and software products. As models are used to drive the entire software
development process it is unlikely that high quality software will be obtained using low
quality models. The thesis presents a methodology supported by KMF that uses the UML

specification to compute the design metrics at an early stage of software development.

The thesis presents a transformation language called YATL (Yet Another Transformation
Language), which was designed and implemented to support the features provided by
OMG’s Request For Proposal and the future QVT standard. YATL is a hybrid language (a

mix of declarative and imperative constructions) designed to answer the
Query/Views/Transformations Request For Proposals issued by OMG and to express model

transformations as required by the Model Driven Architecture (MDA) approach.

Several examples of model transformations, which have been implemented using YATL and
the support provided by KMF, are presented. These experiments investigate different
knowledge areas as programming languages, visual diagrams and distributed systems. YATL

was used to implement the following transformations:

e UML to Java mapping
e Spider diagrams to OCL mapping
e EDOC to Web Services

Acknowledgments

This work would not have been possible without the constant dedication, guidance and
advice of my supervisors, Stuart Kent and Peter Rodgers, to whom | am deeply grateful.
Many thanks for their support and invaluable advice throughout the duration of the research

and writing of this thesis.

I am grateful to the members of the Supervisory Panel, Peter Linington and David Shrimpton
for their helpful comments and advice. Especially, my thanks to Peter for showing me how
to form a coherent argument from my initial collection of ideas.

Many thanks to the academic staff of the Systems Engineering Research Group — David
Akehurst, Eerke Boiten, Ana Cavalcanti, Nigel Dalgliesh, Rogerio de Lemos, and Jim
Woodcook — who have provided an atmosphere of great intellectual stimulation, a pleasant
and comfortable working environment. Many thanks to David Barnes and Tim Hopkins for

their comments regarding the UML models measuring.

Thanks to both my parents Elena and Dumitru Patrascoiu for their support, encouragement
and tutelage during my early years, without which I would have never got to the point of
being able to attempt a doctoral degree. Thanks to both my parents-in-law Maria and Nicolae

Mitroi for supporting me in the early years of my academic career.

Finally, thanks to my family — Giana and Virgil Patrascoiu — for their tolerance and patience

during the final period of writing up.

The work presented in this thesis was partly funded by:
e The UK Engineering and Physical Sciences Research Council (EPSRC) as part
of the Reasoning with Diagrams project (no. GR/R63509/01).

e International Business Machines (IBM) as part of IBM Faculty Partnership
Award No. 220 20858.

Contents

CHAPTER 1. INTRODUCTION ...ciiiitiiieiiiieeesiiieeesiieeessiieee e 1
1.1 Model Driven ENGINEEIING ..ccvcov v 2
1.2. (@] =101 1 Y-SR 3
1.3. THESIS OVEIVIEWcviieieiceete ettt sttt sn e 3
1.4. CONEFIDULION. ...t 5
1.5. Summary of pUBCAtIONS ... 7
CHAPTER 2. BACKGROUNDccoitiiieiiiiieaniiiieesiiee e siieeeesieee e 9
2.1. Unified Modeling LaNQUAGEccouevviiieirieiiieie et siee et aesre e sne s 9
2.2. Model Driven AFChItECTUNEcooviiiciee e 10
2.3. MOdeling fFrameWOTrKScccvoiiiiee e e 13
2.3.1. Eclipse Modeling FrameWOorKccocvviveieiiieiie i 14
2.3.2. Metadata REPOSITONYccuiiiiiiiieieise e 15
2.3.3. FUJADA .. e 15
2.34. Rational Software MOdeler...........cooviiiiiiiiee e 17
2.3.5. [000] 011 o F= T o] [USRS 18
24. Transformation LanQUAQES........ccucvivevrererieeeeeeseseseesie s e e sse e seesaeneenas 19
2.4.1. OMGS QVT ittt bbbttt bbb et en et et eens 19
24.2. ATLAS Transformation LangUagecccerereririerinenienienieeeeee e 23
2.4.3. Other Transformation Frameworks. ... 24
2.5. Languages and Translators..........cccvvviirererieenese e 25
25.1. Languages, grammars, and autOMata...........cceevrvrvreresereerieeseseseseseeseeaenens 25
25.2. LaNQUAGE PrOCESSOISeivieieieriestiesiet st et sre e sttt sr et re e sre e nne e 27
2.6. Object Oriented DeSign Patternscccoviieeieiieiecie e 28
2.6.1. Factory Method Patterncoocveiiiic e 29

2.6.2. Abstract Factory Pattern.........cccocviivieieiiiees s 29
2.6.3. BUITAEN PAIEIN ..ot 30
2.6.4. RV (0] gl 2=V (=] o [PPSO 31
2.6.5. L@ ¢S] gl = (=] o o S 31
2.6.6. FANo Fo Vo T gl =V i (-] OSSP 32
2.6.7. Bridge PatterNc.ooiecece e 34
2.7. SUMIMIBTY <.ttt b e b e be et b e et e e sae e s nn e e nne e e e naeas 35
CHAPTER 3. KENT MODELING FRAMEWORKccccvveennine. 36
3.1. Modeling Tools ReqQUIFEMENTSc.cciiiiiiie it 36
3.2. The Kent Modeling FrameworkK..........cocooeiiiiiiinenineensesese s 38
3.2.1. About KMF and KIMF-StUAIOccviviiiiieie e 38
3.2.2. WA oo 101 @ L ¥ o] o o] o PSS 42
3.3. About XMI and UML SUPPOITccveiiiiiiesiiiese e 43
3.4. The generated t00]ccovviiiieici s 44
3.5. Creating POPUIALIONSccv i 46
3.6. Augmenting the generated COAE.........cvvvvieriiviiiie e 47
3.7. COdB GENEIALION.......ceeciiiii ettt st be et sre e e re e esae s 49
3.7.1. Code generation framework reqUIreMeNtSc.cccvevveieieeiieieciee e 50
3.7.2. Code generation MECNANISIMS........cueiviiieiieiesierieseeee e see e seesee e ee e 51
3.7.3. Programmatic translationcoceoiiiininense e 51
3.7.4. Translation DY XSLTcviiiiieiiiee e 52
3.7.5. Translation by temMpPIates ..o 53
3.7.6. Translation using transformation languages and templatescc.ccccceevvenene. 53
3.8. KMF-Studio’s code generation framework............cccccovviveniiiicic e, 54
3.8.1. DI = La I 11 (T 13 Tod £ T o S 55
3.8.2. LCT =00 10 F= SRR 55
3.8.3. COMIMENTS ..ttt sttt bbb bt sb et sbesbeebesbe e b e e sbesbeenaenbe s 56
3.8.4. EXPreSSiON @CHIONcccviveiiieieiciese sttt re e nne 56
3.8.5. COMPOUNG ACLION ...ttt 57

3.8.6. 1T (U0 (2= Tod 1o o RS 57
3.8.7. If-B1IT-€1SE ACTION.....cciiieie e 58
3.8.8. fOreach ACtiONccveiiiicc s 58
3.8.9. INAIMESPEACES ...ttt ettt ettt ettt e b e st e e et et e b e e sbe e ab et enbeeabeesbeesbeennneans 58
3.9. Analysis of KMF: does it meet the requirements?c.ccocceevvierevereceeennn 59
3.10. L©0] o Tod 11 5] T 130 SRS 61
CHAPTER 4. MODEL QUALITY MEASURINGccccvvveeeinnnen. 62
4.1. 2T 101 100 | {010] o [USSR 63
4.1.1. An overview of object-oriented MELriCS.......covvvveiiiiiicie e 64
4.2, Measuring UML models in KMF-Studio.........cc.ccoovvivineiciieniesesenceeieas 67
4.2.1. Measuring UML MOUEIScccveveeeiie et 67
4.2.2. The KIMF MELFICS SUITE ...vveviiiieiiicciecc e 69
4.2.3. 1= T (o] (0T 0 | USRS 73
4.3. AN EXAMPIE. .. e 74
4.4, Conclusions and FULUIE WOTK ..o 78
CHAPTER 5. YATL SPECIFICATION ...ccvvviiiiiiieeniieeesniieee s 80
5.1. YATL OVEIVIEW ..ottt bbb 80
5.2. AN EXAMPIE. . s 81
5.2.1. MAIN FEALUIESeeivie e et re e 82
5.3. g 00 = 1 LSRRI 84
5.4. GFAIMIMALS ...ttt be et esr b e ssbe e be e sbeesneeanaeenbeenneas 84
5.4.1. LexiCal grammalrcccoviiiiieie et 85
5.4.2. SYNEAX GrAMIMAL ...tiiiiiieii ettt sttt b bbb e e sae e ar e be e e e naeas 85
5.5. Types and Variables ..o 85
5.6. (0] =TI] 1 USSR 88
56.1. The asSigNMENT OPEIALONcoveiiiiiieii et e 88

5.6.2.
5.6.3.
5.6.4.

5.7.

5.7.1.
5.7.2.
5.7.3.

5.8.

5.9.
5.9.1.

5.10.

5.11.

5.11.1.
5.11.2.
5.11.3.

5.12.

5.13.

5.13.1.

5.14.

5.14.1.
5.14.2.
5.14.3.
5.14.4.
5.14.5.

5.15.

5.16.

5.17.

5.17.1.
5.17.2.
5.17.3.

LT L o] oL - L] SR 89

The DUITA OPEFALONc..iivieiiiieiec e 89
THE trACK OPEIALONc.iiviiieitee et 89
o] o 3SR 90
End points and reachability...........ccccooiiiiiiiie i 91
2] (o1 PR URUUTOURRTRI 91
F o o] N 1T 3T 92
The eMPLY ACLIONcviiviciice e 92
DecClaration ACtIONSccueciuieiiecii ettt et re b 93
Local variable declarations...........cccooeiieie e 93
g o] et o] I Ut o] o 1SS 94
The apply @CtIONccviiiiieiic e 95
=TT (0T o PSS 96
Rule applicable tO A ..o 96
RUIE INVOCALION......ccuiiieieicicece et 97
The delete ACTIONccveiviiiiiiicecc e et 98
DTt [To] g = Tod £ [0 TSRS 98
THE If ACHION...c.eiiec e e 98
N T R To] g I T o] o SO PRR 99
The WHile ACHIONc.veiii e 99
THE 0O ACHION ...ttt ettt et sbe e s ba e e beeeareebens 100
The fOreach aCtioNccccoveriiieic e 101
The Break aCtiONcoviii ettt eree s 102
The CONLINUE ACHION ...t 102
Namespaces and translation UNItsS...........cccccuvvereieeireinnnsnnese e 103
(O00]] o =T g To] o F USSR 104
CONCIUSIONS ...ttt et b et st sbe e sbe e sreeeaaeenns 106
Compliance to RFP reqUIrEMENtS...........ccveiiiieiiiierie e 106
Other design fEALUIEScoviieiiiiiee e 111

Relationship to existing OMG specificationscccocvevvevieiiienieiii e 11

5.17.4. Comparison to QVT SUBMISSIONScveviiriireriesierisieeesie e sieseeree e see s 112

CHAPTER 6. MODEL TRANSFORMATIONS IN YATL............ 113
6.1. Transformation eNVIFONMENTccovviiiiiiiec e 113
6.2. Transformation from the UML model to the Java model.........c..cccoovennee 115
6.3. Transformation from spider diagrams model to OCL model..................... 117
6.3.1. SPIAEE AIAGIAMS ...t bbbt 118
6.4. Transformation from a subset of EDOC to Web Services............cccoeeuvennee. 121
6.4.1. EDOC: the UML profile for Enterprise Distributed Object Computing
SPECITICALION ..t 122
6.4.2. WED SEIVICE .t 123
6.4.3. Mapping from Document Model to XML Schema..........ccoovvevvivercineneinseneenns 124
6.4.4. Mapping from CCA 10 WSDLcccoiiiiiiiieisenienie e e 126
6.4.5. AN BXAMPIE ... nns 129
6.5. CONCIUSIONS ...ttt ettt be e et sbeebesbeene et e 131
CHAPTER 7. DISCUSSION AND CONCLUSIONS.cccceenneee. 132
7.1. THESIS SUMMANYocvviiecieee ettt e re et s te et 132
7.2. ACHIBVEMENTS ... ettt re e 134
7.3. FULUNE WOTK ..ottt sttt ettt st et ne s 134
7.3.1. Visual 1anguages and YATLooooiiiiee s e 135
7.3.2. Relationship between graph transformations and YATLcccccoveevvivvivieniennan, 135
7.3.3. Adding new features t0 YATL PrOCESSOIS......cciiiverieiesieesiesieeiesieseesiesseesseseens 136
APPENDIX 1. GRAMMAR SPECIFICATION RULES................ 138

APPENDIX 2. XTL-OVERVIEWcociiiiiiiiieeniiiiiieeessniienae e 139

2.1.1. F g e 11T RSO 139

2.1.2. SUPPOITEA FEALUIESevieiieiie ettt sttt sttt esae e e saesreeree s 141
APPENDIX 3. XTL-GRAMMARcoeoeeeeeeeeeeeieeeeeeeeee e 142
3.1. KT SYNTAX ..ttt bbbt st e e e snbeenbe e 142
APPENDIX 4. THE QUALITY MODELccccvvvveeeeeeeeeeee e, 145
APPENDIX 5. YATL-LEXICAL GRAMMARcocvviieeeiiereeennn 152
APPENDIX 6. YATL-SYNTAX GRAMMARcouotiiiiieeiiineeeennns 154

APPENDIX 7. MAPPING FROM UML MODEL TO JAVA

APPENDIX 8. MAPPING FROM SPIDER DIAGRAMS MODEL
TO OCL MODEL wu ittt aeeie e e e e e 161

APPENDIX 9. MAPPING FROM EDOC TOWS.........cccvvveenn 169

BIBLIOGRAPHY ..ottt 179

List of Figures

Figure 2.1 Participants of the Factory Method Patternccocvcvvivveverisinsinse e 29
Figure 2.2 Participants of the Abstract Factory pattern...........ccccooverenirenninene e 30
Figure 2.3 Participants of the Builder patternccoccoeviieiieiiciene s 31
Figure 2.4 Participants of the Visitor Patternccocvvveiiiiiiieiiniice e 31
Figure 2.5 Participants of the ODServer Patternccocooeeieiniineneee s 32
Figure 2.6 Participants 0f ObJeCt AJAPLErSccvcveieiiiereieeee e 33
Figure 2.7 Participants of Class AGapLerSccoiiiiiiinereeeese e 34
Figure 2.8 Participants of Bridge Patternsccccveieiiiiiiiiie e 34
Figure 3.1 Screen shot for generated t00]coveveiiiiniiiiicrc s 44
Figure 3.2 Screen Shot fOr DUITAEISc.oiiiiiiiee s 45
Figure 4.1, QUAILY MOELcccvveiiieiciee e ens 74
FIQUIE 4.2. OCL EXPIESSIONS ... c.viivieriitiiitiiisieeste e sseestesseete e ssaestesreebesseassestessaesbesteensesresneenes 75
Figure 4.3. OCL selection, call, and [00p EXPreSSionS.........ccccvveieieerieieeiese e 75
Figure 4.4. OCL Primary €XPreSSIONS........cuiervervirreesestesseseeeeseasessessessessessssesssssessesseesessenses 76
Figure 4.5. Kiviat diagram for class OCIEXPreSSIONAScccciireririereninenese e 77
Figure 4.6. Quality report for OCL eXPreSSiONS........ccvcveiiiieiieiesiesieseesie e ie e sre e 78
FIgure 5.1 ADSITACT SYNTAX...cviiuiiiiiiiiiiiesiisiese sttt beste e s 81
Figure 5.2 A transformation example in YATL ... 82
FIQUIE 5.3 Y AT L tYPES ..ttt ettt ettt sttt e et e et be s ae e s et e e te e beste e e e 86
FIQUIE 5.4 YATL EXPIESSIONS ..c.veviieieriaiietisie ettt st bbbttt st sttt ese sttt sbe e eneenas 87
FIQUrE 5.5 YATL ACHIONSveiiiiiiciicie sttt sttt et te e teene e 90
Figure 6.1 Transformation ENVIFONMENL..........ccccerereieireiiriesi e 114
Figure 6.2 A possible JaVa MOUEL..........ccoiiiiiie i 115
Figure 6.3 Example of mapping from UML model to Java modelc..ccccervreivecninrinnnn, 117
Figure 6.4 A SPIdEr dIagram.......cccueiiieeieie e eee e sre e e s ste st e e b seesbesteeseesreereenaens 118
Figure 6.5 OCL equivalent eXPreSSION.........cciviieieieiesese et s seene s 119
Figure 6.6 Mapping spider diagrams t0 OCLccccvvvririeriereeiese e 121
Figure 6.7 Document Model Profileccooviieiiiiiii i 124
FIgUre 6.8 XML SChEMA......cuiciiiiiciic ettt esre e sre s 125
FIgUre 6.9 CCAPIOTIIE c.ooveicec et 127

Figure 6.10 WSDL MOcoiiiiiieieet e e bbb 128

Figure 6.11 Travel agency COMMUNILY PrOCESS.......coveveerererreriereeeesesseseessessessesessessessessenes
Figure 6.12 BuySell and BuyFlight cOreographyccocceveiiiieiisinie s
Figure 6.13 Mapping the travel agency model to a WS model.............ccocooviiiniiiniiinnnnns

List of Tables

Table 2.1. A comparison of modelling frameworkscccovoviiiiireienee e 18
Table 2.2 ChomsKY’S NIEFArCRYcviiiiiiiiiecse e 27
Table 3.1 Outline of code generated by KIMF STUIOcc.ooveieiveiiiicce e 41
TabIe 3.2 XTL OPEIALOIS ...ecvveiveeiieiesteeie st eeiesieeteesbe st esbe e e sbesteesaesbeeseesbesteesaesbeeeesbeaneeseens 57
Table 4.1. SUMMArY OFf CK MELICS.......ciiiiiiiiereiee e 65
Table 4.2. KMF metrics suite- firsSt IBVE] ..o 70
Table 4.3. KMF metrics suite-SeCoNd I8VEL..........ccocoiiiiiiiiiiiirinee e 72
Table 5.1 A comparison of transformation [anguages...........ccceevveriiiere i se e 104
Table 6.1 Transformation rules from spider diagrams t0 OCLccccevvvivvienieninerieinenneens 120
Table 6.2 Transformation rules for Document Model to XML Schema mapping 126

Table 6.3 Transformation from CCA O WDSLcvieiiiiieciee ettt 129

Chapter 1. Introduction 1

Chapter 1. INTRODUCTION

The development of software requires an adequate description of the problem domain.
Involved in the development of such a description are not only software engineers, but also
users and domain experts. The members of such teams must communicate with each other
using documents. The aim is to provide a representation of an application domain that is

understandable for all persons involved in the software engineering process.

This representation, called a model, shows only the essential parts of the planned system. As
models are intended to be used during the entire software development process,
implementation details should be supported, too. To achieve this, a suitable modeling
language is required. Such a language must be easy to understand and support a certain level
of abstraction and formalization. For instance, programming languages are not suitable
because they are implementation-oriented. Furthermore, not all team members, especially
domain experts, easily understand programming languages. On the other side, natural
language is not an alternative because it is ambiguous. Therefore, unambiguous languages

with a certain level of abstraction are required.

It has been shown that visual modeling languages can be used successfully to achieve the
above aims. A modeling language should contain not only diagrammatic components but
also textual notation. This combination increases the expressiveness of modeling languages.
The aim is to add support for both a visual and a textual description of a problem domain.
The diagrammatic representation can be used to describe the visual information while the
textual representation can be used to augment the visual information with written
information. The augmentation can be used for different purposes such as providing

comments, indicating further details or adding a formal description to a visual description.

Generating new models is relatively easy. But over time, responding to ever changing
requirements gets more and more difficult. Hence, tools for model processing are required.

Such tools include text editors, pretty printers, type checkers, diagram editors, parsers,

Chapter 1. Introduction 2

evaluators, simulators, execution engines and so on. On the other hand, changing the model
implies changing the software. Every time a model is changed the software must be changed.
The aim is to develop a system architecture solid enough to allow reliable code development.
Automated code generation leads to solid code faster as long as the code generators are
thoroughly tested. The aim is to automate the generation of code starting from a given
model. The generation of design-level code for an application greatly increases both the
quality of the components and the speed of their availability. For example, the code for

model tools can be automatically generated.

1.1. Model Driven Engineering

Modeling is one of the foundations of software engineering and development and one of the
current practices is object-oriented (OO) modeling. The Object Management Group (OMG)
has defined a standard object-oriented modeling language — the Unified Modeling Language
(UML).

The OMG is not only interested in modeling languages; its primary aim is to enable easy
integration of software systems and components using vendor-neutral technologies. The last
step towards this goal is its announcement of the Model Driven Architecture (MDA) as the
basis for future OMG standards.

The quality of abstract descriptions is vital for MDA as it provides the possibility of
generating software from abstract descriptions. While the current OMG standards such as
UML and MOF provide a well-established foundation for defining OO models, no such
foundation exists for describing transformations between models. The process of
transformation between language models is based on a large body of research in the field of
compilation. The OMG’s recently initiated standardization process called Queries/Views/

Transformations will provide also the missing link of MDA: the transformation language.

The aim of this thesis is to investigate the possibilities for designing and implementing
transformation languages that operate on models and to explore the validation of source and
target models. Specifically, we will focus on OO models used in MDA, which can be
expressed in terms of MOF/UML concepts (e.g. classes and associations). We think that

model validation should include not only checking the well-formedness using OCL

Chapter 1. Introduction 3

constraints, but also the evaluation of model quality. As models are used in MDA to drive the

entire software development process it is unlikely that high quality software can be obtained

using invalid or low quality models. Evaluation of the quality of UML models at early stages

of the software development process should reduce the overall cost of the software

development process.

1.2.

Objectives

The main objectives of this thesis are:

1) To investigate efficient and usable techniques for specifying transformations

2)

3)

1.3.

from a source UML model instance to a target UML model.

To illustrate whether or not this style of specification can be used to provide a
transformation engine implementation that can be, at least partially, automated.

To investigate the validation of OO models by checking the OCL constraints on
source and target model instances, and evaluating the quality of the source and
target models using software metrics.

Thesis overview

To achieve the objectives described in 1.2 the thesis follows the following format:

Chapter 2

Chapter 3

Background: this chapter starts by discussing the OMG’s Model Driven
Architecture (MDA), presenting the main features of the framework for
software development. It also describes other work related to the area of
language translation. It includes an overview of topics that support the
understanding of the research presented in the following chapters. The last
section presents a description of some object-oriented programming
patterns used as part of the concepts, techniques, and tools proposed in

this thesis.

Kent Modeling Framework: this chapter starts with the presentation of the
requirements for a modeling framework. Then it describes the modeling
framework that we developed (Kent Modeling Framework) and how this

framework can be used to generate a modeling tool from a model. It then

Chapter 1. Introduction 4

Chapter 4

Chapter 5

Chapter 6

Chapter 7

proceeds to describe the customization of the generated code, in particular
the definition of methods that allows a rapid and repeatable instantiation

of a model.

Model Quality Measuring: this highlights a methodology that uses the
UML specification to compute the design metrics at an early stage of
software development. The first section gives a brief description of the
background, object-oriented metrics, and problems of the measuring UML
models using software metrics. The second section describes our set of
metrics and algorithms. The third section describes the measuring
problem for UML models and describes the methodology that we have
used. The fourth section gives an example. The last two sections contain

an overview of the related work, and the conclusions and future work.

YATL Specification: this chapter presents the current version of YATL
(Yet Another Transformation Language), which was designed and
implemented to support the features provided by OMG’s Request For
Proposal and the future QVT standard. The first subsection provides a
quick overview of the YATL language. Subsequent sections present the

features of YATL in more details.

Model Transformations in YATL.: this chapter describes three examples of
model transformations, which have been implemented using YATL and

the Kent Modeling Framework. The three examples are:

e UML to Java mapping
e Spider diagrams to OCL mapping
e EDOC to Web Services

Conclusions: highlights the contribution of the work presented in this
thesis, showing how transformation specification techniques and the
implementation approaches meet the objectives outlined in Chapter 1.
This chapter also proposes some future research that could lead on from

the results of the work presented here.

Chapter 1. Introduction 5

1.4, Contribution

This thesis defines a modeling framework that caters for the specification of OO model
validation and model transformations in the context of OMG’s MDA. The argument of the
thesis is novel, in that current systems and frameworks do not provide adequate support for
software development using OMG’s MDA concepts. Furthermore, very few frameworks
make use of the concepts specific to MDA for supporting the specification and development
of large scale software systems. The transformation framework described in this thesis is a
contribution to forming an adequate basis for supporting MDA software development. We
already made some steps in this direction by providing validation support for UML models
[ALPO03] [AP03][OCL2P].

The modeling framework proposed in this thesis allows UML model instances to be
validated before transformation takes place. This is important as models are the driving
concepts in MDA and we are unlikely to obtain high-quality software from incorrect model
instances or models that were designed poorly. In the classic approach UML models
validation is performed by checking well-formedness rules described using OCL constraints.
This approach fails to cover other aspects regarding the UML models such as the quality of
the design and the effort required to understand and maintain a model. This thesis proposes a
set of design metrics that can be used to evaluate the quality of UML models from a design

perspective.

Although the major contribution of this thesis lies in the definition and specification of a
transformation language called Yet Another Transformation Language (YATL), we also
propose a modeling framework that supports, among other features, model transformations.
We also present tools that have been implemented to support the modeling process.
Modeling activities such as:

e Java and C# code generation to instantiate UML models
e Model persistence using XMl,
e UML model instance validation by checking OCL constraints

¢ UML model instance validation using design metrics

are supported by the KMF-Studio tool. Code generation is performed in KMF-Studio using

an original template language called X Template Language (XTL) for which language

Chapter 1. Introduction 6

processors are implemented. The proposed transformation framework and language is

implemented by YATL-Studio tool, which uses the code generated by KMF-Studio to

implement YATL transformations.

To summarize, the contributions are presented below:

e Development of KMF (Kent Modeling Framework), a modeling framework that
provides support for software development using MDA techniques. The main
characteristics of KMF are:

(o}

All the modeling features described in this thesis (e.g. code generation,
creating model instances, OCL validation, quality evaluation, and
transformation support) are integrated in KMF.

Code generation is performed using templates described in XTL, a template
language that was designed and implemented to provide code for flexible
code generation in the KMF.

The OCL support is highly portable as it is structured using OO
programming patterns such as adapter, bridge, visitor and observer. As a
consequence of this approach, the initial implementation of OCL support in
KMF was easily ported to IBM’s EMF.

As KMF is using MDA concepts to develop software, it allows the
integration of applications at the metadata and model levels.

o Designing of a transformation language called YATL that provides the missing
link in the OMG’s MDA framework. This is vital as transformations are key
concepts in MDA. The main characteristics of YATL are:

(0]

YATL is a rule-based transformation language and structured in OO style
using namespaces. A YATL transformation rule consists of two parts: a left-
hand side (LHS) and a right-hand side (RHS). The LHS accesses the source
model, whereas the RHS expands in the target model.

The LHS of a YATL transformation is specified using a filtering expression
written either in OCL or native code such as Java, C#, and scripts. This
approach allows filter expressions to include both modeling information
(e.g. navigational expressions, property values, collections) and platform
dependent properties (e.g. special conversion functions), which makes them
extremely powerful.

The RHS of a YATL transformation rule is specified using a procedural
approach (e.g. decision and iteration actions and new/delete syntactic
constructs).

YATL supports a mechanism to store and retrieve source to target mappings
using track actions. Native actions support interaction with the host
platform. To provide deterministic behavior and flexibility, YATL rules are
invoked explicitly using their names and providing the required arguments.

YATL is implemented both as a compiler and an interpreter to provide
support both for static and dynamic model transformations.

Chapter 1. Introduction 7

1.5.

To test YATL’s descriptive power and its expressiveness we performed several
transformations. YATL was used to experiment with transformations between
various models, from different knowledge domains (e.g. spider diagrams to OCL
and UML’s profile Enterprise Distributed Object Computing to Web Services).
The experiments have shown that YATL is simple, easy to learn and use, and
can be used to described transformations from various knowledge domains. The
experiments also proved that the transformation engine that supports YATL is
very efficient.

KMF proposes two approaches to validate the source and target models involved
in a transformation. The first approach uses the OCL support to check if the
OCL constraints attached to the source and target model instance are satisfied,
thus checking the well-formedness of models. The second approach provides the
evaluation of the quality of the source and target model using a set of software
metrics. This thesis proposes a framework to evaluate the quality of UML
models and a set of design metrics to evaluate the maintainability of UML
models. The validation of models is vital as in the OMG’s MDA framework,
software development process is driven by models.

Summary of publications

The work presented in Chapter 3 and Chapter 4 proposes a modeling framework that

supports the software development process using OMG’s MDA approach. The framework

does not only supports classic modeling activities such as code generation, model element

instantiation, storage and persitance through XMI, but also model validation using OCL

constraints and design metrics to evaluate the model quality. The results of the

investigations have been published in the following papers:

[ALPO3]

[APO3]

[AP04a]

[Pat02a]

[Pat02b]

Akehurst, D., Linington, P., and Patrascoiu, O. (2003) OCL 2.0- Implementing the
Standard. Technical Report No. 12-03, Computer laboratory, University of Kent,
UK.

Akehurst, D. and Patrascoiu, O. (2003). OCL 2.0 — Implementing the Standard for
Multiple Metamodels. In OCL2.0-"Industry standard or scientific playground?" -
Proceedings of the UML'03 workshop, page 19. Electronic Notes in Theoretical
Computer Science.

Akehurst, D. and Patrascoiu, O. (2004). Prototyping Metamodels: Automated
Generation of Modeling Tools with support for Checking Well-Formedness
Constraints. Submitted to UML 2004.

Patrascoiu, O. (2002) A quality model for Java programs maintenance. In Else
Software Journal, University of Craiova.

Patrascoiu, O. (2002) Software systems quality. In Else Software Journal, University
of Craiova.

Chapter 1. Introduction

The work presented in Chapter 5 and Chapter 6 proposes a technique for model

transformation and presents several experiments that were performed using this technique.

The results have been published in the following papers:

[AKPO3]

[Pat04a]

[Pat04b]

[PatO4c]

[Pat04d]

[PRO4]

[PRO5]

Akehurst, D., Kent, S., and Patrascoiu, O. (2003). A relational approach to defining
and implementing transformations between metamodels. In Journal of Software and
Systems Modeling (SoSym), 2(4), 215-239.

Patrascoiu, O. (2004) YATL.:Yet Another Transformation Language. In Proc. of
First European Workshop MDA-IA, University of Twente, the Nederlands.

Patrascoiu, O. (2004) YATL.:Yet Another Transformation Language. Reference
Manual. Version 1.0. Technical Report 2-04, University of Kent, UK.

Patrascoiu, O. (2004) Model transformations in YATL. Studies and Experiments.
Technical Report 3-04, University of Kent, UK.

Patrascoiu, O. (2004) Mapping EDOC to Web Services using YATL. In Proc. of 8"
IEE International Enterprise Distributed Object Computing Conference, EDOC
2004.

Patrascoiu, O. and Rodgers, P. (2004). Embedding OCL expressions in YATL. In
Proc. of “OCL and Model Driven Engineering” workshop, UML 2004.

Patrascoiu, O. and Rodgers, P. (2005). Model transformations in YATL. Submitted
to Journal of Software and Sytems Modeling, January 2005.

Chapter 2. Background 9

Chapter 2. BACKGROUND

This chapter starts by discussing the OMG’s Model Driven Architecture (MDA), presenting
the main features of the framework for software development. This chapter then describes
other work related to the area of language translation. It also includes an overview of topics

that support the understanding of the research presented in the following chapters.

The first section discusses the MDA, presenting the main features of the OMG’s initiative.
The second section presents the theoretical and practical aspects of the translation process.
The last section presents a description of some object-oriented programming patterns used as
part of the concepts, techniques, and tools proposed in this thesis.

2.1. Unified Modeling Language

Modeling is a principal exercise in software engineering and development and one of the
current practices is object-oriented (OO) modeling. In 1996, the Object Management Group
(OMG), an international consortium of computer vendors, end users and consultants,
adopted the well-known Unified Modeling Language (UML). UML has since become far-
and-away the dominant standard for software modeling. Today, nearly every software
development tool has incorporated some form of UML-style modeling into its development

process, and the number of commercially available UML tools is growing.

Based on the success of UML, the OMG has subsequently developed a number of other
broad-based software industry standards around UML, including the Meta Object Facility
(MOF), used primarily to manage metadata and integrate tools; the Common Warehouse
Model (CWM), used primarily in data warehousing; the XML Metadata Interchange (XMI),
used in mapping MOF to XML; and the Enterprise Distributed Object Computing (EDOC)

standard, used for the modeling of enterprise computing.

Chapter 2. Background 10

UML has evolved since 1996 in successive versions. There is ongoing work on finalizing the
latest version, UML 2.0. UML 2.0 is divided in several parts:

UML 2.0 Superstructure: The superstructure defines the six structure diagrams,
three behavior diagrams, four interaction diagrams, and the elements that
comprise them, and so is the part of the language that you'll encounter

UML 2.0 Infrastructure: The infrastructure defines base classes that form the
foundation not only for the UML 2.0 superstructure, but also for MOF 2.0.

UML 2.0 Object Constraint Language (OCL): This allows setting of pre- and
post-conditions, invariants, and other conditions.

UML 2.0 Diagram Interchange: This specification extends the UML metamodel
with a supplementary package for graph-oriented information, allowing models
to be exchanged or stored/retrieved and then displayed as they were originally.

The OMG also has begun to develop derivative standards for specific business domains (e.g.

real-time, healthcare, financial services, telecom, transportation, manufacturing) by defining
the following UML Profiles:

UML Profile for CORBA

UML Profile for CORBA Component Model (CCM)

UML Profile for Enterprise Application Integration (EAI)
UML Profile for Enterprise Distributed Computing (EDOC)
UML Profile for OoS and Fault Tolerance

UML Profile for Schedulability Performance, and Time
UML Testing Profile.

and one related specification:

2.2.

UML Human-Usable Textual Notation (HUTN)

Model Driven Architecture

The Object Management Group (OMG) was formed with the declared purpose of

accelerating the introduction of standardized object software. The Object Request Broker

was one of the first important standards. Two other standards, the Object Management
Architecture (OMA) and the Common Object Request Broker Architecture (CORBA), were
designed to provide the standard framework for distributed systems. This framework is in the

same spirit as the OSI Reference Model and the Reference Model of Open Distributed
Procession (RM-ODP or ODP).

Chapter 2. Background 1

To keep up with its expanding focus, in 2001 OMG adopted a second framework, the Model
Driven Architecture (MDA). MDA is not, like the OMA and CORBA, a framework for
implementing distributed systems. It is an approach to using models in software
development. It is based on other standards including MOF, UML, XMI, and CWM.

[MDA] introduces a number of concepts used by the OMG’s MDA initiative. The definitions
of these concepts are presented below.

System A system is a collection of elements and a set of relations
between elements. An element can be anything. For example:
a program, a computer, a network of computers, a human or
an enterprise.

Model A model is a description of a system and its environment. A
model can be described using a modeling language or a
textual language.

Viewpoint Is an abstraction of a system using a set of architectural
concepts and structuring rules.

View A view is a representation of a system using a chosen
viewpoint.

Computation The computation independent viewpoint (CIV) focuses on the

Independent Model requirements of a system and its environment. A computation
independent model (CIM) of a system describes the domain
and requirements of the system. A CIM might consist of a
model that captures information about the data of a system.

Platform The platform independent viewpoint (PIV) focuses on the

Independent Model operation of the system discarding the details specific to a
given platform. A platform independent model (PIM) is a
description of a system from the platform independent
viewpoint.

Platform Specific The platform specific viewpoint (PSV) combines the platform

Model independent viewpoint with details specific to the
implementation on a specific platform. A platform specific
model (PSM) is a description of a system from the platform
specific viewpoint.

Model A model transformation is the process of transforming a
Transformation model of a given system into another model of the same
system.

Chapter 2. Background 12

Typically the process of software development using OMG’s MDA approach is performed in

several steps, described below.

Requirements specification. The requirements for the system are described using modeling
languages that are computation independent. The resultant model, sometimes called the
domain model or business model, describes the system and its interaction with the
environment in which it operates. A CIM might be described using UML and additional

information regarding the viewpoints used to describe the system.

Platform modeling. The architect will then choose a platform model that allows the
implementation of the system with the desired architectural features. Usually, this model is

described in software and hardware manuals and is based on the architect’s experience.

PIM modeling. Starting from the CIM a PIM model is built. This model describes the

system discarding the details specific to the platform on which it will be implemented.

PSM modeling. The mapping from PIM to PSM describes the transformation of PIM into
PSM for a given platform. The platform model is used to determine the exact form of the
transformation. The resulting PSM specifies the same system as PIM and describes how the

model uses the platform.

Generate deployable code. To produce an implementation of the system, deployable code is
generated starting from resulting PSM. Deployable code can be generated directly from
PIM, without producing a PSM. This approach has the benefit of being more efficient. In
some cases, using a direct code generation, could affect drastically the efficiency of further
stages (e.g. debugging). Unless the PIM and the platform are close, the development of an

intermediate PSM is recommended.

The MDA approach promises a number of benefits [MDA][CHO03]:
e Improved portability due to separating the application knowledge from the
mapping to a specific implementation technology.
e Increased productivity due to automating the mapping.
e Improved quality due to reuse of well-proven patterns and best practices.

e Improved maintainability due to better separation of concerns.

Chapter 2. Background 13

o Enables different applications to be integrated by explicitly relating their
models: this facilitates integration and interoperability and supports system
evolution as platform technologies change.

While the current OMG standards such as UML and MOF provide a well-established
foundation for defining PIMs and PSMs, no such well-established foundation exists for
transforming PIMs to PSMs [GLRSWO02]. In 2002, in its effort to define the transformations,
OMG initiated a standardization process by issuing a Request for Proposal (RFP) on Query /
Views / Transformations (QVT) [QVTO02]. This process will lead to an OMG standard for
defining model transformations, which will be of interest not only for PIM-to-PSM
transformations, but also for defining views on models and synchronization between models.
Driven by practical needs and the OMG’s request, a large number of approaches to model

transformation have been recently proposed [CHO3].

2.3. Modeling frameworks

Many current UML CASE-tools, both commercial (e.g.Rational Rose [RAT], Together
[TOG], Poseidon [GEN]) and non-commercial (e.g. ArgoUML [ARG]) offer extensibility
and interoperability capabilities, for example by providing a proprietary API for model
repository access, by introducing a scripting language, or by providing libraries for tool
developers. However, these CASE-tool dependent solutions are not generally well-suited for
performing a chain of transactions or queries on the models. One of the main goals of
modeling frameworks and tools is to support the combining of small model operations to
achieve higher-level functionality, customizable for a given process, domain, or a platform.
Of the existing UML model processing platforms, the IBM’s Eclipse Modeling Framework
(EMF), the NetBeans Metadata Repository (MDR), and FUJABA [FUJ] come close to our
approach. In comparison, the system described in this thesis, KMF, supports model
validation, using OCL and design metrics, and model transformations using a transformation

language called YATL (Yet Another Transformation Language).

Chapter 2. Background 14

2.3.1. Eclipse Modeling Framework

The Eclipse Modeling Framework (EMF) is an open source framework targeting model-
driven architecture development. The Eclipse Modeling Framework unifies Java, XML and
UML-enabling developers to rapidly construct robust applications based on simple models.
It can be used for both modeling and code generation. It creates Java code for graphically
editing, manipulating, reading, and serializing data based on a model specified in XML
Schema, UML, or annotated Java. EMF is the basis for many of the tools within IBM’s

WebSphere Studio and Eclipse projects.

In addition to generating Java code, EMF can also generate Eclipse plug-ins and graphical,
customizable editors. EMF keeps the code synchronized with the model. The EMF-generated
code supports the standard create, retrieve, update, and delete operations, and it also supports
cardinality constraints, complex relationships and inheritance structures, containment
definitions, and a suite of attribute descriptions. The generated code provides notification,

referential integrity, and customizable persistence to XMI.

EMF incorporates several of the MDA concepts and standards. Behind both EMF and MDA
is the key concept of using models as input to development and integration tools,
transforming those models into executable implementations. In terms of the MDA standards,
EMF uses XMI as primary serialization format for the models and meta-models. EMF's
meta-model, called Ecore, roughly corresponds to the EMOF (Essential MOF) subset of the
recently accepted MOF 2.0 standard. EMF also provides tools for transforming model forms
like UML, XML Schema and simple annotated Java interfaces into Ecore and powerful code
generator tools, which are used to produce high-quality Java code from Ecore model

descriptions.

The project is implemented in Java and based on the Eclipse platform. To integrate EMF’s
various modules Eclipse's plug-in mechanism is used. For example, the basic code
generation components have no Ecore modeling dependency, which makes them ripe for
reuse in other code generation applications. In fact, EMF is modularized in such a way that

many parts of it can even be used without Eclipse itself.

Chapter 2. Background 15

2.3.2. Metadata Repository

The Metadata Repository (MDR) implements the OMG's MOF standard based metadata
repository and integrates it into the NetBeans Tools Platform. It contains an implementation
of MOF repository, including persistent storage mechanism for storing the metadata. The
interface of the MOF repository is based on and fully compliant with JMI (Java Metadata
Interface). MDR also defines additional features that help to incorporate it into the IDE (e.g.

its event notification mechanism).

MDR has the following features:

e Ability to save the contents of any package into an XMI 1.2 document.

o Generate Java APIs for accessing metadata described by the specified MOF
metamodel.

e MOF metamodels loaded into the MDR can be instantiated.

e A metamodel can be accessed using both reflective and metamodel specific
APIs.

e The generated APIs are implemented automatically during the MDR run-time as
they are needed.

¢ MDR can work as a standalone application by using a command line access.

e Part of MDR is integrated in NetBeans by exposing the repository contents and
actions that can be performed on the repository.

2.3.3. Fujaba

The primary topic of the Fujaba Tool Suite project is to provide an easy way to extend a
UML and Java development platform with the ability to add plug-ins. The Fujaba Tool Suite
combines UML class diagrams and UML behavior diagrams to create a powerful, easy to
use, yet formal system design and specification language. Furthermore the Fujaba Tool Suite
supports the generation of Java source code from the UML model. The result of the code
generation could be an executable prototype, if the model contains all the relevant
information. It provides also, to some extent, reverse engineering. The Fujaba Tool Suite is
configured with plug-ins for Reverse Engineering and Design Pattern recognition. The
Fujaba Tool Suite project is located at the Software Engineering Group, Computer Science

Department at the University of Paderborn.

Chapter 2. Background 16

The Pattern Specification plug-in provides a graphical editor for the specification of patterns.
They specify patterns as graph transformation rules, with respect to the abstract syntax graph
(ASG) of a system’s source code. Applying pattern rules results in enriching the ASG with
annotation nodes that may be linked to an arbitrary number of ASG elements. Thus,

annotation nodes mark pattern implementations recognized by pattern rules.

A pattern rule is defined by a left-hand side (LHS) and a right hand side (RHS). The LHS of
the rule describes the structure that has to be found in the ASG if an instance of the pattern
exists. The LHS may also contain annotations created by other pattern rules, thereby
permitting a composition of rules. Rules requiring annotations created by other rules depend
on those rules. The right-hand side (RHS) of a pattern rule defines an annotation node and

links to certain ASG elements that are to be created when the LHS could be matched.

The pattern rules are applied by an inference algorithm that is implemented by the Inference
Engine plug-in. The inference engine uses a pattern dependencies net (PDN) in which pattern
rules are organized in levels according to their dependencies and trigger relationships. Based
on the PDN the inference engine applies rules scheduled in priority queues. It starts with

rules that are independent from other rules.

Successfully applied rules create annotations that in turn trigger other rules at higher levels.
This is called the bottom-up mode of the inference engine. Newly triggered rules are
scheduled according to their levels in descending order. Thus, high level rules, which
produce meaningful results, are executed as early as possible. The analysis results (e.g. the

annotations) are displayed in class diagrams that can be directly obtained from the ASG.

The inference engine works semiautomatically because it involves the software engineer in
the reverse engineering analysis. The reverse engineer may pause the inference at any time
and inspect the results produced so far. Furthermore the engineer may modify or manually
add hypothetical results and continue the inference. The changes are then considered in the

further analysis.

Chapter 2. Background 17

2.3.4. Rational Software Modeler

The IBM Rational Software Modeler (RSM) is a UML2 modeling tool based on the Eclipse
framework, which is a part of the IBM Software Development Platform (SDP), a set of

modeling and model-driven engineering tools.

The diagram editor provided by RSM supports the 13 official diagram types of UML2 and
several extra types of diagrams (e.g browse, freeform and topic diagrams). Selecting the
range of diagrams on which to perform given operations (e.g. printing) proves to be
somewhat cumbersome. Customized UML profiles are supported and model constraints can
be defined (e.g., OCL). HTML and XML-based data exportation and reporting are provided
out of the box, but the documentation for advanced topics is sometimes not available or is
minimal. For example, although it generates quality reports, the set of metrics that is used
measures only various dimensions of the model (e.g. number of classes and number of
packages) and not the complexity of dynamic diagrams (e.g. sequence diagrams). Features
for advanced documentation and quality evaluation can be included in RSM using the plug-

in mechanism provided by Eclipse.

RSM provides team support with multi-model support, compare, merge, and system
versioning integrations. It supports model versioning but only at the model file level. A
model cannot contain several versions of a UML element (e.g. classes). Having several
versions of a UML element in the same model is a useful feature when modeling large scale

systems.

RSM provides support for two types of transformations: model to model and model to text. It
also provides three predefined transformations: to Java, C++, or EJB code. The
transformations are implemented programmatically. User transformations can be integrated
into RSM using the Eclipse plug-in mechanism. RSM does not provide support for a
transformation language, which increases the effort of writing transformations.

Chapter 2. Background 18

2.3.5. Comparison

In this section we compare the modeling frameworks described in the previous sections by
analysing the features provided by their specification. To achieve this comparison we

analyse the languages on the basis of several features. The results of the comparison are

summarized in Table 2.1.

Feature/ EMF MDR FUJABA RSM
Language

Graphic Editor No No No UML 2 diagrams

Model Quality No Local and global No Local and global

Prototype Graphic Programmatic Programmatic Programmatic

Well-formedness Static & Dynamic Static OCL No Static OCL

OCL

Transformations No No No Predefined
transformations to
Java, C++ and EJB

Versioning No No No Model level

Table 2.1. A comparison of modelling frameworks

In this table the rows represent features that are used for comparison and the columns
represent the modeling frameworks that are compared. The table indicates how each feature

is supported by a modelling framework. The features are explained below.

Graphic Editor. Indicates if the modeling framework contains a built in graphic editor that

supports the drawing of UML diagrams.

Model Quality. The quality of a model can be measured using software metrics. This
indicates if the modelling framework supports quality evaluation both at local and global

level. Local evaluation allows the modeler to focus on a quality attribute or a particular

Chapter 2. Background 19

element from the model, without being distracted by having to assess things that are not the

current focus. Global evaluation allows the user to have a global view over the entire model.

Prototype. In order to provide sufficient data against which to validate the model, the
modelling framework must be capable of setting up potential populations of the model. The

population can be created either by using a graphic interface or writing programs.

Well-formedness. To check if a given population is well-formed, the rules that validate a
population must be verified. Hence, modeling frameworks could support both the static and

the dynamic evaluation of the well-formedness rules specified in the model.

Transformations. Modeling frameworks can support transformations from one model

instance to another and trace the mappings.

\ersioning. It must be possible to handle multiple versions of the model. The versioning can
be performed at model level or model element level. Versioning at the local level means that

a model can contain several versions of a given element.

2.4. Transformation Languages

Transformation languages play an important part in the MDA framework. The process of
translation between language models is based on a large body of research in the field of

compilation. This section presents some of the existing transformation languages.

241. OMG’sQVT

While the current OMG standards such as Unified Modelling Language (UML) and Meta
Obiject Facility (MOF) provide a well-established foundation for defining PIMs and PSMs,
no such well-established foundation exists for transforming PIMs to PSMs. In 2002, in its
effort to define the transformations, OMG initiated a standardization process by issuing a
Request for Proposal (RFP) on Query / Views / Transformations (QVT). This process will
lead to an OMG standard for defining model transformations, which will be of interest not

only for PIM-to-PSM transformations, but also for defining views on models and

Chapter 2. Background 20

synchronization between models. In response to the OMG’s Request For Propoasal (RFP), 8

proposals were submitted:

1) Adaptive Ltd. (in the following abbreviated as ADAPTIVE)
2) DSTC/IBM (abbreviated as DSTC)

3) Compuware Corporation/Sun Microsystems (SUN)

4) Alcatel/Softeam/TNI-Valiosys/Thales (THALES)

5) Kennedy Carter (KC)

6) QVTPartners, which comprises Artisan Software, Kinetum, Kings College, and
the University of York (QVTPartners)

7) Codagen Technologies Corporation (CODA)
8) Interactive Objects Software GmbH/Project Technology (10)

24.11. DSTC

To satisfy the requirements of the RFP and those identified above, DSTC developed a
transformation language that allows for the declarative specification of transformations
without regard for rule application order. This language was prototyped based on a modified
F-Logic interpreter [KLW95].

A declarative transformation describes what the result should be in terms of the input, but
does not prescribe how to go about constructing the result. However, like Horn clauses in
logic programming, instances of a transformation language should be a declarative
specification, and also have an equivalent procedural interpretation, thus allowing the

specification to be executed.

A transformation in DSTC’s language consists of the following major concepts: pattern
definitions, transformation rules and tracking relationships. Pattern definitions are used to
label common structures that may be repeated throughout a transformation. A pattern
definition has a name, a set of parameter variables, a set of local variables, and a term.
Pattern definitions are used to name a query or pattern-match defined by the term. The result
of applying a pattern definition via a pattern use is a collection of bindings for the pattern

definition’s parameter variables.

Transformation rules are used to describe the things that should exist in a target repository

based on the things that are matched in a source repository. Transformation rules can be

Chapter 2. Background 21

extended, allowing for modular and incremental description of transformations. More
powerfully, a transformation rule may also supersede another transformation rule. This
allows for general case rules to be written, and then special cases dealt with via superseding

rules.

Tracking relationships are used to associate a target element with the source elements that
lead to its creation. Since a tracking relationship is generally established by several separate
rules, they allow other rules to match elements based on the tracking relationship
independently of which rules were applied or how a target element was created. This allows
one set of rules to define what constitutes a particular relationship, while another set depends
only on the existence of the relationship without needing to know how it was defined. This

kind of rule decoupling is essential for rule reuse via extending and superseding to be useful.

2.4.1.2. Thales

The core of this proposal is a transformation language called TRL (Transformation
Language). The language can be used for querying models as well as for transforming
models. It reuses and extends the selection and filtering capabilities already available in OCL
2.0. The type of the data returned by a query may be a composite type (collection types, tuple
types, dictionary types) or maybe provided by a metamodel (in which case the query is a

special kind of transformation program).

TRL is based on metamodeling techniques. The rules express the relationship between
source and target model elements in terms of the available metaclasses, metaattributes and
metaassociations. In addition the language has a direct support of dynamic extensibility

using through using stereotypes in profiles.

The abstract syntax is provided as a MOF 2.0 compliant metamodel and is independent of
the proposed concrete syntax. A TRL program specification may have more than one source
model as input. This allows the merging of distinct kinds of data that might be necessary to
achieve a complete automated transformation. This applies in particular to marked models.
In such a case the designer may declare what are the profiles that apply to a source or target

model. In addition to this, a TRL program may have parameters.

Chapter 2. Background 22

2.4.1.3. QVT Partners

This submission proposes a possibly extended version of OCL 2.0 to describe queries in the
new QVT language, as OCL 2.0 resolves OCL 1.3’s deficiencies as a query language.

A view is a projection on a parent model, created by a transformation. From this simple
definition, the proposal builds the necessary machinery to cope with advanced technologies
such as RM-ODP style viewpoints. Essentially, the viewpoints are analogous to a query
which not only creates a view but also potentially restricts the meta-model of the view as
well. Thus from each viewpoint one does not in general have enough information to rebuild
the entire system. One possible mechanism for dealing with viewpoints in this proposal is to
use a query to create a view of a model, and then use a transformation to alter the view to

reflect the viewpoint’s restricted meta-model.

This proposal defines the transformations using two distinct layers. Similar to UML2
concepts, they are named the infrastructure and superstructure layer. The proposal defines a
simple infrastructure which has a small extension to the MOF meta-model and whose
semantics are easily defined in terms of existing OMG standards. The infrastructure is
necessarily low-level and not of particular importance to end users of transformations. The
superstructure contains a much higher-level set of transformation types suitable for end
users. Some parts of the infrastructure are effectively included ‘as is’ in the superstructure.
Concepts that exist in the superstructure but not in the infrastructure have a translation into
the infrastructure. This superstructure contains plug points to allow it to be easily extended

with new features.

The proposal’s overall framework for transformations allows the use of a variety of different

transformation styles: relations and mappings.

Relations are multi-directional declarative specifications. In general they are non-executable,
but some restricted types of bi-directional relations can be automatically refined into
mappings. Relations are written in any valid UML constraint language, OCL being the best

choice. In general, relations are used in the specification stages of system development.

Mappings are transformation implementations. Hence they are operational. Unlike relations,
mappings are potentially uni-directional. Mappings are expressed in the Actions Semantics

Language (ASL) and thus encompass all programming language implementations. Mappings

Chapter 2. Background 23

can implement any number relations, in which case the mapping must be consistent with the

relations it refines.

2.4.2. ATLAS Transformation Language

The ATL is a QVT-based transformation language, developed by the INRIA Atlas team. An
implementation of ATL is currently available as open source under an Eclipse project called
Generative Model Transformer (GMT) project. It is developed as a set of Eclipse plugins and
works as a development IDE for transformations, with execution and debugging. Currently
integrates with EMF and MDR.

It is described by an abstract syntax (a MOF meta-model), a textual concrete syntax and an
additional graphical notation allowing modelers to represent partial views of transformation
models. A transformation model in ATL is expressed as a set of transformation rules. The
recommended style of programming is declarative. Transformations from Platform
Independent Models (PIMs) to Platform Specific Models (PSMs) can be written in ATL to
implement the MDA.

The declarative part of ATL is based on the notion of matched rule. Such a rule consists of a
source pattern matched over source models and of a target pattern that gets created in target
models for every match. Traceability links are automatically created. Rule inheritance and

polymorphic rule reference are available. Navigation is performed using OCL expressions.

Transformation programs written in ATL are inherently unidirectional. Source models,
which are only navigable (e.g. read-only), and target models, which are not navigable (e.g.

write-only), are clearly identified at development time.

ATL offers two imperative constructs: called rule and action block. A called rule is
explicitly called, like a procedure, but its body may be composed of a declarative target
pattern. Matched rules and called rules may be used together in a single transformation
program. Action blocks are sequences of imperative instructions that can be used in either
matched or called rules. The recommended style is declarative (e.g. no called rules and no
action blocks). Imperative style should only be used when no declarative language construct

provides the capabilities required by a particular case.

Chapter 2. Background 24

There are two modes in which the declarative part of an ATL program can operate: standard
and refining. In standard mode, elements are only created when a rule is matched. However,
since models cannot be transformed in-place (source models are read-only), transformations
that only modify small parts of a model and leave most of the rest unchanged are complex to
write in this mode. As a matter of fact, there must be roughly at least one copy rule for each
type declared in the metamodel. This is not required in the refining mode where unmatched
elements are automatically copied by the engine. In most cases, developers may assume they
are actually modifying a source model with the difference that every navigation expression
always operates on the original source model.

2.4.3. Other Transformation Frameworks

Below are some open source tools of different character:

e UMT (UML Model Transformation Tool) - UMT is an open source UML/XMI-
based tool for model transformation and code generation purposes, which uses
XSLT and Java for generation [UMT].

e The IBM Model Transformation Framework (MTF) is an EMF based model
transformation framework, now available at alphaWorks. It provides a
declarative means of specifying metamodel relationships, similar to that of QVT
relations [MTF].

e Generative Model Transformer (GMT) an Eclipse project that will provide
model transformation technology for the Eclipse platform. Currently the FUUT-
je tool, a code generator tool, is the primary GMT deliverable. (ATL, mentioned
above, provides core transformation technology.) [GMT]

e MTL Engine. Another QVT-like implementation, by the INRIA Triskell team.
Uses the MTL language. Integrates with Netbeans MDR and Eclipse EMF.

e MOdel transformation Language (MOLA) is combination of traditional
structured programming in a graphical form with pattern-based rules. The loop
concepts enable the iterative style for transformation definitions, while other
languages rely on recursion [MOLA].

e MOFScript, a model to text transformation tool, based on one of the OMG MOF
Model to Text Transformation submissions. It is implemented as an Eclipse
plugin, based on metamodels/models in EMF [MOFS].

e ModFact. A MOF Repository and QVT-like engine from LIP6, Paris. Based on
the TRL language. LIP6 are also working on an open source ModelBus
implementation, which will enable MDD tools interoperability [MODF].

e OpenArchitectureWare, a flexible, template-based generator framework
integrated with XMI [OAW].

Chapter 2. Background 25

e OpenMDX, an open source MDA environment, which integrates with several
tools through XMI and supports code generation towards several target
platforms (J2EE, .Net) [OMDX].

e AndroMDA, an open source template-based tool for J2EE code generation from
UML/XMI. Uses VTL (Velocity Template Engine) as scripting language and
Netbeans MDR as a model APl [AMDA].

o XDoclet an open source, attribute based code generation tool for J2EE. Not
really model-based, but can be combined with generation tools such as UMT to
achieve good model-based value [XDOC].

e Middlegen, an open source, database driven code generator based on JSBC,
Velocity, Xdoclet and Ant [MID].

2.5. Languages and Translators

There is a communication gap between humans and computers. Computer hardware operates
in terms of bytes and locations while humans express themselves in terms of natural
languages such English or using high-level concepts. A translation process bridges the
human-machine communication gap. Language translation is the process of restating some
text written in one language in a different language. In other words, to translate is to examine
some original text, written in what is termed the source language, and write a corresponding
text in a different language, termed the target language, with the goal of preserving the

meaning of the original text.

2.5.1. Languages, grammars, and automata

Programming languages used for the purpose of computer programming (such as C# or Java)
do not resemble human languages very much. They are described using tools termed formal
languages. Formal languages lack questions, exclamations, simile, metaphor, and other

features of human language. [Sal73] provides a general treatment of formal languages.

In computer science a formal language is a set of strings over a given alphabet. A grammar
is a way of describing formal languages. These systems are named grammars by analogy
with the concept of grammar for human languages. The basic idea behind these formal

systems is that strings contained in a language can be generated by starting from a special

Chapter 2. Background 26

start symbol and then apply rules that indicate how certain combinations of symbols can be

rewritten by replacing them with other combinations of symbols.

A grammar G is an algebraic system consisting of the following components:
¢ Afinite set N of nonterminal symbols.
e Afinite set T of terminal symbols that is disjoint from N.
o A finite set P of production rules where a rule is of the form
o — P where o and 3 are strings from the language (TUN)*

(where * is the Kleene star operator and v is set union) with the restriction that
the left-hand side of a rule (i.e., the part to the left of the —) must contain at
least one nonterminal symbol.

e Asymbol Sin N that is indicated as the start symbol.

Usually such a grammar G is simply summarized as (N, T, P, S).

A grammar is a rewriting system that generates strings from other strings by applying the
grammar’s productions. The string y; derives directly to y,, denoted as y; = v, if there is a
production rule a—f in G such as y; = o aB; and v, = apf2, where oy, B, o, and B, are
arbitrary strings over the alphabet (N U T)*. The notation can be extended to =" and =*

using Kleene’s operators.

The language described by a formal grammar G = (N, T, P, S), denoted as L(G), is the set of
strings over T that can be generated by starting with the start symbol S and then applying the

production rules in P until no more nonterminal symbols are present:
LG ={weT*|S=>*w}

Languages can also be described using concepts from automata theory. The automata are
abstract models of computer execution and storage. The best-known automata are the Turing
machines, pushdown automata, and finite state machines. [Gin75], [Sal69], and [HU79]

comprise a general treatment of automata and languages.

Turing [Tur36] introduced in 1936 a machine termed since than the Turing Machine. The
purpose of this machine was to give a precise definition of algorithm or “mechanical
procedure”. Turing machines are widely used in theoretical computer science, especially in

the theory of computation and theory of algorithm complexity.

Chapter 2. Background 27

The origin of pushdown concept is not clear and is attributed by most to [BWWS54] and
[NS57]. A little later the term LIFO storage was used explicitly in the literature by [SB60],
who used it to translate the ALGOL formulas into machine code. Pushdown automata are
best known for accepting the family of context-free languages, which was independently
proved by [Cho62] and [Eve63].

A finite-state automaton is an abstract machine that has only a finite, constant amount of
memory and an internal state. There are several types of finite state machines: acceptors,
recognizers, and transducers. Acceptors either accept the input or do not by producing a
“yes” or “no” answer. Recognizers are used to categorise the input and transducers are used
to generate an output from a given input. Apart from theory, finite state machines like Moore

and Mealy machines occur in hardware circuits.

Noam Chomsky introduced in [Cho56] a containment hierarchy of grammars. Table 2.2
summarizes each of Chomsky’s four types of languages, the class of grammars it generates
and the type of automaton that recognizes it.

Language Grammar Automaton

Recursively enumerable Type-0 Turing machine

Context-sensitive Type-1 Linear-bounded non-deterministic automaton
Context-free Type-2 Non-deterministic pushdown automaton
Regular Type-3 Finite state automaton

Table 2.2 Chomsky’s hierarchy

2.5.2. Language processors

A translator is a program that accepts as input a program written in a language, termed the
source language, and produces a program written in another language, termed the target
language, preserving the meaning of the original program. Translators typically distinguish

translation from interpretation, which is live translation of speech.

Chapter 2. Background 28

If the source language is a high-level language such as C# or Java and the target language is
a low-level language such as assembly language or machine language, the translator is a

compiler. The machine language of a computer is sometimes termed object code.

An assembler is a translator from an assembly language, which is very close to the machine,

to the object code of a given machine.

An interpreter is a program that accepts a source program written in the source language and
executes it. The interpreter does not produce an object program to be executed; it performs all

the operations implied by the source program.

In theory an interpreter has to follow the control graph attached to the source program, analyse,
and execute each action. This approach is very inefficient and therefore it is not used in real
scale systems. The usual method is to split the interpretation process into two phases. The first
phase analyses the entire source program and builds an internal representation. The second

phase executes the internal form of the source program, following the control graph.

Among practitioners, a distinction is generally made between translation, where the compiler
generates object code which is then executed, and interpreting or interpretation, where the
interpreter analysis and executes the source program. From the point of view of analyzing
the processes involved (translation studies), it is perhaps more useful to treat interpreting as a

subcategory of translation.

Many software tools that manipulate source programs first perform some kind of analysis
similar to that of a compiler. Some examples of such tools include: structure editors, pretty-
printers, static checkers, text formatters, query interpreters, and preprocessors. Practical
aspects of the translation process are presented in more detail in [ASU86], [WG84], [AP02],
and [FL91].

2.6. Object Oriented Design Patterns

Mature engineering disciplines have handbooks that describe successful solutions to known
problems. For instance, rail track designers do not design rail tracks by starting from scratch

and using the laws of physics and geometry. Instead, they reuse standard designs with

Chapter 2. Background 29

successful track records regarding functionality and safety. The extra few percent of

performance available by starting from scratch is not worth the cost.

Object-oriented developers wrote the first software patterns, so they focused on object-
oriented design and programming [GHJV95] or on object-oriented modeling [Coa92]. Since
then new trends appeared, for instance creating patterns in concurrent, parallel, and

distributed programming systems [CVK96] [Gra02].

This thesis makes use of several of these patterns with respect to providing an

implementation of models. These patterns are described in the following subsections.

2.6.1. Factory Method Pattern

Very often one needs to construct an object without knowing the class of object it must
create. The Factory Method pattern is a creational pattern that “Define an interface for
creating an object, but let subclasses decide which class to instantiate” [GHJV95]. The
Factory Method pattern delegate the responsibility of choosing the class that must be created

to subclasses. The participants involved in this software pattern are described in Figure 2.1.

<<interface>>
Factoy

create(): Product

Product

i

| |

’ ConcreteProductA ‘ ’ ConcreteProductB ‘ ConcreteFactoryA ConcreteFactoryB

create():Product create():Product

Figure 2.1 Participants of the Factory Method Pattern

2.6.2. Abstract Factory Pattern

The Abstract Factory pattern is one level of abstraction higher than the Factory Method

pattern. The Abstract Factory pattern provides a way of encapsulating a group of individual

Chapter 2. Background 30

factories that create similar products that belong to different families of products. This
pattern separates the details of implementation of a family of objects from their general

usage. The participants involved in this pattern are presented in Figure 2.2.

’ ProductA ‘

Factory
Z}‘ createProductA():ProductA
l l createProductB():ProductB
’ ThemelProductA ‘ ’ Theme2Product2 ‘ (
’ ProductB ‘ ‘
Z} ThemelFactory Theme2Factory
l l createProductA():ProductA createProductA():ProductA
createProductB():ProductB createProductB():ProductB
’ ThemelProductB ‘ ’ Theme2ProductB ‘

Figure 2.2 Participants of the Abstract Factory pattern

2.6.3. Builder Pattern

In many cases the algorithm for creating a complex object must be independent of the parts
that make up the object. As the Builder pattern separates the construction of a complex object
from its representation, a variety of representations can be created using the same
construction process. This creational pattern it is intended “to decouple the process of
building complex objects from parts that make up the object” [GHJV95]. The Builder pattern
has two main participants called director and builder. The director, which responsible for the
overall organization of the creation process, makes calls to the builder. The builder constructs

the complex object under the control of the director. The structure of the pattern is presented

in Figure 2.3.
Director Builder
buildProduct() buildPart()
ConcreteBuilderl ConcreteBuilder2

buildPart() buildPart()

Chapter 2. Background 31

Figure 2.3 Participants of the Builder pattern

2.6.4. Visitor Pattern

The Visitor pattern is a behavioural pattern that lets you to define and perform a new
operation on all the elements of the object structure, without changing the classes of the
elements on which it operates. In the visitor pattern, the operations are seen as objects as
themselves. The participants involved in this pattern are presented in Figure 2.4. The visitor

pattern is characterized by the following:

1) Two interfaces are defined: Visitable and Visitor.
2) Each element of the object system implements the Visitable interface.

3) For each new operation a concrete visitor is defined that implements the Visitor
interface.

4) The parameters of the operations are stored in Data.

: <<interface>>
<<interface>> Visitor

Visitable

— visit(ElementA, Data)
accept(Visitor, Data) visit(ElementB, Data)

AN N

ElementA ElementB Visitorl Visitor2

accept(Visitor, Data) accept(Visitor, Data) visit(ElementA, Data) visit(ElementA, Data)
visit(ElementB, Data) visit(ElementB, Data)

Figure 2.4 Participants of the Visitor Pattern

2.6.5. Observer Pattern

Sometimes partitioning a system into a collection of cooperative classes looses the
consistency between related objects. Consistency can be achieved either by making the
classes tightly coupled or using the Observer pattern. The Observer pattern is a behavioural

pattern that defines the dependency relations between cooperative classes.

Chapter 2. Background 32

The key concepts in this pattern are subject and observer. A subject may have any number of

dependent observers. The subject notifies its observers whenever a change occurs that could

make its observers’ state inconsistent with its own. After being informed of a change in the

subject, an observer may query the subject for information.

The participants involved in this pattern are presented in Figure 2.4. The visitor pattern is

characterized by the following:

1) Two objects are defined: Subject and Observer.
2) Each element of the object system that must be observed is a subtype of the
Subject object.
3) For each subject there zero or more observers.
4) The parameters of the operations are stored in Data.
Subject Observer
addObserver(Observe) update()
removeObserver(Observer)
notify()
SubjectA SubjectB Observerl Observer2
getState() getState() update() update()
setState() setState()

Figure 2.5 Participants of the Observer Pattern

2.6.6.

Adapter Pattern

Sometimes objects with different interfaces need to communicate with each other and work

together in a single program. In such cases the adapter pattern is a solution. The Adapter

pattern is a structural pattern that converts the interface of a class into another interface that

clients expect.

Chapter 2. Background 33

The key objects in this pattern are target, adapter and adaptee. Target defines the interface
that the client is using. An adaptee defines an existing interface that needs to be adapted. An

adapter adapts the interface of the adaptee to the target interface.

The adapter pattern can be implemented in two ways, as object adapters or class adapters.
The difference between these two implementations is given by the strategy used to solve the

problems: composition versus inheritance.
Object Adapters

Object adapters use a compositional strategy to adapt one interface to another. The adapter
inherits the target interface that the client expects to see and contains an instance of the
adaptee. When the client calls a method on the adapter, the method is translated into the

corresponding specific request on the adaptee. The structure of object adapters is presented

in Figure 2.6.
<<interface>>
Target Adaptee
request() specificRequest()
;L |
Adapter

request()

Figure 2.6 Participants of Object Adapters

Class Adapters

Class adapters use multiple inheritance to achieve their goals. As in the object adapter, the
class adapter inherits the interface of the client’s target. It also inherits the interface of the

adaptee as well. The participants of the class adapters are presented in Figure 2.7.

Chapter 2. Background 34
<<interface>> <<interface>>
Target Adaptee
request() specificRequest()

Adapter

R request() R
specificRequest()

Figure 2.7 Participants of Class Adapters

A class adapter adapts adaptee to target by implementing a concrete class. Thus a class
adapter is not capable to adapt a class and all its subclasses. Object adapters are capable of

adapting a class and all its subclasses.

2.6.7. Bridge Pattern

The Bridge pattern is a structural design pattern whose intension is to “decouple an
abstraction from its implementation so that the two can vary independently” [GHJV95]. The

Bridge pattern encourages loose coupling of objects through the use of delegation.

<<interface>>
Implemenation

Abstraction impl

operationlmpl()

i

| |

’ RefinedAbstractionA ‘ ’ RefinedAbstractionB ‘

operation()

ConcretelmplementationB ConcretelmplementationD

operationimpl() operationlmpl()

Figure 2.8 Participants of Bridge Patterns

The key concepts in this pattern are abstraction, refined abstraction, implementation, and
concrete implementation. The abstraction defines the interface that the client uses for the
interaction with the abstraction. The abstraction object maintains a reference to an
implementation object that is used to forward the client request to the implementation. A

refined abstraction is any of the abstract class extensions. The implementation defines the

Chapter 2. Background 35

interface for any of the implementations of the abstraction. Typically the implementation
interface “provides only primitive operations, and Abstraction defines higher-level
operations based on these primitives” [GHJV95]. The concrete implementation simply
implements the interface defined by the implementation, defining a concrete implementation

of the abstraction. The participants of the bridge pattern are presented in Figure 2.8.

2.1. Summary

In this chapter we have given an overview of the topics that form together the foundation of
the research contained in the rest of this thesis. Modeling languages are vital for the process
of software development using the model-driven approach. They are vital mainly for
specifying the models used during the development process: computation independent
model, platform model, platform independent model, and platform specific model. As
models are a key part of the MDA framework their quality is very important, as is the

validation of a model over a population of model instances.

Transformation languages play a very important part in the MDA framework. The process of
translation between language models is based on a large body of research in the field of
compilation. The finalization of OMG’s initiated standardization process of QVT [QVTO02]
will also provide the missing link of MDA [GLRSWO02]. A more detailed description of

approaches taken so far for model transformation is presented in [CHO3].

Software development, like any other mature engineering discipline, should be based on
software patterns. Software patterns may vary from object-oriented design and programming
patterns [GHJV95], object-oriented modeling patterns [Coa92] to more general and
sophisticated patterns, as in concurrent, parallel, and distributed programming [CVK96] and

object-oriented software environments [Gra02].

Chapter 3 Kent Modeling Framework 36

Chapter 3. KENT MODELING

FRAMEWORK

Modeling and metamodeling has become popular because it aids the derivation of
implementation from a definition. Software tools for automatically generating an
implementation of the structural part of the definition are now publicly available.
Unfortunately, these tools do not tend to be used when a metamodel is developed, as the
tools are not appropriate for supporting the definition process, and well-formedness rules of

model instances tend to be ignored.

3.1. Modeling Tools Requirements

Currently, the focus of modeling is to capture the abstract syntax of a language, although
models can also be to define other aspects of a language, such as semantics and evaluation.
This thesis will focus on concrete syntax, abstract syntax, semantics, and the appropriate

mappings between them.

The general problem is to support the activity of modeling, by providing a means to check
during the process of a model development if the model is fit for purpose, well-formed and
error-free. The general approach we have adopted is to generate modeling tools from a
model. Another approach might be to provide an interpreter for the model. We have followed
the first approach, because we would like to move on from generating prototypes to
generating industrial-strength modeling tools or at least fragments of modeling tools. We do
not believe that the interpretive approach can be used to deliver industrial-strength tools,
mainly because such an approach is time consuming. With this in mind, we can now consider

more specific requirements, both for the generator, and for the generated prototype.

Chapter 3 Kent Modeling Framework 37

In order to check if a model is fit-for-purpose we have to ensure that what needs to be

expressed in the language it describes can be represented as an instance of the model, and

that only instances which represent valid expressions of the language are valid instances.

Hence, the generated tool should support a process of validation, which allows potential

instances of the model to be explored and checked against the model.

This leads to the following requirements for a prototype tool generated from a model:

1)

2)

3)

4)

5)

Evaluating the quality of the model. The quality of a model influences the entire
process of software development because it is unlikely that a low quality model can be
used to automatically generate a high quality software product. Tools should support
quality evaluation both at local and global level. Local evaluation or selective evaluation
allows the modeler to focus on a quality attribute or a particular element from the model,
without being distracted by having to assess things that are not the current focus. Global
evaluation allows the user to have a global view over the entire model. The quality
checker must provide clear feedback to the user, which is vital in order to detect and fix
errors.

Rapid and repeatable input and editing of populations. A population of a given
model is a set of instances of the elements described in the model, representing items
from the described language. In order to provide sufficient data against which to validate
the model, the tools must be capable of setting up potential populations of the model
quickly, in several ways (e.g. using a graphic interface or writing programs). The
populations may include examples (valid constructions) and counter-examples (invalid
constructions). It must be possible to set up sophisticated populations, representing
complex constructions and subtle boundary cases. For instance, a tool that only allows
you to set up a model instance object by object, link by link, would not meet this
requirement very well.

Viewing and exploring populations. Tools must be capable of viewing and exploring a
population easily. This facility is extremely important in certain situations, for instance
when debugging well-formedness rules.

Evaluation of well-formedness rules over populations. It must be possible to evaluate
well-formedness constraints over populations. Tools should support both local
evaluation and global evaluation. Local evaluation or selective evaluation allows the user
to focus on a particular rule or a particular element from the population, without being
distracted by having to evaluate rules that are not the current focus. Global evaluation
allows the user to have a global view over the entire population. The rule checker must
provide clear feedback to the user, which is vital in order to detect and fix errors.

Model transformation. It must be possible to create transformations from one model
instance to another and trace the mappings. Tools should support transformation both at
a local and a global level. Transformations at a global level allow the user to have a
global view over the entire population, while local transformations or selective
transformations allow him to focus on a particular rule or a particular element from the
population, without being distracted by having to perform rules that are not the current
focus. The clarity of the feedback provided by the transformation engine is vital in order
to detect and fix errors.

Chapter 3 Kent Modeling Framework 38

6) Smooth process. We would like the process of developing and editing models, applying
transformations, compiling and launching the generated code, working with and
obtaining feedback from test populations, then cycling back to the model, to be as
smooth as possible. It is important that a generated prototype can work with other tools,
especially ones that might provide a means of representing constructions in the language
being defined in some concrete syntax.

7) On-the-fly behavior. It should be possible to input constraints or transformation rules
and have them evaluated on-the-fly against sample populations. The feedback from this
evaluation should be as helpful as possible.

8) Round-trip engineering. We have found that 100% generation of code is very difficult,
especially when we consider some of the requirements on the generated tool that have to
be met. So it is necessary to assume that the generated code will be supplemented by
some hand-written code. On the other hand the model might be changed in the future,
and the code regenerated.

9) Model versioning. It must be possible to handle multiple versions of the model in a way
that does not require major changes to hand-written code, just because the version
number (e.g. in the model name) changes.

3.2. The Kent Modeling Framework

This section describes the Kent Modeling Framework [KMF] and how it can be used to
generate a modeling tool from a model. It then proceeds to describe the customization of the
generated code, in particular the definition of methods that allow a rapid and repeatable input
of population.

3.2.1. About KMF and KMF-Studio

KMF provides a set of tools to support model driven software development. At the core of
KMF is KMF-Studio, a tool that generates modeling tools from the definition of languages
expressed as models. KMF-Studio is supported by OCLCommon and OCL4KMF, two Java
libraries that allows dynamic evaluation of OCL2 constraints; and XMI, a Java
implementation of the XMI standards. Tools generated using KMF-Studio use OCLCommon
and OCL4KMF to provide built in support for checking well-formedness of models, amongst
other things; they use XMI to write and read models in XMI format. XMl is also used by
KMF-Studio to read in models in standard UML 1.3 XMI 1.0 and XMI 1.2 format. The code

generated by KMF Studio for a particular model is summarized in Table 3.1.

Chapter 3 Kent Modeling Framework

39

Metamodel

m:Model

For all p:Package in m

For all c:Class in p

Generated Java code

User can choose the location of the generated

code, and also the name of the model.

Licensing support for generated code is also

provided.

A common set of boilerplate interfaces (e.g.
Visitable, XElement, where X is the name of the

model).

GUI code, XMI readers and writers and code for

constructing and populating a repository.

Factory and Visitor interfaces for generating and

navigating the model elements.

A repository storing all generated elements.

Corresponding interfaces and classes are
generated in a Java package, whose pathname
follows the nesting structure of packages in the

metamodel.

A lifecycle class that includes a factory method
for creating instances of the Java class generated

from this class.

A repository contains one instance of the lifecycle
class for each class, and the factory method stores

the object it creates in that repository.

Lifecycle classes can be specialized using hand-
written Java code, and repositories can be

configured with objects of the specialized

Chapter 3 Kent Modeling Framework

40

For all c:Class in p

For att: Attribute in ¢

For all q:Query operation in ¢

versions.

Interface

Extends interfaces from superclasses, standard
library classes such as X.XElement, where X is

the name of the model.
Class

Implements interface generated from class.
Includes boilerplate code required for GUI, XMl
reading/writing and to support repository

Services.

Interface

A get method with the name getX, where X is the
name of the attribute.

A set method with name setX, where X is the

name of the attribute.
Class

An attribute whose name is derived from the

name of the attribute.

Implementations for the get and set methods in

the interface, that make use of the attribute.

Interface
A method with corresponding signature.
Class

An implementation of the method, whose body is

Chapter 3 Kent Modeling Framework

41

For all inv:Invariant in ¢

For all assoc:Association in p

For all ae:Association End (only

navigable ones) in assoc

Type of attributes, arguments and

result of operations,
association ends

and

derived from the (OCL) expression that is the
body of the operation.

A visit method included in XParseAllVisitor and
XEvaluateAllVisitor classes, where X is the

model name.

If association is bidirectional, then two
constraints are generated, one in each class
connected by the association, to capture the

bidirectionality constraint.

Treated as attributes of the class at the source of
the association end, where the type of the
attribute is governed by the multiplicity of the
end. If the target of the end is class X then if the
cardinality is 1, the type is whatever X is mapped
to; if the cardinality is greater than 1 and the
association end is ordered the type is List from
java.util package; else the type is Set from

java.util package.

When a class or datatype is used as the type of an
attribute, parameter or operation in the
metamodel, if the type is a class then interface
matching the class is used as the type. If it is a
primitive type X, where X is Integer, String,
Boolean, Set, Sequence or Bag then the type is
the corresponding Java primitive types. All basic
types such as int, float and double are mapped to
corresponding reference types such as Integer and
Double etc.

Table 3.1 Outline of code generated by KMF Studio

Chapter 3 Kent Modeling Framework 42

The generated code can be executed directly, which will launch a tool that provides the
following functionality:
e The ability to populate the metamodel, to explore populations, and to edit and
view specific elements of the population through a forms style interface.

e The ability to check well-formedness of a population in memory according to
well-formedness constraints expressed in OCL on the metamodel.

e The ability to dynamically evaluate OCL expressions over the population in
memory.

e The ability to save and load populations to/from XMl files.

e The ability to save populations to a “Human Usable Textual Notation” [HUTN]
format.

3.2.2. About OCL support

OCLCommon and OCL4KMF are two libraries used in tools generated by KMF Studio to
check constraints in the metamodel over populations, and to support dynamic evaluation of

OCL expressions entered by the user through the GUI.

The OCL libraries provide support both for compilation and interpretation of OCL
expressions. Implementing both a compiler and an interpreter maximizes the efficiency of
the implementation by reducing the runtime. The compiler is used by KMF to generate code
to check the constraints that are described into the metamodel, while the interpreter is used in
the generated code to allow the user to explore and discover other useful constraints that are
not present in the metamodel and evaluate them on-the-fly. If new constraints are discovered,
they can be added into the metamodel and the compiler will generate code for them if the

tool is regenerated using KMF.

The libraries provides support for all the standard OCL data-types (including collections) and
all of the defined operations for those types. The evaluation of OCL expressions can be
performed within Java code, by calling a method and passing the expression string and
context objects as parameters, or by invoking an evaluator GUI with a defined context into
which OCL expression strings may be typed. The former method of evaluation is used by the
generated code to construct invariants defined on model elements; these invariants can be

evaluated separately or “on mass’ from within the generated tool. The latter, GUI, method of

Chapter 3 Kent Modeling Framework 43

evaluation is provided to enable evaluation of expressions that are not part of the defined

model, but which may be useful in exploring the model and testing parts of invariants.

OCLCommon contains elements (e.g. classes and methods) that are platform/tool
independent. The platform/tool specific elements are contained in the OCLAKMF library.
This approach increases the portability of the OCL support to other modelling platforms and
tools (e.g. Eclipse Modeling Framework). OCLCommon is divided into the following
packages: Syntax, Semantics, Evaluation, and Bridge. The Syntax package contains an OCL
parser and APIs for the OCL abstract syntax tree model. The Semantics package contains a
semantic analyzer for OCL and APIs for the OCL semantic model. The Evaluation package
contains the compiler and the interpreter. The semantic analyzer uses a bridge to connect to a
specific description of the model, in our case a bridge to UML1.x. In order to evaluate an
OCL expression for a different model a new bridge implementation has to be written. The
Bridge package contains the interfaces that must be implemented in the platform specific
library (e.g. OCLAKMF and OCL4EMF).

Most of the code contained in the OCLCommon, around 85-90%, was developed using
MDA techniques. KMF-Studio and a parser generator called CUP have been used to generate
Java code starting from abstract description: a UML model of OCL’s abstract syntax and a

BNF description of OCL’s concrete syntax.

3.3. About XMI and UML support

Both KMF-Studio and generated code need support for persistence and other common
behaviour. The XMI package provides supports for reading and writing XMI files,
supporting the standards XMl 1.1 and XMI 1.2. KMF-Studio reads in information from an
XMI file that describes the model and creates instances of UML elements. The required
UML API is provided by the UMLModel package. Initially, this package contained only a
part the UML model, which was hand written. When KMF-Studio became mature enough

the UMLModel API was generated automatically using KMF-Studio.

Chapter 3 Kent Modeling Framework 44

& KMF [vsml] [.lax
i View 01 Jeoks Window Hel
=

& B

Sl imstances of i st i 3 b studi vamiAS Cass,
& [0 Clasi_ System T
& Class_Coppd
3 Clany_ Publizatosd P—
] Clasa_Loans' rame & ioam Set |
&Y Class_ Rrstrvaiond’ . _—
[Class_ Vsar T Iﬂ) -
O class_ Batinans i
L= [T stpenClass. :! Humcrey |

(d=] (s { — | 4

& (D assnciibonEnd publcanen 11
o [associneaEns Tyalem-17

&) Aseociinonnd o4 e R oo
& [pssacisbonEnd wpstem 15" L D]
& apsocinonbng puskeasen1 7 =
& C) AsaotubooEnd T 1§ ShssociatonEed pbicabon 11 (8
& P ssociabonEnd gy 28 \AzspeistonEnd uses 1 D
3 assotiasontng tosn-1 Ll) =l
& CYAseocistenEnd tetar 17] T |
:g::::::ﬁr::!:‘ Jusitscad 1S S ombad okt T S
[associsionEnd W6 28 Rarpmi FroaE it q! Ramanee :,:NA:.::;*TEI Aad |
& assorisbinEnd hanellon 30" |) — it I ——
[Je] s ca b i 1HC 1 —]
& () dasacisbon -4 —~
& assotinton 161 T e p—p——— T T
& S assciion 101 1
& [pssociston 1d 10 [
[associasen 1012
& D associaton 1015 N— =
o Y dasociston 11T | By
¥l dssociston 1010 et Cians_ Sysem: 2, Clasa_ Laun-5, Class,_ Boshaer0) Clase_Swwg, Clans, Rasanatont, Cluss, Copy 7, Clans_ Pubieaban d, Clase,_ VseeT') -
§ D mstances of uk s it ¢a kit Shdi vemiAG Pataage_
&Y Packape_ Libearet' rat f
ks =|
[consate i
rdustng mrrunarks bam g0t &
vaiabng arvanants for Glass,_ Bystim: 7
cantmd AS-Class_ i superClass_ioe: Dersupenlliss- s Tue I

worded A5 Class_iny g _bifrecional: Seownerk =4l | xclass_vincudesiselt) e

anBd AS-Clase,_ it S0arcall_SOH D<s2ounacs »4oa] Yus

canamd AD-Class_inw sourcet_bidractons souscade »Moutlix | Kacumeesil: i

wontd AS Class_ inv bimgedOd_sicw De=tamgutd >5izn]). fue

ot AG-CIag _ i EaegatC_BISachonal eged(s ataliy | xbingets ea) up

oo AS-Ciss_ invnames_of_sesoc_ends_are_usicue - source(r. name.» a5det)-» aslap) = sourely. name tug
raluabing mvariants for Class_ Copy 3

wantad A5 Class_inv fuserClass_ie: DerfuperClase-~0el Tue

eonfed ASCCIass_inv mwnes_bidreckonal Seq ownark- kil | xelass_vintusasisei g

cortud AR Clags_inv soarco0l_str Oxssouce0d »simd up

it AS-Class_ i SourceOr_bidrechonal sourcaCh 30t | kaounse ol o

contmd ASClags_ v teegend_size: De=tirgeeldrsize() Tue

orfimd AR Clirs_imvEingio_bidirmebonal bageahoehl | bargidsadt) frue

cantd AS-Class_ i names_Si_atsc<_nds_are_usicus outaCr name > 385000 -» sBag0) = sourtelr. name due
#ng nvaniants far Class_ Pubicaton-d'

ot AR Class_imv supiClass s DessupieClass »sion]) fui

cand AS-Class_iny dwaed_bidrechonal. SeRowntrs R | ilase_saniises(set] hue

cant AS-CINEE_ InV B0Ute0f_3C8 (e=soumeCt vae(Tus Sl

d RS TS S e A e e—

Figure 3.1 Screen shot for generated tool

3.4. The generated tool

The screen shot shown in Figure 3.1 illustrates the generated tool for a fragment of the UML
language that contains packages, classes, associations and association ends. The left hand
side shows the objects populating the specified model. The right hand side shows the facility
for editing properties of a Class_. The generated tool must also deal with details regarding
the underlying programming language (e.g. Class is a default Java class).

Chapter 3 Kent Modeling Framework 45

£ KMF [vsml]

pak ac sk o shocho wsird AB Clae
s [Tttt Ol
RS ke sk ox bt sudovmLas Clss s
]

ok 3¢ ket £ AT $3000)
L ke ar gk o5 o shudio wemi AR

conted K5 Packiga_ i tlaes_sas De-itins a0 tug

ronteH &5 Patkage im tiass_bidrersanal class -k xowner el U
contat A3 Package_ i Dwral_Ridinachonat
vontent A5 Patkage i parkege_site: Depickaps -vsael) e

OB K Packaa_ i farkige_BHeCchonat patkag 0| ownar 6T g

vontex A5 Package_inv Essaciiton_ site Deassociabon-rs2ei) e

ot A5 Fackage_ _tisuechonat S8l Bup

contE A5 Package inv parkege_names_unioue - packege_ mame-» avSel)-» aslag = pariage, . name e
contiat K3 PIckapa_ i S560C_Names_Snigu | J8504iaion . name <= sSel -» 358ag] - aesociabion . name: falge
conked AS-Patkage_ i t933_names_srigud | tless_, name > asen)-» asbsgl = tians . same e

Figure 3.2 Screen shot for builders

The middle shows the evaluation of the OCL expression self.owner.class_.size()=8, which
has been entered into the dynamic OCL evaluator in order to debug the expression. We can
see the value of the subexpressions self.owner.class_ and self.owner.class_.size() and the
final result.

The bottom of the right hand side shows the evaluation of the invariants over the entire
population. Evaluation can also be performed on subsets of the population, by selecting the
desired elements using the explorer window.

Chapter 3 Kent Modeling Framework 46

3.5. Creating populations

Populations of the model can be constructed directly through the generated GUI, which
provides access to the lifecycle-builder methods. This is illustrated by Figure 3.2, which
shows the available lifecycle-builders, with one of them highlighted, on the left hand side.
The right hand side shows the automatically created window that enables the highlighted
lifecycle-builder to be invoked with various arguments. The builder shown is actually a
bespoke one; it has been coded by hand. The construction of bespoke builders is discussed in
the next subsection. Generated lifecycle-builder methods in general don’t take any

arguments, though they are invoked in a similar way.

Another way of building populations is to write code that initializes the repository before the
GUI is launched. To aid the writing of such code, a default Startup class is generated. This
includes two methods, replaceDefaultLifecycles and initialisePopulation, which can be
overridden by subclasses. A sample initialisePopulation methods in a bespoke startup class

that extends the default one, is given below.

protected void initialisePopulation() {

//get required Lifecycles from repository

String path = "Vsml_AS.";

ClassLifecycle class b =
(ClassLifecycle)(rep.getLifecycle(path+"Class_"));

AssociationLifecycle assoc_b =
(AssociationLifecycle)(rep.getLifecycle(path+"Association'));

PackagelLifecycle package b =
(PackageLifecycle)(rep.getLifecycle(path+"Package_"));

//Build population

Package pkg = (Package_)package_b.build(*'example™);

Class_ clsA (Class_)class_b.build(pkg, "A™);

Class_ clsB (Class_)class_b.build(pkg, "B'™);

Class_ clsC (Class_)class_b.build(pkg, "C™);

Class_ clsD (Class_)class_b.build(pkg, "D'™));

Association assl = (Association)assoc _b.build(pkg, clsA, clsB,
"a", new Integer(l), new Integer(l),
"b", new Integer(l), new Integer(l));

Association ass2 = (Association)assoc_b.build(pkg, clsA, clsC,
"a", new Integer(l), new Integer(l),

"c", new Integer(l), new Integer(l));

Chapter 3 Kent Modeling Framework 47

This method begins by extracting the lifecycle objects for the classes that will populate the
repository. It then continues to use these to build a population, in this case one comprising a
package (example) that contains three classes (A, B, C, and D). The package also contains

two associations, with ends labeled (a, b) and (a, c,) respectively.

We have found writing initialisePopulation methods inside a startup class to be an extremely
efficient way of building test populations to check and validate a model through the
prototype, especially in combination with bespoke lifecycle-builder methods. It is very quick
to construct new tests or alter existing ones, simply by editing the code, or by more
sophisticated means (e.g. by having methods that set up fragments of population and calling
these from the main initialization method). It is also possible to evaluate constraints

programmatically and check whether or not they pass or fail.

3.6. Augmenting the generated code

As an alternative to using the generated code on its own, we can augment it with additional
bits of program. We could provide an alternative GUI and reuse the repository and OCL
evaluation parts, or write an initialization program that populates the model
programmatically rather than by invoking the generated lifecycle-builders from within the
generated GUI.

A particularly useful option is to write bespoke lifecycle-builders that can greatly simplify
the construction of a population. For example, when creating an Association it is necessary
to create the association’s ends, link and set the attributes and add the association to a
package. This requires a number of individual steps that have to be repeated each time an
association is constructed. If we perform these steps by writing initialization code to do
them, or working through the GUI, we discover that they are time consuming and error-

prone.

We can create a bespoke lifecycle-builder that does all of these things when called with the
appropriate argument. Additionally, we can register the lifecycle with the existing, generated,

repository and subsequently use it from within the generated GUI.

The following code is an example bespoke lifecycle build method for Associations:

Chapter 3 Kent Modeling Framework

48

//one end
public Association build(

vsml _.AS_Package_ p,

vsml _.AS.Class_ source,

vsml _.AS._.Class_ target,

String name, Integer lowerBound, Integer upperBound){
Association assoc = (Association)build();
lifecycle.AssociationEndLifecycle end_b =

(lifecycle.AssociationEndLifecycle)

(repository.getLifecycle(“Vsml .AS_AssociationEnd™));
AssociationEnd end =

(AssociationEnd)

end_b.build(source, target, name, lowerBound, upperBound);

end.setOtherEnd(null);

end.setOwner(assoc);
assoc.getAssociationEnd() .add(end);

if (p!=null) p.getAssociation().add(assoc);
assoc.setOwner(p);

return assoc;

}

// two ends
public Association build(
vsml _.AS.Package_ p,
vsml _.AS.Class_ one_class,
vsml _AS.Class_ other_class,
String one_name, Integer one_lowerBound,
Integer one_upperBound,
String other_name, Integer other_lowerBound,
Integer other_upperBound){
Association assoc = (Association)build();
lifecycle.AssociationEndLifecycle end_b =
(lifecycle.AssociationEndLifecycle)
(repository.getLifecycle(“Vsml _.AS_AssociationEnd™));
AssociationEnd one_end =
(AssociationEnd)
end_b.build(one_class, other_class,
one_name, one_lowerBound, one_upperBound);
AssociationEnd other_end =
(AssociationEnd)
end_b.build(other_class, one_class,
other_name, other_lowerBound, other_upperBound);

Chapter 3 Kent Modeling Framework 49

other_end.setOtherEnd(one_end);
one_end.setOtherEnd(other_end);
other_end.setOwner(assoc);
one_end.setOwner(assoc);
assoc.getAssociationEnd() .add(one_end);
assoc.getAssociationEnd() .add(other_end);
if (p!=null) p.getAssociation().add(assoc);
assoc.setOwner(p);

assoc.setName(""");

return assoc;

b
The build method constructs the Association, gets the registered lifecycle for
AssociationEnd, uses this to build each end of the association, adds each of the ends to the

Association and finally adds the association to the passed in package.

To instruct the generated code to use this bespoke builder we must register it with the

repository, as shown below:

rep.addLifecycle(*"Vsml _AS_Association",

new AssociationLifecycle(rep));

Subsequently, when the generated GUI is executed we are able to use the bespoke lifecycle-

builder, as illustrated in Figure 3.2.

Such code can be included in the body of the method replaceDefaultLifecycles in a bespoke
startup class, as discussed in the previous subsection. This also allows the bespoke lifecycle

methods to be accessed by any initialisePopulation code included in that startup class.

3.7. Code generation

Model driven software engineering requires powerful, efficient, and flexible code generation
mechanisms. OO methods help the developer to analyze and understand a system without
code generation; however the benefits of object modeling seldom extend throughout a
software product’s lifecycle, because developers of a pressing upgrade typically bypass the
model and just modify the code. Models fall out-of-date and become less relevant. An
efficient, flexible, and maintainable code generation for object models means that they retain

their usefulness. This section begins with a discussion regarding the requirements of a code

Chapter 3 Kent Modeling Framework 50

generation framework and a presentation of different mechanisms that can be used to
generate code from UML models along with a discussion about the differences between
these mechanisms. This subsection also provides a description of the code generation

framework used by KMF-Studio to generate code.

3.7.1. Code generation framework requirements

Currently UML is used mainly for the modeling of software systems. It also has potential to
be applied in the implementation and testing phases. Generating code from UML models or
other platform-independent models reduces coding errors, enforces compliance with coding
standards and rules, reduces the time spent to develop software products, increases the
quality of both software products and software development processes, and raises the

abstraction levels for software architects.

A code generation framework has to meet the following requirements [Bel98][SVBO02]:

e Efficiency. Code generation should be performed rapidly and without
consuming too many resources of the underlying physical machine. Code
generation should be performed using a fine tuning mechanism able to detect
and regenerate only those parts of the model that have been changed and need to
be regenerated in order to keep the system consistent.

e Customization. The code generation process needs to provide a mechanism to
customize the generated code according to programming rules and user’s taste.
Customization ranges from low-level features, like changing the indentation and
choosing prefixes or suffixes for names, to high-level features like creating
targets that do not exist at the abstract level.

e Extensibility. Code generation systems should allow the user to rapidly and
simply add new features to the generated code. The addition of generation
targets should be performed without affecting the existing code generation
framework. The user should be able to add new code generation rules without
having to recompile the code generation framework.

o Flexibility. The code generation system should allow the user to rapidly change
the features of the generated code. Adding and removing generated targets, and
changing the attributes of the generation targets should be done in a rapid and
simple manner.

e Maintainability. The code generation process should have a high level of
maintainability. This reduces not only the costs for updating the code generation
framework but also the costs of the evolution of the resulting software products.

Chapter 3 Kent Modeling Framework 51

3.7.2.

Code generation mechanisms

According to [Bel98] three ways of bridging the gap between a model and the running code

can be distinguished. Each subsequent mechanism is more complex and more powerful than

its precedent.

1)

Structural approach. This approach is based on code generation from the static
structure of the model. In practice this approach generates code from class
diagrams. Because class diagrams do not describe the behavior of the system,
automated synchronization mechanisms between model and generated code are
required, as model and code can easily become inconsistent.

Behavioral approach. The approach is based on models that contain state
machines augmented with action specifications (e.g. SDL and UML state
machines). The code generation produces a prototype of the system that can be
tested and debugged by changing the model and not the generated code. This
approach does not need a synchronization mechanism as both the static structure
and the behavior is generated from a model.

Translative approach. This approach requires a complete application model
that describes the object structure, the behavior and communication. The
architecture of the target platform is also modeled. A translation engine then
generates code for the application according to the mapping rules from the
application model to the architecture model. This approach potentially allows
one to generate code as well as documentation and test units.

In the next subsections, we will examine four ways of generating code using the translative

approach.

3.7.3.

Programmatic translation

Code generation can be performed in any programming language that can describe a model,

gain access to the model description and manipulate basic data objects like integer, strings,

and files. If the model is described in UML or other object-oriented modeling language, then

object-oriented programming languages like C# or Java are ideal candidates because they

can easily represent the model. The code generation module reads in the model and generates

the equivalent code in text files.

This approach has following characteristics:

Chapter 3 Kent Modeling Framework 52

e The code generation rules are described using low-level concepts from the
underlying programming languages. Hence, they are hard to read and
understand.

e Coding the generation rules into low-level concepts decreases their
maintainability.

e Customization is limited to the options provided by a code generation tool. To
add to the options the entire tool needs to be analyzed, changed, and recompiled.

o Flexibility is poor because adding, removing or changing some features of the
generated code implies analyzing, updating, and compiling the entire module
responsible for the code generation.

3.7.4. Translation by XSLT

Along with the XML language, the W3C organization provides the Extensible Stylesheet
Language (XSL). In essence, XSL is two languages, not one. The first language, called
XSLT, is a transformation language, the second a formatting language. XSLT is useful
independent of the formatting language. Its ability to move data from one XML
representation to another makes it an important component of XML-based electronic
commerce, electronic data interchange, metadata exchange, and any application that needs to
convert between different XML representations of the same data. These uses are also united
by their lack of concern with rendering data on a display for humans to read. They are purely

about moving data from one computer system or program to another.

Although the primary goal of XSLT is to translate from one XML dialect into another, its is
not limited to that. Stylesheets that translate from a UML model described using XMI, a
dialect of XML, to code decouples the translation process from the modeling tool.

Although, this approach represents a step ahead from the programmatic approach, there are

still several adverse characteristics:

e The stylesheets are very hard to read and maintain as the translation with XSLT
is based on navigation through a tree.

e The code generation rules are still expressed in low-level concepts and hard to
read, understand, and maintain.

e As XSLT maps one XML file to another XML file, an input file needs to be
generated when generated code contains more than one file. Partitioning the
model into small pieces does not solve the efficiency, as the partitioning
algorithm is time consuming, especially for large- scale models.

Chapter 3 Kent Modeling Framework 53

3.7.5. Translation by templates

Most of the web pages on the Internet are static pages. They are just HTML or text files that
are downloaded to your browser and displayed immediately. However, many web pages are
dynamic pages. They are actually programs which produce HTML as their output, and then
send that HTML to your browser. These pages are created using a template-based approach.
The creation process uses the generation code to retrieve the required information in the

model and fills in templates of HTML code with it.

This approach is not limited to dynamic web pages and it can be used to generate code from
models. In the context of code generation the model is the source of the information that is
used to fill in the empty slots from templates. The templates are used to describe the skeleton
of the generated code. Applying the model to the templates returns a number of files

containing the generated code associated with the UML model.

This approach has the following features:
e This approach is flexible as templates can be changed easily without affecting
the model and the modeling tool.

e Most of the template engines are interpreted, and hence the code generation
process can be slow. However, writing a compiler can solve this issue.

o Directly accessing model information from template languages is possible but
complicated. The resulting template is hard to read and understand.

e Adding, removing, and updating templates can be done easily, if the template
engine is implemented correctly.

This approach is used to generate code in environments/tools like Eclipse and Poseidon
[SvBO02].

3.7.6. Translation using transformation languages and templates

The above code generation approaches do not fully satisfy all characteristics of a model-
driven engineering framework. The template-based approach seems to be the best approach
for code generation from models due to its characteristics. The main problem that still needs
to be solved is the fact that the code generation rules are still described using low-level

concepts, and hence are hard to read and understand.

Chapter 3 Kent Modeling Framework 54

Hence, the best approach is the following:

A transformation language like YATL (see Chapter 5) is used to perform a
transformation from the model to a model of a target language/platform.

A set of templates is used to generate the set of files that form the generated
code.

This approach has the following features:

3.8.

The code generation rules are described using high-level concepts from the
model. Hence, they are easy to read and understand. The templates that are used
to map from model elements to code are also easy to read and understand
because they are very simple.

Coding the generation rules in high-level concepts increases their
maintainability.

Customization is not limited to the options provided by code generation tool.
The transformation rules can be easily changed, and so can the templates. The
code generation engine does not need to analyzed, changed, or recompiled if
new options are to be added.

Flexibility is increased because adding, removing or changing some features of
the generated code implies analyzing, updating, and compiling the entire module
responsible for the code generation.

KMF-Studio’s code generation framework

Generating source code can save time in software development and reduce the amount of

tedious redundant programming. Generating source code can be powerful, but the program

that writes the code can quickly become very complex and hard to understand. One way to

reduce complexity and increase readability is to use templates.

The Kent Modeling Framework (KMF) project contains a very powerful tool for generating

source code: TLP (Template Language Processor). With TLP one can use a JSP-like syntax

that makes it easy to write templates that express the code that one wants to generate.

In this subsection we present the XTL (XTemplate Language) language and the TLP tool that

implements the processors for the XTL template language. An overview of XTL is presented

in Appendix 2.

Chapter 3 Kent Modeling Framework 55

3.8.1. XTL an introduction

XTL is meant to provide the easiest, simplest, and cleanest way to generate code from UML
models. A XTL program consists of one or more source files, known formally as translation
units. A source file is an ordered sequence of Unicode standard characters. Conforming
implementations must accept Unicode source files encoded with the UTF-8 encoding form
[UNI], and transform them into a sequence of Unicode characters. Implementations may
choose to accept and transform additional character encoding schemes, such as UTF-16,

UTF-32, or non-Unicode character mappings.

Conceptually speaking, a XTL program is analysed in five steps:
1) Character conversion, which converts a file from a particular character repertoire
and encoding scheme into a sequence of Unicode characters.

2) Lexical analysis, which translates a stream of Unicode input characters into a
sequence of tokens.

3) Syntactic analysis, which translates the sequence of tokens into an abstract
representation of the input structure.

4) Semantic analysis, which checks if the input follows the semantic rules, and
produces an internal representation of both syntax and semantics.

5) Code generation or interpretation where the semantic representation is either
used to generate code for the underlying machine or directly evaluated on the
same machine.

3.8.2. Grammars

This section presents the syntax of XTL language using two grammars, structured on two
levels. On the first level, the lexical grammar defines how Unicode characters are combined
to form line terminators, white space, comments, and XTL tokens. At the second level, the
syntactic grammar defines how the tokens resulting from the lexical grammar are combined
to form XTL programs. Both grammars are described in Appendix 3, using the notation
given in Appendix 1. Every source file in a XTL program must conform both to the input
production of the lexical grammar and the translation-unit production of the syntactic

grammar.

Chapter 3 Kent Modeling Framework 56

3.8.3. Comments

Comments allow descriptive text to be included that is not placed into the output of the
template engine. Comments are a useful way of reminding and explaining what XTL actions

are doing, or any purpose one finds useful. Below is an example of a comment in XTL.
This is a single line comment

A single line comment begins with ## and finishes at the end of the line. Multi-line
comments, which begin with #* and end with *#, are available to handle the scenario when
one wants to write a few lines of commentary:
#*
First line of comment
Second line of comment

*#

There is a third type of comment, the XTL comment block, which can be used to store such
information as the document author and versioning information:
#**
This is XTL comment and may be used to store such information as
the document author and versioning information
@author Octavian Patrascoiu

@version 5
**#

3.8.4. Expression action

XTL provides expression actions that one can use to communicate to the surrounding
context. The expression with the action is evaluated and the result of the evaluation is

inserted into the generated source code at the location where the expression action is defined.

public class <% exp context.className %> {

}
An XTL expression uses boolean, integer, real, and string literals, variable and properties as
operands and a wide range of operators to communicate with the surrounding environment.
The XTL operators are presented in Table 3.2.

Chapter 3 Kent Modeling Framework

57

3.8.5. Compound action

A compound action is used to group for syntactical purposes several actions:

<% foreach Classifier c in context.classes %> <% begin %>
public class <% exp context.className %> {

<%include
<%include

{

<%include

}

<% end %>

template:
template:

template:

Operators
Unary operators:
+-1

Selection operator

Call operator

Arithmetic operators
+-*/%

Relational operators:
== l=<<=>>=
Logical operators:
&& ||

Table 3.2 XTL operators

3.8.6. include action

:java: :generateExtension(context.class, “\t”)%>
:java: :generatelnterfaces(context.class, “\t”)%>

:java: :generateMembers(context.class, “\t”)%>

Example

+3 -4 ltrue

class.name

f(x,y)

a+b

3<=4

true && false

The include action allows the template designer to invoke a template that was previously

written. The text resulted after the invocation of the template is then inserted into the location

where the include action is defined.

public class <% exp context.className %>
<%include template::java::generateExtension(context.class, “\t”)%>

Chapter 3 Kent Modeling Framework 58

<%include template::java::generatelnterfaces(context.class, “\t”)%>

{

<whinclude template::java::generateMembers(context.class, “\t”)%>
}
generates Java code corresponding to a UML class, by filling in the inherited class,

implemented interfaces, and contained members.

3.8.7. if-elif-else action

The if-elif-else action in XTL allows for text to be included when the source code is
generated, if a certain condition is true. For example,
<% if (x == 1) %>
int option = 1;
<% elif (x == 2) %>
int option = 2;
<% else %>
int option = O;
<% end %>

generates code that declares and initializes an integer variable with a given value.

3.8.8. foreach action

The foreach action allows looping over the elements of a collection. For example,

<% foreach Classifier x in context.self.ownedElements %> <%begin%>
class <% exp x.name.body %> {

}

<% end %>

generates code for every classifier from collection context.self.ownedElements.

3.8.9. Namespaces

A XTL program consists of one or more translation units, each contained in a separate source

file. When a XTL program is processed, all of the translation units are processed together.

Chapter 3 Kent Modeling Framework 59

Thus, translation units can depend on each other, possibly in a circular fashion. A translation

unit consists of zero or more import directives followed by zero or more declarations of

templates.

<% import java::util %>

<% import lib %>

<% namespace templates::java %>

<% template generateClass () %> <% begin %>
class <% exp context.name %> {

}

<% end %>

The concept of namespace was introduced to allow XTL programs to solve the problem of

names collision that is a vital issue for large-scale transformation systems. Namespaces are

used both as an “internal” organization system for a program, and as an “external”

organization system - a way of presenting program elements that are exposed to other

programs.

3.9.

Analysis of KMF: does it meet the requirements?

This section considers how well the current version of KMF, as described in Section 3.2 and

illustrated in Section 3.4, meets the requirements set out in Section 3.1. We’ll deal with each

in turn.

1)

2)

Evaluating the quality of the model. The features that allow KMF to support
this characteristics are presented in Chapter 4.

Rapid and repeatable input and editing of populations. A KMF generated
prototype allows populations to be input through the GUI, which can then be
saved as XMI and reloaded. The API of the generated code is readily accessible,
and it is possible to customise the default Startup class to initialise populations
from code. It is also possible to customise the generated code with bespoke
lifecycle classes that include bespoke builder methods. These methods can be
accessed through the GUI or, of course, in code. The use of customised startup
classes, in combination with bespoke lifecycle-builders, is a particularly efficient
and repeatable way of setting up many sophisticated populations. As constraint
checking can be invoked through the API, this also provides a scaleable
approach to automated testing of the metamodel through the generated
prototype. By way of contrast, the USE tool [RG00Q], which also supports OCL
checking over UML models, only supports instantiation of a model (which could
be a metamodel) by drawing object diagrams through the GUI or by feeding in a

Chapter 3 Kent Modeling Framework 60

3)

5)

6)

7)

9)

text representation of an object diagram read from a file. Not only is this
inefficient it is also error-prone and does not lend itself to automated testing.

Viewing and exploring populations. A KMF generated prototype allows
populations to be explored, viewed, and edited through the GUI. We have also
found that the dynamic evaluation of OCL expressions provides a convenient
way of navigating the population.

Evaluation of well-formedness constraints over populations. A KMF
generated prototype allows all the constraints over the metamodel to be
evaluated, either using the API or through the GUI. Selective evaluation is
supported through the GUI and, of course, through the API. Selective evaluation
could be improved by, for example, allowing constraints to be evaluated on all
objects obtained by walking the containment tree from a particular starting
object.

Model transformation. KMF supports the transformation language called
YATL (Yet Another Transformation Language), presented in Chapter 5.

Smooth process. The process of using KMF requires one to have a Java
development environment (such as Eclipse), for compiling and executing the
generated code, and a UML modelling tool, such as Poseidon, for editing the
metamodel. We have found that, with all three tools open at the same time, the
process is fairly quick and smooth. The inclusion of projects in KMF studio, has
meant that regeneration of code is usually no more than a couple of mouse-clicks
away. KMF can also be launched from the command line or within Eclipse to
generate code, given a particular project file as argument.

On-the-fly evaluation of constraint expressions. The KMF generated
prototype supports on-the-fly evaluation of OCL expressions, through the GUI
or the API.

Round-trip engineering. We have organised the generated code so that it is
possible to customise the code in ways that ensures hand written code is not
overwritten on regeneration. We are aware that other frameworks, such as EMF
[EMF], do a better job of this, largely because of the substantial support for Java
(parsers and the like) provided by Eclipse.

Model versioning. It is possible to change the name of the model before code
generation takes place, which means that if the model name provided contains
version information, it can be overridden. Another issue here is how to port
populations of a previous version of a metamodel to a new version, where the
new version refactors the metamodel in significant ways. If the test populations
are set up using code, then it can require the code to be updated to take account
of refactoring. We are have also found that, if the refactoring is not too major,
the generated XMI readers are robust enough to load populations of previous
versions, even if there is some information that cannot be understood.

Chapter 3 Kent Modeling Framework 61

3.10. Conclusions

There is a need for tools to support the activity of modeling and metamodeling, per se,
especially since metamodeling is being used to define major industry standards such as
UML. This chapter has identified a set of requirements for such tools, based in the idea of
generating a prototype modeling tool from a metamodel. It has described the Kent Modeling
Framework, which can be used to generate prototypes, in a way that meets most of these

requirements.

The prototyping tool generation facility offered by KMF is actively being used in the
construction and development of a number of meta-models. In particular, KMF is being used
in two research projects at the University of Kent to prototype modeling tools. The first is a
project entitled “Reasoning with Diagrams” RWD, which is tasked with developing tools to
support reasoning with mixed visual/textual constraint languages, employing fragments of
UML, OCL and constraint diagrams. The second is a project entitled “Design Support for
Distributed Systems (DSE4DS)” [DSE4DS], which is building tools to support the model
driven development of distributed systems. Potentially, the tool could be used to test and
validate the new UML 2 and MOF 2 standards.

The grand vision for KMF is to move beyond the generation of prototypes to the generation
of industrial strength modelling tools. We are beginning to investigate the generation of
graphical and textual editors from appropriately extended metamodel definitions, and even
the generation of semantic analysis tools. See [ASPO03], for early ideas in this direction.
[ASP03], [PatO4a], [Pat04b], and [PatO4c] also discuss issues with the definition and
(automated) implementation of mappings between modelling languages, a keystone of the
MDA edifice.

Chapter 4. Model Quality Measuring 62

Chapter 4. MODEL QUALITY

MEASURING

Software metrics are a useful means for evaluating the quality of both software development
processes and software products. With the growing popularity and adaptation of object-
oriented programming languages and object-oriented methodologies in software
development, the existence of specific and effective software metrics for object-oriented
characteristics is essential to the improvement of software development. To obtain the design
metrics of the software product most of the existing approaches measure the metrics by
parsing the source code of the software product. Such approaches can be performed only in
the late phases of the software development and hence cannot directly affect the design

process.

In this chapter, we present the framework provided by KMF-Studio to support the
computation of software metrics at the early stages of software development from UML
specifications. This is important especially in OMG’s Model Driven Architecture framework
for software development. As models are used to drive the entire software development

process it is unlikely that high quality software will be obtained using low quality models.

The current version of KMF-Studio uses UML diagrams exported in XMl files and computes
OO metrics that have been shown to be good indicators for evaluating the quality of object-
oriented systems (e.g. [CK91][CK94]). It also provides a set of forty-four original metrics
that can be computed to measure a given UML model. This set of metrics measure both the
internal attributes of UML models (e.g. inheritance depth tree and inherited complexity of a
class) and the external attributes of UML models (e.g. maintainability and changeability).
The user can select a set of predefined metrics to evaluate, but he cannot change the way the
values of the metrics are computed. The tool also allows the modeller to extend the set of
existing metrics by defining new metrics using OCL and choose only a subset of the

predefined metrics. The result of evaluating the metrics over a model can be used to identify

Chapter 4. Model Quality Measuring 63

the weak points of UML models and give on the fly diagnostics about the design quality of

the model.

This chapter is organized as follows. The first section gives a brief description of the
background and existing object-oriented metrics. The second describes how UML models
are measured in KMF, describing the problems of UML model measuring, the proposed set
of metrics, and the measuring methodology used in KMF-Studio. The third section gives an

example. The last section contain the conclusions and future work.

4.1. Background

Measuring has a long tradition in the area of natural sciences. At the end of the 19" century,

the great physicist Lord Kelvin said the following about measuring:

“When you can measure what you are speaking about, and express it in numbers, you
know something about it; but when you cannot measure it, you cannot express it in

numbers, your knowledge is of a meager and unsatisfactory kind”.

Measuring has been studied in the area of software engineering for about thirty years. The
size of the costs for the development and maintenance of software products amplifies the
need for a theoretical foundation for software developing standards and management
decisions, using measurements. In 1980 Curtis [Cur80] stated that in order to transform
programming into an engineering discipline, software products must be developed using
sound scientific methods. The foundation of these methods requires the development of

measuring techniques and establishing the cause-effect relations.

The need for software measurements is presented very clearly in [GC87][Gra90]. Software
metrics can be used to measure attributes not only of software products, but also software

development processes.

The true value of a software metrics suite comes from their capability to measure important
external attributes [ISO96]. An external attribute is measured according to the way the
software product interacts with its environment [Fen91]. Testability, reliability, portability,
and maintainability are examples of external attributes. However, these attributes can be

measured directly only quite late in the software development process. Therefore, software

Chapter 4. Model Quality Measuring 64

metrics can be used to offer good indicators regarding important external attributes. For
example, if we know that keeping the depth of the inheritance tree within some limits
ensures good maintenance, we can optimize inheritance during design because we know that
in doing so we are reducing the costs of maintenance as far as it is linked to the depth of

inheritance tree.

In the last years much effort has been spent in the software engineering research community
in developing software metrics both for procedural and object-oriented system. Usually,
these software metrics compute the value of internal attributes of the software systems (e.g.
number of lines of code, number of variables used and number of parameters). After a
metrics suite has been designed, the relationship between the metric values and the external
attributes needs to be studied. This process, called the validation of the metric, is usually
performed using empirical studies [ET02]. For example [WH98] provides an interpretation
and critique of [CK94] metrics, including the use of two traditional metrics ([McC76] and
[Hal77]) by observing the evolution, over a two and a half year period, of one commercial
grade C++ application comprising 114 classes with 25,000 lines of code. Once a set of
metrics has been validated, software companies and programmers can use it as a guideline

for the software development process.

4.1.1. An overview of object-oriented metrics

A considerable number of object-oriented metrics have been developed to measure the
quality of software; for example see [FBC94], [BM99], [BDM97], [CS00], [CK91], [CK94],
[HS96], [L193], [LK94], and [TKC99]. By far, the most popular of these is the metric suite
developed by Chidamber and Kemerer [CK94], known as the CK metrics. For historical
reasons the CK metrics are the most referenced ones, being easy to compute and useful, and
many commercial tools compute these metrics. Another comprehensive set of metrics that
capture important structural characteristics has been defined by [BDM97]. The CK metrics
have also received a considerable amount of empirical study. A summary of the CK metrics
can be found in Table 4.1.

Chapter 4. Model Quality Measuring 65

Table 4.1. Summary of CK metrics

Metric Acronym

DIT

NOC

WMC

RFC

CBO

LCOM

Description

[CK94] defines this metric as follows: “the depth of inheritance of the
class is the DIT metric for the class. In cases involving multiple
inheritance, the DIT will be the maximum length from the node to the

root of the tree”.

The number of children metric is defined as the “number of immediate

subclasses subordinated to a class in the class hierarchy” [CK94]

The weighted method per class metric is defined as the sum of the

complexity of methods in a class.

The response for a class metric measures the cardinality of “a set of
methods that can potentially be executed in response to a message
received by an object of that class” [CK94]. A variant of RFC excludes
methods indirectly invoked by a method of a class [CK91].

The coupling between objects metric is defined as “a count of the
number of other classes to which it is coupled”. A class is coupled to
another if it uses the member functions and/or instance variables of the
other class. [CK94].

The different definitions of the lack of cohesion in methods metrics
were given by [CK91] and [CK94]. The original definition of LCOM
metric measures the number of disjoint sets of a class’ local methods as
indicated by their access to class variables [CK91]. The LCOM metric
was later revised and a new definition was given [CK94]. The revised
LCOM metric measures the number of pairs of methods in the class that
have no attributes in common, minus the number of pairs of methods

that do. If the difference is negative, the metric is set to zero.

The higher the DIT values are, the harder it is to predict the behaviour of a class due to

interaction between inherited and local features. High NOC values may indicate an

appropriate abstraction in the design while moderate NOC values indicate the scope for reuse

of behaviour and features. The DIT and NOC metrics measure the shape and size of the class

Chapter 4. Model Quality Measuring 66

structure. Well-designed object-oriented systems tend to be built as forests of classes, rather
than one very large inheritance tree. [CK94] states that such forests of classes should not be

deeper than seven classes and not wider than seven classes.

The WMC metric can be measured using different weighting functions and traditional
complexity metrics (e.g. number of lines of code, McCabe’s cyclomatic complexity
[McC76], number of decision points, and number of paths from the entry points to exit
points) to measure the complexity of methods. If all the methods are considered to have the
same complexity, equal to one, the metric is called WMC1 and represents the number of
methods. The WMC1 metric can be used to evaluate the effort that a user has to make in
order to use the class properly, while WMC can be used to evaluate the effort to understand

and maintain the class.

High CBO values may indicate a poor encapsulation and a low reusability. The idea behind
CBO is that a software system with higher CBO values is error-prone as the behaviour of a
class is affected by the activities performed by other coupled classes. High values for RFC
indicate that the number of classes that could potentially respond to a message is high, hence
it measures the complexity of the class. High LCOM values may indicate high complexity of

classes, inappropriate abstraction, and poor encapsulation.

As these metrics measure the software at the source level and not at the model level, they
cannot be used in the early stages of the software development processes. [TCO02] presents a
methodology that can be applied to UML specifications to obtain design information and to
compute the design metrics at an early stage of software development. It proposes, in
addition to the CK metrics, a set of four classes of metrics that can be used to further

evaluate the complexity of OO designs.

In order to adapt OO metrics to models, we propose another metric suite, which is
particularly suitable for OMG’s MDA framework. The new metric suite is defined in the next

section.

Chapter 4. Model Quality Measuring 67

4.2. Measuring UML models in KMF-Studio

This section contains a description of particularities of software measurement on UML
models, proposes a set of metrics to measure UML models, and presents the methodology

and the framework provided by KMF-Studio to measure UML models.

4.2.1. Measuring UML models

Evaluating the quality of UML models is very important in the framework of MDA, as UML
models are the key concepts in the software development process using MDA techniques. A
system derived from a poorly designed model, although it can be built quickly to process the
inputs correctly, may cost more in the long run because of the additional costs of the
maintenance. Thus, improving the quality of models is a major research goal in software
development using MDA. This goal will be difficult to achieve unless we can define and
measure the components of model quality. In a restricted sense, the quality of a software
product is often considered synonymous with the presence or absence of errors. However,
most users disregard or do not consider that other software attributes, such as the effort to
understand, use and modify software, should have high quality. The same also goes for
models: the quality of a model is evaluated using external attributes such as complexity,

maintainability and reliability.

UML has gained great popularity both in the software design process and the whole software
development lifecycle. In order to apply software metrics early in the software lifecycle,
object-oriented metrics should be incorporated into UML modeling tools. This ensures that
object-oriented metrics can be applied both in high-level design and more detailed design
phases. Most commercial software development tools only apply object-oriented metrics at
the source code level, although some tools, such as TogetherSoft [TOG], provide support for

the evaluation of object-oriented metrics for a given UML diagram.

UML uses specific diagrams such as class diagrams, collaboration diagrams, and activity
diagrams to describe specific views of a system. A static diagram describes the internal
structure of a class and relationships among classes (e.g. attributes, operations, associations

and generalizations). A collaboration diagram describes the dynamic structure of the system,

Chapter 4. Model Quality Measuring 68

the objects that interact and the messages that are exchanged between the objects, the
sequence of messages in time and the roles of objects contained within the system. The
transitions within a model element, which are triggered by events, are described using

activity diagrams.

Computing metrics for only one type of UML diagram is imprecise. Computing object-
oriented metrics for class diagrams can be useful to measure the static structure of software
systems, but will not capture the dynamic structure of the system. Developing metrics to
measure all the UML specific diagrams is required. On the other hand, every UML model
potentially contains OCL constraints that are attached to model elements. Hence software
metrics to evaluate attributes of the OCL expressions are required (e.g. number of variables
used in an OCL expression and the complexity of an OCL expression). In conclusion, in
order to measure effectively a UML model one needs to consider software metrics for all the

elements that are present inside the model.

To see how object-oriented metrics need to be changed in order to measure various attributes
of models each metric needs to be analyzed separately. [TCO2] gives a study of the CK suite.

The results of this study are presented below:

e The DIT and NOC metrics from the CK suite, which measure the static structure
of the software systems, can be computed easily from class diagrams. Due to
lack of information describing the body of methods in UML models measuring
WMC using for example the McCabe cyclomatic complexity is not possible, as
the body of the methods is not always specified. Instead we can compute WMC1
or we can consider the complexity of a method to be proportional to the number
of parameters including the returned type, as UML models contain a description
of each method’s signature.

e To evaluate the CBO metric on UML models, two issues need to be resolved:
the unit used for the measurement and the definition of the coupling concept.
Although there is no difficulty in proposing the “class” as the unit for the metric,
because the metric measures how many classes are coupled with a given class,
there is no standard definition of the coupling concept for object-oriented
systems. There are, however, different forms of coupling such as inheritance,
coupling by association, by attributes, or by message passing.

e The RFC metric measures the response of a UML class. Hence, to compute the
metric for a given class one needs access to the methods that are defined inside a
class and to methods that are invoked by these methods. Methods can be
accessed easily from the UML class diagram, but counting the number of
methods from other classes invoked in a given method, requires a precise
description of the interaction among classes, which is not described in class
diagrams.

Chapter 4. Model Quality Measuring 69

4.2.2.

The revised LCOM metric measures the number of pairs of methods in the class
that have no attributes in common, minus the number of pairs of methods that
have attributes in common. As the information on the use of instance variables
inside the body of an operation is not available at the early stages of the
development, only parameters can be used as input data to evaluate the metric.
However, when the model contains more details about the dynamic behavior of
the system, such as activity diagrams, reasonable values for LCOM metrics can
be computed.

The KMF metrics suite

This section contains a description of the metrics that we have designed to measure the
quality of UML models in KMF-Studio.

The set of metrics was designed to achieve the following objectives:

Measure both internal attributes (e.g. number of methods declared in a class) and
external attributes (e.g. maintainability).

Measure all the types of elements present in a UML model: model, namespaces,
classes, and OCL expressions.

Measure all the relations that are present in UML models: inheritance and
associations.

Measure the nesting of containment elements: model, namespaces, and classes.
Measure the complexity of classes and methods.

Measure the complexity of OCL expressions by adapting well-know metrics
used for procedural languages.

Measure the average of relevant metrics (e.g. complexity of class).

The metrics are organized on two levels. The first level contains metrics to measure the

internal attributes of the model (e.g. number of local methods and the height of the

inheritance graph). The second level contains metrics to measure external attributes of the

model such as testability and maintainability. They are also structured on several levels,

according to the type of OO element that is measured: model, namespace, class, and OCL

level. The metrics are summarized briefly in. Table 4.2 and Table 4.3.

Chapter 4. Model Quality Measuring

70

Table 4.2. KMF metrics suite- first level

Metric Acronym

MODEL-HNT

MODEL-HIG

MODEL-NCN

MODEL-

ANCPN

MODEL-ADIG

MODEL-ACC

MODEL-AMC

MODEL-AOCC

NS-NDCN

NS-NCN

NS-NDCC

NS-NCC

NS-DNT

Metric Name

Height of Nesting Tree

Height of Inheritance

Graph
Number of Contained

Namespaces

Average Number of

Classes Per Namespace

Average Depth of

Inheritance Graph

Average Class
Complexity
Average Method
Complexity

Average OCL Constraint
Complexity
Number of Directly

Contained Namespaces

Number of Contained
Namespaces
Number of Directly

Contained Classes

Number of Contained
Classes.

Depth of Nesting Tree

Description

Measures the vertical nesting of namespaces
in the model.

Measures the maximum height of the
graph, the
connected components.

inheritance considering all
Measures the size of namespace nesting in

the model.

the horizontal

namespaces in the model.

Measures nesting of
Measures the average height of connected
parts of the model’s inheritance graph.
Measures the average complexity of classes
in the model.

Measures the average complexity of the
methods within the model.

Measures the average complexity of OCL
constraints in the model.
Measures the horizontal nesting of the

namespace.

Measures the size of the nesting of the

namespace.
Measures the local dimension of the
namespace. A dimension means a

measurement of the model in a particular

direction (e.g. the number of included

namespaces).
Measures the global dimension of the
namespace.

Measures the nesting level of the namespace.

Chapter 4. Model Quality Measuring

71

CLS-NLP

CLS-NP
CLS-NLO

CLS-NO
CLS-ACLO

CLS-ACO

CLS-DIG

CLS-NDA

CLS-NA

CLS-NDD

CLS-ND

CLS-NMI

CLS-NRDC

CLS-NRE

CLS-LC

CLS-C

OPER-MCC
OPER-NP

Number of Local

Properties
Number of Properties

Number of Local

Operations

Number of Operations
Average Complexity of
Local Operations
Average Complexity of
Operations
Depth of
Graph

Inheritance

Number of Direct
Ancestors

Number of Ancestors

Number of Direct

Descendants

Number of Descendants

Number of Multiple
Inheritances

Number of Referred
Classes.

Number of Referees

Local Complexity
Complexity
McCabe Complexity

Number of parameters

Measures the local dimension of local
properties.
Measures the dimension of all the properties.

Measures the dimension of local operations.

Measures the dimension of all the operations.

Measures the average complexity of local

operations.

Measures the average complexity of all the

operations.

Measures the inheritance level of the class.

Measures the dimension of local ancestors.

Measures the dimension of all ancestors. If a
class is inherited more than once, it counts

all its appearances.

Measures the dimension of local
specialization.
Measures the dimension of all
specializations.
Measures the dimension of repeated
inheritances.

Measures the dimension of references to
other classes.

Measures the dimension of references from
other classes.

Measure the local complexity of the class.
Measures the global complexity of the class.
Measures the McCabe complexity.

Measures the dimension of the prototype

Chapter 4. Model Quality Measuring

72

OCL-NDP

OCL-HNT
OCL-MCC

OCL-HALC

OCL-NV

Number of
Points

Height of Nesting Tree
McCabe complexity

Halstead Complexity

Number of Variables

Table 4.3. KMF metrics suite-second level

Metric Acronym

MODEL-MAIN

MODEL-CHAN

MODEL-TEST

CLS-MAIN

CLS-ANAL

CLS-CHAN

CLS-STAB

Metric Name

Model Maintainability

Model Changeability

Model Testability

Class Maintainability

Class Analyzability

Class Changeability

Class Stability

Decision

associated to a method.

Measures the complexity of the methods
using decision points.

Measures the nesting of the OCL constraints.
Measures the McCabe complexity of the
OCL constraint.

Measures the Halstead complexity of the
OCL constraint by computing the total
number of operator occurrences and total
number of operand occurrences.

Measures the complexity of the OCL

constraint.

Description

Measures the effort required to maintain the
model.

Measures the effort required to change a
model.

Measures the effort required to test the

system described by a model.

Measures the effort required to maintain the

class.

Measures the effort required to analyze the

class

Measures the effort required to change the

class

Measures the stability of the class after
changing partially some of the inner

components

Chapter 4. Model Quality Measuring 73

CLS-TEST Class Testability Measures the effort required to test the class.

CLS-USAB Class Usability Measures the effort required to use the class.

CLS-SPEC Class Specialization Measure the effort required to specialize the
class.

The metrics suite and the way the metrics are used to measure the quality of model elements
is described in more details in Appendix 4. New metrics can be added in an XML style using
OCL. For example,
<metric namespace="0CL" key="0CL-NDD"
name="Number of Direct Descendants®
type="ocl” min="0" max="POSITIVE_INFINITY">
<body>
context uml::Foundation::Core::Class inv ndd:
self._specialization->size()
</body>
<diagnostic>
Reduce the number of direct children
</diagnostic>
</metric>
computes the number of direct ancestors of a class.

More details about these metrics, including a brief description of the algorithms and

proposed boundaries are presented in Appendix 4.

4.2.3. Methodology

In the KMF software suite metrics are collected on individual components of a single model.
Predictions given by elementary KMF metrics on individual model elements are then
composed in global KMF metrics to give predictions for the entire system. The same
approach was taken by [EBGRO1] to predict the proportion of faulty classes in a whole
system. [BDW99] used object-oriented metrics to predict the effort to develop each class,
and these were then composed to produce an estimate of the overall system. Both [EBGRO01]

and [BDW99] consider the implementation level and the modeling level.

Chapter 4. Model Quality Measuring 74

The metrics are collected and composed in KMF into quality models. The results of
measurement are also used to classify components according to their quality category into
excellent, good, acceptable, and poor using the proposed boundaries and accepted deviations.
Once instantiated a quality model takes as input the values of a set of metrics (M, M,, ...,
M,) for a particular model element, and computes its quality category. An overview of the
quality model behavior is given in Figure 4.1. The quality model is described in more detail

in Appendix 4.

M,

/

Quality Quality
Model Category

Mn

Figure 4.1. Quality model

4.3. An example

This section contains the description of an experiment that was performed in order to
illustrate our methodology. The validation of the proposed metrics is outside the scope of this

experiment.

The methodology presented above was applied on the OCL model that is fully described in
[ALPO3]. Figure 4.2, Figure 4.3, and Figure 4.4 show two of the class diagrams used to
describe the OCL expression. With these diagrams, KMF-Studio computes the selected
metrics for each class and displays it using Kiviat diagrams, pie charts and HTML, as shown
in Figure 4.5. We decided to use this mechanism to visualize the result of the measurement
as it provides excellent visual feedback regarding the critical points of the design. Using the
values computed for the metrics that measure the internal attributes, KMF-Studio generates
an HTML quality report that evaluates the maintainability of the system, as shown in Figure
4.6. The report displays, for each model element, the value of the metrics and groups the
elements into several categories: Excellent, Good, and Acceptable (see Appendix 4). Both

the value of the metrics associated with a model element and the final quality report are

Chapter 4. Model Quality Measuring 75

generated by KMF-Studio in HTML format as HTML allows quick navigation. To draw a
Kiviat diagram and a pie chart, KMF-Studio generates HTML text that contains applet
invocations with given arguments. The final quality report contains a pie chart that describes
the percentage of excellent, good, acceptable, and poor elements, according to the criteria
specified in Appendix 4. One can identify the elements that violate the boundaries of
attached metrics by following the provided HTML links. To provide useful feedback the

violations are displayed in Kiviat diagrams using colors and visual effects.

+parent
OclExpressionAs
-ishlatedPre : Boolean
PrinaryEspAS SelectionExpAS CallExpAS LoopExpAS LoginalExpAS IfExphS LetExpAS DelMessageBuphS
-name : String +name : String +name : Sting
+hind : OclMeszagekindAS

Figure 4.2. OCL expressions

Hegurce

-ishdakedFre : Booleandbady

OclExpreszsionAS

+source

+arguments
o.r +source

SelectornExpAS LoopExgd s

+name : String

CallExpAS

-name : String

T

T

T

T 7

DotSelectionExpAs

ArmnSelectionExpAS

OperationCallExpas

AssociationCallExpAs

IteratarExpAs

IterateExpAs

Figure 4.3. OCL selection, call, and loop expressions

Chapter 4. Model Quality Measuring

76

<<enumeration>=

CollectionkindAS

(fom ast.expressions)

+ZET : CollectionKindAS

+BAG : CollectionkindAS
+ZEQUENCE : CollectionkindAS
+COLLECTION : CollectionkindAS
+0RDERED_SET : CollectionkindA

BooleanLiteral ExpAs

o 25t expessions;

+walue : Boolean

LRI EXpAS
(o a5t expressions)

1

Frimitiuel el ExpAS

Fmoar 35t exparessions]

o e

IntegerLi

#¥roa 35t expressions,

FrimaryExpA S

+i

TupleLiteral Expas

(o 25¢.ex 00 S50 s)

FathNameExpAS

{fom a5t expressions)

+pathName : List

T

o astexpressions)

RealLiteralExp

StringLiteral E:

+value : Integer

froi astexpressions)

from astexpressions)

CollectionLiteralExpAs

¥roar 35t exaressions]
+hind : CollectionKindAS

-

VariableDeclarationAS
o 2stcontexts)

+value : Double

+ualue ; String

Collectionlitera!PaitA S

P sstexpressions)

+name : String

Figure 4.4. OCL Primary expressions

CollectionltemAs

{fom a5t expessions)

CollectionRangeAs

fiot ast.expressions)

+item

a

+first
+last

i 35t expressions) (57

-ishfaredPre : Boslean g 4

Chapter 4. Model Quality Measuring

77

Idetric namespace
EMF
EMF
EMF
EMF
EMF
EMF
EMF
EMF
EMF
EMF
EMF
EMF
EMF
EMF
EMF
EMF
EMF
EMF
EMF
EMF

cls-aclo cls-aco
Idetric name
Clazs Mamntanability
Clazs Analysability

Clazs Changeabiity

Clazs Stability

Clazs Testabdity

Clazs TTzeabdity

Clazs Speciizabiity

Mumber of Local Properties
Mumber of Properties

Mumber of Local Operations
Mumber of Cperations

Average Complexty of Local Operations
Average Complexty of Operations
Number of Direct Ancestors
Number of Ancestors

Number of Direct Descendants
Number of Descendants

Mumber of Multiple Inheritances
Number of Referred Classes

Mumber of Eeferess

Iletric key

cls-main
cls-anal
cls-chan
cls-stab
cls-test
cls-usab
clz-spec
clz-nlp
clz-np
cls-nlo
cls-no
cls-aclo
cls-aco
cls-nda
cls-na
cls-ndd
cls-nd
cls-tur
cls-nrde

clz-nre

Figure 4.5. Kiviat diagram for class OclExpressionAS

Mlirirnum value | Waamum valus

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

400
100
100
100
100
10

Value

47
6

[
el

[e e e N e I = R I VS R R PR P R IR VAR -

[=R - R]
el

Chapter 4. Model Quality Measuring 78

Quality Report

Click on the links {0 retrieve iterns that belong to this categpry

4
pree
[Goad

Excellent

Good

Figure 4.6. Quality report for OCL expressions

4.4, Conclusions and future work

This chapter’s contribution is the presentation of the framework provided by KMF-Studio to
support software measurement from UML models. The framework structures the
measurement on two levels. KMF-Studio measures at the first level the internal attributes of
models (e.g. depth of inheritance graph, number of operations, number of properties, and
average complexity of OCL constraints). The second level is responsible for measuring the
external attributes of the software system (e.g. maintainability, testability, changeability, and
usability). The resulting quality report can be used to identify model elements that violate the
boundaries of metrics and thus provides an indication of the elements that are likely to
consume most of the cost of implementation and maintenance. The quality evaluation system
that we designed and implemented is usable, flexible, and extensible. For example, a user
can choose the set of metrics that is used to prepare a quality report, either by choosing some
of the predefined metrics or writing its own metrics written in OCL. An OCL metric

navigates the model and computes a numeric value.

We are currently working to incorporate the measures of other software metrics in KMF-
Studio. The intention is to extend the set of predefined metrics to include other well-known

metric suites such as [LH93][TCO02]. We also intend to provide support for measuring other

Chapter 4. Model Quality Measuring 79

elements that appear in the UML2.0 standard (e.g. stereotypes, sequence diagrams, and

activity diagrams) and discover which metrics are worth using.

Chapter 5 YATL Specification 80

Chapter 5. YATL SPECIFICATION

This chapter presents the current version of YATL (Yet Another Transformation Language),
which is evolving in order to support all the features provided by [QVT02] and the future
QVT standard. The first subsection provides a quick overview of the YATL language.

Subsequent sections present the features of YATL in more details.

5.1. YATL Overview

YATL is a hybrid language (a mix of declarative and imperative constructions) designed to
answer the Query/Views/Transformations Request For Proposals [QVTO02] issued by OMG
and to express model transformations as required by the MDA [MDA] approach.

YATL formulates queries to interrogate the model using constructions from the OCL 2.0
standard. A YATL query is a syntactic construct that contains the description of the request in
terms of OCL 2.0 (see Appendix 6). The YATL processor invokes the OCL processor to

process the query and supply the results of interrogation.

A YATL transformation describes a mapping between a source MOF metamodel S, and a
target MOF metamodel T. The transformation engine uses the mapping to generate a target
model instance conforming to T from a source model instance conforming to S. The source
and the target metamodels may be the same metamodel. Navigation over models is specified
using OCL.

Each transformation contains one or more transformation rules. A transformation rule
consists of two parts: a left-hand side (LHS) and a right-hand side (RHS). The LHS of a
YATL transformation is specified using a filtering expression written either in OCL or native
code such as Java, C#, and scripts. This approach allows filter expressions to include both

modeling information (such as navigational expressions, properties values, collections) and

Chapter 5 YATL Specification

platform dependent properties (such as special conversion functions), which makes them
extremely powerful. A compound action specifies the effect of the RHS. The LHS and RHS
for the YATL transformation are described in the same syntactical construction, called a

transformation rule. A rule is invoked explicitly using its name and with parameters.

The abstract syntax of YATL namespaces, translation units, queries, views, transformations,

and transformations rules is described in Figure 5.1.

Query

Model

+sourcehdadel

-eontextbec|List: List

‘loation : Objest

0.7 | 4queries

Namespace

+namespaces

Unit

-statPathMame : List

-location : Object

+argethlodal

0.7 | +tansfol

rmations

Transformation

slocation : Object

L

-name : Sting

+rules (0.7

+startRule

Rule

Import

Filter

o List

-location : Object

+hady

CompoundStm

Figure 5.1 Abstract Syntax

5.2.

An example

Let us consider the following two models:

and the transformation rule:

Model M1 contains class A.

Model M2 contains class B.

-pathName : List
-expression : Objest

Class A has a property called name.

Class B has a property called value.

+imports

ame : Sting

Chapter 5 YATL Specification 82

“For each instance of class A in M1, which is named John, create an instance of

class B with a value property equal to 5”.

The YATL program in Figure 5.2 expresses the above transformation.

start kmf::edoc2ws::main;

namespace kmf(mli, m2) {
transformation mlTom2 {

--AtoB

-- Map an A to a B
rule a2b match ml::A[self.name = “John”] O {
-- Create B
let b: m2::B;
b := new m2::B;
b.value := 5;

}

-- main rule
rule main) {
-- Map individual elements

apply azbQ);

}

Figure 5.2 A transformation example in YATL

The YATL program starts with the invocation of the rule main, which invokes rule a2b. The
rule iterates over all the instances of A in M1’s repository and filters them using the OCL
expression self.name = ‘John’. If the filter returns true, the body of rule a2b is used to build

the corresponding instance of B and set the value to 5; otherwise the rule does nothing.

5.2.1. Main features

The declarative features come mainly from OCL expressions and the description of the LHS
of transformation rules. YATL acts in a similar way to a database system that uses SQL to

interrogate the database and the imperative host language to process the results of the query.

Chapter 5 YATL Specification 83

We choose OCL to describe the matching part of YATL rules because it is a well defined
language for querying the UML models. It provides a standard library with an acceptable
computational expressiveness, it is a declarative language, and it is a part of the OMG’s

standards.

YATL supports several kinds of imperative features, used in the RHS of transformation rules,
which are presented later in this chapter. These features were selected so that YATL can
provide lifecycle operations like creation and deletion, operations to change the value of
properties, declarations, decisions, and iteration actions, native actions to interact with the
host machine, and build actions to ease the construction of target model instance. Compound
actions contain a sequence of instructions, which are to be executed in the given order. These
syntactic constructions make use of OCL expressions to specify basic operations such as
adding two integer values. YATL uses the same type system as OCL 2.0 [OCL].

YATL is described by an abstract syntax (a MOF metamodel) and a textual concrete syntax.
It does not yet have a graphical concrete syntax as QVT RFP suggested. A transformation
model in YATL is expressed as a set of transformation rules. Transformations from Platform
Independent Models (PIMSs) to Platform Specific Models (PSMs) can be written in YATL to
implement the MDA.

A YATL transformation is unidirectional. We believe that a model transformation language
should be unidirectional, otherwise it cannot be used for large scale models. The main
difficulty with a bidirectional transformation language is that it needs some reasoning to
perform the transformation. For example, DSTC’s proposal [QVTD] uses mechanisms
similar to Prolog-unification to perform a bidirectional mapping. The reverse transformation

can be described as any other transformation using YATL.

For a real model-to-model transformation, traceability is necessary to make the approach
workable. To trace the mapping between source and target model instances, YATL comprises
an operator called track. Track expressions are, from the concrete syntax point of view,
similar to DSTC’s track constructions [QVTD]. The main difference is that YATL’s tracks
are defined using concepts like relation name, domain, and imagine, and not Prolog-like
concepts (e.g. unification). This approach makes the traceability system of YATL suitable for

large-scale systems.

Chapter 5 YATL Specification 84

5.3. Programs

A YATL program consists of one or more source files, known formally as translation units. A
source file is an ordered sequence of Unicode standard characters. Conforming
implementations must accept Unicode source files encoded with the UTF-8 encoding form
[UNI], and transform them into a sequence of Unicode characters. Implementations may
choose to accept and transform additional character encoding schemes, such as UTF-16,

UTF-32, or non-Unicode character mappings.

Conceptually speaking, a YATL program is analysed in five steps:
1) Character conversion, which converts a file from a particular character repertoire
and encoding scheme into a sequence of Unicode characters.

2) Lexical analysis, which translates a stream of Unicode input characters into a
sequence of tokens.

3) Syntactic analysis, which translates the sequence of tokens into an abstract
representation of the input structure.

4) Semantic analysis, which checks if the input follows the semantic rules, and
produces an internal representation of both syntax and semantics.

5) Code generation or interpretation where the semantic representation is either
used to generate code for the underlying machine or directly evaluated on the
same machine.

54. Grammars

This section presents the syntax of YATL language using two grammars, structured on two
levels. On the first level, the lexical grammar defines how Unicode characters are combined
to form line terminators, white space, comments, and YATL tokens. At the second level, the
syntactic grammar defines how the tokens resulting from the lexical grammar are combined
to form YATL programs. Both grammars are described using the notation comprised in

Appendix 1.

Chapter 5 YATL Specification 85

54.1. Lexical grammar

The lexical grammar of YATL is presented in Appendix 5. The terminal symbols of the
lexical grammar are the characters of the Unicode character set, and the lexical grammar

specifies how characters are combined to form white spaces, comments, and tokens.

The lexical processing of a YATL source file consists of reducing the file into a sequence of
tokens that becomes the input to the syntactic analysis. Line terminators, white space, and
comments can serve to separate tokens, but otherwise these lexical elements have no impact

on the syntactic structure of a YATL program.

When several lexical grammar productions match a sequence of characters in a source file,
the lexical processing always forms the longest possible lexical element. For example, the
character sequence is processed as the beginning of a single-line comment because that

lexical element is longer than a single token.

Every source file in a YATL program must conform to the input production of the lexical

grammar.

5.4.2. Syntax grammar

The syntactic grammar of YATL is presented in Appendix 6 and the following sections. The
terminal symbols of the syntactic grammar are the tokens defined by the lexical grammar,

and the syntactic grammar specifies how tokens are combined to form YATL programs.

Every source file in a YATL program must conform to the translation-unit production of the

syntactic grammar.

5.5. Types and variables

The types of the YATL language are derived from the OCL’s types [OCL2],[AP03],[ALPO3].
They can be used to encapsulate logical values, numbers, collections, tuples, and user types.
The type hierarchy of YATL is described in Figure 5.3 and derives from [ALPO3].

Chapter 5 YATL Specification 86

FelementType

Claszifiar
o Bridge,

Ocitessage Type
DataType
oy Biridge, Wariableleclaration
o

fFparnType
[|

OclAnyType CollectionType TuplaType

T |

o Type Frimitive
o pridie,

from ?}n'n‘ge‘]
StiingType RealType OrderedSetType SetType SequanceType BagType

BoaleanType T

IntegerType

T

WoidType

Figure 5.3 YATL types

YATL’s type system is unified such that a value of any type can be treated as a Classifier.
Every type in YATL directly or indirectly derives from the Classifier class type, which is the

ultimate base class of all types. Undefined values are represented using VoidType.

YATL defines two categories of variables: local variables and value parameters. In the

example

transformation T {
rule r match java::Class (String s) {
let i: Integer = 3;
}

}

s is a value parameter and i is a local variable.

Variables represent storage locations. Every variable has a type that determines what values
can be stored in the variable. YATL is a type-safe language, and the YATL processor
guarantees that values stored in variables are always of the appropriate type. The value of a

Chapter 5 YATL Specification 87

variable can be changed through assignment. If the value of a variable is not specified by an

initialization or assignment, it is considered to be the undefined value from OCL.

A variable must be definitely assigned before its value can be obtained. A variable is said to
be definitely assigned at a given location in the executable code, if the compiler can prove,
by a particular static flow analysis that the variable has been automatically initialized or has

been the target of at least one assignment.

Variables are either initially assigned or initially unassigned. An initially assigned variable
has a well defined initial value and is always considered definitely assigned. An initially
unassigned variable has no initial value. For an initially unassigned variable to be considered
definitely assigned at a certain location, an assignment to the variable must occur in every
possible execution path leading to that location.

ModelElement
o fridge,
i)

+hiody Claszifier

DelE
0.4 |*isMakedPra : Poolean

o Bridge,

+ype

+in[tExpression +hype

T
+zource ‘

+appliedProperty

o1 ‘

CallExp LiteralExp IfExp WariableExp UnspecifiedWalueExp OclMessageExp
o.F
o1
ModelPropetyCallExp LoopExp
+referredVfariable
Variablebeclarationd..1
2k Mttt
+resul
IteratorExp IterateExp 0.1

.
W bazeExp

Figure 5.4 YATL expressions

Chapter 5 YATL Specification 88

5.6. Expressions

This section defines the syntax, order of evaluation of operands and operators, and meaning
of expressions. YATL expressions are extensions of OCL 2.0 expressions presented in Figure
5.4 [ALPO3].

More details about the expressions supported by OCL (e.g. concrete syntax, abstract syntax,

and semantics) and the way they are implemented can be found in [OCL2][ALPO03].

The extensions specific to YATL are presented in the following subsections.

5.6.1. The assignment operator

The assignment operator assigns a new value to a variable or a property.

assignment-expression —
ocl-expression “:=’ rhs-expression .
rhs-expression —
ocl-expression |
new-expression |
build-expression |

track-expression .

The left operand of an assignment must be an expression classified as a variable or a

property.

In an assignment, the right operand must be an expression of a type that is compatible to the
type of the left operand [OCL2]. The operation assigns the value of the right operand to the
variable or property given by the left operand.

The result of a simple assignment expression is the value assigned to the left operand. The

result has the same type as the left operand and is always classified as a value.

Chapter 5 YATL Specification 89

5.6.2. The new operator

The new operator is used to create new instances of model element types [OCL2].

new-expression —

‘new’ path-name .

The new operator implies creation of an instance of the path-name type.

5.6.3. The build operator

The build operator is used to create new instances of model element types and set their

properties in the same time.

build-expression —

‘build’ path-name “‘{* list-pair ‘}’.
list-pair—

Al

pair “,” list-pair .
pair —

name ‘:=’ rhs-expression .

The new operator implies creation of an instance of the path-name type and sets the values
for the properties specified in list-pair. If there is at least one name for which there is no such

property in type path-name, a compile-error is reported.

5.6.4. The track operator

The track operator is used to store and retrieve mappings during and after the transformation

process.

track-expression —
‘track” “(“ ocl-expression “,” simple-name *,” ocl-expression ‘)’ |
‘track” “(* “null’ “,” simple-name *,” ocl-expression ‘)’ |

‘track’ “(* ocl-expression *,” simple-name *,” ‘null’ *) .

Chapter 5 YATL Specification

90

Given a relation R and two objects X and Y, the meaning of the track operator is the

following:

o track(X, R, Y) stores the relation R(X, Y).

e Y :=track(X, R, null) retrieves the element related to X by R.

o X :=track(null, R, Y) retrieves the element related to Y by R.

The type of X and Y can be any OCL 2.0 type (e.g. integer, real, boolean, string, model

element type, collection, or tuple).

5.7. Actions

This section contains the description of the actions supported by YATL and other basic

concepts such as: end point, reachability, name lookup, rule resolution etc. The abstract

syntax tree of YATL actions is described in Figure 5.5.

DeclarationStm

-decls: List

Break&tm

CompoundStm

+ba
o= +beo,

elzeStm

LifesyaleStm

-location : Object

ContinueStm

Rule

ApplyStm

-parameters ; List

-location : Object

-ruleMame @ Strin
-args : List

a

NativeStm

~body : Sting

Figure 5.5 YATL actions

TU

ExpressionStm

Expression

DeleteStm

-exp : Object

I1t5tm

LoopStm

-operands : List
-type : Dbject

TrackExp

HewEsp

-pathMame : List

Chapter 5 YATL Specification 91

5.7.1. End points and reachability

Every action has an end point. In intuitive terms, the end point of an action is the location
that immediately follows the action. The execution rules for composite actions (actions that
contain embedded actions) specify the action that is taken when control reaches the end point
of an embedded action. For example, when control reaches the end point of an action in a

block, control is transferred to the next action in the block.

If an action can possibly be reached by execution, the action is said to be reachable.
Conversely, if there is no possibility that an action will be executed, the action is said to be

unreachable. In the following example

rule rQ {
while (..) {
-- reachable
let i:Integer=3;
break;
-- unreachable
i = i+l;
}
3
theaction i = 1 + 1 isunreachable because of the break action.
5.7.2. Blocks

A block permits multiple actions to be written in contexts where a single action is allowed.

block —
Cey
|
“{* action-list‘}’ .
A block consists of an optional action-list, enclosed in braces. If the action list is omitted, the
block is said to be empty.

A block may contain declaration actions. The scope of a local variable or constant declared
in a block is the block. Within a block, the meaning of a name used in an expression context
must always be the same.

A block is executed as follows:

Chapter 5 YATL Specification 92

o If the block is empty, control is transferred to the end point of the block.

o If the block is not empty, control is transferred to the action list. When and if
control reaches the end point of the action list, control is transferred to the end
point of the block.

The action list of a block is reachable if the block itself is reachable.
The end point of a block is reachable if the block is empty or if the end point of the action

list is reachable.

5.7.3. Action lists

An action-list consists of one or more actions written in sequence. Action lists occur in
blocks.

action-list »
action |
action-list action .

An action list is executed by transferring control to the first action. When and if control
reaches the end point of an action, control is transferred to the next action. When and if
control reaches the end point of the last action, control is transferred to the end point of the
action list.

An action in an action list is reachable if at least one of the following is true:

e The action is the first action and the action list itself is reachable.

e The end point of the preceding action is reachable.

The end point of an action list is reachable if the end point of the last action in the list is

reachable.

5.8. The empty action

An empty-action does nothing.

empty-action—

Chapter 5 YATL Specification 93

An empty action is used when there are no operations to perform in a context where an

action is required.

Execution of an empty action simply transfers control to the end point of the action. Thus,

the end point of an empty action is reachable if the empty action is reachable.

5.9. Declaration actions

A declaration-action declares a local variable. Declaration actions are permitted in blocks.

declaration-action—

local-variable-declaration .

5.9.1. Local variable declarations

A local-variable-declaration declares one or more local variables [OCL2], [ALPO3].

local-variable-declaration —

‘let’ variable-declaration-list ;’
variable-declaration-list —

variable-declaration |

variable-declaration-list *,” variable-declaration .
variable-declaration —

simple-name [*:” type] [*=’ init-expression] .

The type of a local-variable-declaration specifies the type of the variables introduced by the
declaration [OCL2][ALPO3]. The init-expression gives the initial value of the variable. Both
type and initial value are optional [OCL2].

The value of a local variable is obtained in an expression using a simple-name, and the value
of a local variable is modified using an assignment. A local variable must be definitely

assigned at each location where its value is obtained.

Chapter 5 YATL Specification 94

The scope of a local variable declared in a local-variable-declaration is the block in which
the declaration occurs. It is an error to refer to a local variable in a textual position that
precedes the local-variable-declarator of the local variable. Within the scope of a local

variable, it is a compile-time error to declare another local variable with the same name.

A local variable declaration that declares multiple variables is equivalent to multiple
declarations of single variables with the same type. Furthermore, a variable initializer in a
local variable declaration corresponds exactly to an assignment action that is inserted

immediately after the declaration.

The example
rule rQ {
let x - Integer = 1, y : Integer, z : Integer = x * 2;
}
corresponds exactly to
rule rQ {
let x : Integer;
X = 1;
let y : Integer;
let z : Integer;
Z =X * 2;
}

5.10. Expression actions

An expression-action evaluates a given expression. The value computed by the expression, if

any, is discarded.

expression-action —
expression ;.

expression —
assignment-expression |
ocl-expression |

track-expression .

Execution of an expression action evaluates the contained expression and then transfers

control to the end point of the expression action.

Chapter 5 YATL Specification 95

5.11. The apply action

An apply-action is used to invoke a rule.

apply-action —»

‘apply’ path-name’(* argument-list)” *;” .
argument-list -

A1

argument “,” argument-list .
argument —

ocl-expression .

For a rule invocation, the compiler must first identify the one rule to invoke or the group of
overloaded rules from which to choose a specific rule to invoke. In the latter case,
determination of the specific rule to invoke is based on the context provided by the types of

the arguments in the argument-list.

The compile-time processing of a method invocation of the form R(A), where R is a rule
group and A is an optional argument-list, consists of the following steps:

e The set of candidate rules for the rule invocation is constructed. The set of rules

associated with path-name, which are found by a name lookup operation, is

reduced to those rules that are applicable with respect to the argument list A. The

set reduction consists of applying the following rules to each rule T::R in the set,
where T is the transformation in which the rule R is declared:

o If Risnot applicable with respect to A, then R is removed from the set.

o If Ris applicable with respect to A, then all rules declared in a base type
of T are removed from the set.

o If the resulting set of candidate rules is empty, then no applicable
methods exist, and a compile-time error occurs.

e The best rule of the set of candidate rules is identified using the overload
resolution rules. If a single best rule cannot be identified, the rule invocation is
ambiguous, and a compile-time error occurs.

Once a rule has been selected and validated at compile-time by the above steps, the actual

run-time invocation is processed according to the rules of invocation.

Chapter 5 YATL Specification 96

5.11.1. Name lookup

A name lookup is the process whereby the meaning of a name in the context of a
transformation is determined. A rule lookup may occur as part of evaluating a simple-name

in an apply action.

A lookup of a name N in a transformation T is processed as follows:
e The set of all accessible rules named N declared in T and the base
transformations of T is constructed.

¢ If no members named N exist and are accessible, then the lookup produces no
match.

e Otherwise, this group of rules is the result of the lookup.

5.11.2. Rule applicable to A

A rule is said to be an applicable rule with respect to an argument list A when all of the
following are true:
e The number of arguments in A is identical to the number of parameters in the
function member declaration.

e For each argument in A, the type of the argument is compatible with the type of
the corresponding parameter, according to OCL 2.0 specification [OCL2].

5.11.2.1. Better function member

Given an argument list A = Ay, Ay, ..., Ay with a set of argument types Ty, Ty, ..., Ty and two
applicable rules Rp and Rq with parameter types Py, P,, ..., Py and Qq, Qz, ..., Qn, Re is
defined to be a better rule than Rq if
e For each argument, the implicit conversion from T, to P, is not worse than the
implicit conversion from T, to Q,, and

e For at least one argument A;, the conversion from T, to P; is better than the
conversion from T; to Q,.

Chapter 5 YATL Specification 97

5.11.2.2. Better conversion

Given an implicit conversion C, that converts from a type Sto a type Ty, and an implicit
conversion C, that converts from a type S to a type T,, the better conversion of the two

conversions is determined as follows:

e IfTyand T, are the same type, neither conversion is better.
e |fSis Ty, Cyisthe better conversion.
e IfSis T, C,is the better conversion.

¢ If an implicit conversion from T, to T, exists, and no implicit conversion from T,
to T, exists, C, is the better conversion.

¢ If an implicit conversion from T, to T, exists, and no implicit conversion from T,
to T, exists, C, is the better conversion.

5.11.3. Rule invocation

This section describes the process that takes place at run-time to invoke a particular rule R. It
is assumed that a compile-time process has already determined the particular rule to invoke,

possibly by applying overload resolution to a set of candidate rules.

The run-time processing of a rule member invocation consists of the following steps:

e The argument list is evaluated from left to right.
e The resulting values are used to build an activation record.

e The body of rule R is applied over every source model element for which the
filter attached to rule R is true. If the source model and target model are
identical, the elements added by other previous rules are discarded.

For example, the rule

rule r match A(self.name="John”) {
let x:B;
X = new B;

}

creates a B instance for each A instance whose property name has the value John. The filter
expression can be any OCL expression (e.g. navigation expressions, operation on primitive

types and collections, and iterator expressions such as select and forall).

Chapter 5 YATL Specification 98

5.12. The delete action

A delete-action destroys an object created by a new-expression.

delete-action —

‘delete’ ocl-expression “;” .

The operand must have a model element type [OCL20].

5.13. Decision actions

Selection actions select one of a number of possible actions for execution based on the value

of some expression.

selection-action —

if-action.

5.13.1. The if action

The if action selects an action for execution based on the value of a boolean expression.

if-action —

‘iff” expression ‘then’ action [‘else” action] ‘endif” .

An else part is associated with the lexically nearest preceding iff that is allowed by the

syntax. Thus, an if action of the form
iff x iff y then y:= x; else x:=y;
is equivalent to

iff x then
if y then
YI=X;
else
XI=Y,
endif
endif

Chapter 5 YATL Specification 99

An i T action is executed as follows:

e The expression is evaluated.

o If the expression yields true, control is transferred to the first embedded action.
When and if control reaches the end point of that action, control is transferred to
the end point of the if action.

e If the expression yields false and if an else part is present, control is transferred
to the second embedded action. When and if control reaches the end point of that
action, control is transferred to the end point of the if action.

o If the expression yields false and if an else part is not present, control is
transferred to the end point of the if action.

The first embedded action of an if action is reachable if the if action is reachable and the

expression does not have the constant value false.

The second embedded action of an if action, if present, is reachable if the if action is

reachable and the expression does not have the constant value true.

The end point of an if action is reachable if the end point of at least one of its embedded
actions is reachable. In addition, the end point of an if action with no else part is reachable if

the if action is reachable and the expression does not have the constant value true.

5.14. Iteration actions

Iteration actions repeatedly execute an embedded action.

iteration-action —
while-action |
do-action |

foreach-action.

5.14.1. The while action

The while action conditionally executes an embedded action zero or more times.

while-action —

‘while’ expression 'do’ action .

Chapter 5 YATL Specification 100

A while action is executed as follows:

e The expression is evaluated.

o If the expression yields true, control is transferred to the embedded action. When
and if control reaches the end point of the embedded action (possibly from
execution of a continue action), control is transferred to the beginning of the
while action.

o If the expression yields false, control is transferred to the end point of the while
action.

Within the embedded action of a while action, a break action may be used to transfer control
to the end point of the while action (thus ending iteration of the embedded action), and a
continue action may be used to transfer control to the end point of the embedded action (thus

performing another iteration of the while action).

The embedded action of a while action is reachable if the while action is reachable and the

expression does not have the constant value false.

The end point of a while action is reachable if at least one of the following is true:

e The while action contains a reachable break action that exits the while action.

e The while action is reachable and the expression does not have the constant
value true.

5.14.2. The do action

The do action conditionally executes an embedded action one or more times.

do-action—

‘do’ action ‘while” “(* expression ©)” *;’

A do action is executed as follows:

e Control is transferred to the embedded action.

e When and if control reaches the end point of the embedded action (possibly from
execution of a continue action), the expression is evaluated. If the expression
yields true, control is transferred to the beginning of the do action. Otherwise,
control is transferred to the end point of the do action.

Within the embedded action of a do action, a break action may be used to transfer control to

the end point of the do action (thus ending iteration of the embedded action), and a continue

Chapter 5 YATL Specification 101

action may be used to transfer control to the end point of the embedded action (thus

performing another iteration of the do action).
The embedded action of a do action is reachable if the do action is reachable.

The end point of a do action is reachable if at least one of the following is true:

e The do action contains a reachable break action that exits the do action.

e The end point of the embedded action is reachable and the boolean expression
does not have the constant value true.

5.14.3. The foreach action

The foreach action enumerates the elements of a collection, executing an embedded action

for each element of the collection.

foreach-action—

‘foreach’ variable-declaration ‘in’ expression ‘do’ action

The variable-declaration contains the declaration of the iteration variable of the action. The
iteration variable corresponds to a read-only local variable with a scope that extends over the
embedded action. During execution of a foreach action, the iteration variable represents the
collection element for which an iteration is currently being performed. The iteration variable

can be modified or passed as an argument.

The type of the expression of a foreach action must be a collection type (as defined below),
and an explicit conversion must exist from the element type of the collection to the type of
the iteration variable. If expression has the undefined value, a dynamic semantics error is

reported.

A type C is said to be a collection type if it is declared as an OCL collection type or
implements the collection pattern by meeting all of the following criteria:
e Cis the type of a UML attribute whose multiplicity describes a set of at least 2
elements.

e Cis the type of a UML association end whose multiplicity describes a set of at
least 2 elements.

Chapter 5 YATL Specification 102

5.14.4. The break action

The break action exits the nearest enclosing while, do, or foreach action.

break-action —
‘break’ *;’

The target of a break action is the end point of the nearest enclosing while, do, or foreach
action. If a break action is not enclosed by a while, do, or foreach action, a compile-time

error occurs.

When multiple while, do, or foreach action actions are nested within each other, a break
action applies only to the innermost action. To transfer control across multiple nesting levels,

decision actions and boolean flags must be used.
A break action is executed as follows:

e Control is transferred to the target of the break action.

Because a break action unconditionally transfers control elsewhere, the end point of a break

action is never reachable.

5.145. The continue action

The continue action starts a new iteration of the nearest enclosing while, do, or foreach

action.

continue-action —

‘continue’ *;’

The target of a continue action is the end point of the embedded action of the nearest
enclosing while, do, or foreach action. If a continue action is not enclosed by a while, do, or

foreach action, a compile-time error occurs.

When multiple while, do, or foreach actions are nested within each other, a continue action
applies only to the innermost action. To transfer control across multiple nesting levels,

decision actions and boolean flags must be used.

Chapter 5 YATL Specification 103

A continue action is executed as follows:
e Control is transferred to the target of the continue action.

Because a continue action unconditionally transfers control elsewhere, the end point of a
continue action is never reachable.

5.15. Namespaces and translation units

A YATL program consists of one or more translation units, each contained in a separate
source file. When a YATL program is processed, all of the translation units are processed
together. Thus, translation units can depend on each other, possibly in a circular fashion. A
translation unit consists of zero or more import directives followed by zero or more

declarations of namespace members: queries, views, or transformations.

The concept of namespace was introduced to allow YATL programs to solve the problem of
names collision that is a vital issue for large-scale transformation systems. Namespaces are
used both as an “internal” organization system for a program, and as an “external”
organization system - a way of presenting program elements that are exposed to other
programs. A YATL program can reuse a transformation by importing the corresponding

namespaces and invoking the appropriate rules.

A YATL query is an OCL expression, which is evaluated into a given context such as a
package, classifier, property, or operation. The returned value can be a primitive type, model
elements, collections or tuples. Queries are used to navigate across model elements and to
interrogate the population stored in a given repository. YATL uses the OCL implementation
that was initially developed under KMF and then under Eclipse as an open source project
[OCLP].

A YATL transformation is a construct that maps a source model instance to a target model
instance by matching a pattern in a source model instance and creating a collection of objects
with given properties in the target model instance. The matching part is performed using the
declarative features of OCL, while the creation of target instances is done using the
imperative features provided by YATL. YATL provides also the possibility of interacting with

the underlying machine using native actions. Although we do not encourage the use of such

Chapter 5 YATL Specification 104

features, they were provided to support the modeller when some operations are not available
at the metamodel level (e.g. the standard library of OCL 2.0 does not provide a function to

convert lowercase letters to uppercase letters).

5.16. Comparison

In this section we compare YATL and other transformation languages by analysing the
features provided by their specification. The other transformation systems are discussed in
more detail in 2.4.1, 2.4.2 and 2.4.3.To achieve this comparison we analyse the languages on

the basis of several features. The features are derived from [CHO3] and [Gra03]. The results

of the comparison are summarized in Table 5.1.

Feature/ DSTC QVT Partners YATL ATL UMT
Language
Abstraction Level ~ Model (UML) Model (UML) Model (UML) Model (UML) Data (XML)
Transformation Declarative Declarative Hybrid Hybrid Declarative
Style
Directionality Bidirectional Unidirectional Unidirectional ~ Unidirectional ~ Unidirectional

Cardinality Many to many Many to many Many to many Many to many One to one
Traceability Links ~ Manual Automatic Manual Automatic No support
Matching style Logic Relations & OCL & Logic OCL & Logic XSLT & Logic
matching Logic
patterns
Queries No support Superset of OCL Embedded No support No support
OCL
Views No support Readonly Views No support No support No support
Definitions Yes No support No support No support No support

Table 5.1 A comparison of transformation languages

Chapter 5 YATL Specification 105

In this table the rows represent features that are used to compare the transformation
languages. The table indicates how the particular language supports each feature. The

features are explained in the remaining part of this section.

Abstraction Level. Transformation definitions can be expressed at the XML level via XSLT
or at the UML level using model concepts. Specifying transformations at the UML level

makes the communication human-machine easier.

Transformation Style. Transformations can be described using various description styles.
We distinguish imperative, hybrid and declarative transformation styles. The hybrid

approach uses both declarative and imperative constructs to specify transformations.

Directionality. This feature indicates the direction in which the transformations can be
executed. We distinguish unidirectional and bidirectional transformations. Unidirectional
transformations can be executed in one direction only, which means that the target model is
created or updated. Bidirectional transformations can be executed either from the source

model to target model or from the target model to source model.

Cardinality. Cardinality indicates the number of input and output models for a

transformation.

Traceability. This feature provides support for keeping records of relations between source
and target elements during and after the execution of a transformation. The traceability is

dealt with in two ways: automatic and manually.

Matching Style. This feature indicates the style that is used to match the transformation
rules over the source repository. We distinguish the following styles: variable-based, graph-
based and logic. Variable-based styles uses variables hold elements from the source or target
models. Graph-based styles use graph patterns as model fragments with zero or more

variables. Logic styles describe computations and constraints on model elements using logic.

Queries. A query is an expression that is evaluated over a model. The result of a query is one

or more instances of types defined in the source model, or defined by the query language.

Views. A view is a model that is entirely derived from another model, called the source
model. A view cannot be modified separately from the model from which it is derived.

Changes to the base model cause corresponding changes to the view. If changes are

Chapter 5 YATL Specification 106

permitted to the view then they modify the source model. Views are typically not persisted
independently of their source models, except perhaps for caching. Views are often read only.

If views are editable a change made in the view results in a change in the source model.

Definitions. A definition is a specification of a relation between elements in the left-hand
side and right-hand side models. A definition may contain sufficient information to describe

the transformation from left to right, right to left or both.

5.17. Conclusions

This section contains a description of the compliance to RFP requirements, other design

requirements, and related work in this area.

5.17.1. Compliance to RFP requirements

OMG’s QVT RFT [QVTO02] comprises a set of mandatory and optional requirements for the
Query/Views/Transformations proposal. Meeting these requirements, especially the
mandatory ones, is very important, because they are crucial for describing model
transformations in the model driven engineering framework. This section presents these

requirements and analyzes YATL’s compliance with them.

5.17.1.1. Mandatory requirements

“1. Proposals shall define a language for querying models. The query language shall
facilitate ad-hoc queries for selection and filtering of model elements, as well as for

the selection of model elements that are the source of a transformation.”

YATL queries described using OCL 2.0 concepts can be used to query the source model
instance. The data returned by a query can be any OCL value: number, string, boolean value,
collection, tuple, or any value from the metamodel. The selection and filtering of model
elements that are the source of transformation is done through the LHS of transformation

rules.

Chapter 5 YATL Specification 107

““2. Proposals shall define a language for transformation definitions. Transformation
definitions shall describe relationships between a source MOF metamodel S, and a
target MOF metamodel T, which can be used to generate a target model instance
conforming to T from a source model instance conforming to S. The source and target

metamodels may be the same metamodel.”

The relations between source metamodel S and target metamodel T are described in YATL
by translation rules with LHS and RHS. Current instances of relations can be stored so that
they can be retrieved latter, using the track mechanism. YATL can be used to describe
transformations for which the source model is identical with the target model. To avoid
unnatural behavior in this particular case, the transformation engine applies the
transformation rules only on the elements contained initially in the source model instance.
The model elements that are added into the model instance by invoking transformation rules

are not considered when the LHS of a rule is matched against the model instance.

3. The abstract syntax for transformation, view and query definition languages shall

be defined as MOF (version 2.0) metamodels.”

The abstract syntax of YATL is described using MOF concepts and is independent of the
concrete syntax. The abstract syntax of YATL is described in Figure 5.1. There is an

ongoing research on the graphical syntax of YATL.

“4. The transformation definition language shall be capable of expressing all

information required to generate target model from a source model automatically.”

Both the LHS and RHS of the rules are capable of expressing all the necessary information
for transformations. The LHS is used to match a specific pattern against the source model
instance, while the RHS is capable of describing the objects which are added into the target
model instance.

“5. The transformation definition language shall enable the creation of a view of a

metamodel.”

Chapter 5 YATL Specification 108

YATL does not support views yet. This is an area of ongoing research.

“6. The transformation definition language shall be declarative in order to support
transformation execution with the following characteristic:
« Incremental changes in a source model may be transformed into changes in a

target model immediately.”

YATL is partially declarative, containing a mixture of declarative and imperative features.
The declarative features are inherited from OCL while the imperative features are provided

mainly by YATL actions.

“7. All mechanisms specified in Proposals shall operate on model instances of

metamodels defined using MOF version 2.0.”

Both LHS and RHS of the transformation rules operate on model instances using names,
pathnames, and concepts specific to the metamodels and not to their specific implementation

on a given platform.

5.17.1.2. Optional requirements

“1. Proposals may support transformation definitions that can be executed in two
directions. There are two possible approaches:

« Transformations are defined symmetrically, in contrast to transformations that
are defined from source to target.

» Two transformation definitions are defined where one is the inverse of the

other.”

The transformations described by YATL are executed in one direction, usually from source
model to target model. If a reverse transformation is needed, the modeler must write that

transformation.

Chapter 5 YATL Specification 109

2. Proposals may support traceability of transformation executions made between

source and target model elements.”

The current version of YATL supports only explicit traceability of the execution, through
explicit use of track constructions. Adding implicit traceability mechanisms is an ongoing

research area.

“3. Proposals may support mechanisms for reusing and extending generic
transformation definitions. For example: Proposals may support generic definitions of
transformations between general metaclasses that are automatically valid for all
specialized metaclasses. This may include the overriding of the transformations
defined on base metaclasses. Another solution could be support for transformation

templates or patterns.”

To support the reusability of the code YATL programs are organized in translation units and
namespaces. Future versions of YATL will support abstract, overridden, and virtual
transformation rules.

“4. Proposals may support transactional transformation definitions in which parts of
a transformation definition are identified as suitable for commit or rollback during

execution.”

Future versions of YATL will support transactional transformations for which all contained

transformation rules are either committed or rolled back together.

“5. Proposals may support the use of additional data, not contained in the source
model, as input to the transformation definition, in order to generate a target model.

In addition proposals may allow for the definition of default values for this data.”

YATL allows the invocation of the transformation rules by passing additional data as

arguments.

“6. Proposals may support the execution of transformation definitions where the

target model is the same as the source model; i.e. allow transformation definitions to

Chapter 5 YATL Specification 110

define updates to existing models. For example a transformation definition may

describe how to calculate values for derived model elements.”

YATL allows the definition of transformations for which the source model is identical to the
target model. For example, YATL transformations can be used to change properties’ values
or remove objects. To avoid unnatural behavior in this particular case, the transformation
engine applies the transformation rules only on the elements contained initially in the source
model instance. The model elements that are added into the model instance by invoking
transformation rules are not considered when the LHS of a rule is matched against the model

instance.

5.17.1.3. Issues to be discussed

“1. The OMG CWM specification already has a defined transformation model that is
being used in data warehousing. Submitters shall discuss how their transformation

specifications compare to or reuse the support of mappings in CWM.”

YATL uses the concept of repository and warehouse to store source and target model
instances. These concepts are mapped into an implementation by KMF-Studio, a tool from

KMF. Mapping support in CWM can easily be reformulated using YATL.

“2. The OMG Action Semantics specification already has a mechanism for
manipulating instances of UML model elements. Submitters shall discuss how their
transformation specifications compare to or reuse the capabilities of the UML Action

Semantics.”

A YATL program specification can be described in terms of the Action Semantics.

“3. How is the execution of a transformation definition to behave when the source
model is not well-formed (according to the applicable constraints?). Also should
transformation definitions be able to define their own preconditions. In that case:
What’s the effect of them not being met? What if a transformation definition applied to
a well-formed model does not produce a well-formed output model (that meets the

constraints applicable to the target metamodel)?”

Chapter 5 YATL Specification 111

YATL does not check implicitly if the source model instance or if the generated target model
instance are well formed. YATL queries can be used explicitly before and after the

transformation to check the pre and post conditions associated with a transformation.

“4. Proposals shall discuss the implications of transformations in the presence of

incremental changes to the source and/or target models.”

YATL and YATL-Studio cannot automatically detect if the source or the target model
instance suffered incremental changes. At this stage it is the modeler’s task to keep track of
the changes. In the near future, mechanisms to detect automatically if a model instance

suffered some changes will be added to the KMF warehouse and repository concepts.

5.17.2. Other design features

As well as supporting the ongoing QVT requirements, we designed YATL to support the

following additional requirements:

e The syntax and semantics of YATL must be well defined.
e The process of applying the transformation rules must be deterministic.

e Queries, views, and transformations are organized in namespaces to provide
reusability and avoid name collision.

e The transformation engine must be capable of performing efficient
transformation for large-scale systems.

e YATL must provide adequate computational expressiveness power, regardless
of the host platform or language. For example, YATL should support a complete
set of operations on basic types like strings, integers, or floating point numbers.

5.17.3. Relationship to existing OMG specifications

Object Constraint Language OCL forms the basis of the query language and is also used to

match the LHS of the transformation rules.

Chapter 5 YATL Specification 112

Meta Object Facility The abstract syntax of YATL and OCL are both described in terms of

MOF; the superstructure is a slightly more involved extension of MOF.

Common Warehouse Metamodel Concepts like warehouse and repository are used to store

source and target model instances.

5.17.4. Comparison to QVT submissions

Since OMG launched its QVT RFP [QVTO02] in 2002, several submissions were made.
DSTC’s submission [QVTD] contains a declarative definition of QVT and uses high-level
concepts that are similar with those from Prolog. Unfortunately it cannot cope with large-
scale transformations because its concepts make the implementation very slow. QVT
Partners submission [QVTP] considers that transformations are special cases of relations and
describes them using a graphical syntax. This approach is similar to the one presented in
[ASPO03]. This submission provides a mechanism for relation refinement. In the near future
YATL will provide a similar support, although it will be described in textual way. The French
submission [QVTF] has similarities with the approach that we took. However, there are a lot
of differences such as the concrete syntax, the semantics of the rules, the tracking
mechanism, the support for interaction with the host machine and creation of the target

model instance.

Chapter 6 Model Transformations in YATL 113

Chapter 6. MODEL TRANSFORMATIONS
IN YATL

This chapter describes three examples of model transformations, which have been
implemented using YATL and the support provided by Kent Modeling Framework [KMF].
Model transformations are supported in KMF by a set of tools such as YATL-Studio, KMF-
Studio, OCLCommon, and OCL4KMF. The core of the model transformations in KMF is
YATL-Studio, a software environment used to create YATL projects and perform model
transformations on them. The implementations of the source and target model are generated
by KMF-Studio. The OCL 2.0 support is provided by OCLCommon and OCLAKMF,
described in more details in [APO3][ALPO03], which implement the OCL 2.0 standard.

6.1. Transformation environment

The OMG’s MDA is a new approach to develop large software systems. The core
technologies of MDA are the Unified Modeling Language (UML), Meta-Object Facility
(MOF), XML Meta-Data Interchange (XMI) and Common Warehouse Metamodel (CWM).
These standards are used to facilitate the design, description, exchange, and storage of
models. MDA also introduces other important concept: Platform-Independent Model (P1M),
Platform-Specific Model (PSM), transformation language, and transformation engine. The

relations and interactions between these concepts in KMF is depicted in Figure 6.1.

In our approach, the source and target models are described using the MOF language, which
in this case acts like a metalanguage. The transformation language, in our case YATL, is
described using two metalanguages: BNF and MOF. BNF is used to describe the concrete

syntax, while MOF is used to describe the abstract syntax. The transformation engine

Chapter 6 Model Transformations in YATL 114

performs the mapping from a source model instance to a target model instance, executing a

YATL program, which is an instance of the YATL transformation language.

BNF
described A
by
described MOF described
b;SCrI e by
described
by
target
Source Source YATL arge Target
Model Transformation Model
Language
instanceA - \ instance
of :)nfstance of
YATL
Program
execute
YATL
Source Model source . target Target Model
Transformation
Instance Engine Instance

Figure 6.1 Transformation Environment

The entire transformation process is performed in KMF following the steps:
e The source and target models are defined using a MOF editor (e.g. Rational
Rose or Poseidon)

o KMPF-Studio is used to generate Java implementations of the source and target
models.

e The source model repository is populated used either Java hand-written code or
a GUI provided by the modelling tool generated by KMF-Studio.

e YATL-Studio is used to create a YATL project and perform the requested
transformation.

Chapter 6 Model Transformations in YATL

115

JavaElenent

0.7 | JavaPackageElement

n1b

JavaPackage

—b

]

JdavaClassifier

JavaClass g =

N

-name : String

+super

+aub

32,

1

0.7 Javalnterface

implemerts

 izvaEoeption
+iglds

0.7

JavaField

-izFinal : Boolean

-isStatic : Boolean

-is\olatile : Boolean

-isTransient: Boolean

Amethods

Javahdethod

0.

+sources

Figure 6.2 A possible Java model

6.2.

model

-izAbstract : Boolean
-isMative : Boolean

-isSynchronized : Boolean

=<enumeration>>

Datakind

-BYTE : Datakind
-SHORT : Datakind
-IMT : Datakind
-LONG : Datakingd
-FLOAT @ Datakind
-DOUBLE : Datakind
-CHAR : DataKind
-BO0LEAN : DataKind
-STRING : [atakind

DataType

-kind : DataKind

+rasylt

-isFinal : Boolean
-isConstructor : Boolean

-isStatic : Boolean

+

-izMative : Boolean

-body : String

0.4 JavaParameter

Transformation from the UML model to the Java

Figure 6.2 contains a possible model of the Java programming language. This model is

derived from the Java standard [Java] and covers only a subset of the language. The main

elements of the Java model are:

e JavaElement denotes a generic element in the Java language and represents a
generalization of all the elements from Java.

o JavaPackageElement denotes a JavaElement that can be included in a package.

o JavaClassifier denotes a generalization of the types used in Java

e JavaPackage, JavaClass, and Javalnterface denote Java packages, classes, and
interfaces.

e Members contained within a class are
JavaMethod.

e Parameters of Java operations are described using JavaParameter.

e Basic types are described using DataType.

represented by JavaField and

Chapter 6 Model Transformations in YATL 116

The transformation that maps from UML model to Java model is performed in two phases. In

the first phase 1-1 mappings are established between equivalent concepts:

For every UML Package rule umlPkg2JavaPkg creates an instance of
JavaPackage.

For every UML Class rule umlClass2JavaClass creates an instance of
JavaClass.

For every UML Attribute rule umlAttribute2JavaField creates an instance of
JavaField.

For every UML AssociationEnd rule umlAssociationEnd2JavaField creates an
instance of JavaField.

For every UML Operation rule umlOperation2JavaMethod creates an instanmce
of JavaMethod.

The above rules create new instances of the required types and store the mappings using

track constructions. This information is required in the second phase, which is responsible

for filling the containment fields of Java model elements:

Rule linkElement2Package scans all the ownedElements of all the UML
Packages, retrieves the corresponding JavaPackageElements and includes them
in the elements collection.

Rules linkAttribute2Class and linkAssociationEnd2Class set the correct content
of the fields property.

Rule linkOperation2Class sets the value of the methods property.

The YATL program that performs this transformation is described in detail in Appendix 7.

For example, the following UML class diagram

- int

maps to the following Java program:

class A {
int x;
B b;

}

class B {
A a;

}

Chapter 6 Model Transformations in YATL

117

The transformation is performed at the abstract syntax level. The concrete representation of

the program is obtained by visiting the abstract syntax tree and printing the required

information.

The above transformation rules were tested on a source model instance that was populated

using the XMI file that describes the Java model. The result of the mapping of the UML

model instance described in Figure 6.2 to a Java model instance, using YATL-Studio and the

YATL program from Appendix 7, is described in Figure 6.3.

R YATL Studio
[| Window_ ety

¥ TR Il F sundaion Cose AssaciatanEna
= 2 urra f gundanen Cosv Asacciasuniin 10-1800°
- [umi Founaaiion Coce AssociatonEnd 11851
&) umi Faundason Cos ABSaciatonEnd 101807
& O et fsundasien Come Apsccratoniling 1a-1803°
-] umi Foundaon Cone AssociatonEnd 10-1804"
&2 umi Frundation Coee AusaciatonEnd o1 404"
& [weri Feundation Core Ausociatonling 1-1000
=[] umi Faundasion Coep ARaeintoning 181807
& 3 umi Frundation Core AssociatonEnd 1d-1808°
3 ueri F eundition Core AaaciabonEng 11800
0= [umi Feundalion Come Astacistunlind 14-1810°
= £ Ui Foundation Cofe ABsaciationEna 10 1811°
& ueriFoundabon Cors AnsaciatonEnd 1817
®= [ueri Feundalion Coen Astciatonlind 181817
- umi Foundadon Core AssaciatonEnd Y- 1514°
0= 3 umi Feundation Coee AzusciamonEng 1. 1618°

& umi Foundasion Core Class_id-1511"
&) umi Fundabon Core Clasa_ Y1812
- umi Foundaion Cone Clags,_ 101913
&2 umi Frundation Coe Clase_id-1814'
= umFeundason Core Clave_1d-1914°

& Y umi Foundasion Con
) inttwnoes of ud f eund
& [inntances of umi Feundslion Coes Tnumbiteisl

) initances of umd F eundation Data_Types Name
= [0 intanes of ueni Fiéundsion Core ASritute

-] instances of umid Modal_Managemont Model

& instance
= O iatnoces of umif sundason Data_Types Expressio
0[] instances of umi Foundation Coee Generalgaton
&] intancies o umd Fsundation [14es_Types MuBpicsy
& inntances of umi Feundation Cors Assatiaban

& Y insturces of umi Foundaion Coee Enumeration_

i Faundatioa Edandien_Wehanisms

] ingtances of wrd Feundation Data_Types MuBighca |

Exnion_Mectintien

& 3 instances of umiFoundason Exiensien_Meshanises Il

k)

ey

Fankfirmaben uiZim |

1:1 Mappings
Map & LML pisthage 15 3 Java ackage

P smiPh L eaPig madeh uml Modal_Mansgemend Patkage

Creste Java package
ML fovaMcdel Jival ackage,
Py 5 rare paeaModel JavaPackage,

£l N
i ke = AR By
Sior mapping

ack{net, phg 2pieg, #g,;

Map 3 LML clasa fo 8 Java ciass
waCanss match umi feundation Core
% chss
01N, jvablodel JmaClass,
= niw |mvabdossl- weaClaey,

Cinss g

- Blgen mapping
Fatkieel, chassloiass, jClana),

Map & LML airibate 0 3 Java Beid

e At L vaF S R umit f Gungatien. C o _ASritete O |

= CIwata 3 Javs Fiald

WP |aMnse Saaf 1,

Fim = foaw iwuttocdal Jarval el
Eatname

Fiekiname = seilname.body_

= Giren mapging

RIS, At T, (F)

Map 3 LWL a530caben end 19 3 Java ek

it umiASSOCIBORE Sl Kireaf i mateh ol Founduton Core Asancisnondd

— Crsta the Jwva feld
letiF il avaMosel Savafield,
Fissd = ow ovatodnl Javal igld,
Gt name
O S0k nam DiSEUndRINGd] hin
Fisld name = sud
sy
[Finid natmi = §eEnime Ey_

et

Fiuknama = f $8i i ocRSUNGEENAd(Mon s ke nan
i

Fiikd naema = # 30l niena- =T mipdi) aan 4al o
Etoen mapping

hrme nweme body_

Il

[Com = | 1] ||
v ﬂglm" butart kil umiliava mam, [] ﬂlujnmnl
- & 2 Lisscych

== Inamesgace i, jwva) | v dzu-:-:..

® Dinstances oliavablodel JevaClans
3 jmvabodel dwvatiass Usatiass1
* e
=] preablocel L gl Bkt 207
&] prentagael e e Temod
&] il v oo wourcas- 33
0=] prensnscted s od Irmplemants- 3
[memoan
D) emeteenants
L=]
*Elwper_
& jmvaPackage
™ LT
-] jvaModil Jwaiess UavaFimid- T
L= [CHE IR T
&] jrabosl et al
& [jwvabocsl dwvaClans Datsking-5'
& [jpvabossl Jwvatiass UsaPackage- b
&) jivabodl JimaCias JivaPanamiter T
@2 jmvaosyl twvaCians UmaPsckageiisenar)
& jrvablosl JwvaCiess Urainterace
) jvaboc JeveClass ivaCiiadien 10
& [jvablocts| timaCliss DataTyoe-11'
& 5 instances of javablodsl JavaFisld

&) initarces of wrif undaien C

=
[Comate

nished - 0 i} wamngist

Figure 6.3 Example of mapping from UML model to Java model

6.3.
OCL model

Transformation from spider diagrams model to

This section contains the description of the transformation from the spider diagrams model to

the OCL model. The first subsection contains a brief description of the concepts related to

spider diagrams. The subsequent subsections briefly describe the mapping process.

Chapter 6 Model Transformations in YATL 118

6.3.1. Spider diagrams

This section introduces the main syntax and semantics of spider diagrams. Spider diagrams,
introduced in [GHK99] are based on Euler diagrams rather than Venn diagrams. Spider
diagrams considered here are adapted so that we can infer lower bounds for the cardinalities

of the sets represented by the non-empty regions.

A contour is a simple closed plane curve. A boundary rectangle properly contains all other
contours. A basic region is the bounded subset of the plane enclosed by a contour. A region
is defined, recursively, as follows: any district is a region; if r; and r, are regions, then the
union, intersection, or difference, of r; and r, are regions provided these are non-empty. A
zone or minimal region is a region having no other region contained within it. Contours and
regions denote sets. Every region is a union of zones. A region is shaded if each of its

component zones is shaded. A shaded region denotes the empty set.

Figure 6.4 A spider diagram

A spider is a tree with nodes, called feet, placed in different zones. The connecting edges,
called legs, are straight lines. A spider touches a zone if one of its feet appears in that region.
A spider may touch a zone at most once. A spider is said to inhabit the region that is the
union of the zones it touches. For any spider s, the habitat of s is the region inhabited by s. A
spider denotes the existence of an element in the set denoted by the habitat of the spider.

Two distinct spiders denote distinct elements.

Figure 6.4 contains a spider diagram with contours A, B, and C, six zones, two shaded zones,
and a spider with one leg and two feet. The construction of the equivalent OCL expression,

presented in Figure 6.5, is based on the following basic ideas:

e Every spider diagram maps to an OCL let expression.

Chapter 6 Model Transformations in YATL 119

e Every zone maps to a variable declaration of Set type.

e Every boundary condition regarding a zone maps to an OCL expression that
checks the size of the corresponding variable.

context OclVoid inv:
let

setA: Set(OclAny) = OclAny.alllnstances()->select(x : OclAny |
x.oclIsKindOf(RwD::A) and
not x.ocllsKindOf(RwD::B) and not x.ocllsKindOf(RwD::C)),

setB: Set(OclAny) = OclAny.alllnstances()->select(x : OclAny |
X.oclIsKindOFf(RwD: :B) and
not x.ocllsKindOF(RwD::A) and not x.ocllsKindOf(RwD::C)),

setA _B: Set(OclAny) = OclAny.alllnstances()->select(x : OclAny |
x.oclIsKindOf(RwD: :A) and x.ocllsKindOf(RwD::B) and
not x.ocllsKindOf(RwD::C)),

setC: Set(OclAny) = OclAny.alllnstances()->select(x : OclAny |
x.oclIsKindOf(RwD::C) and
not x.ocllsKindOf(RwD::A) and not x.ocllsKindOf(RwD::B)),

setA_C: Set(OclAny) = OclAny.alllnstances()->select(x : OclAny |
X.oclIsKindOf(RwD: :A) and x.ocll1sKindOf(RwD::C) and
not x.ocllsKindOf(RwD::B)),

setB_C: Set(OclAny) = OclAny.alllnstances()->select(x : OclAny |
X.oclIsKindOF(RwD::B) and x.ocll1sKindOf(RwD::C) and
not x.ocllsKindOF(RwD::A)),

setA B C: Set(OclAny) = OclAny.alllnstances()->select(x : OclAny |
X.oclIsKindOF(RwD: :A) and x.ocllsKindOf(RwD::B) and
x.oclIsKindOf(RwD::C)),

out :Set(OclAny) = OclAny.alllnstances()->select(x : OclAny |
not x.ocllsKindOf(RwD::A) and not x.ocllIsKindOf(RwD::B) and

not x.ocllsKindOf(RwD::C))

(setA_B->size() = 1) and (setB_C->size() = 0) or

(setA->size() >= 1) and (setA_B->size() = 0) and (setB_C->size() = 0)

Figure 6.5 OCL equivalent expression

Chapter 6 Model Transformations in YATL 120

The transformation rules and their meaning are described briefly in Table 6.1.

Rule name Rule description

ud2let Creates an OCL LetExpression for each spider
diagram Diagram and stores the mapping using the

track mechanism.

z2var Creates an OCL VariableDeclaration for each spider
diagram Zone and stores the mapping using the track
mechanism.

ud2in Creates an OCL Expression, representing the body of
the LetExpression, for each spider diagram Diagram

and stores the mapping using the track mechanism.

LinkLet2Variables Sets the correct value for variables property for each
OCL LetExpression.

LinkLet2In Sets the correct value for body property for each OCL

LetExpression

Main Invokes the above rules in the following order:

apply ud2varQ;

apply z2var(Q);

apply ud2inQ);

apply linkLet2Variables();
apply linkLet2In();

Table 6.1 Transformation rules from spider diagrams to OCL

The entire YATL program that performs this transformation is described in detail in
Appendix 8. Appendix 8 also contains the Java code that has been used to populate a source

model instance. The result of the mapping of this spider diagram model instance to an OCL

Chapter 6 Model Transformations in YATL 121

model instance, using YATL-Studio and the YATL program from Appendix 8, is described in
Figure 6.6.

& YATL Studio

S Barse “srocttl | =
[sowrcy 22 (] : L dtd EI- [Targa Fplarar
CY=IT] 8. s | Eart ket s J0ek-main, (=0 ¥ e =2 smiae
=] o= Ltaeyels
Pl ramuspatee kmilsd, ceq | ¥ Elgiements
! 2 e wranatumsian sazoct{ .
@ (CTINETANtE s i asZone 101 Mg & [Instancos of syntas st expressions, OperationCaliEmAs
0) s s Tore 108" P - e &E] s
’S : "‘;‘“‘ :: : — Map 3 SO unifary diagram 1o an OCL axprassian g'"’f‘“: Sl whtxaal spraesiong MeesieRins
£0 25 Tons 1o iie eTetrmitch SoZaE-UnBGDINGrRN G | § D instantus of synkas aet expressions LEpAS
O sd s Zarwe Vo1 0 Crialy Mt xprasgion # O sywtar ast mipressions Letfphs 11"
& S instances of s4.95 Contour Int IntFup mymiacast mpressions: LeSmas: § Dvariables
o[5 35 Cortour =11 I{FAD = P SATEAE F5E BIEARERIONG LAIFARAS; @ 2 syrian ast contets VariabieDecarsionas a_|_b 2t}
£ sd as Contiur 12" — Store magging @ [syreax ast conteats VarableDeciaratonas o3|
& 5 38 Cortour £ 7 , Irachisedt, alet, lellp) - [syekax asl contests VariableDeclaraionAS 's_b_+-5E)
Instaness of 54 35 UnitasDisgram -
L ?I'_'I s A '\'?6""_ Hap a 50 zann o a variabin: infl sappression coemputes the ot ,S'":"k i
- |>j-n: NN nile 77var mach 64-a5-Zone 0 { Fu"‘ g u’:
nos it onstaniAS
o= pd 55 Jona 10-8° - 4= OctAny, o & [vanableDockarstionas
] st s Fone 105 & [nestinurce
& 5d a5 Zone 1o 0 Crmatn Gclhny type & [jastiource
[shagedZones I8t LAy Typs: ByTilax ast hRE: CIASSMenAs, & [callocioniemhs
Ndsidiie weltenType = new synlax #it hpes. Classunds, L .

ety Tyme palhiame = Sequence| Giany,
Croals bipe ST DeiAny)
] Int sefType: ymear ast fpes SeTimead:

& 2 menSewce
& [octhessageEmas

@ [compoundCiagrsm

& [name 3a{Type = naw Syntxe: 35t ypas SRTFRRAS; O [neiMssaagatghn
anlTypn shernentTyss = oclAmTyoe, L P
~ Crgale pabiETe exgression Delam’ & [callarguments
: STba A5t ® [bodyLoup
D = nirw Sy st oNpressions: Fathham &) eaiiratonp
ki = g & [catsoucs
— Cruale OclAny sllinstances selection el
. , wareed
ol allingtancus Setechon. ymtax avt erpreasions: Outselochond & O e
= naw Syntac st Dotzesesy] :
. source = o & [nghtoparanaiaurce
allmstanceEGalacion nama = slingiances’, & [eisesource
— Conale OclArmyafllnstint s cpseuton call & Espas
It Il syt ast or | [ItEapas
Aimstancis0al = fiw hmbacattikgmissions -OptrmnGug & () instintes of smlac sl expressions ArowSelecionLooas

& [Instancos of synta act fmes Classifiond
@ (7 instances of syntar 231 AEprassions PeMNameRipas
& (] instancos of synta st contents VanapkOutiarationAs

lltaneREC Al rgumante = Gaguenca|l,
~ Crealw OclAny sllinstancend: ~selecl selecbon
xSyl st

SRIGCHED = e SpVIA 5T XIS 0N, AWl 0CHONEEAS

sl soa = AinstancasCall; @[] Ingtances of syniEcas expreasions DotSHecianEAs
a8lactiep name = alacr, &) Instancus of synbin st bpies SelTypoas

= Craale x OclAny variable declanaten & [instances of snbaxast smressions VarableEps

ot var. symlae ast contents VarabkOetlarationas,
WA = N SR At contisds VandbloDaclaeananas,
Warname = ¥,

L] consoln

IFiniznad - 0 srmris) 0 waming(s)

Figure 6.6 Mapping spider diagrams to OCL

6.4. Transformation from a subset of EDOC to Web

Services

This section provides a mapping of a distributed system described using a subset of EDOC
into an equivalent system described using Web Services. The subset contains only distributed
systems described by EDOC’s Model Document and Component Collaboration Architecture
profiles. The equivalence between source and target system is established using the behavior
of the system from the user’s point of view. The first two subsections contain a brief

description of EDOC and Web Services. The subsequent sections describe the system and the

Chapter 6 Model Transformations in YATL 122

transformation that performs the mapping. The entire transformation from Model Document
to XML Schema is described in Appendix 9.

6.4.1. EDOC: the UML profile for Enterprise Distributed Object

Computing Specification

The EDOC profile of UML was adopted by the OMG in November of 2001 as the standard
for modeling enterprise systems. It is the modeling standard for Internet computing -
providing for model driven development of enterprise systems based on the OMG’s MDA.

EDOC is proposed as the modeling framework for Internet computing, integrating web
services, messaging, ebXML, .NET and other technologies under a common technology-
independent model. It comprises a set of profiles, which define the Enterprise Collaboration
Architecture (ECA), the Patterns, and the Technology Specific Models and Technology
Mappings.

The ECA allows the definition of PIMs and provides five UML profiles:

e The Component Collaboration Architecture (CCA) uses UML classes,
collaborations, and activity graphs to model the structure and behaviour of
components that are part of a system.

e The Entity profile describes a set of UML extensions that may be used to model
entity objects.

e The Events profile describes a set of UML extensions that may be used to model
event driven systems.

e The Business Process profile specializes the CCA and comprises a set of UML
extensions that can be used to model business processes.

e The Relationship profile contains extensions of the UML core for rigorously
specifying relationships.

e The Patterns profile defines a standard means, Business Function Object
Patterns that can be used to describe object Models using the UML package
notation.

e The Technology Specific Models and the Technology Specific Mappings take
into account the mapping from ECA specification to technology specific models.
It defines and EDOC profile for Enterprise Java Beans (EJB) and another for
Flow Composition Model (FCM).

Chapter 6 Model Transformations in YATL 123

6.4.2. Web Service

The purpose of web services is to enable a distributed environment in which any number of
applications, or application components, can communicate in a platform-independent,
language-independent fashion. A web service is a piece of software application, located on
the Internet, that is accessible through standard-based Internet protocols such as HTTP or
SMTP.

Given this definition, several technologies used in recent years could have been classified as
web service technologies, but were not. These technologies include win32 technologies,
J2EE, CORBA, and CGI scripting. These technologies are not web services technologies
mainly because they are based on a proprietary binary standard, which is not supported
globally by most major technologies firms. The core of the web services technologies is
made of eXtensible Markup Language [XML], Simple Object Access Protocol [SOAP], Web
Service Description Language [WSDL], and Universal Description, Discovery and
Integration [UDDI].

XML is a widely used standard from the World Wide Web Consortium (W3C) that facilitates
the interchange of data between computer applications. XML is similar to the language used
for Web pages, the HyperText Markup Language (HTML), both using markup codes (tags).
Computer programs can automatically extract data from an XML document, using its

associated DTD as a guide.

SOAP provides a standard packaging structure for exchanging XML documents over a
variety of Internet protocols, including HTTP, SMTP, and FTP. The existence of a standard
transport mechanism allows heterogeneous clients and servers to communicate. For example,

.NET clients can invoke EJBs and Java clients can invoke .NET Components through SOAP.

WSDL is an XML technology that provides a standard description of web services. WSDL
can be used to describe the representation of input and output parameters of an invocation,

the function’s structure, the nature of the invocation, and the protocol used for transport.

UDDI provides a worldwide registry of web services for description, discovery, and
integration purposes. Analysts and technologists use UDDI to discover available web

services by searching for categories, names or identifiers.

Chapter 6 Model Transformations in YATL 124

6.4.3. Mapping from Document Model to XML Schema

Both EDOC and WS models describe business processes. A business process manipulates
and exchanges information with other business processes. To describe the information that is
manipulated or exchanged during a business process, both EDOC and WS have dedicated

components: Model Document and XML Schema respectively.

The first step in the mapping from EDOC to WS is to map the models that are used to
describe the information that is manipulated. This section contains the description of the

mapping process from Document Model to XML Schema.

The Document Model package from the EDOC profile defines the information that can be
manipulated by EDOC ProcessComponents. The document model is based on data elements
that can be either primitive data types or composite data. A CD data element contains several
attributes. An attribute has a specific type, an initial value and can be marked as required or
as many to indicate the cardinality. An enumeration defines a type with a fixed set of values.

The document model is described in Figure 6.7.

FPachage Cortert

o £ CA Wodelfznageiett

+hype Dataklemnent +constraintg Datalrvariant

+constrainedElement 0. 7|+expression : String

+onCommit: Boolean

+enumeration

CompositaData DataType Enumeration
-

+aner

s

a3

+attrs| 0.7 o, [+features a.r +values 0)*

FENEEI[vp
Adtribute i Nﬂﬁpes +initialFor
it
+byWalue : Boolean initial Enumearation'salue

+required : Boolean +name : String

+many : Boolean
ExternalDocument

+initial'Value : String

-name : String

Figure 6.7 Document Model profile

Chapter 6 Model Transformations in YATL 125

The XML Schema [XMLS] describes the information that can be manipulated by web
services. It contains types that can be simple, such as string or decimal, or complex. A
ComplexType contains a sequence of attributes. An Attribute has a name and a given type. A

partial model of XML Schema is given in Figure 6.8.

Element

-name : String

f

Tyoe

+Hype

SimpleType ComplexType Attribute

Figure 6.8 XML Schema

It is obvious that mapping from Model Document to XML Schema means mapping from
DataElement, DataType and CompositeData to Type, SimpleType and ComplexType
respectively. The transformation process and the rules that perform the mapping are
described briefly in Table 6.2.

Rule name Rule description

dt2st Creates a XML Schema SimpleType for each
Document Model DataType and stores the mapping

using the track mechanism.

cd2ct Creates a XML Schema ComplexType for each
Document Model CompositeData and stores the
mapping using the track mechanism.

at2at Creates a XML Schema Attribute for each Document
Model Attribute and stores the mapping using the

track mechanism.

Chapter 6 Model Transformations in YATL 126

Rule name Rule description

linkAttribute2Type Sets the correct value for the type property for each
XML Schema Attribute.

linkComplexType2Attribute Sets the correct value for sequence property for each

XML Schema CompositeType

documentModel2xsd Invokes the above rules in the following order:

apply dt2st();

apply cd2ct();

apply at2at();

apply linkAttribute2Type(Q);

apply linkComplexType2Attribute();

Table 6.2 Transformation rules for Document Model to XML Schema mapping

6.4.4. Mapping from CCA to WSDL

The CCA profile details how the UML concepts of classes and collaboration graphs can be
used to model the structure and the behaviour of the components that comprise a system. In
CCA process components interact with other process components using a set of ports. A
ProcessComponent describes the contract for a component that performs actions. A Port
defines a point of interaction between process components. Ports can be classified according
to the complexity of the interaction into FlowPorts, ProtocolPorts, OperationPorts, and
MultiPorts. A FlowPort is a port capable of producing and consuming a single data type.
ProtocolPorts describe more complex interactions based on Protocols. A Protocol is a
method by which two components can communicate. An OperationPort is a port that
realizes a typical request/response operation. A MultiPort is a group of ports whose actions
are tied together. The specification of a ProcessComponent may include a Choreography to
specify the sequence of interactions performed through ports. Figure 6.9 describes the CCA

profile.

Chapter 6 Model Transformations in YATL 127

<<enumeration=> +owner

Granularitykind

+program : Granularitykind PortOwner
Fowned - Granylantyind | Chomeograaky | | Lisage Comtext | Composition
+zhared : Granularitykind ‘{5 1{5

+initiatar A
InitiatingRole (.. 0.7 +pors
+name : String
+prots
protoc Protocal ProcessCompaonent Fort

+granularity : Granularitykind +name : String

+uses +isPersistent : Boolean +isSynchronous : Boolean

+protoca +primitivekind : String +izTranzactional : Boolean
+responder| 0.1
+primitiveSpec : String +direction : DirectionType

RespondingRole +postCondition : Status

+name : String

ECAlnterface

Connection

75

Flowu MultiFort OperationPort FrotocolPort FlowPort

2

 +usedBy

Figure 6.9 CCA profile

In WSDL the Definition element acts as a container for the service description. The Import
element serves a purpose similar to the #include directive in the C/C++ programming
language. It lets the modeller separate the elements of a service definition into separate
documents and include them in the main document. The Type element acts as a container for
the definition of datatypes that are used in the Message elements. The Message element is
used to model the data exchanged in a web service. A message is made of several parts, each
part having a name and a type. The PortType element specifies a subset of operations
supported for an endpoint of a web service. The Operation element models an operation. A
WSDL operation can have input, output, and fault messages as part of its action. The Binding
element specifies the protocol and data format of a PortType element. The bindings can be
standard - HTTP, SOAP, or MIME - or can be created by the user. The Service element
typically appears at the end of a WSDL document and identifies a web service. The primary
purpose of a WSDL document is to describe the abstract interface. A Service element is used

only to describe the actual endpoint of a service. Figure 6.10 contains the WSDL model.

Chapter 6 Model Transformations in YATL 128

Documentation

MEDLElement
o Definition s
-
-
- -
+imports +ypes +messagqs rporTyped +binding: % e

0.F o.r 0.r 0" 0.F 0.

Impert Tyoe Message ForType p— —
-namespace : Shring -name : Sring “name « Sting EE—: FE—
-location : Siring

—. _ { {
i +operations] +ports
L o=
Part PortTypeOperation S :
EEE— indingOperation Fort
-element : Sting ‘name : Sting ||
— 47 %7
Dperation
name Sting g

¢

? +faults
0.1
0.1 P

Input Output Fault
-name : String -name : String

-message : Message - messags - Massage

-name : String

-message : Message

Figure 6.10 WSDL model

The transformation from CCA to WSDL obeys the well-known compositional principal of
Frege [JB81], which states that “the meaning of a syntactic construct is a function of the
meanings of its constituents”. The transformation process and transformation rules are
described in Table 6.3.

Rule name Rule description

flowPort2message Creates a WSDL Message for each CCA FlowPort and stores

the mapping using the track mechanism.

operationPort2operation Creates a WSDL Operation for each CCA OperationPort and
stores the mapping using the track mechanism. The input and
output properties of the WSDL Operation are computed using
the initiator and the responder port from the OperationPort.

Chapter 6 Model Transformations in YATL 129

protocolPort2portType Creates a WSDL PortType for each CCA ProtocolPort and

stores the mapping using the track mechanism.

processComponent2service Creates a WSDL Service for each CCA ProcessComponent
and stores the mapping using the track mechanism. The
definition of the service is instantied by this rule. The values

of the properties are assigned by the other rules.

LinkDefinition2X Computes the types, messages, and portTypes properties for
every WSDL Definition. Uses the track mechanism to

retrieve the mapping information stored by previous rules.

cca2wsdl Invokes the above rules in the following order:

apply flowPort2message();

apply operationPort2operation();
apply protocolPort2portType();
apply processComponent2service();
apply linkDefinition2X();

Table 6.3 Transformation from CCA to WDSL

6.4.5. An example

To study the mapping from EDOC to WS using YATL and YATL-Studio we consider a
simplified model of a travel agency. In general a travel agency provides services such as:
reserves and purchases flights and charters tickets, reserves hotel rooms, rents cars, books
holidays and cruises, and sells travel insurance. To provide such services a travel agency

needs to establish business links with companies such as airlines, hotels, and banks.

Figure 6.12 contains the description of a travel agency community process. The activities in
the TravelAgency Community Process start by the Client initiating the interactions on its
Buy ProtocolPort, according to the BuySell protocol. The TravelAgency is connected
through the Sell ProtocolPort with the Client and responds to the BuySell protocol initiated
by the Client. The TravelAgency uses the dedicated ports BuyFlight, ReserveRoom,

RentCar, and Payment to communicate with the other processes: Airline, Hotel,

Chapter 6 Model Transformations in YATL 130

CarCompany, and Bank. The TravelAgency initiates the communication through these ports,
according to Client’s requests. Figure 6.12 contains the description of choreographies for
BuySell and BuyFlight protocols. Similar choreographies can be derived for ReserveRoom

Airline

Client Travel Agency ml

CarCompany

RentCar

Bank

Payment

Figure 6.11 Travel agency community process

a) BuySell choreography b) BuyFlight choreography

Figure 6.12 BuySell and BuyFlight coreography

Chapter 6 Model Transformations in YATL 131

Appendix 9 contains the Java code that has been used to populate a source model instance. It
also contains the entire description of transformation rules. The result of the mapping
performed by the YATL program from Appendix 9 over this source model instance is
described in Figure 6.13.

dio 0
Fio Vew Windaw Help
Sewca || Parse | ouocawsn | Target |
Emg. i R B o' @] || O] range xptoenr 1
[X=IT" | ||| SRR S = &

L] =L i i

" EJ Options namespace amisa, e |) & gl_r:::;,

® T doc IEACCAProlocl Tacaasen loes # Clinstances ofwa wdl Eedniton

€ edoc ECACCA Protocel BuyEell 48"
o [pdnc FCACCAProtcol By ight 47

= [wr sl Detrition 1679

= 5 I
~EDOC EEADatumrMai i WG 45D 0 Nyt !
I

© [edoe [CACCAPretocol ReserrsRoom-40" Map an EDOC Data Type % 4n XE0 Simple Type & [wa wdl Dofnition 10-5F
&] edoc ECACCAProtcol Fenatan 49 e B DataTyme 4 @ [war ol Defnilicen V-85
] pdor ECACCAProtcol Paymantsi¢ = Creais BmpleTips & [ws wesdl Dutnition 181
[edoc EOACCA Protocal ShipDelivers51° fet 8t waxed SInpleTyes, § DA instances of ws wedl Sanice
® Sl instances of edst € Azt 1= new ws s SimpleType, © [wawad Service Chenta0’
[arine FOA Dosumanmasssl Aot ilinehamea- 55 wLame = sekname, & ws wadl Service Expadia 82
4] edoc. ECA DocumeriMeas Alrizute TIighio-56° .:ﬁ:ﬁmﬂu &0 & [wa wadl Sarvice Ba-4
O] dne FOADOCUMEAMSSH ARELS Locaon-41" 1 R @ () wes wadl Service Mariol-16'
= 7] prine FCADDEuMmaemiasst Afvinces Thate-S5° WD 80 DO ComsosiDat 1 4n K50 CompleTpe & [ws sl erice TarConipany-ge
] edoc ECA DO UmErtMoSe Afruts HoteIName-53" [ECA ol § I mstances o ws wedl Input
- 7 pdnc ECADDIUmentMocs Aot Widress-60* Greate CompiexTypn &= (3 wa il gt Locsaon-64°
o=] gdot. ECAD £13 188 cF Wi R CompledType; B T mstances ofws esd CompleTyoe
& edoc ECADOtumeriModsl Alrut Panod. 42 &L= new wa- xed . CompheaTyne, @= [wa.xmd ComplaTypa Location. 40’

% Y instancas of edos ECA Documantodsl ComposiinData | Ehy e il bing, € () wi st ComplexType Faghbas
- [educ. ECA DocurmiriMedel CompostaData Locabion-43 “?,f;,‘"r,?m;:“ 0 & Dwsasd ComplmTymn Hoies 50|
&] edor ECADOtumeniMese Compostuliata Fight 4 3 . o @= [waxnd CompleType TarRE1"
[pdnc FCA Documenioas: ComeosfaDat Halek 4" — Mg an EDOC Aliitnde lo w0 X3D afiibads 9 Elimstances of wh wsdl Gugt I
@[edoe. [CADotumeriMedel ComposteDula Car-45' e w2 match e300 ECA DotumentModi Alreute O | & [wa waal Output Flighsnio-g4' f

B Dingtances of 8 ECACCAFIowPart Crean Aliitans B inatances of wiwsd] PofType
] pdoc ECACCAFIWRON Locsion63° et at wa ks Aftitune; & [ws wsal Porfype BuybT
4= etoc ECACCA owdart Tlighinio- 64 ¥ = e W Mrbuts; & [ws watl ForfType Seb6

P Sinstances of edoc € g = WK ridnie) & [i wudl ParfType D ight 53
© (2] edoe FCACCAPraansComponent Cilant-66' it iy & T ws wsdl PorTine Flight 70" |

: wackisel, al2a b,
4] edoc ECA COAProcessConrgonin Expedis-t1) & Cwawacl ForTyps Ressommonm.718
& pdoc ECAGTA Pros omponent BA 68 — Link 49D atsctas in X590 tpes @ [wes wad PoriTyps Hoome 12"
-] prine FCA CCA PracasaComponant Masink60° e InkAfiigubeIType malch adoe COA Dosumsribodsl Adribuls § | & [w1 PoriTyne FentCan 3 |
&=] edoc ECACCABrecussCompontn CarCompany 1o [®n (s wanl PerTypa CarTa'

% 2 instances of gdos ECA Decumantdodsl DataTre SeRnAREGEY. s s ARNIDULY, € [T wik il Portfype TAPaymenk 15
(] edoc LCADusumertModel DalaTre Shing-57 “::?"::";P; Trackiontt, aklat, ll; & [Chws wadl PorTipe BFamen: 76
& edoc ECADotumviModet DalaTyp Weger.§3° b ® [wa wadl PorTyps Ship-TT"

& [s €A Dotumensédst DalaTynn Reak5e' ik v b & (2w waat PorType Dty 18°

®) Instances of edos TEACCA SoratanPurt it § Y instances ofws sd Athinut
&] wdoc ECACCADpUrabanPr FindFlght &5 xsfTyge = FackindocTyps, T iipe, nul ®= [wsxsd Amributs Anebame-57 |

@ [instances of sdoc ECA COAPIBcoPoR esdtaribits Wps = paTyms; & (3w ru Adribute Fhghttio 53 (i
&3 edoc ECACCA ProtocoPort BuyT1'] & [wa e Asribiste Location-54'

&] edoc ECACCAProtcoPon el 75 Link X350 ComgleaTypes 1 450 Afnbutes @ [wnsd Adribule Tale-55°

(] pdoc ECACCAPIotcn®orn Bugightia’ nda ECAD Comp - [s e Adributy Holemame 85
] edoc ECACOAPretocor urt Fiighte T4 - Out 8 K30 ComplecTyRR = & [ws am Astibute Rddrmss-57 I
& I edoc ECACCAPTatcoR ot ResaneRoom. 75 (<8 N —l @ [wa.esd Adribute Comgsehisene- 078
#=] pdine FCACCAPretaen®an Room. T6' &= [ws s Aibuty Pariod 5u°

] edot ECACCA Protmco®on HenlCan T i E i : i F © Emstances of ws wedl Meseage |

[wdoc ECACCAProtocoan Car 78
#=] pine FCA CCAPreten®on TAPSymant.70" I
& 2] o BCACCABrotco®an EFiyment ST

Tréshad - I Bmoais) [warringis & Chwes wadl Message Locstion-80°
&) wiwadl Mossage Flghtint-62'
®= (] instances of wa waidl Pan

Figure 6.13 Mapping the travel agency model to a WS model

6.5. Conclusions

We have learned a lot during this work. The experiments forced us to add new features to
YATL and improve the implementation, especially the mapping from spider diagrams to
OCL because it is not a conventional mapping from a visual language to a textual language.
YATL is still evolving because one of our main goals is to make it compliant to the QVT
standard.

Chapter 7. Discussion and Conclusions 132

Chapter 7. DISCUSSION AND

CONCLUSIONS

Section 7.1 of this chapter summarizes the work presented in this thesis. Section 7.2
highlights the achievements in terms of the objectives defined in the introduction. Finally,

section 7.3 proposes possible future research that continues from that presented in this thesis.

7.1. Thesis Summary

The thesis presents at the beginning the background of the research: model driven
engineering, language translation, and object-oriented design patterns. The thesis is focused
on the Object Management Group’s (OMG’s) Model Driven Architecture (MDA) initiative.
As MDA is a software development framework in which the translation of one model into
another forms an important part, this thesis is focused on model transformations and model

quality evaluation.

This thesis has investigated and presented object-oriented techniques that can be used to

represent and efficiently implement model transformations in the OMG’s MDA framework.

The proposed technique is based on Yet Another Transformation Language (YATL). YATL is
a hybrid language (a mix of declarative and imperative constructions) that has been designed
and implemented to answer the Query/Views/Transformations Request For Proposals issued

by OMG and to express model transformations as required by the MDA approach.

The technique that we have proposed in this thesis does not claim to be more powerful than

graph transformations, but the implementation of this technique proved to be efficient.

The declarative features come mainly from OCL expressions and the description of the LHS

of transformation rules. YATL acts in a similar way to a database system that uses SQL to

Chapter 7. Discussion and Conclusions 133

interrogate the database and the imperative host language to process the results of the query.
We choose OCL to describe the matching part of YATL rules because it is a well-known
language for querying the UML models; it provides a standard library with an acceptable
computational expressiveness, it is a declarative language, and it is a part of the OMG’s

standards.

YATL supports several kinds of imperative features, used in the right hand side of
transformation rules. These features were selected so that YATL can provide lifecycle
operations like creation and deletion, operations to change the value of properties,
declarations, decisions, and iteration actions, native actions to interact with the host machine,
and build actions to ease the construction of target model instances. Compound actions
contain a sequence of instructions, which are to be executed in the given order. These
syntactic constructions make use of OCL expressions to specify basic operations such as

adding two integer values. YATL uses the same type system as OCL 2.0.

YATL is described by an abstract syntax (a MOF metamodel) and a textual concrete syntax.
It does not yet have a graphical concrete syntax as QVT RFP suggested. A transformation
model in YATL is expressed as a set of transformation rules. Transformations from Platform
Independent Models (PIMs) to Platform Specific Models (PSMs) can be written in YATL to
implement the MDA.

A YATL transformation is unidirectional. We believe that a model transformation language
should be unidirectional, otherwise it cannot be used for large scale models. The main
difficulty with a bidirectional transformation language is that it needs some reasoning to
perform the transformation. The reverse transformation can be described just as any other

transformation using YATL.

The current version of KMF-Studio uses UML diagrams exported over XMI files and
computes OO metrics that have been proved in time to be good indicators to evaluate the
quality of object-oriented systems. KMF-Studio provides forty-four predefined metrics that
can be computed to evaluate to measure a given model. The metrics supported by KMF-
Studio are design metrics that evaluate and measure the maintainability of models. The result
of evaluating the metrics over a model identifies the weak points of UML models and gives

on the fly diagnostic about the current status of the model.

Chapter 7. Discussion and Conclusions 134

7.2. Achievements

The objectives laid out in Section Chapter 1 have been met by the content of this thesis as

described below.

Objective 1 is met by the design and implementation of the YATL language for specifying
model transformations described in Chapter 5. UML and YATL are both object-oriented
specification methods and the transformation specification techniques enables the
transformation relation to be defined between two models that have been specified using
UML.

Objective 2 is met by the experimental studies presented in Chapter 6 and the proposed
modeling framework that is presented in Chapter 3. The experimental studies cover a wide
range of transformations: mapping UML to Java, visual descriptions of constraints to textual
descriptions of constraints (spider diagrams to OCL), and different languages that are used to
describe distributed processing (EDOC to Web Services). The discussion contained in the
above chapters demonstrates how to create a transformation from a UML/YATL
specification. The implementation consists of two parts. The first part, which implements the
UML models, contains the code generated by KMF-Studio providing persistence, editing,
and browsing facilities at model level. The second part contains the specification of
transformations that is executed using the transformation engine implemented by YATL-
Studio.

Objective 3 is met by the design and implementation of a suite of software metrics that can
be used to evaluate the quality of UML models at early stages of software development
process. This is very important especially in OMG’s Model Driven Architecture framework
for software development. As models are used to drive the entire software development

process it is unlikely that high quality software can be derived from low quality models.

7.3. Future work

There are a number of possible areas for continuing the research presented in this thesis.

Some of these are discussed in the following subsections.

Chapter 7. Discussion and Conclusions 135

7.3.1. Visual languages and YATL

Visual languages of many types are used in many disciplines for many purposes. The use of
visual languages is compelling for many reasons, not the least of which is that their graphical
nature can lead to a representation of the actual domain in a way that is not possible with

purely textual systems.

The work presented in this thesis could be extended to study the relationship between YATL
and visual languages. This could lead to a visual description of transformations described
using YATL.

A suitable case study for this investigation would be the constraint diagrams defined by
[GHK99]. These diagrams are based on the concepts of contours, regions, spiders, and
arrows. Such diagrams cannot be mapped to a spatial relationship model based on directed
graphs. Other work has been carried out in [GHKO1] to identify the basic concepts of the

notation.

The relationship of these concepts to the abstract YATL concepts could be defined using

mapping rules specified using the specification technique proposed in this thesis.

Some initial work has been carried out in this area and published in [PatO4c] and investigated
the relationship between spider diagrams, which are a subset of constraint diagrams, and
OMG’s Object Constraint Language (OCL), which is used in YATL to query the model
instances. This work could be extended to include investigation into the specification and
implementation of visual languages that are not based on the directed graph style of spatial

relationship model associated with box and line based diagrams.

7.3.2. Relationship between graph transformations and YATL

Graph transformations and graph grammars are at this time the most mature technique for
specifying transformations. Unfortunately graph transformations are not based on object-
oriented concepts, and hence are not compatible with the OMG’s Model Driven Architecture.

Moreover, graph transformations proved to be hard to implement and usually the

Chapter 7. Discussion and Conclusions 136

implementation of such transformations is inefficient. This makes the graph transformation

approach unsuitable for large-scale systems and hence for industrial use.

As future work we propose the investigation of the relationship between graph grammars and
the technique that we proposed in this thesis. We think that UML class diagrams, with the
addition of OCL and YATL are as expressive as graph grammars. There is no formal backing
to this assertion and work to produce evidence in support of it could provide a useful bridge

between the graph grammar and object-oriented communities.

Investigation regarding the expressiveness capabilities of graph grammars and UML/YATL
technique for specifying model transformations could be a direction to follow. Additionally,
the specification of translators between graph grammars and UML/YATL specifications

would aid this work and enable known results from each area to be applied to the other.

To specify the translation it would be necessary to identify the abstract syntax model of both
graph grammars and UML/YATL. The abstract syntax model of graph grammar should

ideally be one that is widely accepted by the graph grammar community.

Based on these translators, tools can be built to provide both graph grammar and UML/YATL
specification of model transformations. This approach would bring the experience and

techniques of the graph grammar community into the industrial community using UML.

Some initial work has been carried out in this area, published in [Pat04b], which investigated
the abstract syntax model of YATL. This work could be extended to include investigation
into the specification of an abstract syntax model for graph grammars and specification of

translation between graph grammars and UML/YATL.

7.3.3. Adding new features to YATL processors

One of the advantages of the model transformation technique proposed in this thesis is the
use of the standardized languages such as UML and OCL, and object-oriented concepts. This

makes the technique easily adoptable by the object-oriented community.

The implementation of the UML/YATL model transformation specification is based on a

classical interpreter/complier approach. The main advantages of this approach are:

Chapter 7. Discussion and Conclusions 137

e On the fly evaluation of model transformations
o Efficiency of implementation

e Support for model transformation debugging
This approach also has disadvantages such as:
e Every time the transformation changes the entire transformation needs to be

compiled or interpreted.

e Every time the source model changes the entire transformation needs to be re-
executed.

e The runtime of the transformation execution is proportional to the size of the

source model instance.
To address these disadvantages, a new implementation approach is required. The approach
that we propose makes use of the observer pattern to monitor the source model instance for
changes continuously. After detecting a change in the source model instance, the
transformation environment alters the target model instance to be consistent with the new

source model instance.

The first step to follow this path could be choosing the appropriate granularity of the
observers used in the transformation environment. As YATL transformation rules are filtered
according to the type of model element instances using dedicated observers for each types
could be a useful approach.

Using such an approach to implement model transformations solves the above

disadvantages:

e The observers detect any change in the transformation and trigger and
compile/interpret only the parts that were modified.

e The observers detect any change in the source model instance and trigger a
required local transformation that updates the target model instance according to
the new source model instance. Hence, the transformation is not required
explicitly when the model instance changes.

e The runtime of the transformation execution is no longer proportional to the size
of the source model instance. The cost of updating the source model instance is
now proportional with the size of the update and the complexity of the invoked
local transformation.

138

Appendix 1. GRAMMAR SPECIFICATION

RULES

Grammar specification is done using the following rules:

1) Left hand-side and right hand-side are separated by symbol —.
2) Each production ends with a dot.
3) Terminal symbols are written using capital letter or delimited by apostrophes.

4) The following shortcuts are permitted:

Shortcut Meaning

X—=>a(p)y. X—>aYy. Y >p.
X—>alply. X>ayla(B)r.
X—>au+y. X—=>aYy.Y—>u|uY.
X—>au*y. X—>aYy. Y >u|uY]|AZ.
X > alla X—>a(aa)*.

where «a, S and yare strings over the language alphabet, Y is a symbol which does not appear
elsewhere in the specification, u is either a unique symbol or an expression delimited by

parentheses, and a is a terminal symbol.

139

Appendix 2. XTL-OVERVIEW

The KMF-Studio framework contains a powerful tool for generating source code: the
XTL (X Template Language). With XTL one can use a JSP-like syntax to write
templates that specify the output to be generated. KMF-Studio provides support for
XTL through a generic template engine that can be used to generate various kinds of
outputs (e.g. C/C++/Java/C# source code and XML).

This section describes how XTL templates are created and used to generate source
code. This section also provides a short reference to the XTL syntax.

The code generation process is performed by KMF-Studio in two steps:
1. Create a Java class, called the template class, from the XTL description.

2. Create an instance of the template class and invoke the method that generates
the code.

2.1.1. An Example

For example, in order to generate a Java file that contains a description of an
interface, the following XTL template

-- Generate code for Java

<knamespace java %>

-- Template for interfaces

<Wtemplate Test (String pkgName, String interfaceName) %>
<Wbegin %>

package <%exp pkgName%>;

public Test<lWexp interfaceName%> {

}

<%end %>

140

corresponds to the following template class:

/**

*

* Class Test.java

* Generated by XTL compiler at 16 December 2004 16:16:05
* Visit http://www.cs.ukc.ac.uk/kmf

*

*/
package test.scripts;

import uk.ac.kent.cs.kmf.*;
import uk.ac.kent.cs.kmf_*;

class Test {
/** Constructor */
public Test(Java.io.PrintWriter out,
String pkgName,
String interfaceName) {
this.out = out;
this.pkgName = pkgName;
this. interfaceName = interfaceName;

/** Generate code method */

public void generate() {
out.print(""\npackage ");
out.print(pkgName);
out.print(";\n\npublic interface ");
out.print(interfaceName);
out.print(” {\An}\n"");

//

// Local variables

//

protected java.io.PrintWriter out;
protected String pkgName;

141

protected String interfaceName;

If the template class is invoked using “test” and “A” as input arguments, the generated Java

code is:

package test;

public interface A {
}

2.1.2. Supported Features

XTL provides support for the following features:

e Namespaces to group templates in hierarchies.
e Specify the import of packages used by the generated code.
e Specify the parameters of the template class.

e Support for control flow and computation through common statements and
expressions (e.g. foreach statements and arithmetic expressions).

142

Appendix 3. XTL-GRAMMAR

31. XTL Syntax

Five basic elements make up the lexical structure of a XTL source file: line terminators,
white spaces, comments, and tokens. Of these basic elements, only tokens are significant in

the syntactic grammar of a XTL program.

For compatibility with source code editing tools that add end-of-file markers, and to enable a
source file to be viewed as a sequence of properly terminated lines, the following
transformations are applied, in order, to every source file in a C# program:
e If the last character of the source file is a Control-Z character, this character is
deleted.

e A carriage-return character is added to the end of the source file if that source
file is non-empty and if the last character of the source file is not a carriage
return, a line feed, a line separator, or a paragraph separator.

The input production defines the lexical structure of a XTL source file. Each source file in a

XTL program must conform to this lexical grammar production.

input — 7 | input-element | input input-element.

input-element — line-terminator | whitespace| comment| token.

Line terminators divide the characters of a C# source file into lines. YATL uses the following

markers to indicate the end of a line:

e Carriage return character (U+000D)

o Line feed character (U+000A)

e Carriage return character (U+000D) followed by line feed character (U+000A)
o Next line character (U+0085)

e Line separator character (U+2028)

e Paragraph separator character (U+2029)

It adds only the following keywords:

elif false in
else foreach namespace
end if template
exp import true
and the following special signs and sequences:
+ ! ==)
0 - && = <%
* | < %>
/ <= *
% >
>=

The syntax grammar is described below:

/I Translation Unit

translation-unit — import* namespace
// Import

import — '<%' 'import' name '%>'| '<% ‘import' name "." **' '%>"

// Namespace

namespace — '<%' 'namespace’ simple-name '{' template* '}’ '%>" | template*
I/l Template

template — '<%' 'template' simple-name '(* param* ")’ '%>' compound-stm

I Action

action — text-stm | exp-stm | include-stm | compound-stm | if-stm | foreach-stm

exp-stm — '<%' ‘exp’ exp '%>"'

include-stm — '<%' 'include’ name '(* args)" ‘%>

143

if-stm — '<%""if' '(" exp)" '%>"' stm ('<%" "elif' '(" exp ')' '%>" stm)*
[[<%' ‘else’ '%>" stm]
'<%' 'end" '%>"

foreach-stm — '<%' 'foreach’ type-name simple-name 'in' exp '%>" stm

Il Expressions

exp — simple-name | 'true' | 'false' | 'integer' | 'real’ | ‘string’

exp — exp "' simple-name

exp — exp "' simple-name '(* args *)'

exp — (+'| | ') exp

exp —»exp (|| '%') exp

exp —exp ('+'|'-) exp

exp —exp ('=="|"1=") exp

exp > exp (<'|'<='| > | >=) exp

exp — exp '&&' exp

exp —exp || exp

Il Arguments

args — | exp (', exp)*

// Name

name — simple-name ('::' simple-name)*

144

145

Appendix 4. THE QUALITY MODEL

The ISO/IEC 9126 standard defines the quality of software products considering the

following six characteristics:

e Functionality

e Reliability
e Usability
e Efficiency

e Maintainability
e Portability

The quality model that we propose evaluates the maintainability of UML models according
to the above ISO standard.

Maintainability is defined as a set of attributes that measure the effort to perform given
changes. This characteristic can be reduced to the evaluation of the following attributes, also
called subcharacteristics:

e Analyzability
e Changeability
e Stability

e Testability

These attributes together with the corresponding metrics are classified on four levels of
quality.
We have classified model elements whose quality is satisfactory as

o Excellent: all the metrics of the quality model are within specified boundaries.
e Good: the metric values do not deviate too much from the specified boundaries.

e Acceptable: there are no major violations of the metrics boundaries.

A model element whose quality is unsatisfactory can be classified as

146

e Poor: the quality model cannot guarantee an efficient maintenance.

This model is based on the principles formulated in [Ghe91] [Som92].

Metrics for internal attributes

Metric Acronym

MODEL-HNT

MODEL-HIG

MODEL-NCN

MODEL-
ANCPN

MODEL-ADIG

MODEL-ACC

MODEL-AMC

MODEL-AOCC

NS-NDCN

Name

Height of Nesting Tree

Height of Inheritance

Graph

Number of Contained

Namespaces
Average Number of
Classes Per Namespace
Average Depth of
Inheritance Graph

Average Class
Complexity
Average Method
Complexity

Average OCL Constraint
Complexity
Number of Directly
Contained Namespaces

Description

Scan the nesting tree starting from the top
using a depth first strategy and compute the
height of the tree. The height of a tree with

only one node is zero.

Scan all the connected parts of the
inheritance graph and compute its height
using an algorithm similar with the one used
in MODEL-HNT. Compute the maximum of

the resulting values.

Performs a depth first search and count the

number of all contained namespaces,

regardless of the nesting level.

Computes the number of classes for each
namespace and then computes the arithmetic
average.

Computes the height for each inheritance
graph and then computes the arithmetic
average.

Computes the complexity for each class and
then computes the arithmetic average.
Computes the complexity of every method
and then computes the arithmetic average.
Computes the complexity of every OCL
constraint and then compute the arithmetic
average.

Computes the number of directly owned

namespaces.

NS-NCN Number of Contained
Namespaces

NS-NDCC Number of Directly
Contained Classes

NS-NCC Number of Contained
Classes.

NS-DNT Depth of Nesting Tree

CLS-NLP Number of Local
Properties

CLS-NP Number of Properties

CLS-NLO Number of Local
Operations

CLS-NO Number of Operations

CLS-ACLO Average Complexity of
Local Operations

CLS-ACO Average Complexity of
Operations

CLS-DIG Depth of Inheritance
Graph

CLS-NDA Number of Direct
Ancestors

CLS-NA Number of Ancestors

147

Computes the number of all owned

namespaces.

Computes the number of classes defined

inside the namespace.

Computes the number of classes owned by
the namespace and all the contained

namespaces.

Computes the level of the namespace in the
tree that describes the nesting relation
between namespaces. The height of a node
associated to a namespace that does not

include another namespace is 0.

Counts the attributes and the associated ends
that
considering the inherited properties

are defined in a Class without

Counts all the properties of a class
considering also the inherited properties,
considering overridden properties only once.

Similar to CLS-NLP

Similar to CLS-NP

Computes the ratio of the sum of complexity
for every local operation and the number of

local operations.

Similar to CLS-ALCPO

Computes the maximum height in the
existing inheritance graph.

Computes the number of directly inherited
classes

Computes the number of all the inherited

classes. If a class is inherited more than

CLS-NDD

CLS-ND

CLS-NMI

CLS-NRDC

CLS-NRE

CLS-LC

CLS-C

OPER-MCC
OPER-NP

OCL-NDP

OCL-HNT

OCL-MCC

Number of

Descendants

Direct

Number of Descendants

Number of

Inheritances

Number of
Classes.

Multiple

Referred

Number of Referees

Local Complexity

Complexity

McCabe Complexity

Number of parameters

Number of
Points

Decision

Height of Nesting Tree

McCabe complexity

148

once, this metric counts all its appearances.

Computes the number of directed
specializations.
Similar to CLS-NA, except that

specializations are counted.

Computes the number of classes that are
inherited more than once, considering all the

appearances.

Computes the number of classes that are
used directly as attributes’ and association
ends’” types, and inside operations.
Operations’ signature and body are both
checked for appearances. Primitive data

types are not considered.

Computes the number of classes that refer to
a class.

2*CLS-NLP + SMCC(0)

where o is a local operation. For each
property both a getter and a setter is
considered.

2*CLS-NP+ZMCC(0) where o is a local or

inherited operation.
Computes the McCabe metric.

Counts the number of parameters including

the return type.

Counts the number of existing OCL iteration

expressions.

Counts the height of the nesting tree that

describes the nesting relation. Nesting
relations that appear in OCL iterations and

let expressions are considered.

Computes the McCabe metric for the OCL

149

expression, considering OCL iterations as

loop actions.
OCL-HALC Halstead Complexity Computes the Halstead metric.
OCL-NV Number of Variables Counts the number of variables used in an

OCL expression.

Metrics for external attributes

A quality model implies a set of metrics and boundary limits for each metric. The
maintainability of a UML model is measure at the model and class level according to the

following formulas.

1. MODEL-MAIN = MODEL-CHAN + MODEL-TEST
2. CLS-MAIN = CLS-ANAL + CLS-CHAN + CLS-STAB + CLS-TEST

Class level

Analyzability: CLS-ANAL = CLS-LC + CLS-NA + XCLS-ANAL(c) where c is a referred

class.

Definition: Measures the effort to diagnose the errors, the cause of errors, or the parts that
need to be changed. The evaluation of this effort is in strong correlation with the value of

other metrics: local complexity, number of ancestors, and referred classes.

Changeability: CLS-CHAN = CLS-USAB + CLS-SPEC
Definition: The changeability of a class is the sum of the usability and the specialization of

the class.

Usability: CLS-USAB = CLS-NLP + CLS-NLO
Definition: The usability of a class is defined as the sum of:

e The number of local properties.

e The number of local operations.
Justification: This metric measures the effort required before a class is used. The number of
local properties is multiplied by two because of the presence of get/set methods. The higher
the value of the metric, the harder the class is to use.

150

Specialization: CLS-SPEC = CLS-NLP + CLS-NLO + 10*CLS-NA.
Definition: The specialization of a class is defined as the sum of

e The number of local properties.

e The number of local operations.

e Ten times the number of all inherited classes.
Justification: This metric measure the effort required before a class is specialized. The
number of ancestors is multiplied by a factor as an inherited class defines a set of properties
and operations that need to be analysed. The higher the specialization is the harder is to

speciliaze the class.

Stability: CLS-STAB = CLS-ND + CLS-NRE
Definition: Measures the risk that an unexpected consequence appears after some changes
are performed inside a class. The evaluation derives from the number of the classes that

depend of the class (the descendants and the referees).

Testability: CLS-TEST = CLS-LC
Definition: Testability is the local complexity of class.
Justification: The higher the complexity of a class is, the harder the class is to test. Testability

is based on the computation of McCabe cyclomatic complexity.

Limits

Acronym Min Max
CLS-MAIN 0 400
CLS- ANAL 0 100
CLS-CHAN 0 100
CLS-STAB 0 100
CLS-TEST 0 100
CLS-USAB 0 10

151

CLS-SPEC 0 25

Model level

Changeability: MODEL-CHAN = MODEL-HIG + MODEL-ACC + MODEL-AOCC
Measures the effort required to change the model or to fix some defects. The evaluation of
this effort depends of the depth of the inheritance graph and the average complexity of

classes and OCL constraints.

Testability: MODEL-TEST = MODEL-AMC + MODEL-AOCC
Measures the effort required to validate the model. The effort of validation depends of the

average complexity of methods and OCL constraints.

Limits
Acronym Min Max
MODEL-MAIN |0 200
MODEL-CHAN |0 100

MODEL-TEST 0 100

152

Appendix 5. YATL-LEXICAL GRAMMAR

Five basic elements make up the lexical structure of a YATL source file: line terminators,
white space, comments, and tokens. Of these basic elements, only tokens are significant in

the syntactic grammar of a YATL program.

For compatibility with source code editing tools that add end-of-file markers, and to enable a
source file to be viewed as a sequence of properly terminated lines, the following
transformations are applied, in order, to every source file in a C# program:
e If the last character of the source file is a Control-Z character, this character is
deleted.

e A carriage-return character is added to the end of the source file if that source
file is non-empty and if the last character of the source file is not a carriage
return, a line feed, a line separator, or a paragraph separator.

The input production defines the lexical structure of a YATL source file. Each source file in a

YATL program must conform to this lexical grammar production.
input — / | input-element | input input-element.
input-element — line-terminator | whitespace| comment| token.

Line terminators divide the characters of a C# source file into lines. YATL uses the following

markers to indicate the end of a line;

e Carriage return character (U+000D)

e Line feed character (U+000A)

e Carriage return character (U+000D) followed by line feed character (U+000A4)
e Next line character (U+0085)

e Line separator character (U+2028)

e Paragraph separator character (U+2029)

YATL’s tokens are based on OCL tokens [OCL20],[ALPO03]. It adds only the following

keywords:

apply do
break foreach
build import
continue in
delete match

and the assignment operator :=.

namespace

new

null

query

rule

153

start

track

transformation

while

154

Appendix 6. YATL-SYNTAX GRAMMAR

translation-unit —

import-list starting-rule namespace-declaration-list .
import-list —

Al

import-list import-declaration .
import-declaration —

‘import’ simple-name “.” “** ;.
starting-rule —

‘start’ pathname *;” .
namespace-declaration-list —

Al

namespace-declaration-list namespace-declaration .
namespace-declaration —

'namespace’ simple-name '(* models)" '{' (query|transformation)* '}' .
models —

source-model ['," target-model].
transformation —

‘transformation’ simple-name “{* rule* ‘}’ .
rule —»

'rule’ simple-name filter '(* [param (', param)*] ")’ compound-stm .
filter -

'match’ filter-path .
filterPath —

filter-step |

filter-path *::" filter-step .
filter-step —

simple-name ['[' ocl-expression ']
action-list —

Al

action-list action .
action —»
declaration-stm |
expression-stm |
compound-stm |
if-stm |
loop-stm |
break-stm |
continue-stm |
apply-stm .
declaration-stm —
‘let’” variable-declaration-list *;” .
expression-stm —
/expression “;’] .
compound-stm —
“{*action-list:list ‘}’.

if-stm —

“iff” ocl-expression ‘then’ action [‘else’ action] ‘endif’.

loop-stm —
‘while’ ocl-expression ‘do’ action |

‘do’ action ‘while’ *(*ocl-expression *)

‘foreach’ variable-declaration ‘in’ ocl-expression ‘do’ action .

break-stm —
‘break’ *;’ .

continue-stm —
‘continue’ “;” .

apply-stm —

‘apply’ pathname “(“ [ocl-expression (‘,” ocl-expression)*])" *;’

delete-stm —
‘delete’ ocl-expression “;” .
expression —
assignment-expression
ocl-expression |
track-expression .

assignment-expression —

155

156

ocl-expression “:=’ rhs-expression .
rhs-expression —
ocl-expression |
new-expression |
build-expression |
track-expression .
new-expression —
‘new’ path-name .
build-expression —
‘build’ path-name “{* [pair (*,” pair)*] ‘}".
pair —
name “:=’ rhs-expression .
track-expression —
‘track” “(“ ocl-expression “,” simple-name *,” ocl-expression ‘)’ |
‘track’ “(* “null’ *,” simple-name *,” ocl-expression)’ |
‘track’ “(“ ocl-expression “,” simple-name *,” ‘null’ *)” .
query —
‘query’ simple-name ‘{* context-declaration-list ‘}" .

Nonterminal ocl-expression, variable-declaration, and context-declaration-list are described
in [OCL2] and [ALPO3].

157

Appendix 7. MAPPING FROM UML

MODEL TO JAVA MODEL

start kmf::uml2java::main;

namespace kmf(uml, java) {
transformation uml2java {
-- 1-1 Mappings
-- Map a UML package to a Java package
rule umlPkg2JavaPkg
match uml::Model _Management: :Package () {
-- Create Java package
let jPkg: javaModel::JavaPackage;
JPkg := new javaModel::JavaPackage;
-- Set name
JPkg.name := self._name.body_;
-— Store mapping
track(self, pkg2pkg, jPkg);
}

-- Map a UML class to a Java class
rule umlClass2JavaClass
match uml::Foundation::Core::Class () {
-- Create Java class
let jClass: javaModel::JavaClass;

JClass := new javaModel::JavaClass;
-- Set name
jClass.name := self.name.body_;

-— Store mapping
track(self, class2class, jClass);

}

-- Map a UML attribute to a Java field
rule umlAttribute2JavaField
match uml::Foundation: :Core: :Attribute () {
-- Create a Java Field

158

let jField: javaModel::JavaField;

JField := new javaModel::JavaField;
-- Set name
JField.name := self.name.body_;

-— Store mapping
track(self, attribute2field, jField);

-- Map a UML association end to a Java field
rule umlAssociationEnd2JavaField
match uml: :Foundation: :Core: :AssociationEnd (OQ{
-- Create the Java field
let jField: javaModel::JavaField;
JField := new javaModel::JavaField;
-- Set name
iff self_name.ocllsUndefined() then
JField.name := self.type.name.body_;
else
JField.name := self.name.body_;
endif
-— Store mapping
track(self, associationEnd2field, jField);
}

-- Map a UML method to a Java operation
rule umlOperation2JavaMethod
match uml: :Foundation: :Core: :Operation () {

-- Create a Java Method

let jMethod: javaModel::JavaMethod;

JMethod := new javaModel: :JavaMethod;

-- Set name

JjMethod.name := self.name.body_;

-— Store mapping

track(self, operation2method, jMethod);

}

-- Link all the elements to the corresponding package
rule linkElements2Pkg
match uml::Model_Management: :Package () {
-— Get the corresponding JavaPackage
let jPkg: javaModel::JavaPackage;
JPkg = track(self, pkg2pkg, null);
-- For each owned element

159

foreach e:uml::Foundation::Core::Classifier
in self.ownedElement do {
-- Get the Java classifier
let jCls: javaModel::JavaClassifier;
JjClIs := track(e, class2class, null);
JPkg.elements := jPkg.elements->including(JCIs);

}
}

-- Link all the fields to the corresponding class
rule linkAttribute2Class
match uml::Foundation::Core::Attribute O {
-- Get the Java Class that owns the corresponding field
let umlOwner: uml::Foundation::Core::Classifier,
JClass : javaModel::JavaClass;
umlOwner := self.owner;
JClass := track(umlOwner, class2class, null);
-- Get the Java Field
let jField: javaModel::JavaField;
JField := track(self, attribute2field, null);
-- Link field and class
JjClass.fields := jClass.fields->including(JField);
JField.javaClass := jClass;
}
rule linkAssociationEnd2Class
match uml: :Foundation::Core::AssociationEnd () {
-- Get the AssociationEnds
let ends: Set(uml::Foundation::Core::AssociationEnd) =
self._association.connection->asSet();
let otherEnd: uml::Foundation::Core::AssociationEnd =
(ends->asSet()-Set{self})->asSequence()->at(l);
-- Get the Java Class that owns the corresponding field
let umlOwner: uml::Foundation::Core::Classifier,
JClass: javaModel::JavaClass;
umlOwner := otherEnd.type;
JjClass := track(umlOwner, class2class, null);
-- Get the Java Field
let jField: javaModel::JavaField;
JField := track(self, associationEnd2field, null);
-— Link field and class
JjClass.fields := jClass.fields->including(JField);
JjField.javaClass := jClass;

}

-— Link all the operations to the corresponding class
rule linkOperation2Class
match uml::Foundation: :Core: :Operation () {
-— Get the UML Class that owns the attribute
let umlOwner: uml::Foundation::Core::Classifier,
JClass: javaModel::JavaClass;
umlOwner := self.owner;
JjClass := track(umlOwner, class2class, null);
-- Get the Java Method
let jMethod: javaModel::JavaMethod;
JMethod := track(self, operation2field, null);
-— Link method and class

JjClass.methods := jClass.methods->including(jMethod);

160

JMethod. javaClasses := jMethod.javaClasses->including(jClass);

}

-- main rule

rule main O {
-— Map individual elements
apply umlPkg2JavaPkg(Q);
apply umlClass2JavaClass();
apply umlAttribute2JavaField();
apply umlAssociationEnd2JavaField();
apply umlOperation2JavaMethod();
-— Add element to Java packages
apply linkElements2Pkg(Q);
-- Add fields to Java classes
apply linkAttribute2Class();
apply linkAssociationEnd2Class();
-— Add operations to Java classes
apply linkOperation2Class();

161

Appendix 8. MAPPING FROM SPIDER

DIAGRAMS MODEL TO OCL MODEL

Java program that populates the spider diagram model instance

SdRepository rep = new SdRepository$Class();

// Create contours

Contour a = (Contour)rep.buildElement(*'sd.as.Contour™);
a.setName('a™);

Contour b = (Contour)rep.buildElement(*'sd.as.Contour™);
b.setName("'b™);

Contour ¢ = (Contour)rep.buildElement(*'sd.as.Contour™);
c.setName(''c');

// Create zone (a | b)

Zone z1 = (Zone)rep.buildElement('sd.as.Zone™);
z1l.getContainingContours().add(a);
z1._.getExcludingContours() .add(b);

// Create zone (b | a)

Zone z2 = (Zone)rep.buildElement('sd.as.Zone™);

z2 .getContainingContours().add(b);

z2 .getExcludingContours() .add(a);

// Create zone (a, b |)

Zone z3 = (Zone)rep.buildElement('sd.as.Zone™);
z3.getContainingContours().add(a);
z3.getContainingContours().add(b);

// Create diagram containing all the zones

UnitaryDiagram udl =
(UnitaryDiagram)rep.buildElement(*'sd.as.UnitaryDiagram');

udl.getZones().add(zl);

udl.getZones() .add(z2);

udl.getZones() .add(z3);

// Save repository

rep.saveXMl (*'src/test/scripts/sdRep.xml');

162

YATL program

start kmf::sd2ocl::main;

namespace kmf(sd, ocl) {
transformation sd2ocl {
-- 1-1 Mappings
-- Map a SD unitary diagram to an OCL expression
rule ud2let match sd::as::UnitaryDiagram () {
-- Create let expression
let letExp: syntax::ast::expressions::LetExpAS;
letExp := new syntax::ast::expressions::LetExXpAS;
-— Store mapping
track(self, ud2let, letExp);

}

-- Map a SD zone to a variable: init exppression computes the set
rule z2var match sd::as::Zone () {

-- Create name(zone): Set{OclAny} = OclAny.alllnstances()
-- ->select(x:0clAny | x.isKindOF() and ... and not x.isKindOF(Q)
-- and ... and not)

-- Create OclAny type
let oclAnyType: syntax::ast::types::ClassifierAS;
oclAnyType := new syntax::ast::types::ClassifierAS;
oclAnyType.pathName := Sequence{"OclAny"};
-- Create type Set{OclAny}
let setType: syntax::ast::types::SetTypeAS;
setType := new syntax::ast::types::SetTypeAS;
setType.elementType := oclAnyType;
-- Create pathName expression “OclAny*
let oclAnyPathNameExp: syntax::ast::expressions::PathNameExpAS;
oclAnyPathNameExp := new syntax::ast::expressions::PathNameExpAS;
oclAnyPathNameExp.pathName := Sequence{"OclAny"};
-- Create OclAny.alllnstances selection
let alllnstancesSelection:

syntax: :ast: :expressions: :DotSelectionExpAS;
alllnstancesSelection :=

new syntax::ast::expressions: :DotSelectionExpAS;
alllnstancesSelection.source := oclAnyPathNameExp;
alllnstancesSelection.name := “alllnstances”;

163

-- Create OclAny.alllnstances() operation call
let alllnstancesCall:

syntax: :ast: :expressions: :OperationCal IExpAS;
alllnstancesCall :=

new syntax::ast::expressions: :OperationCal IExXpAS;
alllnstancesCall.source := alllnstancesSelection;
alllnstancesCall .arguments := Sequence{};
-— Create OclAny.alllnstances()->select selection
let selectExp: syntax::ast::expressions::ArrowSelectionExpAS;

selectExp := new syntax::ast::expressions: :ArrowSelectionExpAS;
selectExp.source := alllnstancesCall;
selectExp.name := "select”;

-— Create x: OclAny variable declaration

let xVar: syntax::ast::contexts::VariableDeclarationAS;
xVar := new syntax::ast::contexts::VariableDeclarationAS;
xVar._.name = "X";
xVar .type := oclAnyType;
-- Create filters: isKindOf and notlskKindOf

let filters: Sequence(syntax::ast::expressions: :0clExpressionAS);
filters := Sequence{};

let isKindOfSelection:

syntax: :ast: :expressions: :DotSelectionExpAS;

let isKindOfCall: syntax::ast::expressions: :OperationCal IEXpAS;
let contourPathNameExp: syntax::ast::expressions::PathNameExpAS;
foreach c: sd::as::Contour in self.containingContours do {

-- Create name(c) path name

contourPathNameExp :=

new syntax::ast::expressions: :PathNameExpAS;
contourPathNameExp.pathName := Sequence{c.name};
-- Create x.isKindOf
isKindOfSelection :=

new syntax::ast::expressions: :DotSelectionExXpAS;
isKindOfSelection.source := xVar;
isKindOfSelection.name := "isKindOf";
-- Create x.isKindOf(c.name)
isKindOfCall :=

new syntax::ast::expressions: :OperationCal IEXpAS;
isKindOfCall.source := isKindOfSelection;
isKindOfCall.arguments := Sequence{contourPathNameExp};

-- Add it to filters
filters := filters->including(isKindOfCall);

}

foreach c: sd::as::Contour in self.excludingContours do {

164

-- Create name(c) path name

contourPathNameExp :=

new syntax::ast::expressions: :PathNameExpAS;
contourPathNameExp.pathName := Sequence{c.name};
-- Create x.isKindOf
isKindOfSelection :=

new syntax::ast::expressions::DotSelectionExpAS;
isKindOfSelection.source := xVar;
isKindOfSelection.name := "isKindOf";
-- Create x.isKindOf(c.name)
isKindOfCall :=

new syntax::ast::expressions: :OperationCal IEXpAS;
isKindOfCall .source := isKindOfSelection;
isKindOfCall.arguments := Sequence{contourPathNameExp};

-- Create not x.isKindOf(c.name)
let notSelection: syntax::ast::expressions::DotSelectionExpAS;

notSelection := new syntax::ast::expressions: :DotSelectionExpAS;
notSelection.source := isKindOfCall;

notSelection.name := "not";

let notCall: syntax::ast::expressions::OperationCal IExpAS;
notCall := new syntax::ast::expressions: :OperationCal lEXpAS;
notCall.source := notSelection;

notCall .arguments := Sequence{};

-- Add it to filters
filters := filters->including(notCall);
}
-- Compute iterator”s body
let itBody: syntax::ast::expressions::0OclExpressionAS;
itBody := filters->at(l);
let i:Integer = 2;
while i1 <= filters->size() do {
-- Create itBody.and
let andSelection: syntax::ast::expressions::DotSelectionEXpAS;

andSelection := new syntax::ast::expressions::DotSelectionExXpAS;
andSelection.name := "and";
andSelection.source := itBody;

-- Create itBody.and(args)
let andCall: syntax::ast::expressions::OperationCal lEXpAS;

andCall := new syntax::ast::expressions::OperationCal IEXpAS;
andCall.source := andSelection;
andCall _arguments := Sequence{Filters->at(i)};

-- Set new value for itBody
itBody := andCall;

165

-- Next filter
i =1+ 1;
}

-- Create iterator expression OclAny.alllnstances()->select(...)
let iteratorExp: syntax::ast::expressions::lteratorExpAS;

iteratorExp := new syntax::ast::expressions::|lteratorExpAS;
iteratorExp.source := selectExp;
iteratorExp.iterator := xVar;

iteratorExp.loopBody := itBody;

-- Compute zone"s name

let zName: String = "";

foreach c: sd::as::Contour in self.containingContours do {

zName := zName.concat(c.name);
zName := zName.concat("_");

}

zName := zName.concat("|");

foreach c: sd::as::Contour in self._excludingContours do {
zName := zName.concat("_");

zName := zName.concat(c.name);

}

-- Create name(zone):Set{OclAny} :=

- OclAny.alllnstances()->select(...)

let var: syntax::ast::contexts::VariableDeclarationAS;

var := new syntax::ast::contexts::VariableDeclarationAS;

var.name := zName;

var.type := setType;

var._.initExp := iteratorExp;

-— Store mapping

track(self, z2var, var);

}

-- Map a SD to let"s body (in expression)
rule ud2in match sd::as::UnitaryDiagram () {
-- Make a list of conditions for each zone
let ands: Sequence(syntax::ast::expressions: :0OclExpressionAS) =
Sequence{};
-- For each zone
foreach z: sd::as::Zone in self.zones do {
-- Compute the number of spiders touching the zone
-- All spiders are single footed
let feetNo: Integer = O;
foreach s: sd::as::Spider in self_spiders do {
iff s.habitat->includes(z) then

166

feetNo := feetNo + 1;

endif
}
-- Compute is shaded flag
let isShaded: Boolean = self.shadedZones->includes(z);
-- Make the expression that checks the size
-- name(z)->size() operator feetNo
-- Make name(z) expression
let varExp: syntax::ast::expressions::VariableExpAS;
varExp := new syntax::ast::expressions::VariableExpAS;
varExp.variableDeclarationAS := track(z, z2var, null);
-- Make name(z)->size
let selectExp: syntax::ast::expressions::ArrowSelectionExpAS;

selectExp := new syntax::ast::expressions: :ArrowSelectionExpAS;
selectExp.source = varkxp;
selectExp.name := "size";

-- Make name(z)->size()

let callExp: syntax::ast::expressions::OperationCal lEXpAS;
callExp := new syntax::ast::expressions::OperationCal IEXpAS;
callExp.source := selectExp;

-- Make operator

let opName: String = ">=";

iff isShaded then

opName := "=";

endif

-- Make name(z)->size() <=

let selExp: syntax::ast::expressions::DotSelectionExpAS;

selExp = new syntax::ast::expressions::DotSelectionExpAS;
selExp.source := callExp;
selExp.name := opName;

-- Make feetName exp

let argExp: syntax::ast::expressions::IntegerLiteralExpAS;
argExp := new syntax::ast::expressions::IntegerLiteralExpAS;
argeExp.value := feetNo;

-- Make name(z)->size() <= feetNo

let relCall: syntax::ast::expressions::OperationCal IEXpAS;

relCall := new syntax::ast::expressions::OperationCal lExXpAS;
relCall._source := selExp;
relCall _arguments := relCall_arguments->including(argExp);

-- Add exp to ands

ands := ands->including(relCall);

167

}

-- Make a logical expression from ands
iff ands->size() >= 1 then {
let IinExp: syntax::ast::expressions::0clExpressionAS;
inExp := ands->at(1);
let i:Integer = 2;
while i<=ands->size() do {
-- Make an and
let andSel: syntax::ast::expressions: :DotSelectionExpAS;

andSel := new syntax::ast::expressions::DotSelectionExpAS;
andSel .source := InExp;

andSel _.name := "and";

let andCall: syntax::ast::expressions::OperationCal lEXpAS;
andCall := new syntax::ast::expressions::OperationCal IEXpAS;
andCall.source := andSel;

andCall .arguments := andCall.arguments->including(ands->at(i));

-- Update inExp for next iteration
inExp := andCall;
-- Next
i = i+l;
}
-- Store mapping
track(self, ud2in, inExp);
}
endif

}

-- Link let expressions to variables
rule linkLet2Variables match sd::as::UnitaryDiagram () {
-- Get let expression
let letExp: syntax::ast::expressions::LetExXpAS;
letExp := track(self, ud2let, null);
-- For each zone
foreach z: sd::as::Zone in self.zones do {
let var:syntax::ast::contexts::VariableDeclarationAS;
var := track(z, z2var, null);
letExp.variables := letExp.variables->including(var);
}
}

-- Link let expressions to variables
rule linkLet2Iln match sd::as::UnitaryDiagram () {
-— Get let expression

let letExp: syntax::ast::expressions::LetExXpAS;
letExp := track(self, ud2let, null);

-— Get In expression

let InExp: syntax::ast::expressions::0clExpressionAS;
inExp := track(self, ud2in, null);

-- Link them

letExp.inExp := InExp;
}

-- main rule

rule main O {

-- Create a let expression for each unitary diagram
apply ud2let(Q);

-- Create a variable declaration for each zone
apply z2var(Q);

-- Create the in expression

apply ud2in(Q);

-- Link diagrams to variables

apply linkLet2Variables();

-- Link diagrams to in

apply linkLet2In();

168

169

Appendix 9. MAPPING FROM EDOC TO
WS

Java code to populate the source model instance

//
// Create EDOC population
//
protected static DataType makeDataType(Repository rep, String type) {
DataType dt = (DataType)rep.buildElement(*'edoc.ECA.DocumentModel .DataType');
dt.setName(type);
return dt;
}
protected static Attribute makeAttribute(Repository rep, String name,
DataElement type) {
Attribute at = (Attribute)rep.buildElement('edoc.ECA.DocumentModel .Attribute™);
at.setName(hame) ;
at.setType(type);
return at;
3
protected static CompositeData makeCompositeType(Repository rep, String name,
List dataElements) {
CompositeData dt =
(CompositeData)rep.buildElement(*edoc.ECA.DocumentModel .CompositeData™);
dt.setName(nhame);
dt.setFeatures(datakElements);
return dt;
3
protected static Protocol makeProtocol (Repository rep, String name) {
Protocol p = (Protocol)rep.buildElement(*'edoc.ECA.CCA.Protocol™);
p.setName(name);
return p;
3
protected static FlowPort makeFlowPort(Repository rep,String name,DataElement type) {
FlowPort fp = (FlowPort)rep.buildElement(*'edoc.ECA.CCA.FlowPort™);
fp.setName(nhame) ;
fp.setType(type);
return fp;
}
protected static ProtocolPort makeProtocolPort(Repository rep, String name) {
ProtocolPort pp = (ProtocolPort)rep.buildElement(*'edoc.ECA.CCA.ProtocolPort™);
pp -setName(name) ;
return pp;

3

170

protected static OperationPort makeOperationPort(Repository rep, String name,

}

FlowPort call, FlowPort ret) {
OperationPort op =
(OperationPort)rep.buildElement(*edoc.ECA.CCA.OperationPort™);
op.setName(nhame) ;
op.getPorts().add(call);
op.getPorts() .add(ret);
return op;

protected static Repository initEDOCPopulation() {

EdocRepository rep = new EdocRepository$Class();

// Create simple types

DataType stringType = makeDataType(rep, "'String");

DataType integerType = makeDataType(rep, "Integer'™);

DataType realType = makeDataType(rep, "Real™);

// Create attributes

Attribute airlineName = makeAttribute(rep, "AirlineName", stringType);
Attribute flightNo = makeAttribute(rep, "FlightNo", integerType);
Attribute location = makeAttribute(rep, "Location", stringType);
Attribute date = makeAttribute(rep, "Date', stringType);

Attribute hotelName = makeAttribute(rep, ""HotelName", stringType);
Attribute address = makeAttribute(rep, "Address™, stringType);
Attribute companyName = makeAttribute(rep, '‘CompanyName", stringType);
Attribute period = makeAttribute(rep, "Period", integerType);

// Create composite types

List locationinfo = new Vector();

locationInfo.add(location);

locationInfo.add(date);

CompositeData locationType = makeCompositeType(rep, "Location™, locationInfo);
List flightInfo = new Vector();

Fflightinfo.add(airlineName);

flightInfo.add(flightNo);

flightInfo.add(date);

CompositeData flightType = makeCompositeType(rep, "Flight", flightinfo);
List hotellnfo = new Vector();

hotel Info.add(hotelName);

hotelInfo.add(address);

hotelInfo.add(date);

hotelInfo.add(period);

CompositeData hotelType = makeCompositeType(rep, "Hotel™, hotellnfo);
List carlnfo = new Vector();

carlInfo.add(companyName) ;

carinfo.add(address);

carinfo.add(date);

carinfo.add(period);

CompositeData carType = makeCompositeType(rep, "Car", carlnfo);

// Create BuySell protocol

Protocol buySellProt = makeProtocol(rep, "BuySell™);

ProtocolPort buyPort = makeProtocolPort(rep, "Buy'");
buyPort.setDirection(DirectionType$Class. Initiates);
buyPort.setOwner(buySellProt);

buyPort.setUses(buySellProt);

171

ProtocolPort sellPort = makeProtocolPort(rep, "Sell™);
sellPort._setDirection(DirectionType$Class.Responds);
sellPort.setOwner(buySellProt);

sellPort.setUses(buySellProt);

buySellProt.getPorts() .add(buyPort);
buySellProt.getPorts().add(sellPort);

// Create BuyFlight protocol

Protocol buyFlightProt = makeProtocol(rep, "BuyFlight™);
ProtocolPort buyFlightPort = makeProtocolPort(rep, "BuyFlight™);
buyFlightPort.setDirection(DirectionType$Class. Initiates);
buyFlightPort.setOwner(buyFlightProt);
buyFlightPort.setUses(buyFlightProt);

ProtocolPort flightPort = makeProtocolPort(rep, "Flight™);
flightPort._setDirection(DirectionType$Class.Responds);
FflightPort.setOwner(buyFlightProt);
flightPort.setUses(buyFlightProt);

buyFlightProt.getPorts() -add(buyFlightPort);
buyFlightProt.getPorts() .add(flightPort);

// Add operation protocols

FlowPort locationPort = makeFlowPort(rep, 'Location”, locationType);
locationPort.setDirection(DirectionType$Class. Initiates);
FlowPort flightFlowPort = makeFlowPort(rep, “Flightinfo", flightType);
flightFlowPort.setDirection(DirectionType$Class.Responds);
OperationPort findFlightPort = makeOperationPort(rep, "FindFlight",
locationPort, flightFlowPort);

buyFlightProt.getPorts() -add(findFlightPort);

// Create reserveRoom protocol

Protocol reserveRoomProt = makeProtocol(rep, "ReserveRoom™);
ProtocolPort reserveRoomPort = makeProtocolPort(rep, "ReserveRoom™);
reserveRoomPort.setDirection(DirectionType$Class. Initiates);
reserveRoomPort.setOwner (reserveRoomProt);
reserveRoomPort.setUses(reserveRoomProt) ;

ProtocolPort roomPort = makeProtocolPort(rep, ""Room™);
roomPort.setDirection(DirectionType$Class.Responds);
roomPort.setOwner(reserveRoomProt);
roomPort.setUses(reserveRoomProt);

reserveRoomProt.getPorts() .add(reserveRoomPort);
reserveRoomProt.getPorts() .add(roomPort);

// Create rentCar protocol

Protocol rentCarProt = makeProtocol(rep, "RentCar');
ProtocolPort rentCarPort = makeProtocolPort(rep, "RentCar™);
rentCarPort.setDirection(DirectionType$Class. Initiates);
rentCarPort.setOwner(rentCarProt);
rentCarPort.setUses(rentCarProt);

ProtocolPort carPort = makeProtocolPort(rep, "Car');
carPort._setDirection(DirectionType$Class.Responds);
carPort._setOwner(rentCarProt);

carPort._setUses(rentCarProt);
rentCarProt.getPorts().add(rentCarPort);
rentCarProt.getPorts().add(carPort);

// Create payment protocol

Protocol paymentProt = makeProtocol(rep, "Payment'™);
ProtocolPort taPaymentPort = makeProtocolPort(rep, "TAPayment'™);

taPaymentPort.setDirection(DirectionType$Class. Initiates);

taPaymentPort.setOwner(paymentProt);

taPaymentPort.setUses(paymentProt);

ProtocolPort bPaymentPort = makeProtocolPort(rep, '"BPayment');

bPaymentPort.setDirection(DirectionType$Class.Responds);

bPaymentPort.setOwner(paymentProt);

bPaymentPort.setUses(paymentProt);

paymentProt.getPorts() .add(taPaymentPort);

paymentProt.getPorts() .add(bPaymentPort);

// Create ShipDelivery protocol

Protocol shipDeliveryProt = makeProtocol(rep, "ShipDelivery');

ProtocolPort shipPort = makeProtocolPort(rep, "Ship™);

shipPort.setDirection(DirectionType$Class. Initiates);

shipPort.setOwner(shipDeliveryProt);

shipPort.setUses(shipDeliveryProt);

ProtocolPort deliveryPort = makeProtocolPort(rep, "Delivery™);

deliveryPort.setDirection(DirectionType$Class.Responds);

deliveryPort.setOwner(shipDeliveryProt);

deliveryPort.setUses(shipDeliveryProt);

shipDeliveryProt.getPorts() .add(shipPort);

shipDeliveryProt.getPorts() .add(deliveryPort);

// Create Client

ProcessComponent client =
(ProcessComponent)rep.buildElement(*'edoc.ECA.CCA.ProcessComponent™);

client_setName('Client™);

client.getPorts() .add(buyPort);

client_getPorts() .add(deliveryPort);

buyPort.setOwner(client);

deliveryPort.setOwner(client);

// Create Travel Agency

ProcessComponent travelAgency =
(ProcessComponent)rep.buildElement(*'edoc.ECA.CCA.ProcessComponent™);

travelAgency.setName(""Expedia™);

travelAgency.getPorts().add(sellPort);

travelAgency.getPorts() .add(buyFlightPort);

travelAgency.getPorts().add(findFlightPort);

travelAgency.getPorts() .add(reserveRoomPort);

travelAgency.getPorts() .add(rentCarPort);

travelAgency.getPorts() .add(taPaymentPort);

sellPort.setOwner(travelAgency);

buyFlightPort.setOwner(travelAgency);

reserveRoomPort.setOwner (travelAgency);

rentCarPort.setOwner (travelAgency);

taPaymentPort.setOwner(travelAgency);

// Create Airline

ProcessComponent airline =
(ProcessComponent)rep.buildElement(*'edoc.ECA.CCA.ProcessComponent™);

airline_setName("'BA™);

airline_getPorts().add(flightPort);

// Create Hotel

ProcessComponent hotel =
(ProcessComponent)rep.buildElement(*'edoc.ECA.CCA.ProcessComponent™);

hotel .setName("'Marriot');

172

173

hotel .getPorts() -add(roomPort);

// Create CarCompany

ProcessComponent carCompany =
(ProcessComponent)rep.buildElement(*'edoc.ECA.CCA.ProcessComponent™);

carCompany .setName(*'CarCompany™) ;

carCompany .getPorts() .add(carPort);

// Save repository into an xml

rep.saveXMl ("'src/test/scripts/edocRep.xml™);

return rep;

The YATL program

start kmf::edoc2ws::main;

namespace kmf(sd, ocl) {
transformation edoc2ws {

-- EDOC.ECA.DocumentModel to WS._XSD
-- Map an EDOC DataType to an XSD SimpleType
rule dt2st match edoc::ECA: :DocumentModel::DataType () {
-— Create SimpleType
let st: ws::xsd::SimpleType;
st := new ws::xsd::SimpleType;
st.name := self_name;
-- Store mapping
track(self, type2type, st);
¥
-- Map an EDOC CompositeData to an XSD ComplexType
rule cd2ct match edoc::ECA: :DocumentModel: :CompositeData () {
-- Create ComplexType
let ct: ws::xsd::ComplexType;
ct := new ws::xsd::ComplexType;
ct.name := self.name;
-- Store mapping
track(self, type2type, ct);
}
-- Map an EDOC Attribute to an XSD attribute
rule at2at match edoc::ECA: :DocumentModel: :Attribute () {
-- Create Attribute
let at: ws::xsd::Attribute;

}

at := new ws::xsd::Attribute;
at.name := self._name;

-— Store mapping

track(self, at2at, at);

-- Link XSD attributes to XSD types
rule linkAttribute2Type

}

match edoc: :ECA::DocumentModel: :Attribute () {
-- Get the XSD Attribute
let xsdAttribute: ws::xsd::Attribute;
xsdAttribute := track(self, at2at, null);
-- Get the type
let edocType : edoc::ECA::DocumentModel: :DataElement;
edocType := self.type;
let xsdType: ws::xsd::Type;
xsdType := track(edocType, type2type, null);
xsdAttribute.type := xsdType;

-— Link XSD ComplexTypes to XSD Attributes
rule linkComplexType2Attribute

}

match edoc::ECA: :DocumentModel : :CompositeData () {
-- Get the XSD ComplexType
let xsdComplexType: ws::xsd::ComplexType;
xsdComplexType := track(self, type2type, null);
-- Add every attribute

174

foreach edocAttribute : edoc::ECA::DocumentModel::Attribute

in self.features do {
let xsdAttribute : ws::xsd::Attribute;
xsdAttribute := track(edocAttribute, at2at, null);
xsdComplexType.sequence :=
xsdComplexType.sequence->including(xsdAttribute);

}

-- Map concepts from EDOC.ECA.DocumentModel to WS.XSD concepts
rule documentModel2xsd() {

-- Create a SimpleType for each DataType

apply dt2st();

-- Create a ComplexType for each CompositeData
apply cd2ct();

-- Create an XSD Attribute for each EDOC Attribute
apply at2at();

-- Link XSD Attributes to XSD Types

apply linkAttribute2Type(Q);

-— Link XSD ComplexTypes to XSD Attributes
apply linkComplexType2Attribute();

}

-- Map concepts from EDOC.ECA.CCA to WS:WSDL
-- Create a WSDL Message for each EDOC FlowPort
rule flowPort2message match edoc::ECA::CCA::FlowPort () {
-- Create Message
let m: ws::wsdl::Message;
m := new ws::wsdl::Message;
m.name := self._name;
-- Create part and add it
let part: ws::wsdl::Part;

part = new ws::wsdl::Part;

part.name := self_name;

part.type := track(self.type, type2type, null);
m.parts := m.parts->including(part);

-- Store mapping
track(self, fp2m, m);
b
-- Create a WSDL Operation for each EDOC OperationPort
rule operationPort2operation
match edoc::ECA::CCA::OperationPort () {
-- Get input and output port
let iPort : edoc::ECA::CCA::OperationPort;
iPort := self.ports->asSequence()->at(1);
let oPort : edoc::ECA::CCA::OperationPort;
oPort := self.ports->asSequence()->at(2);
-- Create input
let input: ws::wsdl::Input;
input = new ws::wsdl::Input;
input.name := iPort.name;
input.message := track(iPort, fp2m, null);
-- Create outpout
let output: ws::wsdl::Output;
output := new ws::wsdl::Output;
output.name := oPort.name;
output.message := track(oPort, fp2m, null);
-- Create Operation
let o: ws::wsdl::Operation;
0 := new ws::wsdl::Operation;

175

}

176

o.name := self._name;
o.input := input;
o.output := output;
input.operation := o;
output.operation := o0;
-- Store mapping
track(self, op2o, 0);

-- Create a WSDL PortType for each EDOC ProtocolPort
rule protocolPort2portType

}

match edoc::ECA::CCA::ProtocolPort () {
-- Create a portType
let pt: ws::wsdl::PortType;
pt := new ws::wsdl::PortType;
pt.name := self.name;
-- Add operations
let ps: Set(edoc::ECA::CCA::Port) = self.owner.ports->asSet();
let fps: Set(edoc::ECA::CCA::Port) =
ps->select(e | e.ocllsKindOf(edoc: :ECA::CCA::FlowPort));
let ops: Set(edoc::ECA::CCA::Port) =
ps->select(e] -ocl1sKindOf(edoc: :ECA: :CCA: :OperationPort));
foreach op: edoc::ECA::CCA::OperationPort in ops do {
-— Find operation
let o: ws::wsdl::Operation;
o := track(op, op20, null);
pt.operations := pt.operations->including(o);
}
-- Store mapping
track(self, pp2pt, pt);

-- Create a WSDL Definition for each EDOC ProcessComponent
rule processComponent2service

match edoc::ECA::CCA::ProcessComponent () {
-- Create Definition
let d: ws::wsdl::Definition;
d := new ws::wsdl::Definition;
-- Create service
let s: ws::wsdl::Service;
s := new ws::wsdl::Service;
s.definition := d;
s.name := self._name;
-- Store mapping
track(self, pc2s, s);

177

+
-— Link Definition to Types

rule linkDefinition2X
match edoc::ECA::CCA::ProcessComponent () {
-- Get the WSDL Service
let s: ws::wsdl::Service;
s := track(self, pc2s, null);
let d - ws::wsdl::Definition;
d := s.definition;
-- Add every portType
let ps : Set(edoc::ECA::CCA::Port) = self._ports->asSet();
let fps: Set(edoc::ECA::CCA::Port) =
ps->select(e | e.ocllsKindOf(edoc: :ECA::CCA::FlowPort));
let ops: Set(edoc::ECA::CCA::Port) =
ps->select(e|e.oclIsKindOf(edoc: :ECA: :CCA: :OperationPort));
let pps: Set(edoc::ECA::CCA::Port) =
ps->select(e]e.oclIsKindOf(edoc: :ECA: :CCA: :ProtocolPort));
let m: ws::wsdl::Message;
let ms: Set(ws::wsdl::Message);
let ts: Set(ws::xsd::Type);
foreach fp : edoc::ECA::CCA::FlowPort in fps do {
m := track(fp, fp2m, null);
ms := ms->including(m);
foreach p:ws::wsdl::Part in m.parts do {
ts = ts->including(p-type);
}

3
foreach op : edoc::ECA::CCA::OperationPort in ops do {

-- Get input and output port

let iPort : edoc::ECA::CCA::OperationPort;
iPort := op.ports->asSequence()->at(1);
let oPort : edoc::ECA::CCA::OperationPort;

oPort := op.ports->asSequence()->at(2);
m := track(iPort, fp2m, null);
ms := ms->including(m);

foreach p:ws::wsdl::Part in m.parts do {
ts = ts->including(p-type);

3
m := track(oPort, fp2m, null);
ms := ms->including(m);

foreach p:ws::wsdl::Part in m.parts do {
ts = ts->including(p-type);
}

178

}

let pts : Set(ws::wsdl::PortType);

foreach pp : edoc::ECA::CCA::ProtocolPort in pps do {
let pt : ws::wsdl::PortType;
pt := track(pp, pp2pt, null);
pts := pts->including(pt);

-.messages := ms->asSequence();
.types := ts->asSequence();
.portTypes := pts->asSequence();

O O O W

+
-—-- Map CCA to WSDL

rule cca2wsdl() {
-- Create a WSDL Message for each EDOC FlowPort
apply flowPort2message();
-- Map Operation Ports
apply operationPort2operation();
-- Map Protocol Ports
apply protocolPort2portType();
-— Map ProcessComponent
apply processComponent2service();
-- Link Definition to types, messages, and portTypes
apply linkDefinition2X();
}

-- main rule

rule main O {
-- Map DocumentModel to XSD
apply documentModel2xsd();
-- ECA to WSLD
apply cca2wsdl();

}

}
}

179

BIBLIOGRAPHY

[AC94]

[AJUT5]

[AJUTT]

[AKPO3]

[ALPO3]

[AMDA]
[ARG]

[APO2]

[APO3]

[APO4a]

[ASUS6]

[AUT2]

[Bac79]

[BDMO7]

Abreu, F. B. and Carapuca, R. (1994). Object-oriented software engineering:
measuring and controlling the development process. In Proceedings of the 4"
International Conference on Software Quality.

Aho, A. V, Johnson, S. C., and Ullman, J. D. (1975) Deterministic parsing of
ambiguous grammars. Commun. ACM 18(8), pp 441-452.

Aho, A. V., Johnson, S. C., and Ullman, J. D. (1977) Code generation for expressions
with subexpressions. JACM, 24(1), pp 146-160.

Akehurst, D., Kent, S., and Patrascoiu, O. (2003). A relational approach to defining
and implementing transformations between metamodels. In Journal of Software and
Systems Modeling (SoSym), 2(4), pp 215-239.

Akehurst, D., Linington, P., and Patrascoiu, O. (2003). OCL 2.0 — Implementing the
Standard. Technical Report No. 12-03, Computer Laboratory, University of Kent,
UK.

AndroMDA Project Home Page, 2005. On-line at http://www.andromda.org/

ArgoUML Project Home Page, 2004. On-line at http://argouml.tigris.org/

Appel, A. W. and Palsberg J. (2002). Modern Compiler Implementation in Java.
Second ed, Cambridge University Press.

Akehurst, D. and Patrascoiu, O. (2003). OCL 2.0 — Implementing the Standard for
Multiple Metamodels. In OCL2.0-"Industry standard or scientific playground?" -
Proceedings of the UML'03 workshop, pp 19-25.

Akehurst, D. and Patrascoiu, O. (2004). Prototyping Metamodels: Automated
Generation of Modeling Tools with support for Checking Well-Formedness
Constraints. Submitted at UML 2004.

Aho, A., V., Sethi, R., and Ullman, J. D. (1986). Compilers: Principles,Techniques
and Tools. Addison-Wesley, Reading Mass.

Aho, A. V. and Ullman, J. D. (1972). The theory of parsing, translation, and
compiling. Prentice Hall, Engl. Cliffs.

Backhouse, R. C. (1979). Syntax of Programming Languages: Theory and Practice.
Prentice Hall, Engl. Cliffs.

Briand, L., Devenbu, P, and Melo, W. (1997) An investigation into coupling
measurement for C++. In Proceedings of the 19" International Conference on

[BDW99]

[Bel9s]

[BM99]

[BWWS54]

[CHO3]

[Cho56]

[Cho62]

[CK91]

[CK94]

[Con63]

[CS00]

[Cur80]

[CWM]

[DeR71]

[DseDS]

[EBGRO1]

180

Software Engineering, pp. 334-344.

Briand, L., Daly, J., and Wuest, J. (1999) A unified framework for coupling
measurement in object-oriented systems. IEEE Transactions on Software
Engineering, 25(1), pp 91-121.

Rodney Bell (1998) Code Generation from Object Models.

http://embedded.com/98/9803fe3.htm

Benlarbi, S. and Melo, M. (1999) Polymorphism measures for early risk prediction.
In Proceedings of the 21 International Conference on Software Engineering, pp.
334-344.

Burks, A. W., Warren, D. W., and Wright, J. B. (1954). An analysis of logical
machine using paranthesis-free notation. In Mathematical Tables and Other Aids to
Computation, 8(46), pp. 53-57.

Czarnecki, K., and Helsen, S. (2003). Classification of Model Transformation
Approaches. In Generative techniques in the context of MDA — Proceedings of
OOPSLA 2003 workshop.

Chomsky, N. (1956) Three models for the description of language, IRE Transactions
on Information Theory, 2, pp. 113-124.

Chomsky, N. (1962) Handbook of Mathematics Psychology, volume 2, chapter
Formal Properties of Grammars, pp. 323-418. Wiley & Sons, New York.

Chidamber, S.R. and Kemerer, C.F. (1991). Towards a metrics suite for object-
oriented design. In Proceedings of The Sixth Object-Oriented Programming Systems,
Languages, and Applications, pp. 97-211.

Chidamber, S.R. and Kemerer, C.F. (1994). A metrics suite for object oriented
design. IEEE Transactions Software Engineering, 6, pp. 476-493.

Conway, M. E. (1963). Design of a separate transition-diagram compiler. Commun.
ACM 6(7), pp. 396-408.

Cartwright, M. and Shepperd, M. (2000) An empirical investigation of an object-
oriented software system: An exploratory analysis. IEEE Transactions on Software
Engineering, 24(8), pp. 629-639.

Curtis, B. (1980), Measurement and Experimentation. In Software Engineering,
Proceedings of the IEEE, 68(9).

OMG, Common Warehouse Metamodel Specification. OMG Document formal/2003-
03-02, available at http://www.omg.org/cwm.

DeRemer, F. L. (1971). Simple LR(k) grammars. Commun. ACM 14, pp. 453-460.

Design Support Environments for Distributed Systems (DSE4DS) project.
www.cs.kent.ac.uk/projects/dse4ds/

El-Eman, K., Benlarbi, S., Goel, N., and Rai, S. (2001) The confounding effect of
class size on the validity of object-oriented metrics. IEE Transactions on Software

[EDOC]

[EMF]

[ET02]

[Evan97]

[Eve63]

[Fen91]

[FL91]

[Fra03]

[FUJ]

[Gar03]

[GC87]

[GEN]

[Ghe91]

[GHJIV95]

[GHK99]

[GHKO1]

[Gins75]

[GLRSW02]

181

Engineering.

OMG, Enterprise Distributed Object Computing Specification OMG Document
formal available at http://www.omg.org/technology/documents/formal/edoc.htm

IBM, Eclipse Modeling Framework. http://www.eclipse.org.

Erdogamus, H. and Tanir, O. (2002). Advances in Software Engineering.
Comprehension, Evaluation, and Evolution. Springer-Verlag.

Evanco, W. (1997) Poisson analysis of defects from small software components.
Journal of Systems and Software, 38, pp. 27-35.

Evey, R. J. (1963) The Theory and Applications of Pushdown Store Machines. Ph.D
thesis, Harvard University, Massachusetts.

Fenton, N. (1991) Software Metrics: A rigorous approach, Chapman and Hall.

Fischer, C. N. and LeBlanc, R. J. Jr. (1991). Crafting a compiler with C. Benjamin
Cummings.

Frankel, D. S. (2003) Model Driven Architrecture: Applying MDA to Enterprise
Computing. John Wiley & Sons.

Fujaba Tool Suite Developer Team, University of Paderborn, 2004. On-line at
http://www.fujaba.de/

Gardner, T., Griffin, C., Koehler, J., and Hauser, R. (2003) A reviewof OMG MOF
2.0 Query/Views/Transformations submissions and recommendations towards the
final standard, 1st International Workshop on Metamodeling for MDA, York, UK,
2003.

Grady, R. B. and Caswell, D., L., (1987) Software Metrics: Establishing a Company-
Wide Program, Prentice-Hall.

Gentleware AG, Poseidon, 2004. On-line at http://www.gentleware.com/

Ghezzi C, Jazayeri, M., Mandrioli, D. (1991) Fundamentals of Software
Engineering, Prentice Hall.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995) Design Pattens.
Elements of Reusable Object-Oriented Software, Addison-Wesley.

Gil, J., Howse, J, and Kent, S. (1999) Formalising Spider Diagrams, In Proccedings
.of IEEE Symposium on Visual Languages (VL99), IEEE Press, pp. 130-137.

Gil J, Howse J, Kent S. (2001) Towards a formalization of constraint diagrams. In
Proceedings of EEE Symposia on Human-Centric Computing (HCC’01), Stresa,
Italy, IEEE Computer Society Press, pp. 72-79.

Ginsburg, G (1975) Algebraic and Automata-Theoretic Properties of Formal
Languages. North-Holland. Amsterdam.

Gerber, A., Lawley, M., Raymond, K., Steel, J, and Wood, A. (2002).
Transformation: The Missing Link of MDA, in A. Corradini, H. Ehring, H. J.

[GMT]

[Gra02]

[Gra88]

[Gra90]

[Hal77]

[Hei81]

[HS96]

[HU69]

[HU79]

[Iro61]

[1S096]

[Java]

[JB81]

[Jon75]

[KLW95]

[Kle56]

[KMF]

[Knu65]

182

Kreowsky, G. Rozenberg (Eds): In Proceedings. of Graph Transformation: First
International Conference (ICGT 2002)

Generative Model Transformer Project Home Page. On-line at
http://www.eclipse.org/gmt/

Grand, M. (2002) Java Enterprise design patterns, Wiley&Sons.

Gray R. W. (1988) y-GLA — a generator for lexical analyzers that programmars can
use. In Proceedings of USENIX Conference. USENIX Association, Berkley, CA, pp.
147-160.

Grady, R. B., (1990) Work-Product Analysis: The Philosopher’s Stone of Software,
IEEE.

Halstead, M. (1977) Elements of Software Science, Elsevier, Amsterdam.

Heilbrunner, S. (1981) A parsing automata approach to LR theory. Theoretical
Computer Science 15, pp. 117-157.

Henderson-Sellers, B. (1996) Object-Oriented Metrics: Measures of Complexity,
Prentice-Hall.

Hopcroft, E. and Ullman, J.D. (1969) Formal Languages and Their Relation to
Automata. Addison-Wesley.

Hopcroft, E. and Ullman, J.D. (1979) Introduction to Automata Theory, Languages,
and Computations. Addison-Wesley.

Irons, E. T. (1961) A syntax directed compiler for ALGOL 60. CACM 4, 51-55.
ISO/IEC (1996) Information Technology — Software Product Evaluation; Part 1:
Overview. ISO/IEC DIS 14598-1. (International Organization for Standardization

and the International Elcctrotechnical Commission).

Java standard http://www.sun.com

Janssen, T. M. V. and van Emde Boas, P. (1981) Some observations on compositional
semantics. Report 81-11. University of Amsterdam.

Johnson, S. C. (1975). Yacc: yet another compiler compiler. Tech. Rep. CSTR-32,
AT&T Bell Laboratories, Murray Hill, NJ.

Kifer M., Lausen G., and Wu J.. Logical Foundations of Object-Oriented and Frame-
Based Languages. Journal of the ACM, 42(4):741 843, July 1995.

Kleene, S.C. (1956) Representation of events by nerve nets. In Automata Studies, ed.
C.E. Shannon and J McCarthy, Princeton University Press, Princeton, pp. 3-42.

Kent Modeling Framework project. http://www.cs.kent.ac.uk/projects/kmf.

Knuth, D. E. (1965) On the translation of languages from left to right. Information
and Control 8, pp. 607-639.

[Knu67]

[Knu68]

[Les75]

[LH93]

[LK94]

[LS68]

[McC76]

[MDA]

[MID]
[MODF]

[MOF]

[MOFS]

[MTF]

[MTL]

[Myh57]

[Ner58]

[NS57]

[OAW]

[OCL]

183

Knuth, D. E. (1967) The Art of Programming, Vol. I: Fundamental Algorithms.
Addison Wesley.

Knuth, D. E. (1968) Semantics of context-free languages Math. Syst. Theory 2, 127-
145. Correcttion: Math. Syst. Theory 5, pp. 95-96.

Lesk, M. E. (1975). Lex-a lexical analyzer generator. Tech. Rep. Computing Science
Technical Report 39, Bell laboratories, Murray Hill, NJ.

Li, W. and Henry, S. (1993) Object-oriented metrics that predict maintainability.
Journal of Systems and Software, 23, pp. 111-122.

Lorentz, M. and Kidd, J. (1994) Object-Oriented Software Metrics, Prentice-Hall.

Lewis, P. M. and Stearns, R. E. (1968). Syntax-driven translation, JACM 15, pp. 464-
488.

McCabe, T. (1976) A complexity measure. IEEE Transactions Software Engineering,
2, pp. 308-320.

MDA. Model Driven Architecture Specification. OMG document omg/03-06-01,
available at. http://www.omg.org/mda.

Middlegen Project Home Page. On-line at http://sourceforge.net/projects/middlegen

ModFact Project Home Page. On-line at http://modelware.inria.fr

OMG, MOF Meta Object Facility Specification, OMG Document formal/2002-04-
03, available at http://www.omg.org/mof

MOFScript Project Home Page. On-line at http://www.modelbased.net/mofscript/

Model Transformation Framework Project Home Page. On-line at
http://www.alphaworks.ibm.com/tech/mtf

MTL Engine.Project Home Page. On-line at http://modelware.inria.fr/

Myhill, J. (1957) Finite automata and the representation of events. WADD TR-57-
624, Wright Patterson AFB, Ohio, pp. 112-137.

Nerode, A. (1958) Linear automaton transformations. In Proceedings of the
American Mathematical Society, 9, pp. 541-544.

Newell, A. and Shaw, J. C. Programming the logic theory machine. In Proceedings
of the 1957 Western Joint Computer Conference, pp. 230-240, Institute of Radio
Engineers, New-York.

Open Architecture Ware Project Home Page. On-line at
http://www.openarchitectureware.org/

OMG, OCL Object Constraint Language Specification Revised Submission, Version
1.6, January 6, 2003, OMG document ad/2003-01-07.

[OCL2P]

[OMDX]
[OMG]

[PatO4a]

[Pat04b]

[Pat04c]

[Pat04d]

[Pat02a]

[Pat02b]

[Pax95]

[PM91]

[PM94]

[PRO4]

[QVTO02]

[QVTD]

[QVTF]

[QVTP]

[RAT]

[RGOO]

184

Open source project: Object Constraint Language for Kent Modeling Framework and
Eclipse Framework. http://www.cs.kent.ac.uk/projects/kmf.

OpenMDX Project Home Page. On-line at http://www.openmdx.org/

Object Management Group. http://www.omg.org.

Patrascoiu, O. (2004) YATL:Yet Another Transformation Language. In Proc. of First
European Workshop MDA-IA, University of Twente, the Nederlands.

Patrascoiu, O. (2004) YATL:Yet Another Transformation Language. Reference
Manual. Version 1.0. Technical Report 2-04, University of Kent, UK.

Patrascoiu, O. (2004) Model transformations in YATL. Studies and Experiments.
Technical Report 3-04, University of Kent, UK.

Patrascoiu, O. (2004) Mapping EDOC to Web Services using YATL. In Procedings
of 8" IEE International Enterprise Distributed Object Computing Conference,
EDOC 2004.

Patrascoiu, O. (2002) A quality model for Java programs maintenance. In Else
Software Journal, University of Craiova.

Patrascoiu, O. (2002) Software systems quality. In Else Software Journal, University
of Craiova.

Paxson, V. (1995) Flex-Fast lexical analyzer generator. Lawrence Berkley
Laboratory, Berckeley, CA, http://www.icir.org/vern/

Patrascoiu, O. and Marian, Gh. (1991). TDPG: A Parser Generator for Top-down
Parsing Grammars. In Proceedings of The International Conference on Applied and
Theoretical Electrotechnics, Craiova.

Patrascoiu, O. and Marian, Gh. (1994). Translation Scheme for Regular Expression.
In Proceedings of the National Symposium on System Theory, Craiova.

Patrascoiu, O. and Rodgers, P. (2004). Embedding OCL expressions in YATL. In
Proc. of “OCL and Model Driven Engineering” workshop, UML 2004.

OG, QVT Query/Views/Transformations RFP, OMG Document ad/02-04-10, revised
on April 24, 202. http://www.omg.org/cgi-bin/doc?ad/2002-4-10

OMG, MOF Query/Views/Transformation, Initial submission, DSTC and IBM.

OMG, MOF Query/Views/Transformation, Initial submission, Alcatel, SoftTeam,
Thales, TNI-Valiosys.

OMG, MOF Query/Views/Transformation, Initial submission, QVT Partners.

Rational ~ Software Corporation, Rational Rose, 2004. Online at
http://www.rational.com

Richters, M. and Gogolla, M. (2000) Validating UML models and OCL constraints.
In Proceeding of The Third International Conference on the Unified Modeling

[RIB9Y]

[RS59]

[RWD]

[Sal69]

[Sal73]

[SB60]

[SIF96]

[SOAP]
[Som92]

[SVBO3]

[TCO2]

[TKC99]

[TOG]

[Tur36]

[UDDI]

[UML]

[UMT]

[UNI]

185

Language (UML’2000), LNCS. Springer.

Rumbaugh, J., Jacobson, I., and Booch, G.. (1999). The Unified Modeling Language
— Reference Manual. Addison-Wesley.

Rabin, M.O. and D. Scott. (1959) Finite Automata and their decision problem. In
IBM Journal of Research and Development 3, pp. 114-125.

Reasoning with Diagrams http://www.cs.kent.ac.uk/projects/rwd

Salomaa, A. (1969) Theory of Automata. International Series of Monographs in Pure
and Applied Mathematics, Pergamon Press.

Salomaa, A. (1973) Formal Languages. Academic Press, Revised edition in the series
"Computer Science Classics", Academic Press.

Samelson, K. and Bauer, F. L. (1960). Sequential formula translation.
Communications of the ACM, 3(20), pp. 76-83.

Schmidt, D. C., Johnson, R. E., and Fayad, M. (1996) Software patterns. In CACM,
39(10).

W3C, Simple Object Access Protocol http://www.w3.0rg/TR/soap

Sommerville 1. (1992) Software engineering, Addison-Wesley.

Sturm, T., von Voss, J., and Boger, M. (2003) Generating Code from UML with
Velocity Templates, In Proceedings of The Fifth International Conference on the
Unified Modeling Language (UML’2002), Dresden, Germany.

Tang, M.-H., and Chen, M.-H. (2002) Measuring OO Design Metrics from UML. In
Proceedings of the Fifth International Conference <<UML>> 2002 — The Unified
Modeling Language. Model Engineering, Concepts, and Tools, pp. 368-382.

Tang, M.-H., Kao, M.-H., and Chen, M.-H. (1999) An empirical study on object
oriented metrics. In Proceedings of the Sixth International Software Metrics
Symposium, pp. 242-249.

TogetherSoft http://www.togetherSoft.com

Turing, A., On Computable Numbers, With an Application to the
Entschedungsproblem. In, Proceedings of the London Mathematical Society, Series
2, Volume 42, 1936; reprinted in M. David (ed.), The Undecidable, Hewlett, NY:
Raven Press, 1965; online: http://www.abelard.org/turpap2/tp2-ie.asp.

Universal Description, Discovery, and Integration http://uddi.org/specification.html

OMG, Unified Modeling Language Specification, Version 1.5, 2003, OMG
Document formal/2003-03-01, available at. http://www.omg.org/uml.

UML Model Transformation Tool Project Home Page. On-line at
http://umt-qvt.sourceforge.net/

Unicode standard. http://www.unicode.org

[WG84]
[WIK]

[WHO8]

[WK99]

[WSDL]

[XDOC]

[XMI]

[XML]

[XMLS]

186

Waite, W. M. and Goos, G. (1984) Compiler construction. Springer Verlag.

Wikipedia The Free Encyclopedia http://www.wikipedia.org

Wilkie F. G. and Hylands B. (1998) Measuring Complexity in C++ Application
Software, Software Practice and Experience, 28(5), pp 513-546.

Warmer, J. and Kleppe, A. (1999). The Object Constraint Language: Precise
Modeling with UML. Addison-Wesley.

W3C, Web Service Description Language http://www.w3.org/TR/wsdl

XDoclet Project Home Page. On-line at
http://xdoclet.sourceforge.net/xdoclet/index.html

OMG, MOF Meta Object Facility Specification OMG Document 2003-05-02,
available at http://www.omg.org/uml

W3C, Extensible Markup Language http://www.w3.0rg/TR/2004/REC-xml-
20040204/

XML Schema http://www.w3.0rg/XML/Schema

