3,820 research outputs found

    Remote real-time collaboration through synchronous exchange of digitised human-workpiece interactions

    Get PDF
    In this highly globalised manufacturing ecosystem, product design and verification activities, production and inspection processes, and technical support services are spread across global supply chains and customer networks. Therefore, collaborative infrastructures that enable global teams to collaborate with each other in real-time in performing complex manufacturing-related tasks is highly desirable. This work demonstrates the design and implementation of a remote real-time collaboration platform by using human motion capture technology powered by infrared light based depth imaging sensors and a synchronous data transfer protocol from computer networks. The unique functionality of the proposed platform is the sharing of physical contexts during a collaboration session by not only exchanging human actions but also the effects of those actions on the workpieces and the task environment. Results show that this platform could enable teams to remotely work on a common engineering problem at the same time and also get immediate feedback from each other making it valuable for collaborative design, inspection and verifications tasks in the factories of the future. An additional benefit of the implemented platform is its use of low cost off the shelf equipment thereby making it accessible to SMEs that are connected to larger organisations via complex supply chains

    Designing a Technological Pathway to Empower Vocational Education and Training in the Circular Wood and Furniture Sector through Extended Reality

    Get PDF
    Extended Reality (XR) is a term that refers to virtual, augmented, and, more recently, mixed reality (VR/AR//MR), which are key enabling technologies of the Industry 4.0 (I4.0) and the simulated digital environment of the metaverse. XR enables the simulation of workplace scenarios, providing workers with training in a risk-free environment, resulting in cost savings, improved occupational risk prevention, and enhanced decision-making processes. XR is ideal for supporting digital transformation for organisations in fields such as production, occupational risk prevention, maintenance, and marketing. XR is also a key driver for training initiatives aimed at promoting good practices in the circular economy in specific sectors such as woodworking and furniture (W&F). The European Commission has recognised the potential of XR for the W&F sector, funding initiatives such as the European project, Allview, which seeks to identify the most appropriate and beneficial technologies of I4.0 with a green and digital transition focus from the perspective of vocational education and training (VET). This paper presents the work carried out within the framework of Allview, including the research and comparison of current software and hardware of XR tools suitable for VET in the W&F field, a review of successful examples of XR applied to W&F training actions, and an analysis of the opinions gathered from European students, teachers, and training organisations regarding the use of XR in education. As a result, the authors present a training pathway aimed at the development and implementation of a XR training scenario/lab/environment focused on VR, 360° videos, and MR, as a guideline for developing immersive XR training contents, contributing to the digital and green transformation of VET in the W&F sector

    Continuous maintenance and the future – Foundations and technological challenges

    Get PDF
    High value and long life products require continuous maintenance throughout their life cycle to achieve required performance with optimum through-life cost. This paper presents foundations and technologies required to offer the maintenance service. Component and system level degradation science, assessment and modelling along with life cycle ‘big data’ analytics are the two most important knowledge and skill base required for the continuous maintenance. Advanced computing and visualisation technologies will improve efficiency of the maintenance and reduce through-life cost of the product. Future of continuous maintenance within the Industry 4.0 context also identifies the role of IoT, standards and cyber security

    Strategic Roadmaps and Implementation Actions for ICT in Construction

    Get PDF

    Towards a Cyber-Physical Manufacturing Cloud through Operable Digital Twins and Virtual Production Lines

    Get PDF
    In last decade, the paradigm of Cyber-Physical Systems (CPS) has integrated industrial manufacturing systems with Cloud Computing technologies for Cloud Manufacturing. Up to 2015, there were many CPS-based manufacturing systems that collected real-time machining data to perform remote monitoring, prognostics and health management, and predictive maintenance. However, these CPS-integrated and network ready machines were not directly connected to the elements of Cloud Manufacturing and required human-in-the-loop. Addressing this gap, we introduced a new paradigm of Cyber-Physical Manufacturing Cloud (CPMC) that bridges a gap between physical machines and virtual space in 2017. CPMC virtualizes machine tools in cloud through web services for direct monitoring and operations through Internet. Fundamentally, CPMC differs with contemporary modern manufacturing paradigms. For instance, CPMC virtualizes machining tools in cloud using remote services and establish direct Internet-based communication, which is overlooked in existing Cloud Manufacturing systems. Another contemporary, namely cyber-physical production systems enable networked access to machining tools. Nevertheless, CPMC virtualizes manufacturing resources in cloud and monitor and operate them over the Internet. This dissertation defines the fundamental concepts of CPMC and expands its horizon in different aspects of cloud-based virtual manufacturing such as Digital Twins and Virtual Production Lines. Digital Twin (DT) is another evolving concept since 2002 that creates as-is replicas of machining tools in cyber space. Up to 2018, many researchers proposed state-of-the-art DTs, which only focused on monitoring production lifecycle management through simulations and data driven analytics. But they overlooked executing manufacturing processes through DTs from virtual space. This dissertation identifies that DTs can be made more productive if they engage directly in direct execution of manufacturing operations besides monitoring. Towards this novel approach, this dissertation proposes a new operable DT model of CPMC that inherits the features of direct monitoring and operations from cloud. This research envisages and opens the door for future manufacturing systems where resources are developed as cloud-based DTs for remote and distributed manufacturing. Proposed concepts and visions of DTs have spawned the following fundamental researches. This dissertation proposes a novel concept of DT based Virtual Production Lines (VPL) in CPMC in 2019. It presents a design of a service-oriented architecture of DTs that virtualizes physical manufacturing resources in CPMC. Proposed DT architecture offers a more compact and integral service-oriented virtual representations of manufacturing resources. To re-configure a VPL, one requirement is to establish DT-to-DT collaborations in manufacturing clouds, which replicates to concurrent resource-to-resource collaborations in shop floors. Satisfying the above requirements, this research designs a novel framework to easily re-configure, monitor and operate VPLs using DTs of CPMC. CPMC publishes individual web services for machining tools, which is a traditional approach in the domain of service computing. But this approach overcrowds service registry databases. This dissertation introduces a novel fundamental service publication and discovery approach in 2020, OpenDT, which publishes DTs with collections of services. Experimental results show easier discovery and remote access of DTs while re-configuring VPLs. Proposed researches in this dissertation have received numerous citations both from industry and academia, clearly proving impacts of research contributions

    Augmented Reality

    Get PDF
    Augmented Reality (AR) is a natural development from virtual reality (VR), which was developed several decades earlier. AR complements VR in many ways. Due to the advantages of the user being able to see both the real and virtual objects simultaneously, AR is far more intuitive, but it's not completely detached from human factors and other restrictions. AR doesn't consume as much time and effort in the applications because it's not required to construct the entire virtual scene and the environment. In this book, several new and emerging application areas of AR are presented and divided into three sections. The first section contains applications in outdoor and mobile AR, such as construction, restoration, security and surveillance. The second section deals with AR in medical, biological, and human bodies. The third and final section contains a number of new and useful applications in daily living and learning

    Enabling the Development and Implementation of Digital Twins : Proceedings of the 20th International Conference on Construction Applications of Virtual Reality

    Get PDF
    Welcome to the 20th International Conference on Construction Applications of Virtual Reality (CONVR 2020). This year we are meeting on-line due to the current Coronavirus pandemic. The overarching theme for CONVR2020 is "Enabling the development and implementation of Digital Twins". CONVR is one of the world-leading conferences in the areas of virtual reality, augmented reality and building information modelling. Each year, more than 100 participants from all around the globe meet to discuss and exchange the latest developments and applications of virtual technologies in the architectural, engineering, construction and operation industry (AECO). The conference is also known for having a unique blend of participants from both academia and industry. This year, with all the difficulties of replicating a real face to face meetings, we are carefully planning the conference to ensure that all participants have a perfect experience. We have a group of leading keynote speakers from industry and academia who are covering up to date hot topics and are enthusiastic and keen to share their knowledge with you. CONVR participants are very loyal to the conference and have attended most of the editions over the last eighteen editions. This year we are welcoming numerous first timers and we aim to help them make the most of the conference by introducing them to other participants

    The Application of Mixed Reality Within Civil Nuclear Manufacturing and Operational Environments

    Get PDF
    This thesis documents the design and application of Mixed Reality (MR) within a nuclear manufacturing cell through the creation of a Digitally Assisted Assembly Cell (DAAC). The DAAC is a proof of concept system, combining full body tracking within a room sized environment and bi-directional feedback mechanism to allow communication between users within the Virtual Environment (VE) and a manufacturing cell. This allows for training, remote assistance, delivery of work instructions, and data capture within a manufacturing cell. The research underpinning the DAAC encompasses four main areas; the nuclear industry, Virtual Reality (VR) and MR technology, MR within manufacturing, and finally the 4 th Industrial Revolution (IR4.0). Using an array of Kinect sensors, the DAAC was designed to capture user movements within a real manufacturing cell, which can be transferred in real time to a VE, creating a digital twin of the real cell. Users can interact with each other via digital assets and laser pointers projected into the cell, accompanied by a built-in Voice over Internet Protocol (VoIP) system. This allows for the capture of implicit knowledge from operators within the real manufacturing cell, as well as transfer of that knowledge to future operators. Additionally, users can connect to the VE from anywhere in the world. In this way, experts are able to communicate with the users in the real manufacturing cell and assist with their training. The human tracking data fills an identified gap in the IR4.0 network of Cyber Physical System (CPS), and could allow for future optimisations within manufacturing systems, Material Resource Planning (MRP) and Enterprise Resource Planning (ERP). This project is a demonstration of how MR could prove valuable within nuclear manufacture. The DAAC is designed to be low cost. It is hoped this will allow for its use by groups who have traditionally been priced out of MR technology. This could help Small to Medium Enterprises (SMEs) close the double digital divide between themselves and larger global corporations. For larger corporations it offers the benefit of being low cost, and, is consequently, easier to roll out across the value chain. Skills developed in one area can also be transferred to others across the internet, as users from one manufacturing cell can watch and communicate with those in another. However, as a proof of concept, the DAAC is at Technology Readiness Level (TRL) five or six and, prior to its wider application, further testing is required to asses and improve the technology. The work was patented in both the UK (S. R EDDISH et al., 2017a), the US (S. R EDDISH et al., 2017b) and China (S. R EDDISH et al., 2017c). The patents are owned by Rolls-Royce and cover the methods of bi-directional feedback from which users can interact from the digital to the real and vice versa. Stephen Reddish Mixed Mode Realities in Nuclear Manufacturing Key words: Mixed Mode Reality, Virtual Reality, Augmented Reality, Nuclear, Manufacture, Digital Twin, Cyber Physical Syste
    • …
    corecore