234 research outputs found

    Construction of fuzzy radial basis function neural network model for diagnosing prostate cancer

    Get PDF
    In this paper, we propose a construction of fuzzy radial basis function neural network model for diagnosing prostate cancer. A fuzzy radial basis function neural network (fuzzy RBFNN) is a hybrid model of logical fuzzy and neural network. The fuzzy membership function of the fuzzy RBFNN model input is developed using the triangle function. The fuzzy C-means method is applied to estimate the center and the width parameters of the radial basis function. The weight estimation is performed by various ways to gain the most accurate model. A singular value decomposition (SVD) is exploited to address this process. As a comparison, we perform other ways including back propagation and global ridge regression. The study also promotes image preprocessing using high frequency emphasis filter (HFEF) and histogram equalization (HE) to enhance the quality of the prostate radiograph. The features of the textural image are extracted using the gray level co-occurrence matrix (GLCM) and gray level run length matrix (GLRLM). The experiment results of fuzzy RBFNN are compared to those of RBFNN model. Generally, the performances of fuzzy RBFNN surpass the RBFNN in all accuracy calculation. In addition, the fuzzy RBFNN-SVD demonstrates the most accurate model for prostate cancer diagnosis

    CAD system for early diagnosis of diabetic retinopathy based on 3D extracted imaging markers.

    Get PDF
    This dissertation makes significant contributions to the field of ophthalmology, addressing the segmentation of retinal layers and the diagnosis of diabetic retinopathy (DR). The first contribution is a novel 3D segmentation approach that leverages the patientspecific anatomy of retinal layers. This approach demonstrates superior accuracy in segmenting all retinal layers from a 3D retinal image compared to current state-of-the-art methods. It also offers enhanced speed, enabling potential clinical applications. The proposed segmentation approach holds great potential for supporting surgical planning and guidance in retinal procedures such as retinal detachment repair or macular hole closure. Surgeons can benefit from the accurate delineation of retinal layers, enabling better understanding of the anatomical structure and more effective surgical interventions. Moreover, real-time guidance systems can be developed to assist surgeons during procedures, improving overall patient outcomes. The second contribution of this dissertation is the introduction of a novel computeraided diagnosis (CAD) system for precise identification of diabetic retinopathy. The CAD system utilizes 3D-OCT imaging and employs an innovative approach that extracts two distinct features: first-order reflectivity and 3D thickness. These features are then fused and used to train and test a neural network classifier. The proposed CAD system exhibits promising results, surpassing other machine learning and deep learning algorithms commonly employed in DR detection. This demonstrates the effectiveness of the comprehensive analysis approach employed by the CAD system, which considers both low-level and high-level data from the 3D retinal layers. The CAD system presents a groundbreaking contribution to the field, as it goes beyond conventional methods, optimizing backpropagated neural networks to integrate multiple levels of information effectively. By achieving superior performance, the proposed CAD system showcases its potential in accurately diagnosing DR and aiding in the prevention of vision loss. In conclusion, this dissertation presents novel approaches for the segmentation of retinal layers and the diagnosis of diabetic retinopathy. The proposed methods exhibit significant improvements in accuracy, speed, and performance compared to existing techniques, opening new avenues for clinical applications and advancements in the field of ophthalmology. By addressing future research directions, such as testing on larger datasets, exploring alternative algorithms, and incorporating user feedback, the proposed methods can be further refined and developed into robust, accurate, and clinically valuable tools for diagnosing and monitoring retinal diseases

    A CAD system for early diagnosis of autism using different imaging modalities.

    Get PDF
    The term “autism spectrum disorder” (ASD) refers to a collection of neuro-developmental disorders that affect linguistic, behavioral, and social skills. Autism has many symptoms, most prominently, social impairment and repetitive behaviors. It is crucial to diagnose autism at an early stage for better assessment and investigation of this complex syndrome. There have been a lot of efforts to diagnose ASD using different techniques, such as imaging modalities, genetic techniques, and behavior reports. Imaging modalities have been extensively exploited for ASD diagnosis, and one of the most successful ones is Magnetic resonance imaging(MRI),where it has shown promise for the early diagnosis of the ASD related abnormalities in particular. Magnetic resonance imaging (MRI) modalities have emerged as powerful means that facilitate non-invasive clinical diagnostics of various diseases and abnormalities since their inception in the 1980s. After the advent in the nineteen eighties, MRI soon became one of the most promising non- invasive modalities for visualization and diagnostics of ASD-related abnormalities. Along with its main advantage of no exposure to radiation, high contrast, and spatial resolution, the recent advances to MRI modalities have notably increased diagnostic certainty. Multiple MRI modalities, such as different types of structural MRI (sMRI) that examines anatomical changes, and functional MRI (fMRI) that examines brain activity by monitoring blood flow changes,have been employed to investigate facets of ASD in order to better understand this complex syndrome. This work aims at developing a new computer-aided diagnostic (CAD) system for autism diagnosis using different imaging modalities. It mainly relies on making use of structural magnetic resonance images for extracting notable shape features from parts of the brainthat proved to correlate with ASD from previous neuropathological studies. Shape features from both the cerebral cortex (Cx) and cerebral white matter(CWM)are extracted. Fusion of features from these two structures is conducted based on the recent findings suggesting that Cx changes in autism are related to CWM abnormalities. Also, when fusing features from more than one structure, this would increase the robustness of the CAD system. Moreover, fMRI experiments are done and analyzed to find areas of activation in the brains of autistic and typically developing individuals that are related to a specific task. All sMRI findings are fused with those of fMRI to better understand ASD in terms of both anatomy and functionality,and thus better classify the two groups. This is one aspect of the novelty of this CAD system, where sMRI and fMRI studies are both applied on subjects from different ages to diagnose ASD. In order to build such a CAD system, three main blocks are required. First, 3D brain segmentation is applied using a novel hybrid model that combines shape, intensity, and spatial information. Second, shape features from both Cx and CWM are extracted and anf MRI reward experiment is conducted from which areas of activation that are related to the task of this experiment are identified. Those features were extracted from local areas of the brain to provide an accurate analysis of ASD and correlate it with certain anatomical areas. Third and last, fusion of all the extracted features is done using a deep-fusion classification network to perform classification and obtain the diagnosis report. Fusing features from all modalities achieved a classification accuracy of 94.7%, which emphasizes the significance of combining structures/modalities for ASD diagnosis. To conclude, this work could pave the pathway for better understanding of the autism spectrum by finding local areas that correlate to the disease. The idea of personalized medicine is emphasized in this work, where the proposed CAD system holds the promise to resolve autism endophenotypes and help clinicians deliver personalized treatment to individuals affected with this complex syndrome

    Odontology & artificial intelligence

    Get PDF
    Neste trabalho avaliam-se os três fatores que fizeram da inteligência artificial uma tecnologia essencial hoje em dia, nomeadamente para a odontologia: o desempenho do computador, Big Data e avanços algorítmicos. Esta revisão da literatura avaliou todos os artigos publicados na PubMed até Abril de 2019 sobre inteligência artificial e odontologia. Ajudado com inteligência artificial, este artigo analisou 1511 artigos. Uma árvore de decisão (If/Then) foi executada para selecionar os artigos mais relevantes (217), e um algoritmo de cluster k-means para resumir e identificar oportunidades de inovação. O autor discute os artigos mais interessantes revistos e compara o que foi feito em inovação durante o International Dentistry Show, 2019 em Colónia. Concluiu, assim, de forma crítica que há uma lacuna entre tecnologia e aplicação clínica desta, sendo que a inteligência artificial fornecida pela indústria de hoje pode ser considerada um atraso para o clínico de amanhã, indicando-se um possível rumo para a aplicação clínica da inteligência artificial.There are three factors that have made artificial intelligence (AI) an essential technology today: the computer performance, Big Data and algorithmic advances. This study reviews the literature on AI and Odontology based on articles retrieved from PubMed. With the help of AI, this article analyses a large number of articles (a total of 1511). A decision tree (If/Then) was run to select the 217 most relevant articles-. Ak-means cluster algorithm was then used to summarize and identify innovation opportunities. The author discusses the most interesting articles on AI research and compares them to the innovation presented during the International Dentistry Show 2019 in Cologne. Three technologies available now are evaluated and three suggested options are been developed. The author concludes that AI provided by the industry today is a hold-up for the praticioner of tomorrow. The author gives his opinion on how to use AI for the profit of patients

    Implementing decision tree-based algorithms in medical diagnostic decision support systems

    Get PDF
    As a branch of healthcare, medical diagnosis can be defined as finding the disease based on the signs and symptoms of the patient. To this end, the required information is gathered from different sources like physical examination, medical history and general information of the patient. Development of smart classification models for medical diagnosis is of great interest amongst the researchers. This is mainly owing to the fact that the machine learning and data mining algorithms are capable of detecting the hidden trends between features of a database. Hence, classifying the medical datasets using smart techniques paves the way to design more efficient medical diagnostic decision support systems. Several databases have been provided in the literature to investigate different aspects of diseases. As an alternative to the available diagnosis tools/methods, this research involves machine learning algorithms called Classification and Regression Tree (CART), Random Forest (RF) and Extremely Randomized Trees or Extra Trees (ET) for the development of classification models that can be implemented in computer-aided diagnosis systems. As a decision tree (DT), CART is fast to create, and it applies to both the quantitative and qualitative data. For classification problems, RF and ET employ a number of weak learners like CART to develop models for classification tasks. We employed Wisconsin Breast Cancer Database (WBCD), Z-Alizadeh Sani dataset for coronary artery disease (CAD) and the databanks gathered in Ghaem Hospital’s dermatology clinic for the response of patients having common and/or plantar warts to the cryotherapy and/or immunotherapy methods. To classify the breast cancer type based on the WBCD, the RF and ET methods were employed. It was found that the developed RF and ET models forecast the WBCD type with 100% accuracy in all cases. To choose the proper treatment approach for warts as well as the CAD diagnosis, the CART methodology was employed. The findings of the error analysis revealed that the proposed CART models for the applications of interest attain the highest precision and no literature model can rival it. The outcome of this study supports the idea that methods like CART, RF and ET not only improve the diagnosis precision, but also reduce the time and expense needed to reach a diagnosis. However, since these strategies are highly sensitive to the quality and quantity of the introduced data, more extensive databases with a greater number of independent parameters might be required for further practical implications of the developed models

    Component-wise analysis of metaheuristic algorithms for novel fuzzy-meta classifier

    Get PDF
    Metaheuristic research has proposed promising results in science, business, and engineering problems. But, mostly high-level analysis is performed on metaheuristic performances. This leaves several critical questions unanswered due to black-box issue that does not reveal why certain metaheuristic algorithms performed better on some problems and not on others. To address the significant gap between theory and practice in metaheuristic research, this study proposed in-depth analysis approach using component-view of metaheuristic algorithms and diversity measurement for determining exploration and exploitation abilities. This research selected three commonly used swarm-based metaheuristic algorithms – Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), and Cuckoo Search (CS) – to perform component-wise analysis. As a result, the study able to address premature convergence problem in PSO, poor exploitation in ABC, and imbalanced exploration and exploitation issue in CS. The proposed improved PSO (iPSO), improved ABC (iABC), and improved CS (iCS) outperformed standard algorithms and variants from existing literature, as well as, Grey Wolf Optimization (GWO) and Animal Migration Optimization (AMO) on ten numerical optimization problems with varying modalities. The proposed iPSO, iABC, and iCS were then employed on proposed novel Fuzzy-Meta Classifier (FMC) which offered highly reduced model complexity and high accuracy as compared to Adaptive Neuro-Fuzzy Inference System (ANFIS). The proposed three-layer FMC produced efficient rules that generated nearly 100% accuracies on ten different classification datasets, with significantly reduced number of trainable parameters and number of nodes in the network architecture, as compared to ANFIS

    Faculty Publications and Creative Works 2004

    Get PDF
    Faculty Publications & Creative Works is an annual compendium of scholarly and creative activities of University of New Mexico faculty during the noted calendar year. Published by the Office of the Vice President for Research and Economic Development, it serves to illustrate the robust and active intellectual pursuits conducted by the faculty in support of teaching and research at UNM
    corecore